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Abstract

Large Language Model (LLM) routing is a piv-
otal technique for navigating a diverse land-
scape of LLMs, aiming to select the best-
performing LLMs tailored to the domains
of user queries, while managing computa-
tional resources. However, current routing
approaches often face limitations in scalabil-
ity when dealing with a large pool of special-
ized LLMs, or in their adaptability to extend-
ing model scope and evolving capability do-
mains. To overcome those challenges, we pro-
pose InferenceDynamics, a flexible and scal-
able multi-dimensional routing framework by
modeling the capability and knowledge of mod-
els. We operate it on our comprehensive dataset
RouteMix, and demonstrate its effectiveness
and generalizability in group-level routing us-
ing modern benchmarks including MMLU-Pro,
GPQA, BigGenBench, and LiveBench, show-
casing its ability to identify and leverage top-
performing models for given tasks, leading to
superior outcomes with efficient resource uti-
lization. The broader adoption of Inference Dy-
namics can empower users to harness the full
specialized potential of the LLM ecosystem,
and our code will be made publicly available to
encourage further research.

1 Introduction

The rapid proliferation of Large Language Models
(LLMs) has unveiled a rich landscape of special-
ized capabilities, with different models demonstrat-
ing unique strengths across a multitude of domains
and tasks (Matarazzo and Torlone, 2025; Li et al.,
2024a). This specialization necessitates a sophisti-
cated approach to model selection, where the pri-
mary goal is to identify and utilize the LLLM best
suited to the specific demands of a user’s query.
LLM routing (Chen et al., 2025) emerges as a criti-
cal paradigm to address this, creating mechanisms
to strategically dispatch queries to the most capable
model from a diverse pool, thereby maximizing per-
formance, relevance, and the quality of outcomes,
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of top 4 models among candidate LLMs.

while also considering factors like inference cost
and latency.

Early explorations in LLM routing often simpli-
fied the selection problem, for instance, by framing
it as a binary classification task—e.g., choosing
between a generalist small model and a power-
ful large model. Methods like AutoMix (Aggar-
wal et al., 2024), HybridLLM (Ding et al., 2024),
and RouteLLM (Ong et al., 2025) demonstrated
the viability of this approach, typically focusing
on cost-performance trade-offs. While valuable
for two-model scenarios, such binary frameworks
face inherent scalability challenges, as selecting
the best-performing model from many candidates
using only pairwise comparisons becomes compu-
tationally costly and inefficient.

More recent works have advanced the field by
leveraging richer model representations to bet-
ter evaluate and route LLMs based on their spe-
cific capabilities. While methods including Rou-



terDC (Chen et al., 2024), C2MAB-V (Dai et al.,
2024), and P2L (Frick et al., 2025) offer more
sophisticated mechanisms for capturing model
strengths, their primary limitation lies in the sig-
nificant retraining or recalibration required to ef-
fectively support newly introduced LLMs, hinder-
ing their agility in a rapidly evolving model land-
scape. Model-SAT (Zhang et al., 2025) aimed to re-
solve this weakness through human-defined, model-
independent capability decompositions. However,
its reliance on predefined capability sets under-
mined adaptability to new capability dimensions,
thereby limiting nuanced performance capture in
specialized domains.

To address this gap, we introduce Inference-
Dynamics, a novel system designed for perfor-
mant, scalable, and adaptable LLM routing. In-
ferenceDynamics operates by extracting capabil-
ity requirements and domain-specific knowledge
from incoming queries, modeling the correspond-
ing capabilities and knowledge profiles of avail-
able LLMs, and then intelligently routing queries
to the most suitable models. To demonstrate
the effectiveness and generalizability of our ap-
proach, we constructed a comprehensive dataset
aggregated from 24 diverse benchmarks. We
then evaluated our routing algorithm on four chal-
lenging out-of-distribution (OOD) benchmarks:
MMLU-Pro (Wang et al., 2024b), GPQA (Rein
et al., 2023), BigGenBench (Kim et al., 2024),
and LiveBench (White et al., 2025). Experimental
results show that our routing algorithm achieved
the highest average score, surpassing the top-
performing single LLM by a substantial margin of
1.28 points under optimal routing conditions. Fur-
thermore, when operating under cost constraints,
our algorithm delivered competitive performance
comparable to the best single LLM, while utilizing
nearly half the budget.

