
INFERENCEDYNAMICS: Efficient Routing Across LLMs through
Structured Capability and Knowledge Profiling

Anonymous ACL submission

Abstract
Large Language Model (LLM) routing is a piv-001
otal technique for navigating a diverse land-002
scape of LLMs, aiming to select the best-003
performing LLMs tailored to the domains004
of user queries, while managing computa-005
tional resources. However, current routing006
approaches often face limitations in scalabil-007
ity when dealing with a large pool of special-008
ized LLMs, or in their adaptability to extend-009
ing model scope and evolving capability do-010
mains. To overcome those challenges, we pro-011
pose InferenceDynamics, a flexible and scal-012
able multi-dimensional routing framework by013
modeling the capability and knowledge of mod-014
els. We operate it on our comprehensive dataset015
RouteMix, and demonstrate its effectiveness016
and generalizability in group-level routing us-017
ing modern benchmarks including MMLU-Pro,018
GPQA, BigGenBench, and LiveBench, show-019
casing its ability to identify and leverage top-020
performing models for given tasks, leading to021
superior outcomes with efficient resource uti-022
lization. The broader adoption of Inference Dy-023
namics can empower users to harness the full024
specialized potential of the LLM ecosystem,025
and our code will be made publicly available to026
encourage further research.027

1 Introduction028

The rapid proliferation of Large Language Models029

(LLMs) has unveiled a rich landscape of special-030

ized capabilities, with different models demonstrat-031

ing unique strengths across a multitude of domains032

and tasks (Matarazzo and Torlone, 2025; Li et al.,033

2024a). This specialization necessitates a sophisti-034

cated approach to model selection, where the pri-035

mary goal is to identify and utilize the LLM best036

suited to the specific demands of a user’s query.037

LLM routing (Chen et al., 2025) emerges as a criti-038

cal paradigm to address this, creating mechanisms039

to strategically dispatch queries to the most capable040

model from a diverse pool, thereby maximizing per-041

formance, relevance, and the quality of outcomes,042
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while also considering factors like inference cost 043

and latency. 044

Early explorations in LLM routing often simpli- 045

fied the selection problem, for instance, by framing 046

it as a binary classification task—e.g., choosing 047

between a generalist small model and a power- 048

ful large model. Methods like AutoMix (Aggar- 049

wal et al., 2024), HybridLLM (Ding et al., 2024), 050

and RouteLLM (Ong et al., 2025) demonstrated 051

the viability of this approach, typically focusing 052

on cost-performance trade-offs. While valuable 053

for two-model scenarios, such binary frameworks 054

face inherent scalability challenges, as selecting 055

the best-performing model from many candidates 056

using only pairwise comparisons becomes compu- 057

tationally costly and inefficient. 058

More recent works have advanced the field by 059

leveraging richer model representations to bet- 060

ter evaluate and route LLMs based on their spe- 061

cific capabilities. While methods including Rou- 062
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terDC (Chen et al., 2024), C2MAB-V (Dai et al.,063

