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Abstract

Recent research has shown that representation learning models may accidentally
memorize their training data. For example, the déjà vu method shows that for
certain representation learning models and training images, it is sometimes pos-
sible to correctly predict the foreground label given only the representation of
the background – better than through dataset-level correlations. However, their
measurement method requires training two models – one to estimate dataset-level
correlations and the other to estimate memorization. This multiple model setup
becomes infeasible for large open-source models. In this work, we propose alter-
native simple methods to estimate dataset-level correlations, and show that these
can be used to approximate an off-the-shelf model’s memorization ability without
any retraining. This enables, for the first time, the measurement of memorization
in pre-trained open-source image representation and vision-language models. Our
results show that different ways of measuring memorization yield very similar
aggregate results. We also find that open-source models typically have lower aggre-
gate memorization than similar models trained on a subset of the data. The code is
available both for vision and vision language models.

1 Introduction

Representation learning has emerged as one of the major tasks in computer vision. The goal in
representation learning is to learn a model that produces semantically meaningful representations,
where images or image-text pairs that are close in meaning occur close together in representation
space. These learned representations can then be used in numerous downstream applications such
as semantic segmentation [Kirillov et al., 2023], image generation [Rombach et al., 2022] and
multi-modal LLMs [Liu et al., 2024]. A natural question that arises is whether these representation
learning models memorize their training data and to what extent. Excessive memorization may call
the generalization abilities of the models into question. Thus, there is a need to develop a way to
measure if and to what extent memorization is taking place.

Since learned representations are usually abstract and hard to interpret, memorization measurement
for representation learning models requires careful design. Currently, a standard way of doing
this is the déjà vu method, which designs a causal task of predicting parts of the training sample
given another disjoint part, and uses performance on this task to determine if the model memorizes.
For example, Meehan et al. [2023] designed the task of predicting the foreground object given
the background crop of a training image, as shown in Figure 1 (orange block). Achieving a high
performance on this task indicates two possibilities: (i) if the model has memorized the association of
the background crop with the foreground object for a specific training sample, or (ii) if the model
has learned the dataset-level correlation between the background crop and a given foreground object.
To rule out the second possibility, Meehan et al. [2023] opted for a two-model approach, training
two separate models on disjoint parts of the training set and using the gap in performance between
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Figure 1: Illustration of our one-model déjà vu test for image representation learning. The task is
to predict the foreground object given a background crop. The original déjà vu test [Meehan et al.,
2023] trains two models SSLA and SSLB on disjoint splits of the training set, and uses SSLB to
quantify the degree of dataset-level correlation between the foreground and background crop. Our
one-model test replaces SSLB with a classifier that directly predicts the foreground given background
crop, and we show that both ResNet50 network and Naive Bayes classifier work well for this purpose.

the two models as indication of memorization. This approach has been extended by Jayaraman et al.
[2024] to measure memorization of vision-language models such as CLIP [Radford et al., 2021].

Despite the success of the déjà vu method in defining and measuring memorization, scaling this
approach to state-of-the-art representation learning models is challenging. First of all, the two-model
approach requires the model trainer to split the training set into disjoint halves, which severely
constrains the valuable training data. Moreover, even if data is abundant, training the second model
on internet-scale datasets is computationally expensive. Due to these limitations, the déjà vu test
cannot be used to measure memorization of pre-trained models out-of-the-box.

In this work, we provide simple alternative ways of quantifying dataset-level correlations and
show that they suffice for the purpose of measuring déjà vu memorization. Specifically, for image
representation learning, we propose two alternative ways to derive reference models to predict the
foreground label from a background crop: training an image classification network directly, and
using a Naive Bayes classifier on top of a pre-trained object detection model. We then leverage these
reference models to define a one-model déjà vu test—a memorization test for representation learning
models that only requires training a simpler reference model once per dataset. Figure 1 (green block)
gives an illustration of our proposed one-model déjà vu test. We also propose a variant of the method
for vision-language models by leveraging a pre-trained text embedding model.

We validate our proposed methods by comparing them to the two-model test on ImageNet-trained
image representation learning models, as well as CLIP models trained on a privately licensed
image-caption pair dataset. We find that the one-model test can successfully identify memorized
examples and obtain similar population-level memorization scores as the two-model test. We then
apply the one-model déjà vu test on pre-trained open-source models and provide for the first time a
principled memorization measurement on these models. Our results reveal that open-source models
have significantly lower memorization rates than similar models trained on a smaller subset of data.
We conclude that our one-model test can be a practical tool for evaluating memorization rates in
representation learning models.

Contributions. To summarize, our main contributions are as follows:

1. We develop simple and efficient methods to quantify dataset-level correlations for both image-only
and vision-language representation learning models. Our methods enable déjà vu memorization
tests without training two models on disjoints splits of the training set.

2. We validate our proposed methods by comparing them to the two-model test, and analyze the
strengths and weaknesses of both tests.

3. We evaluate the one-model déjà vu test on open-source image-only and vision-language represen-
tation models. Our test reveals that open-source models do memorize specific training samples,
but overall to a lesser degree than the same model trained on smaller subsets of data.
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2 Related Work

A body of literature has been built around how to detect and measure memorization of large foundation
models.

The first line of work is on extraction attacks [Carlini et al., 2019, 2021], where the goal is to extract
snippets of training data from a model. These attacks typically tend to work well when models are
trained on data that is duplicated many times [Kandpal et al., 2022], and are successful on a very
small fraction of training data. Consequently, it is challenging to use them to develop a consistent
metric that can be used to compare different models in terms of their memorization capacity.