The contributions of our work are summarized
as follows:

* We introduce RouteMix, a comprehensive
dataset aggregated from 24 diverse bench-
marks, specifically curated for rigorously eval-
uating the generalization capabilities of LLM
routing algorithms.

* We propose InferenceDynamics, an efficient
routing algorithm demonstrating generaliza-
tion capabilities on previously unseen queries.

* Experimental results validate that Inference-

Dynamics significantly enhances LLM rout-
ing, substantially outperforming the leading
single model while concurrently reducing
computational overhead.

2 Related Works

2.1 Multi-LLM System

A Multi-LLM system (Chen et al., 2025) refers to
the architecture that combines LLMs to collabora-
tively solve tasks more effectively than any single
model. The rapid proliferation of diverse LLMs
has spurred significant interest in such systems,
which are realized through several architectural
patterns. LLM ensembling (Jiang et al., 2023; Li
et al., 2024b) enhances accuracy or robustness by
processing the same input through several models
and then aggregating their responses. Cascaded
systems (Zhang et al., 2024; Kolawole et al., 2024;
Chen et al., 2023) strategically employ a sequence
of models—often initiating with smaller, faster
LLMs for initial processing or simpler queries and
escalating to more powerful, resource-intensive
ones only when necessary—thereby optimizing
resource use. Furthermore, the development of
collaborative LLM agents (Wang et al., 2024a; Xu
et al., 2024; Liang et al., 2024) involves multiple
LLMs, with distinct roles or access to different
tools, interacting to address complex, multi-step
problems that demand sophisticated coordination.
While these multi-LLLM approaches demonstrate
considerable advancements, they often necessitate
querying multiple models, which can increase com-
putational cost and latency. Moreover, as the num-
ber and diversity of available LLMs continue to
grow, it becomes critical to route queries to the
most suitable model, effectively balancing perfor-
mance with operational costs.

2.2 LLM Routing

LLM routing seeks to identify the most suitable
language model for a given query, with various
strategies proposed. Early methods include LL.M-
Blender (Jiang et al., 2023), which employs an en-
semble framework querying multiple LL.Ms to se-
lect the optimal response, and AutoMix (Aggarwal
etal., 2024), which utilizes a smaller model for self-
verification before potentially escalating to a larger
model. While these can improve performance,
their reliance on multiple querying inherently in-
creases latency. Other strategies, such as Hy-
bridLLM (Ding et al., 2024) and RouteLLLM (Ong



et al., 2025), focus on training a binary classifier
to choose between a human-defined strong and
weak model. However, these methods’ efficacy is
highly contingent on the subjective definition of
model strength and can be computationally expen-
sive when applied to a large pool of LLLMs. More re-
cent research has shifted towards multi-LLM rout-
ing. RouterDC (Chen et al., 2024),C2MAB-V (Dai
et al., 2024), and Prompt-to-Leaderboard (Frick
et al., 2025) trains a parametric router to route
queries. Concurrently, ModelSpider (Zhang et al.,
2023) and EmbedLLM (Zhuang et al., 2025) en-
code LLMs into learnable representations to facil-
itate routing. Despite these advancements, a sig-
nificant limitation is the need to retrain the entire
routing mechanism when new models are intro-
duced. Addressing this, Model-SAT (Zhang et al.,
2025) aimed to resolve the retraining weakness
through human-defined, model-independent capa-
bility decompositions. However, its reliance on
predefined capability sets undermined adaptability
to new capability dimensions.

3 Methodology

In this section, we introduce InferenceDynamics,
which involves: (i) identifying the knowledge and
capability required for a given query, (ii) quanti-
fying the knowledge and capability of LLMs, and
(iii) routing queries to LLMs based on their scores.

3.1 Problem Setup

Let My = {Mj, Ms,...,M;} denote a set of
LLMs, and let D = {(x;, y;) }, be a dataset where
x; represents a query and y; its corresponding
ground truth. For an unseen query « € Q, where
x ¢ D, LLM routing is formalized as a function
R : Q@ — M. This function maps the query z
to the model Mpes € M that is considered most
suitable, based on a joint assessment of both cost
and performance. Our objective is to develop a rout-
ing algorithm with the dataset D, that effectively
generalizes to OOD queries.