2024), and P2L (Frick et al., 2025) offer more064

sophisticated mechanisms for capturing model065

strengths, their primary limitation lies in the sig-066

nificant retraining or recalibration required to ef-067

fectively support newly introduced LLMs, hinder-068

ing their agility in a rapidly evolving model land-069

scape. Model-SAT (Zhang et al., 2025) aimed to re-070

solve this weakness through human-defined, model-071

independent capability decompositions. However,072

its reliance on predefined capability sets under-073

mined adaptability to new capability dimensions,074

thereby limiting nuanced performance capture in075

specialized domains.076

To address this gap, we introduce Inference-077

Dynamics, a novel system designed for perfor-078

mant, scalable, and adaptable LLM routing. In-079

ferenceDynamics operates by extracting capabil-080

ity requirements and domain-specific knowledge081

from incoming queries, modeling the correspond-082

ing capabilities and knowledge profiles of avail-083

able LLMs, and then intelligently routing queries084

to the most suitable models. To demonstrate085

the effectiveness and generalizability of our ap-086

proach, we constructed a comprehensive dataset087

aggregated from 24 diverse benchmarks. We088

then evaluated our routing algorithm on four chal-089

lenging out-of-distribution (OOD) benchmarks:090

MMLU-Pro (Wang et al., 2024b), GPQA (Rein091

et al., 2023), BigGenBench (Kim et al., 2024),092

and LiveBench (White et al., 2025). Experimental093

results show that our routing algorithm achieved094

the highest average score, surpassing the top-095

performing single LLM by a substantial margin of096

1.28 points under optimal routing conditions. Fur-097

thermore, when operating under cost constraints,098

our algorithm delivered competitive performance099

comparable to the best single LLM, while utilizing100

nearly half the budget.101

The contributions of our work are summarized102

as follows:103

• We introduce RouteMix, a comprehensive104

dataset aggregated from 24 diverse bench-105

marks, specifically curated for rigorously eval-106

uating the generalization capabilities of LLM107

routing algorithms.108

• We propose InferenceDynamics, an efficient109

routing algorithm demonstrating generaliza-110

tion capabilities on previously unseen queries.111

• Experimental results validate that Inference-112

Dynamics significantly enhances LLM rout- 113

ing, substantially outperforming the leading 114

single model while concurrently reducing 115

computational overhead. 116

2 Related Works 117

2.1 Multi-LLM System 118

A Multi-LLM system (Chen et al., 2025) refers to 119

the architecture that combines LLMs to collabora- 120

tively solve tasks more effectively than any single 121

model. The rapid proliferation of diverse LLMs 122

has spurred significant interest in such systems, 123

which are realized through several architectural 124

patterns. LLM ensembling (Jiang et al., 2023; Li 125

et al., 2024b) enhances accuracy or robustness by 126

processing the same input through several models 127

and then aggregating their responses. Cascaded 128

systems (Zhang et al., 2024; Kolawole et al., 2024; 129

Chen et al., 2023) strategically employ a sequence 130

of models—often initiating with smaller, faster 131

LLMs for initial processing or simpler queries and 132

escalating to more powerful, resource-intensive 133

ones only when necessary—thereby optimizing 134

resource use. Furthermore, the development of 135

collaborative LLM agents (Wang et al., 2024a; Xu 136

et al., 2024; Liang et al., 2024) involves multiple 137

LLMs, with distinct roles or access to different 138

tools, interacting to address complex, multi-step 139

problems that demand sophisticated coordination. 140

While these multi-LLM approaches demonstrate 141

considerable advancements, they often necessitate 142

querying multiple models, which can increase com- 143

putational cost and latency. Moreover, as the num- 144

ber and diversity of available LLMs continue to 145

grow, it becomes critical to route queries to the 146

most suitable model, effectively balancing perfor- 147

mance with operational costs. 148

2.2 LLM Routing 149

LLM routing seeks to identify the most suitable 150

language model for a given query, with various 151

strategies proposed. Early methods include LLM- 152

Blender (Jiang et al., 2023), which employs an en- 153

semble framework querying multiple LLMs to se- 154

lect the optimal response, and AutoMix (Aggarwal 155

et al., 2024), which utilizes a smaller model for self- 156

verification before potentially escalating to a larger 157

model. While these can improve performance, 158

their reliance on multiple querying inherently in- 159

creases latency. Other strategies, such as Hy- 160

bridLLM (Ding et al., 2024) and RouteLLM (Ong 161
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et al., 2025), focus on training a binary classifier162