The second line is on membership inference [Shokri et al., 2017], which involve a statistic, such as,
a loss function or score, where low values suggest membership in the training set. State-of-the-art
membership inference attacks Carlini et al. [2022], Watson et al. [2021] also involve training multiple
“shadow models” that are used to calibrate the values of the statistics. Membership inference tests
have close connections to overfitting Yeom et al. [2018] in that the statistic is chosen to be one that
is overfitted during training. The challenges of membership inference tests is that low values of the
statistic only suggest membership, and do not necessarily provide concrete sample-level evidence.
Additionally, they sometimes do not work well on large models [Duan et al., 2024]. Finally, we note
that for representation learning methods such as DINO [Caron et al., 2021] that use self-distillation,
loss minimization is not usually the training objective – which might lead to failure of membership
inference attacks based on loss statistics [Liu et al., 2021, He and Zhang, 2021]. In contrast, our
measurement method is more concrete, agnostic to the method of training, and does not require
training multiple similar models.

A third line of work is on attribute inference [Fredrikson et al., 2014], where we are given a model,
and some attributes of a training data point, and the goal is to use the model to infer the rest.Jayaraman
and Evans [2022] recently show that most attribute inference tests apply equally well to training and
test data, and hence may not be very relevant in measuring privacy. In contrast, déjà vu memorization
specifically looks at sample-level attribute inference in training data points beyond what could be
achieved through dataset level correlations, which justifies its relevance.

Our work also has connections to prior work on measuring memorization in classification models
and influence functions [Koh and Liang, 2017]. Feldman [2020] proposes a stability-based definition
of memorization, where a classifier memorizes the label of (x, y) if fS(x) = y, where fS is trained
on a training set S, and fS\(x,y)(x) ̸= y where fS\(x,y) is trained on S \ {(x, y)}. Unfortunately this
can be highly computationally demanding, as measuring memorization for a single example requires
training a full model.

Stability-based memorization is also very related influence functions [Koh and Liang, 2017], which
approximate the impact of a single training example on a test prediction. Specifically, if a training
point has high influence on its own prediction, then it is likely memorized. However, calculating
influences, while easier than re-training a model, is also compute-heavy for large models, and involve
many approximations. In contrast, our approach has lower computational cost.

3 Measuring Dataset-level Correlations

As explained before, the main challenge with prior work is that we need a second model trained on
similar data to determine if the task could be done by dataset-level correlations. Our main contribu-
tion is to introduce alternative approaches for inferring dataset-level correlations, and empirically
demonstrate that these approaches suffice for the purpose of measuring memorization.

3.1 Formal Definition

Formally, we define memorization as follows. We have a training dataset D = {z1, . . . , zn} drawn
i.i.d from an underlying data distribution D; this is used to train a representation learning model f .
Suppose that a data point z drawn from D can be written as: z = (v, t) where v and t represent
disjoint but possibly correlated information. For example, v could be the background of an image,
and t the label of the foreground object in it. Similarly, suppose that we can write the data distribution
D as the product of the marginal µ(v) over v and the conditional distribution µ(t|v).
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Loosely speaking, déjà vu memorization happens when we can use f to infer t from v for points zi in
the training set D better than what we could do from knowing µ(t|v). Formally, for a discrete label t,
we can rigorously define memorization as follows.
Definition 1 (Déjà vu Memorization). Let z = (v, t) be a training data point. z is said to be
memorized if there exists a predictor h such that h(f, v) = t while argmaxt′µ(t

′|v) ̸= t.

Observe that the second part of the definition precludes inference through dataset-level correlations.
Figure 1 shows a concrete example. Suppose we have an image z = (v, t) of a patch of water v
(background) with a black swan t in the foreground. Suppose also that based on the representation
f(v), we can predict there is a black swan in the image. Is this image memorized by f? It is possible,
but it might also be possible that all patches of water in the training dataset are adjacent to black
swans, i.e. argmaxt′µ(t

′|v) = t. Therefore to determine if the image is being memorized, we need
to rule out this possibility.

Related to, but different from us, Feldman [2020] provides a stability-based definition of memorization.
We adapt their original definition to our setting as follows.
Definition 2 (Stability-based Memorization). Let zi = (vi, ti) be a training data point, and let fD
denote a model trained on the dataset D. zi is said to be stably memorized if there exists a predictor
h such that h(fD, vi) = ti and h(fD\zi , vi) ̸= ti.

In other words, if we exclude zi from the training set, then we cannot use the model f to predict
ti correctly. Observe that this definition is very closely related to the notion of stability in learning
theory [Bousquet and Elisseeff, 2002].

These two definitions are related, but subtly different – there can be examples that are déjà vu
memorized, but not stably memorized and vice-versa. It can be easily shown that the rate of déjà
vu memorization is upper-bounded by the generalization error of h; on the other hand, the rate of
stability-based memorization is by definition the leave-one-out error [Bousquet and Elisseeff, 2002]
of h. Classical learning theory [Bousquet and Elisseeff, 2002] predicts that the leave-one-out error of
a classifier is close to its generalization error. Therefore, the rates of these two notions are close for
well-generalized classifiers that adapt themselves to the data such as neural networks.

Feldman [2020] provides a method to measure stability-based memorization for a sub-sample of the
training data that involves training a large number of auxiliary models; in contrast, our notion has the
advantage that it can be measured in a much more computationally efficient manner.