3.2 Knowledge and Capability Generation

It is widely acknowledged that no single LLM
demonstrates universal proficiency across the full
spectrum of query types. Previous research (Wang
et al., 2024c; Li et al., 2024c) substantiates that dis-
tinct queries necessitate specific underlying capabil-
ities and domain-specific knowledge. Accordingly,
assessing an LL.M’s aptitude for a given query ne-
cessitates identifying the requisite capabilities and

knowledge pertinent to that query. Let C denote the
set of defined LLM capabilities and K represent
the world knowledge space. For a given query z,
we utilize an auxiliary LLM M ¢ M to predict
two sets: C, = {c1, ¢, | ¢; € C}: This set com-
prises the capabilities deemed necessary to address
query z, ranked in descending order of importance.
Ky = {k1,ka,--- | k; € K}: This set encom-
passes the knowledge areas considered essential
for resolving query z, also ranked in descending
order of importance.

Following Minaee et al. (2024), we categorize
capabilities into reasoning, comprehension, instruc-
tion following, agentic, knowledge retrieval, cod-
ing, and multilingual. With regard to the knowl-
edge dimension (K;), we impose no predefined
constraints to fully accommodate its inherent diver-
sity.

3.3 Scoring

To quantify the proficiency of a model M; with
respect to specific capabilities and knowledge, we
utilize the accessible set D. The performance score
st of model M; for a given query-response pair
(23, Yi) € Dindes is determined by averaging over
K independent trials:

K
1
st = e ; eval (M (2;)k, i)

where My(x;); is the model’s k-th generated re-
sponse to the input query x;, and eval(-,-) rep-
resents the query-specific evaluation metric em-
ployed to compare the model’s response against
the ground truth y;. To incorporate the trade-off
between performance and computational expendi-
ture, we record the average computational cost ¢’
incurred by model M; when processing query x;.

Subsequent to the identification of the knowl-
edge and capability sets and computing the scores
for all queries in the set D, we define a refined score
for model M;. This score, Sg(Mt, x;, €), quanti-
fies the model’s effectiveness for a specific element
e (which can be a knowledge item k € K, or a
capability ¢ € Cy,) associated with query x;. Illus-
trating with a knowledge element k, this score is
formulated as:

IKe,; | ;
@ < aj_l
SB(Mt,:I],;,k:): Z (Sf_ﬂcf)]l(k:kj) Ka, | 1
j=1 m=1 &7
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Figure 2: LLM performances across 20 datasets in RouteMix. Dataset labels including "PlanBench" indicate
subsets of the PlanBench benchmark. For detailed metric information, refer to Appx. §A.

In this formulation, the hyperparameter « serves
to attenuate the influence of less critical knowledge
elements, based on their rank j. The hyperparam-
eter 3 acts as a coefficient penalizing higher com-
putational costs. The denominator, L’C:“’f‘ ak-1
functions as a normalization factor, ensuring that
each query contributes equitably to the knowledge
score, regardless of the number of knowledge ele-
ments it encompasses.

Building upon these per-query, per-element
scores, the aggregate score of model M; for a spe-
cific knowledge element k across the entire index-
ing dataset D is computed as:

1

N
Sg(Mt7D7 k) = |Dk| ZSE(Mtvwiyk)
i=1

where DF = {(x;,v;) | k € K;} denotes the
subset of query-response pairs in which knowledge
k is present in the knowledge set. A similar method-
ology is employed for the computation of aggregate
capability scores.

3.4 Routing when inference

For an unseen query x with its knowledge and
capability sets, we compute the knowledge score
K S and capability score C'S for each candidate
model M to guide routing. The knowledge score
is given by:

|Ka|
KS*(My, @) =Y S§(M;, D, ki)

=1

ai—l

The capability score, C'S*(M;, x), is computed
analogously. Normalization across both knowledge
and capability score calculations ensures that these
two distinct types of scores are on a comparable

scale, facilitating a balanced routing decision.

The final routing decision is determined by the
following algorithm:

Ry () = argmax(yKS* (M, z) + 6CS* (M, x))
MieMrp
?

which aims to identify the model with the highest
weighted average of the knowledge and capabil-
ity scores. A key advantage of this framework is
its adaptability. New LLMs are efficiently inte-
grated by evaluating them on D to quantify their
knowledge and capability scores, which are then
used in routing. Similarly, when queries introduce
novel knowledge, the LLMs’ scores for this new
knowledge can be computed and integrated, refin-
ing subsequent routing decisions.

4 Experiment

4.1 Dataset

In this section, we introduce our comprehensive
dataset: RouteMix, which consist of the Index Set
and Evaluation Set.