to choose between a human-defined strong and163

weak model. However, these methods’ efficacy is164

highly contingent on the subjective definition of165

model strength and can be computationally expen-166

sive when applied to a large pool of LLMs. More re-167

cent research has shifted towards multi-LLM rout-168

ing. RouterDC (Chen et al., 2024),C2MAB-V (Dai169

et al., 2024), and Prompt-to-Leaderboard (Frick170

et al., 2025) trains a parametric router to route171

queries. Concurrently, ModelSpider (Zhang et al.,172

2023) and EmbedLLM (Zhuang et al., 2025) en-173

code LLMs into learnable representations to facil-174

itate routing. Despite these advancements, a sig-175

nificant limitation is the need to retrain the entire176

routing mechanism when new models are intro-177

duced. Addressing this, Model-SAT (Zhang et al.,178

2025) aimed to resolve the retraining weakness179

through human-defined, model-independent capa-180

bility decompositions. However, its reliance on181

predefined capability sets undermined adaptability182

to new capability dimensions.183

3 Methodology184

In this section, we introduce InferenceDynamics,185

which involves: (i) identifying the knowledge and186

capability required for a given query, (ii) quanti-187

fying the knowledge and capability of LLMs, and188

(iii) routing queries to LLMs based on their scores.189

3.1 Problem Setup190

Let MT = {M1,M2, . . . ,Mt} denote a set of191

LLMs, and let D = {(xi, yi)}n be a dataset where192

xi represents a query and yi its corresponding193

ground truth. For an unseen query x ∈ Q, where194

x /∈ D, LLM routing is formalized as a function195

R : Q → MT . This function maps the query x196

to the model Mbest ∈ MT that is considered most197

suitable, based on a joint assessment of both cost198

and performance. Our objective is to develop a rout-199

ing algorithm with the dataset D, that effectively200

generalizes to OOD queries.201

3.2 Knowledge and Capability Generation202

It is widely acknowledged that no single LLM203

demonstrates universal proficiency across the full204

spectrum of query types. Previous research (Wang205

et al., 2024c; Li et al., 2024c) substantiates that dis-206

tinct queries necessitate specific underlying capabil-207

ities and domain-specific knowledge. Accordingly,208

assessing an LLM’s aptitude for a given query ne-209

cessitates identifying the requisite capabilities and210

knowledge pertinent to that query. Let C denote the 211

set of defined LLM capabilities and K represent 212

the world knowledge space. For a given query x, 213

we utilize an auxiliary LLM M /∈ MT to predict 214

two sets: Cx = {c1, c2, · · · | ci ∈ C}: This set com- 215

prises the capabilities deemed necessary to address 216

query x, ranked in descending order of importance. 217

Kx = {k1, k2, · · · | ki ∈ K}: This set encom- 218

passes the knowledge areas considered essential 219

for resolving query x, also ranked in descending 220

order of importance. 221

Following Minaee et al. (2024), we categorize 222

capabilities into reasoning, comprehension, instruc- 223

tion following, agentic, knowledge retrieval, cod- 224

ing, and multilingual. With regard to the knowl- 225

edge dimension (Kx), we impose no predefined 226

constraints to fully accommodate its inherent diver- 227

sity. 228

3.3 Scoring 229

To quantify the proficiency of a model Mt with 230

respect to specific capabilities and knowledge, we 231

utilize the accessible set D. The performance score 232

sti of model Mt for a given query-response pair 233

(xi, yi) ∈ Dindex is determined by averaging over 234

K independent trials: 235

sti =
1

K

K∑
k=1

eval(Mt(xi)k, yi) 236

where Mt(xi)k is the model’s k-th generated re- 237

sponse to the input query xi, and eval(·, ·) rep- 238

resents the query-specific evaluation metric em- 239

ployed to compare the model’s response against 240

the ground truth yi. To incorporate the trade-off 241

between performance and computational expendi- 242

ture, we record the average computational cost cti 243

incurred by model Mt when processing query xi. 244

Subsequent to the identification of the knowl- 245

edge and capability sets and computing the scores 246

for all queries in the set D, we define a refined score 247

for model Mt. This score, Sα
β (Mt,xi, e), quanti- 248

fies the model’s effectiveness for a specific element 249

e (which can be a knowledge item k ∈ Kxi or a 250

capability c ∈ Cxi) associated with query xi. Illus- 251

trating with a knowledge element k, this score is 252

formulated as: 253

Sα
β (Mt,xi, k) =

|Kxi
|∑

j=1

(sti − βcti)1(k = kj)
αj−1∑|Kxi

|
m=1 αm−1

254

255
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Figure 2: LLM performances across 20 datasets in RouteMix. Dataset labels including "PlanBench" indicate
subsets of the PlanBench benchmark. For detailed metric information, refer to Appx. §A.