3.2 Image Representation Learning Models

For image representation learning, déjà vu memorization measures the accuracy of inferring the
foreground object given a background crop. Let crop be a function that, when given any image x,
produces a background crop crop(x). Then for a sample zi = (xi, yi) ∈ D where xi is an image
and yi is the label of the foreground object, we have vi = crop(xi) and ti = yi in the notation of
Definition 1. Observe that since we are looking at unsupervised representation learning, the label yi
was not used to train the model f . Define

accf (v, t) = 1((h ◦ f)(v) = t) ∈ {0, 1}, (1)

where h is a predictor that takes the representation of f(v) and outputs a foreground object label.
Observe that accf (v, t) is a 0/1 value which is 1 when the foreground prediction is correct. Since vi
does not contain the foreground object, for a training sample zi that is not memorized, one expects
accf (vi, ti) = 0, except by sheer chance. However, dataset-level correlations may in fact allow
accurate prediction of the foreground object from a background crop, e.g. if the foreground object
is a basketball and the background is a basketball court. To isolate this effect, Meehan et al. [2023]
proposed to split the training set D into disjoint sets A and B, and train two models fA and fB on
the two datasets. Then, for zi ∈ A, if accfA(vi, ti) = 1 but accfB (vi, ti) = 0, one can then infer that
ti cannot be predicted from vi from correlation alone, and thus fA has likely memorized zi.

In this analysis, accfB determines if the foreground object can be predicted from crop(xi). To enable
déjà vu memorization measurement with a single model, we propose to replace accfB with the
prediction of a reference model that directly classifies the foreground object given the background
crop. We propose two ways to do this: training an image classification network end-to-end, and using
naive Bayes classifier on top of an object detector.
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(a) Aggregate accuracy(%) of foreground predic-
tion from background for different models. We see
that ResNet50 and NB Top-2 are similar to both
VICReg and Barlow Twins, and the aggregate ac-
curacy is low.

(b) Accuracy of the top-5 predicted classes
based on dataset-level correlations using three
classifiers: KNN, Resnet and Naive Bayes.
Naive Bayes classifier uses top-20 crop annota-
tions as features.

Figure 2: Left: Population-level correlation accuracy scores across different models. The accuracies
for two model tests are based on KNNs computed on top of VICReg, Barlow Twins and DINO
representations. ResNet50 and Naive Bayes classifier are used for one model tests. The results show
that ResNet50 and NB Top-2 are similar to both VICReg and Barlow Twins. Right: Corresponding
Top-5 predicted dataset-level correlation classes and the percentage of per class correlated examples.

Image classification network. Our first approach is straightforward: we train an image classifier to
predict ti directly given vi = crop(xi). For ImageNet, we train a ResNet50 model over a split D′ of
the training set D and evaluate déjà vu memorization on D \D′. This ensures the reference model
itself is not memorizing, but rather predicting the correlation between the background crop and the
foreground object.

Naive Bayes classifier. If the training set D′ for the image classifier is large, the above approach
can be just as expensive as training the model fB . Our second approach alleviates this by fitting a
simpler model, a naive Bayes classifier, on top of objects detected in crop(x). In detail, let objects be
an object detection model with vocabulary set V; that is, for a given image x, objects(x) ∈ {0, 1}|V|

is a binary vector such that objects(x)k = 1 if and only if object ok exists in image x for each ok
in the vocabulary set V . We then derive the empirical probability estimates over a split D′ of the
training set:

P (ok) =
1

|D′|
∑

zi∈D′

objects(vi)k, P (ok | ti = t) =
1

|{zi ∈ D′ : ti = t}|
∑

zi∈D′:ti=t

objects(vi)k.

For a sample zi ∈ D \D′, the naive Bayes classifier predicts the probability P (ti = t | vi) for each
foreground object t given the background vi as:

P (ti = t | vi) = P (ti = t | detected objects in vi) = P (t)
∏

k:objects(vi)k>0

P (ok | ti = t)

P (ok)
,

where the last equality uses the independence assumption for naive Bayes. In practice, because the
object detection result can be noisy, we truncate the list of detected objects to the top-K according to
detection score.

Results. We now investigate how effective the two approaches are at measuring dataset-level
correlations in comparison with a second model [Meehan et al., 2023]. Specifically, we compare
the ResNet classifier and two versions of the Naive Bayes Classifier that uses the top-5 and top-20
crop annotations, as well as three SSL models—VICReg Bardes et al. [2022], DINO Caron et al.
[2021] and Barlow Twins Zbontar et al. [2021] —and look at how much these classifiers agree on the
predicted correlations.
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(a) Pairwise sample-level correlation agreement
fraction among six reference models. VICReg,
Barlow Twins and DINO are used for two model
tests whereas ResNet50, NB Top-5 and NB Top-
20 for one model tests.

(b) Examples demonstrating when one model
tests (ResNet and Naive Bayes classifiers) suc-
ceed and two model tests (KNN) fail and vice
versa.

Figure 3: Left: Pairwise sample-level agreement in measuring dataset-level correlations and Right:
Examples demonstrating when one model tests (Resnet and Naive Bayes classifiers) succeed and two
model tests (KNN) fail and vice versa. One model tests learn the correlations between foreground and
background better since it is enforced by the classifier training, however, they are less accurate when
the relationships between foreground and background are ambiguous. One model tests, in contrast,
are better at disambiguating the foreground and background relationships. They, however, sometimes
tend to predict what’s on the background and not what foreground it is associated with.

Figure 2a shows that the overall accuracy across these classifiers are largely comparable. We then
zoom into top-5 most correlated classes in Figure 2b, where we show the number of correctly predicted
correlations for the top-5 most correlated classes. Across the three methods that we compared, namely
KNN, ResNet and Naive Bayes, the top-5 most correlated classes are identical. However, at a sample
level, there is in fact a large divergence in prediction across different methods. Figure 3a shows the
fraction of samples where the correlation prediction agreed for the different reference models. Here,
we see that the agreement is quite low, only about 40%. This suggests that the methods have different
inductive biases from the SSL-based classifiers when measuring dataset-level correlations and thus
can overestimate memorization when used in the one-model test. Appendix B.0.1 looks deeper into
the intersection of common memorized examples across multiple reference models. It shows that
ResNet classifier agrees with the intersection of three two model tests for approximately 86% and
Naive Bayes for 78% of top-1 correlated examples. Figure 3b showcases different scenarios when
the reference models agree and disagree. It unveils the strengths and the weaknesses of the one and
two model tests and suggests that these methods can be used conjointly.