4.1.1 Index Set

The term ’Index Set’ designates the dataset utilized
during the development of our routing algorithm.
Given that our methodology is parameter-free, this
nomenclature serves to differentiate it from datasets
conventionally used in training-dependent meth-
ods. The ’Index Set’ is thus employed primarily
for characterizing and indexing the capabilities and
knowledge of LLMs. To construct a sufficiently di-
verse "Index Set’ for robust LLM profiling, we have
curated 20 distinct datasets. These datasets span
a wide array of domains and are instrumental in
quantifying the specific knowledge and capabilities
of each model. Comprehensive details regarding
the statistics, data processing methodologies, and
evaluation metrics for each dataset are presented in
Appx. §A.



Method | MMLU-Pro GPQA BigGenBench LiveBench | Avg.
Single Large Language Model
Gemini-1.5-Pro 82.83 75.76 80.92 53.79 73.33
GPT-40 79.71 74.24 85.36 49.62 72.23
Grok-2 80.14 76.26 83.66 53.26 73.33
Qwen2.5-Max 75.86 71.21 82.48 52.77 70.58
GLM-4-Plus 79.06 75.76 83.27 47.32 71.35
Nova-Pro 77.49 70.20 83.01 44.38 68.77
Llama-3.3-70B-Instruct 76.27 69.70 78.17 50.67 68.70
Qwen-2.5-72B-Instruct 75.41 73.23 82.61 49.83 70.27
Random | 78.26 72.22 82.61 48.83 | 70.48
Routing Algorithm (Ours)
Routing by Knowledge 80.99 78.28 82.61 53.17 73.76
Routing by Capability 80.09 76.26 84.18 53.65 73.55
Inference Dynamics 80.85 77.78 84.31 55.57 74.55

Table 1: LLM routing results across four benchmarks are presented. The metrics we used are introduced in
§4.2. The best performances are bold-faced, while the second-best performances are underlined. "Routing by
Knowledge" denotes routing decisions made solely based on the knowledge score, whereas "Routing by Capability"
refers to routing based only on the capability score. "Mixed Routing" indicates a simultaneous consideration of both

scores during the routing process.

4.1.2 Evaluation Set

We incorporate four benchmarks that comprehen-
sively evaluate the LLM as the evaluation set of
RouteMix: (i) MMLU-Pro (Wang et al., 2024b)
spans 14 diverse domains and includes approxi-
mately 12,000 instances. (ii) GPQA (Rein et al.,
2023) consists of multiple choice questions at the
graduate level in subdomains of physics, chemistry,
and biology. For our evaluation, we utilize the
Diamond subset. (iii) BigGenBench (Kim et al.,
2024) comprises 77 distinct tasks evaluating core
abilities of LLM, with a total of 765 human-written
instances. (iv) LiveBench (White et al., 2025) is a
real-time updated benchmark with 18 tasks across
6 categories, including math, reasoning, coding,
data analysis, language and instruction following.
In the evaluation, we utilize the snapshot released
on 2024-11-25.

4.2 Experiment Setup

For the candidate models, we select eight high-
performing LL.Ms: Gemini-1.5-Pro(Reid et al.,
2024), GPT-40 (Hurst et al.,, 2024), Grok-2,
Qwen2.5-Max (Yang et al., 2024), GLM-4-
Plus (Zeng et al., 2024), Nova-Pro (Intelligence,
2024), Llama-3.3-70B-Instruct (Al@Meta, 2024),
and Qwen-2.5-72B-Instruct (Yang et al., 2024). To
ensure a fair comparison when testing these models,
all parameters and the input prompt are kept consis-
tent across evaluations. To derive the Knowledge
and Capability attributes, we employ GPT-40-mini
to generate these characteristics. Since knowledge
may include semantically similar phrases, we uti-

lize MiniLM-L6 (Wang et al., 2020) to consolidate
Knowledge entries with a cosine similarity score
greater than 0.6. Additionally, Knowledge entries
with a frequency lower than 10 are filtered out and
designated as ’Other’ knowledge. When the system
encounters a query containing previously unseen
knowledge elements, these are also classified as
’Other’ knowledge. By default, for unconstrained
routing, the parameters « and [ are set to 0.5 and
0, respectively. The weights for the Knowledge
and Capability scores are both set to 1.0 by de-
fault. In terms of evaluation, the exact match score
is employed for both the MMLU-Pro and GPQA
datasets. For BigGenBench, we follow the method-
ology proposed by Sprague et al. (2025), using
GPT-40-mini as a language model-based judge. In-
stances receiving a score greater than 4 are classi-
fied as correct. For LiveBench, we adhere to the
original evaluation script, and the metric is average
score across six categories.