In this formulation, the hyperparameter α serves256

to attenuate the influence of less critical knowledge257

elements, based on their rank j. The hyperparam-258

eter β acts as a coefficient penalizing higher com-259

putational costs. The denominator,
∑|Kxi |

k=1 αk−1,260

functions as a normalization factor, ensuring that261

each query contributes equitably to the knowledge262

score, regardless of the number of knowledge ele-263

ments it encompasses.264

Building upon these per-query, per-element265

scores, the aggregate score of model Mt for a spe-266

cific knowledge element k across the entire index-267

ing dataset D is computed as:268

Sα
β (Mt,D, k) =

1

|Dk|

N∑
i=1

Sα
β (Mt,xi, k)269

where Dk = {(xi, yi) | k ∈ Ki} denotes the270

subset of query-response pairs in which knowledge271

k is present in the knowledge set. A similar method-272

ology is employed for the computation of aggregate273

capability scores.274

3.4 Routing when inference275

For an unseen query x with its knowledge and276

capability sets, we compute the knowledge score277

KS and capability score CS for each candidate278

model Mt to guide routing. The knowledge score279

is given by:280

KSα(Mt,x) =

|Kx|∑
i=1

Sα
β (Mt,D, ki)

αi−1∑|Kx|
m=1 α

m−1
, (1)281

The capability score, CSα(Mt,x), is computed282

analogously. Normalization across both knowledge283

and capability score calculations ensures that these284

two distinct types of scores are on a comparable285

scale, facilitating a balanced routing decision.286

The final routing decision is determined by the 287

following algorithm: 288

RMT (x) = argmax
Mt∈MT

(γKSα(Mt,x) + δCSα(Mt,x))

(2) 289

which aims to identify the model with the highest 290

weighted average of the knowledge and capabil- 291

ity scores. A key advantage of this framework is 292

its adaptability. New LLMs are efficiently inte- 293

grated by evaluating them on D to quantify their 294

knowledge and capability scores, which are then 295

used in routing. Similarly, when queries introduce 296

novel knowledge, the LLMs’ scores for this new 297

knowledge can be computed and integrated, refin- 298

ing subsequent routing decisions. 299

4 Experiment 300

4.1 Dataset 301

In this section, we introduce our comprehensive 302

dataset: RouteMix, which consist of the Index Set 303

and Evaluation Set. 304

4.1.1 Index Set 305

The term ’Index Set’ designates the dataset utilized 306

during the development of our routing algorithm. 307

Given that our methodology is parameter-free, this 308

nomenclature serves to differentiate it from datasets 309

conventionally used in training-dependent meth- 310

ods. The ’Index Set’ is thus employed primarily 311

for characterizing and indexing the capabilities and 312

knowledge of LLMs. To construct a sufficiently di- 313

verse ’Index Set’ for robust LLM profiling, we have 314

curated 20 distinct datasets. These datasets span 315

a wide array of domains and are instrumental in 316

quantifying the specific knowledge and capabilities 317

of each model. Comprehensive details regarding 318

the statistics, data processing methodologies, and 319

evaluation metrics for each dataset are presented in 320

Appx. §A. 321
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Method MMLU-Pro GPQA BigGenBench LiveBench Avg.