3.3 Vision Language Models

For vision-language models (VLMs), the training dataset D consists of image-text pairs z =
(zimg, ztext). The model f learns to simultaneously embed zimg and ztext into low-dimensional repre-
sentations, with the training objective of aligning the representations f(zimg) and f(ztext). Following
the setup of Jayaraman et al. [2024], we consider v = ztext and t = objects(zimg) ∈ {0, 1}|V|, where
objects(zimg) is the set of detected objects in a vocabulary V . Déjà vu memorization occurs when
one can leverage f to infer objects in zimg using ztext significantly beyond dataset-level correlation.
Specifically, consider a predictor h that operates on f(v) and outputs a binary vector of predicted
objects. We can define the precision and recall metrics for the predictor:

precf (v, t) =
⟨(h ◦ f)(v), t⟩
∥(h ◦ f)(v)∥

∈ [0, 1], recallf (v, t) =
⟨(h ◦ f)(v), t⟩

∥t∥
∈ [0, 1]. (2)

One might expect precf (v, t) = recallf (v, t) = 0 when f does not memorize. However, dataset-
level correlations may in fact enable the prediction of objects in zimg from ztext, e.g. if ztext =
A table full of fruits and vegetables and zimg contains objects such as apples, oranges,
carrots, etc. To design one-model déjà vu memorization tests, we would like to capture this type
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of dataset-level correlation with a reference model. This is especially hard for VLMs since these
models are typically trained on internet-scale datasets consisting of billions of diverse samples under
a long-tailed distribution. Training this reference model from scratch on a subset of D requires a
similar effort as training the VLM itself, which defeats the purpose of a one-model test.

Using pre-trained text embedding models as reference models. To tackle this challenge, we
leverage a pre-trained text embedding model g that transforms text into vector representations, with
the requirement that ⟨g(ztext), g(z

′
text)⟩ is high when ztext and z′text are semantically similar (and vice

versa). We can then utilize g to define a reference model similar to the two-model setup of Jayaraman
et al. [2024]. Given a public set Dpub of image-text pairs and a training sample z, the reference
model first performs inner product search in the embedding space of g to find the K most similar
captions in Dpub, (z′1)text, . . . , (z

′
K)text. Then, we predict ok ∈ zimg if and only if ok ∈ (z′j)img for

some j ∈ {1, . . . ,K}; see Figure 13 in Appendix C for an example.

Result. We investigate how well the LLM (g) captures the dataset-level correlations
for predicting ground-truth objects in images when compared to the reference VLM
(fB) of Jayaraman et al. [2024], that has not seen the target images in its training.
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Figure 4: Pairwise sample-level agreement (using Jaccard
similarity for predicting correct objects) between the ref-
erence VLM fB in previous two-model test and the GTE
language model g. The heatmap shows that the agreement
fraction for one model and two model tests are comparable.

We plot heatmaps for pairwise sample-
level agreement similar to the vision
model case above. However, since
this setting has multiple objects per
image, we calculate the Jaccard sim-
ilarity between the correct object pre-
dictions per sample for the two mod-
els g and fB , and report the averaged
value across all the training samples.

Figure 4 shows the pairwise sample-
level agreement between the two mod-
els for predicting various top-k ob-
ject labels and for different number of
NNs. As shown, even when predict-
ing all objects, the two models agree
only on 84% objects on average. This
agreement decreases as we limit the
number of top-k object predictions or alternatively limit the number of NNs. We see a similar trend
that reference models do not always agree on the predictions. We show some examples of what the
two models, VLM fB and LLM g, predict for a given caption in Figure 14 in the appendix.

4 Measuring Déjà vu Memorization using One Model Test

In this section, we investigate how effective new methods for measuring dataset-level correlations are
when we use them for measuring memorization. Specifically, we look at two main questions: 1. How
close are the results of the single-model deja-vu test to the two-model test? 2. What is the fraction of
memorization in open-source (OSS) pre-trained representation learning models? These questions are
addressed in the context of both image representation learning models and vision language models.

4.1 Image Representation Learning

Dataset. We conduct all our image representation learning experiments on ImageNet Deng et al.
[2009] dataset.

We use 300k (300 per class) examples to train the reference models to learn dataset-level correlations.
We measure memorization accuracy on an additional disjoint set of 300k images. For the two model
tests, these images are included in the training set of the target models, but not the reference models.
Finally, we use another additional distinct 500k images to predict the nearest foreground object given
the representation of a background crop through KNN.

Models. Two model tests are conducted analogous to Meehan et al. [2023]. One model tests rely on
a classifier that is trained once to predict dataset-level correlations for SSL models. The dataset used
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to train this classifier overlaps with the training dataset of open-source models but is disjoint from the
subset of the examples for which we measure memorization.

We compare two kinds of classifiers to detect dataset-level correlations. The first is a ResNet50
trained on the background crops to predict the foreground object. We used LARS optimizer and
0.1 weight decay for L2 regularization to avoid overfitting. The second classifier is a Naive Bayes
classifier. It uses background crop annotations as features. We automatically annotate background
crops using Grounded-SAM [Liu et al., 2023, Ren et al., 2024]. Annotations represent textual tags
associated with probability scores. We use these probability scores to pick top 1, 2 and 5 features to
compute final Naive Bayes probability scores. The reference models are trained on a single machine
with 8 Nvidia v100 GPUs, 32GB per GPU using 128 batch size. All other experiments are performed
on the same machine.