4.3 Capability and Knowledge Quantification

The performance of the candidate models on the
Index Set is presented in Fig. 2. Generally, these
models do not exhibit substantial performance dis-
tinctions when evaluated across the entire Index
Set. However, their relative strengths become ap-
parent on specific subsets, where different models
tend to outperform one another. This observation
suggests that the model pool consists of LLMs with
broadly comparable overall abilities, yet with vary-
ing specializations.



Subsequent to the computation of average perfor-
mance scores, the top four models are selected for
more detailed analysis. Their respective capabil-
ity and knowledge scores are visualized in Fig. 1.
For clarity and simplification in this visualization,
we focus on the eight most frequently occurring
knowledge elements and capabilities within the In-
dex Set. The fact that the highest-scoring model
changes with the specific knowledge or capabil-
ity further substantiates the premise: LLMs, even
those exhibiting similar aggregate performance lev-
els, possess distinct areas of specialized expertise.

4.4 Optimal Routing

The optimal routing results, presented in Tab. 1,
highlight the clear superiority of our proposed rout-
ing strategies. Among these, our Mixed Routing
strategy, which combines both Knowledge and Ca-
pability scores, achieves the highest average per-
formance, outperforming the best single model,
Gemini-1.5-Pro, by a margin of 1.28. This strategy
secures top results on LiveBench and ranks second
on GPQA and BigGenBench, demonstrating the
effectiveness and versatility of our comprehensive
routing algorithm. Additionally, the Routing by
Knowledge and Routing by Capability approaches
also deliver strong results, consistently surpassing
the best single model and significantly outperform-
ing random routing on average. Notably, Routing
by Knowledge excels in knowledge-intensive tasks,
achieving the best score on GPQA and the second-
best on MMLU-Pro. This underscores its ability to
effectively direct queries requiring accurate factual
recall and nuanced domain understanding. Simi-
larly, Routing by Capability performs exceptionally
well on capability-driven benchmarks, particularly
on BigGenBench, highlighting the importance of
leveraging a model’s inherent strengths in complex
reasoning and generation tasks. Both approaches
play an integral role in the success of the Mixed
Routing system.

These findings also emphasize that no single
LLM universally dominates across all tasks. Mod-
els like Gemini-1.5-Pro and GPT-40 exhibit vary-
ing strengths, further validating the necessity and
advantages of intelligent LLM routing systems.

4.5 Routing with Constraints

To investigate the system’s performance under vary-
ing cost constraints, we systematically adjusted the
[ parameter, maintaining all other experimental
configurations as previously defined. The evalua-
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Figure 3: Performance Ratio (%) and Cost Ratio (%)
variation on GPQA and LiveBench. The "Best Single
Model" refers to the most performant LLM for each
task.

tion employed two distinct metrics. The first metric,
termed Performance Ratio, quantifies the efficacy
of the Mixed Routing strategy. This is calculated
as the ratio of the performance achieved by Mixed
Routing to that of the best-performing single can-
didate LLM on the respective benchmark. The
second metric, Cost Ratio, assesses the economic
efficiency of the routing algorithm. It is defined as
the total cost incurred by the routing process (en-
compassing both knowledge generation and capa-
bility assessment costs) relative to the operational
cost of the best-performing single LLM.

The empirical results of this sensitivity analysis
are depicted in Fig. 3. In scenarios without strin-
gent price constraints (i.e., 5 = 0 ), our routing
system demonstrates superior performance com-
pared to the best single model, while operating at
approximately 80% of the latter’s budget. As the
[ parameter is incrementally increased, thereby
prioritizing cost reduction, the operational cost of
the routing algorithm decreases significantly. Con-
currently, the system maintains a competitive per-
formance level relative to the best single model.
Notably, at a 8 value of 15, our routing algorithm
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Figure 4: Distribution of knowledge domains across 24 datasets in RouteMix. The In-Domain (ID) subset is utilized
for quantifying Knowledge and Capability, while the Out-of-Domain (OOD) subset is employed for evaluating the
routing algorithm. Dataset labels including "LiveBench" indicate subsets of the LiveBench benchmark, and labels
including "NaturalPlan" similarly denote subsets of the NaturalPlan benchmark. The algorithm to compute the

normalized proportion is included in Appx. §B.

achieves performance nearly equivalent to the best
single model but utilizes only approximately half
the associated cost.