Single Large Language Model
Gemini-1.5-Pro 82.83 75.76 80.92 53.79 73.33
GPT-4o 79.71 74.24 85.36 49.62 72.23
Grok-2 80.14 76.26 83.66 53.26 73.33
Qwen2.5-Max 75.86 71.21 82.48 52.77 70.58
GLM-4-Plus 79.06 75.76 83.27 47.32 71.35
Nova-Pro 77.49 70.20 83.01 44.38 68.77
Llama-3.3-70B-Instruct 76.27 69.70 78.17 50.67 68.70
Qwen-2.5-72B-Instruct 75.41 73.23 82.61 49.83 70.27

Random 78.26 72.22 82.61 48.83 70.48

Routing Algorithm (Ours)
Routing by Knowledge 80.99 78.28 82.61 53.17 73.76
Routing by Capability 80.09 76.26 84.18 53.65 73.55
Inference Dynamics 80.85 77.78 84.31 55.57 74.55

Table 1: LLM routing results across four benchmarks are presented. The metrics we used are introduced in
§4.2. The best performances are bold-faced, while the second-best performances are underlined. "Routing by
Knowledge" denotes routing decisions made solely based on the knowledge score, whereas "Routing by Capability"
refers to routing based only on the capability score. "Mixed Routing" indicates a simultaneous consideration of both
scores during the routing process.

4.1.2 Evaluation Set322

We incorporate four benchmarks that comprehen-323

sively evaluate the LLM as the evaluation set of324

RouteMix: (i) MMLU-Pro (Wang et al., 2024b)325

spans 14 diverse domains and includes approxi-326

mately 12,000 instances. (ii) GPQA (Rein et al.,327

2023) consists of multiple choice questions at the328

graduate level in subdomains of physics, chemistry,329

and biology. For our evaluation, we utilize the330

Diamond subset. (iii) BigGenBench (Kim et al.,331

2024) comprises 77 distinct tasks evaluating core332

abilities of LLM, with a total of 765 human-written333

instances. (iv) LiveBench (White et al., 2025) is a334

real-time updated benchmark with 18 tasks across335

6 categories, including math, reasoning, coding,336

data analysis, language and instruction following.337

In the evaluation, we utilize the snapshot released338

on 2024-11-25.339

4.2 Experiment Setup340

For the candidate models, we select eight high-341

performing LLMs: Gemini-1.5-Pro(Reid et al.,342

2024), GPT-4o (Hurst et al., 2024), Grok-2,343

Qwen2.5-Max (Yang et al., 2024), GLM-4-344

Plus (Zeng et al., 2024), Nova-Pro (Intelligence,345

2024), Llama-3.3-70B-Instruct (AI@Meta, 2024),346

and Qwen-2.5-72B-Instruct (Yang et al., 2024). To347

ensure a fair comparison when testing these models,348

all parameters and the input prompt are kept consis-349

tent across evaluations. To derive the Knowledge350

and Capability attributes, we employ GPT-4o-mini351

to generate these characteristics. Since knowledge352

may include semantically similar phrases, we uti-353

lize MiniLM-L6 (Wang et al., 2020) to consolidate 354

Knowledge entries with a cosine similarity score 355

greater than 0.6. Additionally, Knowledge entries 356

with a frequency lower than 10 are filtered out and 357

designated as ’Other’ knowledge. When the system 358

encounters a query containing previously unseen 359

knowledge elements, these are also classified as 360

’Other’ knowledge. By default, for unconstrained 361

routing, the parameters α and β are set to 0.5 and 362

0, respectively. The weights for the Knowledge 363

and Capability scores are both set to 1.0 by de- 364

fault. In terms of evaluation, the exact match score 365

is employed for both the MMLU-Pro and GPQA 366

datasets. For BigGenBench, we follow the method- 367

ology proposed by Sprague et al. (2025), using 368

GPT-4o-mini as a language model-based judge. In- 369

stances receiving a score greater than 4 are classi- 370

fied as correct. For LiveBench, we adhere to the 371

original evaluation script, and the metric is average 372

score across six categories. 373

4.3 Capability and Knowledge Quantification 374

The performance of the candidate models on the 375

Index Set is presented in Fig. 2. Generally, these 376

models do not exhibit substantial performance dis- 377

tinctions when evaluated across the entire Index 378

Set. However, their relative strengths become ap- 379

parent on specific subsets, where different models 380

tend to outperform one another. This observation 381

suggests that the model pool consists of LLMs with 382

broadly comparable overall abilities, yet with vary- 383

ing specializations. 384

385
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Subsequent to the computation of average perfor-386