Metrics. Following Meehan et al. [2023], we report the déjà vu score and the déjà vu score at p%.
The déjà vu score for a model f is the difference between two accuracy values: the first is the
accuracy of predicting the foreground label y from the representation f(v) of the background crop v
based on KNN. The second is the accuracy of predicting y from a reference model. The déjà vu score
at p% is the difference between the same two accuracies, but now calculated only on the top p% of
the most confident examples.

4.1.1 How close is the déjà vu memorization of one-model and the two-model tests?

Section 3.2 discusses how close one and two model tests are in terms of dataset-level correlation
accuracy. In this section we compare déjà vu memorization scores for one and two model tests.
Figure 5 shows that KNN classifier (two model test) and ResNet classifier (one model test) identify
similar amount of déjà vu memorization for VICReg [Bardes et al., 2022] and Barlow Twins models.
Déjà vu memorization is substantially lower in DINO [Caron et al., 2021]. Similar findings are
reported in Meehan et al. [2023] as well. In addition, we observe that déjà vu score decreases as
we increase the number of features (crop annotations) in Naive Bayes. This is due to the increasing
accuracy of dataset-level correlation as we increase the number of crop annotations.
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Figure 5: Comparison of overall and Top 20% most con-
fident Déjà vu (DV) scores using one model (ResNet
Classifier, Naive Bayes w/ Top-k Crop Annotations
(CA)) and two model (KNN Classifier) tests for VI-
CReg, Barlow Twins and DINO trained on a 300k sub-
set of ImageNet.
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Figure 6: Comparison of overall and
Top 20% most confident Déjà vu (DV)
scores using one model (ResNet Classi-
fier, Naive Bayes w/ Top-k Crop Annota-
tions (CA)) tests for pre-trained VICReg,
Barlow Twins and DINO.

4.1.2 Do pre-trained representation learning models in the wild exhibit déjà vu memorization?

In this section we present déjà vu memorization for pre-trained OSS representation learning models
on population-level using one model tests. Two model tests aren’t applicable in this scenario since
pre-trained models are trained on the entire ImageNet dataset and the validation dataset is relatively
small to be considered for training a second representation learning model.

Hence, Figure 6 compares only one model tests. A comparison of one model tests between Figure 5
and Figure 6 shows that pre-trained models memorize less compared to the same models trained on a
smaller subset of the training data. We hypothesis that this is due to the lower generalization error of
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Figure 8: Data set level memorization of various VLMs. We use top-10 public set NNs to predict the
top-k objects and report PPG and PRG as done in Jayaraman et al. [2024].

the pre-trained models as a result of having a larger training set. We provide additional examples of
common dataset-level correlations and memorized images in appendix subsection B.1

4.1.3 Sample-level memorization

Figure 7 visualizes the distribution of memorization confidence scores for pre-trained VICReg OSS
model with ResNet as correlation detector. The memorization confidence for the i-th example is
computed based on the following formula:

MemConf(xi) = Entropy(Correlation Classifier)− EntropySSL(KNN) (3)

EntropySSL(KNN) is computed according to [Meehan et al., 2023]’s Section 4 description and
Entropy(Correlation Classifier) is correlation classifier’s entropy over the softmax values.

Figure 7: A histogram of sample-based memorization confidence for VICReg
OOB model. Given a background patch, VICReg predicts the correct class
(green). ResNet (correlation classifier) predicts the incorrect (red) class.

7 shows that the
memorized examples
with high memo-
rization confidence
scores are rarer and
more likely to be
memorized. The ex-
amples in the middle
of the distribution are
easy to be confused
with another class.
E.g. Black and gold
garden spider with
European garden
spider. On the other
hand the examples
with negative mem-
orization confidence
have higher memo-
rization and slightly
lower correlation
entropy.

4.2 Vision Language Models

Experiment setup. We train CLIP models using the OpenCLIP Ilharco et al. [2021] framework
on the Shutterstock dataset (a private licensed dataset consisting of 239M image-caption pairs). See
subsection C.1 for details on dataset preparation and training. We quantify dataset-level memorization
using the population precision gap (PPG) and population recall gap (PRG) metrics of Jayaraman et al.
[2024]. These metrics capture the population-level gap between the fraction of memorized objects
and fraction of objects inferred through correlation; see subsection C.1 for details.
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4.2.1 How close is the déjà vu memorization of one-model and the two-model tests?

As explained in subsection 3.3, in our one-model test we use a GTE language model g as a reference
model to quantify data set level memorization of a target VLM f . We compare this test to the
previous work of Jayaraman et al. [2024], which trains a reference VLM from scratch on a separate
hold-out set. Figure 8a compares the two tests in terms of the PPG and PRG metrics for predicting
top-k object labels in training images with 10 nearest neighbors from the Shutterstock public set.
While the previous two-model test achieves 0.06 PPG and PRG values for predicting top-10 objects,
our approach obtains 0.07 PPG and 0.06 PRG values for the same setting. Our test thus slightly
overestimates the memorization as in the vision case above. We also compare the dataset-level metrics
for the two tests for different settings where we vary both the number of nearest neighbors used in the
test and also the number of top-k objects predicted in Table 2 and Table 3 respectively in Appendix C.