An interesting observation is the differential sen-
sitivity of benchmarks to changes in 8. Specifically,
the performance and cost metrics for LiveBench,
a text generation benchmark, exhibit more pro-
nounced variations in response to adjustments in 3
compared to those observed for GPQA, a question-
answering benchmark. This suggests that text gen-
eration tasks are more sensitive to the price penalty
imposed by 3 than QA tasks.

5 Analysis

5.1 Model Selection

The distribution of model selections under vari-
ous conditions is illustrated in Fig. 5. Consistent
with findings in previous works (Chen et al., 2024;
Frick et al., 2025), cost-efficient models are in-
frequently selected in optimal routing scenarios;
instead, the strategy predominantly converges to-
wards higher-performing models. For comprehen-
sive benchmarks such as BigGenBench, our ap-

proach primarily routes queries to expensive yet
high-performing models like GPT-40 and Grok-2,
reflecting a tendency to leverage top-tier capabili-
ties for broad-ranging tasks. Conversely, for task
sets demanding highly specialized capabilities, the
routing algorithm typically assigns queries directly
to the most proficient model. For instance, within
the coding subset of LiveBench, 91% of queries
are routed to Qwen-Max, which demonstrates the
strongest coding capabilities. This model’s leading
performance in coding is further corroborated by
its results on BigCodeBench and its specific Cod-
ing capability score, as detailed in Fig. 1 and Fig. 2,
respectively. These observations collectively indi-
cate that our routing algorithm effectively directs
queries to the most suitable models based on spe-
cific task demands.

In the context of cost-constrained routing, an
increasing cost penalty prompts the router to pro-
gressively shift its selections from expensive, top-
performing models towards more affordable, albeit
less powerful, alternatives.
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5.2 Knowledge Distribution

As shown in Fig. 4, the distribution of generated
knowledge highlights the RouteMix benchmark’s
comprehensive span of knowledge domains, rang-
ing from highly specific academic areas to practical
applications. On datasets with broad knowledge
requirements, such as MMLU-Pro, the generated
knowledge exhibits a relatively balanced distribu-
tion. For benchmarks targeting one or two specific
domains, like MATH-500, the model typically gen-
erates more fine-grained knowledge components re-
lated to the core domain. This facilitates a more nu-
anced quantification of the model’s domain-specific
knowledge.

5.3 Dynamics Routing

In this section, we investigate the scalability of our
framework with respect to dynamic LLLM pools.

The corresponding results are presented in Fig. 6.
The x-axis in this figure represents the progressive
addition of specific new models to the LLM can-
didate pool. Initially, the pool consists solely of
Llama-3.3-70B; subsequently, one new model is
added to the candidate pool at each increment along
the x-axis. Notably, our routing algorithm consis-
tently maintains a top-2 performance ranking and
surpasses the best single model across the five eval-
uated candidate pool configurations. This outcome
demonstrates the robust scalability of our frame-
work when new models are introduced, crucially
without the need for any additional training.

6 Conclusions

This paper introduces InferenceDynamics, a scal-
able and adaptable LLM routing framework that
quantifies model capabilities and domain-specific
knowledge to match queries with the most suit-
able LLMs. Evaluated on the new comprehensive
RouteMix benchmark, InferenceDynamics demon-
strated superior performance, outperforming the
best single LLM by 1.28 on average and achiev-
ing comparable results at approximately half the
cost under budget constraints. Key contributions
include the RouteMix dataset for evaluating gen-
eralization and the InferenceDynamics algorithm,
which generalizes to unseen queries and effectively
routes them within dynamic model pools without
retraining. Our work enables more efficient and
tailored utilization of the diverse LLM ecosystem.



Limitations

Despite the promising results and the robust design
of InferenceDynamics, several limitations warrant
discussion and offer avenues for future research:

Niche Suitability for Highly Constrained En-
vironments InferenceDynamics is engineered
for scalability and adaptability, demonstrating its
strengths when dealing with a large, diverse, and
evolving pool of LLMs, or when new capability and
knowledge domains are frequently encountered.
However, in scenarios characterized by a very lim-
ited and static set of LLMs and a narrowly de-
fined, unchanging task scope, a dedicated learning-
based routing approach (e.g., a fine-tuned classifier)
might be more appropriate or yield marginally su-
perior, hyper-specialized performance. Our frame-
work prioritizes generalizability and efficient adap-
tation to dynamic conditions, which is a differ-
ent niche than hyper-optimization for small, fixed-
scope problems.