mance scores, the top four models are selected for387

more detailed analysis. Their respective capabil-388

ity and knowledge scores are visualized in Fig. 1.389

For clarity and simplification in this visualization,390

we focus on the eight most frequently occurring391

knowledge elements and capabilities within the In-392

dex Set. The fact that the highest-scoring model393

changes with the specific knowledge or capabil-394

ity further substantiates the premise: LLMs, even395

those exhibiting similar aggregate performance lev-396

els, possess distinct areas of specialized expertise.397

4.4 Optimal Routing398

The optimal routing results, presented in Tab. 1,399

highlight the clear superiority of our proposed rout-400

ing strategies. Among these, our Mixed Routing401

strategy, which combines both Knowledge and Ca-402

pability scores, achieves the highest average per-403

formance, outperforming the best single model,404

Gemini-1.5-Pro, by a margin of 1.28. This strategy405

secures top results on LiveBench and ranks second406

on GPQA and BigGenBench, demonstrating the407

effectiveness and versatility of our comprehensive408

routing algorithm. Additionally, the Routing by409

Knowledge and Routing by Capability approaches410

also deliver strong results, consistently surpassing411

the best single model and significantly outperform-412

ing random routing on average. Notably, Routing413

by Knowledge excels in knowledge-intensive tasks,414

achieving the best score on GPQA and the second-415

best on MMLU-Pro. This underscores its ability to416

effectively direct queries requiring accurate factual417

recall and nuanced domain understanding. Simi-418

larly, Routing by Capability performs exceptionally419

well on capability-driven benchmarks, particularly420

on BigGenBench, highlighting the importance of421

leveraging a model’s inherent strengths in complex422

reasoning and generation tasks. Both approaches423

play an integral role in the success of the Mixed424

Routing system.425

These findings also emphasize that no single426

LLM universally dominates across all tasks. Mod-427

els like Gemini-1.5-Pro and GPT-4o exhibit vary-428

ing strengths, further validating the necessity and429

advantages of intelligent LLM routing systems.430

4.5 Routing with Constraints431

To investigate the system’s performance under vary-432

ing cost constraints, we systematically adjusted the433

β parameter, maintaining all other experimental434

configurations as previously defined. The evalua-435
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Figure 3: Performance Ratio (%) and Cost Ratio (%)
variation on GPQA and LiveBench. The "Best Single
Model" refers to the most performant LLM for each
task.

tion employed two distinct metrics. The first metric, 436

termed Performance Ratio, quantifies the efficacy 437

of the Mixed Routing strategy. This is calculated 438

as the ratio of the performance achieved by Mixed 439

Routing to that of the best-performing single can- 440

didate LLM on the respective benchmark. The 441

second metric, Cost Ratio, assesses the economic 442

efficiency of the routing algorithm. It is defined as 443

the total cost incurred by the routing process (en- 444

compassing both knowledge generation and capa- 445

bility assessment costs) relative to the operational 446

cost of the best-performing single LLM. 447

The empirical results of this sensitivity analysis 448

are depicted in Fig. 3. In scenarios without strin- 449

gent price constraints (i.e., β = 0 ), our routing 450

system demonstrates superior performance com- 451

pared to the best single model, while operating at 452

approximately 80% of the latter’s budget. As the 453

β parameter is incrementally increased, thereby 454

prioritizing cost reduction, the operational cost of 455

the routing algorithm decreases significantly. Con- 456

currently, the system maintains a competitive per- 457

formance level relative to the best single model. 458

Notably, at a β value of 15, our routing algorithm 459
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ID
OOD