4.2.2 Do pre-trained vision-language models in the wild exhibit déjà vu memorization?

We perform our one-model test against an out-of-the-box ResNet-50 CLIP model pre-trained on
the YFCC15M data set from OpenCLIP. Figure 8b shows the PPG and PRG values for predicting
different top-k objects. These results are comparable to our one-model test results in Figure 8a where
we evaluate our CLIP model trained on 40M Shutterstock data. More specifically, for predicting
top-10 objects with 10 nearest neighbors from public set, our Shutterstock model achieves 0.07
PPG and 0.06 PRG, whereas the OSS YFCC15M pre-trained model achieves 0.07 PPG and PRG
values. Additional results can be found in Table 4 and Table 5 in the appendix. We include the most
memorized examples for our Shutterstock models in Figure 15 in Appendix C.

4.2.3 Sample-level memorization

Figure 9 shows samples with higher degree of memorization. The samples are sorted from high to
low memorization such that the top-L samples have higher precision and recall gaps for recovering
objects using target and reference models. We find the gap between the objects recovered from target
and reference models for each training record, and estimate the precision and recall gaps. A positive
gap indicates that the target model memorizes the training sample and the magnitude of the gap
indicates the degree of memorization.
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Figure 9: Sample-level memorization in VLM trained on 40M Shutterstock images, quantified in
terms of precision and recall gap between target VLM and off-the-shelf GTE LM.

5 Discussions and Conclusion

This paper proposes a principled method for measuring memorization in vision and vision-language
encoder models that does not rely on training similar shadow models. This enables, for the first time,
direct measurement of memorization in open-source representation learning and vision-language
models. One consequence of these new measurements is that now we can find out how much different
OSS models memorize. In particular, we find that VicReg and Barlow Twins memorize more than
DINO. Additionally, all standard OSS models memorize less than their versions trained on subsets of
the data.

Finally, our method of measurement involves approximations to theoretical quantities, and as such, has
some limitations when these approximations do not hold. One such limitation is that our alternative
dataset-level correlation estimation might be a poor approximation to the Bayes optimal, or might
itself memorize its own training set, thus skewing the results. However, given that these are much
simpler classifiers, their own rate of memorization is expected to be lower. Another limitation is that
the additional annotations that we use for our measurements may be lower quality, which might also
lead to biased results. A closer analysis of the impact of these factors is an avenue for future work.
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A License of the assets

A.1 License for the code

We use the code from Meehan et al. [2023] which is under the Attribution-NonCommercial
4.0 International license according to https://github.com/facebookresearch/DejaVu?
tab=License-1-ov-file#readme. We also use the code from Ren et al. [2024] which
is under the Apache 2.0 licence according to https://github.com/IDEA-Research/
Grounded-Segment-Anything?tab=Apache-2.0-1-ov-file.

A.2 License for the datasets

We use ImageNet[Yang et al., 2022] which license can be found at https://www.image-net.org/
download.php. We also use a private licensed dataset consisting of 239M image-caption pairs.

B Additional results for Image Representation Learning

B.0.1 How close are the results of the single-model deja-vu test and the two-model test?

We observe that the intersection of correctly predicted examples between the reference models is
relatively small. This intersection is approximately 40% for two model tests. This tells us that there
is significant noise in predicting dataset level correlations even if the models are trained on the same
dataset. In order to better understand this phenomenon, we intersect common subsets of two model
tests with one model test. Table 1 shows that Resnet50 and Naive Bayes with Top 20 annotation
tags are able to predict the same correlations for almost 60% of the test examples that were also
predicted as correlated by by two model tests. This percentage increases if we look into top-20, top-5
and top-1 predictions. For top-1 predictions Resent50 reaches over 86%. In addition to that we also
observe that example-level correlation accuracy increases for Naive Bayes by increasing the number
of features. This tells us that Naive Bayes becomes more accurate if we increase the number of
features describing the crop.

Intersection between
VICReg, Barlow Twins, DINO

AND Accuracy
Accuracy

Top20
Accuracy

Top-5
Accuracy

Top-1

NB w/Top-1 Crop Annotation 32.04% 31.12% 29.78% 13.51%
NB w/Top-2 Crop Annotations 45.31% 50.19% 45.74% 35.13%
NB w/Top-5 Crop Annotations 54.52% 65.82% 70.21% 75.67%
NB w/Top-20 Crop Annotations 59.32% 69.66% 75.53% 78.37%
ResNet 58.02% 72.58% 76.01% 86.48%

Table 1: Example-level correlation accuracy between the intersection of two model tests and each
one model test.

B.1 Common memorized vs. correlated examples

In this section we showcase examples of common dataset-level correlations and memorization by the
OSS pre-trained representation models such as VICReg, Barlow Twins and Dino.

Figure 10 showcases examples of two common dataset-level correlations between ‘kitchen, store‘
and ‘microwave‘, ‘gondola‘ and ‘pole, water‘. Resnet and Naive Bayes classifiers learn these
correlations effectively and help us distinguish memorization from dataset-level correlations. In
addition, we observe that memorization tends to happen in examples where there is no clear dataset-
level correlations between the background crop and the foreground object. Figure 11 demonstrates an
example of a memorized image by VICReg pre-trained model. Here the reference models incorrectly
predict the foreground object whereas KNN correctly classifies the VICReg representation of the
crop. In this case, our approach identifies the image with the shopping cart as memorized. Figure 12
demonstrates top-5 images memorized by the VICReg OSS model. We observe that there is no clear
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Figure 10: Two common dataset-level correlations: 1) ‘stove, kitchen‘ and ‘microwave‘, 2) ‘sky, pole,
water‘ and ‘gondola‘. ResNet and Naive Bayes classifiers learn to associate the background crops
with the image label.

Figure 11: KNN predicts correct class ‘shopping cart‘ given VICReg’s representation of the back-
ground crop. Here the original image of the crop is part of the VICReg’s training. Resnet and NB
classifiers, however, fail to predict the correct class which concludes that the image is memorized.

correlation between the background and foreground and some images could be unique than the rest
of the ImageNet.