Benchmark-Driven Evaluation vs. Real-World
Application Complexity The current evaluation
of InferenceDynamics relies on the comprehensive
RouteMix dataset, which is composed of various
established benchmarks. While these benchmarks
cover a wide array of tasks and domains, they may
not fully capture the intricacies and dynamic nature
of real-world application systems. For instance,
the utility and performance of InferenceDynamics
in more complex, interactive systems like multi-
agent environments, where task allocation might
depend on evolving collaborative states, have not
been explicitly tested. Exploring the deployment
and effectiveness of InferenceDynamics in such
real-application scenarios remains an important di-
rection for future work.

Addressing these limitations will be crucial for
broadening the applicability and enhancing the ro-
bustness of InferenceDynamics and similar LLM
routing frameworks.
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A Benchmark Overview Table

Table 2: Overview of Benchmarks, Data Processing, Prompts, and Metrics

Benchmark Name Data Processing Manner Prompt Metric Used
Type

ARC (Clark et al., 2018) Sample 500 instances according to Zero-shot Accuracy
the portion of ARC-Easy and ARC- DA
Challenge.

BigBench-Hard (Suzgun et al., 2023) Sample 40 instances from each cate- Zero-shot Exact Match
gory except web, fiies, to avoid colli- CoT (EM)
sion with LiveBench. Formulate into
MCQA for Yes/No and QA question.

Remain the free-response question un-
changed.

BigCodeBench (Zhuo et al., 2024) We directly use the BigCodeBench- DA for code Pass@1
Hard subset, with 148 instances. completion

FinQA (Chen et al., 2021) Sample 500 instances from the dataset. CoT from Exact

Sprague et al. Match(EM)
(2025)

Flores200 (Goyal et al., 2022) We incorporate the topl0 commonly Translation  Chrf++ (Goyal
used language except for English. And Prompt etal., 2022)
sample 100 instances for each language.

GSMBS8K (Cobbe et al., 2021) Sample 500 instances from the dataset. CoT from Exact

Sprague et al. Match(EM).
(2025)

HiToM (Wu et al., 2023) Sample 500 instances under CoT set- CoT from Accuracy

tings. Official
Repo

LegalBench (Guha et al., 2023) Sample 4 instances from each category Few-shot DA Accuracy
except for short answering task, result-
ing in 616 instances.

MATH (Hendrycks et al., 2021) We use the subset MATH-500. CoT from Exact

Sprague et al. Match(EM)
(2025)

MedQA (Jin et al., 2020) Sample 500 instances from the dataset DA Accuracy

MMLU (Hendrycks et al., 2020) We sample instances according to the DA Accuracy
portion of different categories, and
make sure each category has at least 10
instances. Resulting in 1262 instances.

MMMLU (Hendrycks et al., 2020) We sample 100 instances for all lan- DA Accuracy
guages except for English. Result in
1400 instances.

NaturalPlan (Zheng et al., 2024) Sample 200 instances from each subset, DA Accuracy
including scheduling, calendar meeting,
and trip planning.

PlanBench (Valmeekam et al., 2023)  Use the subset of PlanGeneration in DA Accuracy

BlocksWorld.
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Table 2 — continued from previous page

Benchmark Name Data Processing Manner Prompt Metric Used
Type
PubMedQA (Jin et al., 2019) Sample 500 instances from original DA Accuracy
dataset
RACE (Lai et al., 2017) Sample 500 instances from original DA Accuracy
dataset
RuleTaker (Clark et al., 2020) Sample 500 instances from original DA Accuracy
dataset
ScienceQA (Lu et al., 2022) Sample 500 instances which don’t have DA Accuracy
corresponding picture.
SciTLDR (Cachola et al., 2020) Directly use the test set Summarization RogueL.
Prompt
XSum (Narayan et al., 2018) Sample 500 instances for the dataset Summarization RogueLL
Prompt

Specifically, when quantifying the capability and knowledge of LLMs for translation and summarization
tasks, we establish a performance threshold. An output is considered correct if its evaluation score or
relevant metric exceeds this threshold.