C Additional Results for VLM One-Model Déjà Vu Memorization

C.1 Experiment setup

Dataset. For the VLM experiments, we trained a CLIP model from scratch on the Shutterstock
dataset—a private licensed data set consisting of 239M image–caption pairs. Since this dataset has
many duplicate captions, we first perform caption-level de-duplication by considering only one image
per caption. This resulted in 103M samples. We created three random splits of this data set of sizes
40M, 40M and 20M, we call these sets D, D̄ and Dpub respectively. We use the first two splits for
training the CLIP models and use the Dpub set for our nearest neighbor test to find the most relevant
images to the target image from the training set D.

For object annotation on Shutterstock images, we use an open-source annotation tool, called De-
tic [Zhou et al., 2022], that can annotate all the 21K ImageNet objects. We use a threshold of
0.3 to identify object bounding boxes (i.e., any bounding box that has more than 0.3 confidence
is considered for annotation), as the default 0.5 threshold results in nearly 17% images with no

14



Figure 12: Top-5 images memorized by VICReg OSS model. Both Naive Bayes and ResNet
classifiers fail to predict the correct class based on the background crops.

Comparison Using Top-1 NNs Using Top-10 NNs Using Top-100 NNs
PPG PRG PPG PRG PPG PRG

Two Model 0.030 0.030 0.060 0.064 0.054 0.063
ft2i vs g 0.014 0.034 0.094 0.082 0.190 0.107
ft2t vs g 0.033 0.038 0.098 0.065 0.218 0.061

Table 2: Comparing the population-level memorization for predicting all objects for various settings
where the 40M D set is used as the target set. For g, we use the GTE model where we match the target
caption with the public set captions. For the VLMs, t2i is the cross-modal setting where target caption is
matched with public set images for kNN search, t2t is the unimodal setting where only the text modality of the
model is used for kNN search, i.e., target caption is matched with public set captions similar to the g case. We
do not consider the image-to-image search as the target image is not known to the adversary.

annotations. Figure 13 shows the sample images with multiple object annotations obtained using
Detic.

Model training. The architecture we use is the ViT-B-32 model from OpenCLIP [Ilharco et al.,
2021]. We train our models for 200 epochs with a learning rate of 0.0005 and a warmup of 2000
steps for cosine learning rate scheduler. Our training runs use 512GB RAM and use 32 Nvidia A100
GPUs with a global batch size of 32 768. A single training run on 40M data size takes around 10
days. Our CLIP models trained on 40M data sets achieve around 41.26% zero-shot classification
accuracy on ImageNet data set, which is in line with CLIP models trained on similar size data sets.

Metrics. To quantify déjà vu memorization for the target sample z, we consider the precision
and recall metrics defined in Equation 2. These metrics are scaled in a range [0, 1] and quantify
memorization at an individual sample level. We can also quantify memorization at the dataset level
using the population precision gap (PPG), population recall gap (PRG) and AUC gap (AUCG) metrics
defined by Jayaraman et al. [2024]. AUCG measures the gap between the cumulative object recall
distributions of fA and fB . The equations for PPG and PRG metrics are given below:

PPG =
1

|A|

(
|{z ∈ A : prec(z, fA) > prec(z, fB)}| − |{z ∈ A : prec(z, fA) < prec(z, fB)}|

)
,

PRG =
1

|A|

(
|{z ∈ A : rec(z, fA) > rec(z, fB)}| − |{z ∈ A : rec(z, fA) < rec(z, fB)}|

)
,

(4)

C.2 Additional experiments
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Target Image zimg Image Caption ztxt: Healthy Fruits Have 
Vitamin D C

K-NN Similarity Search

Public Image-Caption Set DPub

Text Embedding f(ztxt)
f

f is VLM trained with z

Detected: 39/44
Precision: 0.53
Recall: 0.89

! is pretrained GTE

Detected: 12/44 
Precision: 0.18
Recall: 0.27

Text Embedding !(ztxt)
!

Image Embeddings f(zi
img)∀	zi

img ∈ DPub

K-NN Similarity Search !

f

Text Embeddings !(zi
txt)∀	zi

txt ∈ DPub

Figure 13: An example where an OpenCLIP model trained on a 40M subset of a Shutterstock data set
exhibits déjà vu memorization of objects present in a training image. Public set is a separate collection
of 20M images from Shutterstock that has no overlap with the training set. The objects annotated
in orange are true positives, i.e., the ones present in the target image, and the objects annotated in
blue are false positives. For the OpenCLIP model f trained on the target image, our test recovers
significantly more memorized objects compared to the pretrained GTE language model g that finds
the closest captions from the public set using the k-NN search in the text embedding space.

Comparison Predicting Top-1 Object Predicting Top-10 Objects Predicting All Objects
PPG PRG PPG PRG PPG PRG

Two Model 0.022 0.022 0.055 0.056 0.060 0.064
ft2i vs g 0.034 0.034 0.081 0.074 0.094 0.082
ft2t vs g 0.026 0.026 0.068 0.064 0.098 0.065

Table 3: Comparing the population-level memorization for various settings with top-10 public NNs
where the 40M D set is used as the target set. For g, we use the GTE model where we match the target
caption with the public set captions. For the VLMs, t2i is the cross-modal setting where target caption is
matched with public set images for kNN search, t2t is the unimodal setting where only the text modality of the
model is used for kNN search, i.e., target caption is matched with public set captions similar to the g case. We
do not consider the image-to-image search as the target image is not known to the adversary.