B Knowledge Domain Distribution

The dataset’s knowledge domain distribution is determined by a weighted rank approach. For each domain
D € D (where D is the set of all unique domains), its frequency at each rank r (denoted Fp ., for
r =1,...,N)is multiplied by a corresponding rank weight W, (typically W,. = 1/r). These products
are summed to yield a weighted score Sp:

The final distribution percentage Pp for each domain is then its Sp normalized by the sum of all domain
weighted scores (Siotal = D 1y ep SDr), expressed as a percentage:

Sp
Pp = () x 100%
ZD’ED Spr

This method ensures higher-ranked domain occurrences contribute more significantly, with all Pp
summing to 100%.

C BigGenBench Evaluation

Following Sprague et al. (2025), we employ GPT-40-mini as LLM-as-a-Judge to evaluate the BigGen-
Bench, and instances with a score larger than 4 is considered correct. The specific prompt is shown
below:
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Prompt for evaluation BigGenBench

Task Description:

An instruction (might include an Input inside it), a response to evaluate, a reference answer that gets a score of 5, and a
score rubric representing a evaluation criteria are given.

1. Write a detailed feedback that assess the quality of the response strictly based on the given score rubric, not evaluating
in general.

2. After writing a feedback, write a score that is an integer between 1 and 5. You should refer to the score rubric.

3. The output format should look as follows: "Feedback: (write a feedback for criteria) [RESULT] (an integer number
between 1 and 5)"

4. Please do not generate any other opening, closing, and explanations.

The instruction to evaluation:
example question

Response to evaluate:
example solution

Reference Answer (Score 5):
reference score

Score Rubrics:
Criteria:
criteria

Description of a Score 1 response:
scorel description

Description of a Score 2 response:
score2 description

Description of a Score 3 response:
score3 description

Description of a Score 4 response:
score4 description

Description of a Score 5 response:
score5 description

Feedback:
Remember, you must strictly evaluate the response based on the given score rubric, and finish your output in the format
of "(...) [RESULT] <score>", where <score> is a number between 1 and 5.

D Prompt of Knowledge and Capability Generation

The specific prompt for knowledge and capability generation is shown below:
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Prompt for evaluation BigGenBench

The capabilities of Language Models include the following:

- Reasoning: Ability to logically analyze information, draw conclusions, and make inferences.

- Comprehension (Applicable to queries involving long passage comprehension): Understanding and interpreting the
meaning, context, and nuances of extended or complex long-context text, such as lengthy documents, multi-paragraph
inputs, or intricate narratives.

- Instruction Following (Applicable to queries involving several constraints): Accurately adhering to explicit
user-provided guidelines, constraints, or formatting requirements specified within the query.

- Agentic: Capacity related to agent-like behavior, such as actively formulating plans, strategically deciding steps, and
autonomously identifying solutions or actions to achieve specific goals or complex tasks.

- Knowledge Retrieval: Accessing and presenting accurate factual information from pre-existing knowledge.

- Coding: Generating, interpreting, or debugging computer programs and scripts.

- In-context Learning: Learning from examples or context provided within the current interaction without additional
training.

- Multilingual (Must rank it in top3 when queries involving languages other than English): Understanding, generating,
or translating content accurately across multiple languages.

Given the Query below:

1. Identify and list the *LLM Capabilities* from the definitions above that are directly and significantly re-
quired to effectively address the query.

2. Identify and list the general *Knowledge Domains* (e.g., categories, subject areas) most pertinent to solving the
problem presented in the query.

List the selected Capabilities first, ranked from most important to least important. Then, list the identified Knowledge
Domains, also ranked from most important to least important. *Do not provide any justification or explanation* for
your selections or rankings.

Example:

Query: "Solve the following financial problem efficiently and clearly. Output the final answer as: boxedanswer.
Where [answer] is just the final number or expression that solves the problem. Keep the answer to five decimal places if
it is a number, and do not use percentages; keep the decimal format.

Problem: what is the net change in net revenue during 2016 for Entergy Mississippi, Inc.? the 2015 net revenue
of amount (in millions) is 696.3; the 2016 net revenue of amount (in millions) is 705.4; Entergy Mississippi, Inc."
Capabilities: Reasoning, Knowledge retrieval

Knowledge: 1. Financial 2. Math 3. Data Analysis ... Query: input prompt
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