Comparison Using Top-1 NNs Using Top-10 NNs Using Top-100 NNs
PPG PRG PPG PRG PPG PRG

ft2i vs g 0.140 0.164 0.156 0.165 0.257 0.097
ft2t vs g 0.053 0.061 0.054 0.092 0.066 0.080

Table 4: Population-level memorization for predicting all objects with the pre-trained YFCC15M
OSS model. For g, we use the GTE model where we match the target caption with the public set captions. For
the VLMs, t2i is the cross-modal setting where target caption is matched with public set images for kNN search,
t2t is the unimodal setting where only the text modality of the model is used for kNN search, i.e., target caption
is matched with public set captions similar to the g case. We do not consider the image-to-image search as the
target image is not known to the adversary.
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Comparison Predicting Top-1 Object Predicting Top-10 Objects Predicting All Objects
PPG PRG PPG PRG PPG PRG

ft2i vs g 0.092 0.092 0.143 0.142 0.156 0.165
ft2t vs g 0.054 0.054 0.071 0.071 0.054 0.092

Table 5: Population-level memorization for predicting top-k objects with top-10 public NNs with the
pre-trained YFCC15M OSS model. For g, we use the GTE model where we match the target caption with
the public set captions. For the VLMs, t2i is the cross-modal setting where target caption is matched with public
set images for kNN search, t2t is the unimodal setting where only the text modality of the model is used for
kNN search, i.e., target caption is matched with public set captions similar to the g case. We do not consider the
image-to-image search as the target image is not known to the adversary.
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Caption: Snails with herbs butter, in traditional ceramic pan bread and sauce on a rustic wooden table. Top view
Top-5 NNs of VLM fB:

Top-5 NNs of LLM g :

Predicted Labels: 'dining_table', 'khukuri', 'carving_fork', 'bread', 'finger_bowl', 'baked_potato', 'dinner_napkin', 'plate', etc.
[Objects Recovered: 11/26, Precision: 0.21, Recall: 0.42]

Predicted Labels: 'dining_table', 'khukuri', 'carving_fork', 'bread', 'finger_bowl', 'dinner_napkin', ‘shallot', 'plate’, etc. 
[Objects Recovered: 12/26, Precision: 0.24, Recall: 0.46]

(a) Example where both fB and g perform similarly.
Caption: buddha bowl on wood background

Predicted Labels: 'tomatillo', 'chickpea', 'dining_table', 'Jerusalem_artichoke', 'yellow_salsify', 'pigeon_pea', 'broccoli', etc. 
[Objects Recovered: 19/20, Precision: 0.31, Recall: 0.95]

Top-5 NNs of VLM fB:

Top-5 NNs of LLM g :

Predicted Labels: 'dining_table', 'bowl'
[Objects Recovered: 2/20, Precision: 0.11, Recall: 0.10]

(b) Example where fB performs better than g.
Caption: Colorful spices in ceramic and metal containers - beautiful kitchen image.

Predicted Labels: 'finger_bowl', 'cinnabar_chanterelle', 'dining-room_table', 'turmeric', 'bowl', 'komondor', 'pestle', etc.
[Objects Recovered: 8/38, Precision: 0.11, Recall: 0.21]

Top-5 NNs of VLM fB:

Top-5 NNs of LLM g :

Predicted Labels: 'groundnut', 'almond', 'carambola', 'paprika', 'turmeric', 'bell_pepper', 'pestle', 'pistachio’, etc.
[Objects Recovered: 29/38, Precision: 0.25, Recall: 0.76]

(c) Example where g performs better than fB .

Figure 14: Examples showing correlations captured by the reference VLM (fB) and the LLM (g).
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Caption: A top view 
of crispy chicken 
wings with french 
fries and various 

meat dishes

k-NNs of VLM f 
trained with T:

Detected: 38/44
Precision: 0.29
Recall: 0.86

k-NNs of language 
model g:

Detected: 5/44 
Precision: 0.14
Recall: 0.11

Target Image T

Caption: Flag of 
Saudi Arabia and 

travel accessories on 
a white background.

k-NNs of VLM f 
trained with T:

Detected: 29/31
Precision: 0.58
Recall: 0.94

k-NNs of language 
model g:

Detected: 1/31 
Precision: 0.08
Recall: 0.03

Target Image T

Caption: Modern 
living room style with 

grey sofa yellow 
middle table and 

bookshelf, frame and 
lamp.

k-NNs of VLM f 
trained with T:

Detected: 39/41
Precision: 0.38
Recall: 0.95

k-NNs of language 
model g:

Detected: 16/41 
Precision: 0.42
Recall: 0.39

Target Image T

Caption: Floating 
lunch in pool at 

Phuket

k-NNs of VLM f 
trained with T:

Detected: 25/37
Precision: 0.16
Recall: 0.68

k-NNs of language 
model g:

Detected: 0/37 
Precision: 0
Recall: 0

Target Image T

Figure 15: Additional qualitative examples from Shutterstock data set showing examples memorized
by the VLM.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Section 3 formally describes our methods to identify dataset-level correlations.
It showcases the effectiveness of our method for vision (VICReg, Barlow Twins and DINO)
and vision language (CLIP) models. Section 4 discusses the memorization in both OSS
models and models trained on subsets of the training data. The experimental results show
that our method effectively identifies memorization in those models.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We present the limitations of our methods at the end of section 3 and 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We put the experimental details in the appendix.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The code is released on github. The links are provided in the abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We believe that by using different models, we have already a good estimate of
how much noise there can be in our process.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Compute resources are described in sections 4.1 and C.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms with the NeurIPS Code of Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work has potential to lead to better tools for measuring privacy leakage
stemming from memorization.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the licenses in the appendix A.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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