Figure 4: Distribution of knowledge domains across 24 datasets in RouteMix. The In-Domain (ID) subset is utilized
for quantifying Knowledge and Capability, while the Out-of-Domain (OOD) subset is employed for evaluating the
routing algorithm. Dataset labels including "LiveBench" indicate subsets of the LiveBench benchmark, and labels
including "NaturalPlan" similarly denote subsets of the NaturalPlan benchmark. The algorithm to compute the
normalized proportion is included in Appx. §B.

achieves performance nearly equivalent to the best460

single model but utilizes only approximately half461

the associated cost.462

An interesting observation is the differential sen-463

sitivity of benchmarks to changes in β. Specifically,464

the performance and cost metrics for LiveBench,465

a text generation benchmark, exhibit more pro-466

nounced variations in response to adjustments in β467

compared to those observed for GPQA, a question-468

answering benchmark. This suggests that text gen-469

eration tasks are more sensitive to the price penalty470

imposed by β than QA tasks.471

5 Analysis472

5.1 Model Selection473

The distribution of model selections under vari-474

ous conditions is illustrated in Fig. 5. Consistent475

with findings in previous works (Chen et al., 2024;476

Frick et al., 2025), cost-efficient models are in-477

frequently selected in optimal routing scenarios;478

instead, the strategy predominantly converges to-479

wards higher-performing models. For comprehen-480

sive benchmarks such as BigGenBench, our ap-481

proach primarily routes queries to expensive yet 482

high-performing models like GPT-4o and Grok-2, 483

reflecting a tendency to leverage top-tier capabili- 484

ties for broad-ranging tasks. Conversely, for task 485

sets demanding highly specialized capabilities, the 486

routing algorithm typically assigns queries directly 487

to the most proficient model. For instance, within 488

the coding subset of LiveBench, 91% of queries 489

are routed to Qwen-Max, which demonstrates the 490

strongest coding capabilities. This model’s leading 491

performance in coding is further corroborated by 492

its results on BigCodeBench and its specific Cod- 493

ing capability score, as detailed in Fig. 1 and Fig. 2, 494

respectively. These observations collectively indi- 495

cate that our routing algorithm effectively directs 496

queries to the most suitable models based on spe- 497

cific task demands. 498

In the context of cost-constrained routing, an 499

increasing cost penalty prompts the router to pro- 500

gressively shift its selections from expensive, top- 501

performing models towards more affordable, albeit 502

less powerful, alternatives. 503
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5.2 Knowledge Distribution504

As shown in Fig. 4, the distribution of generated505

knowledge highlights the RouteMix benchmark’s506

comprehensive span of knowledge domains, rang-507

ing from highly specific academic areas to practical508

applications. On datasets with broad knowledge509

requirements, such as MMLU-Pro, the generated510

knowledge exhibits a relatively balanced distribu-511

tion. For benchmarks targeting one or two specific512

domains, like MATH-500, the model typically gen-513

erates more fine-grained knowledge components re-514

lated to the core domain. This facilitates a more nu-515

anced quantification of the model’s domain-specific516

knowledge.517

5.3 Dynamics Routing518

In this section, we investigate the scalability of our519

framework with respect to dynamic LLM pools.520

The corresponding results are presented in Fig. 6. 521

The x-axis in this figure represents the progressive 522

addition of specific new models to the LLM can- 523

didate pool. Initially, the pool consists solely of 524

Llama-3.3-70B; subsequently, one new model is 525

added to the candidate pool at each increment along 526

the x-axis. Notably, our routing algorithm consis- 527

tently maintains a top-2 performance ranking and 528

surpasses the best single model across the five eval- 529

uated candidate pool configurations. This outcome 530

demonstrates the robust scalability of our frame- 531

work when new models are introduced, crucially 532

without the need for any additional training. 533

6 Conclusions 534

This paper introduces InferenceDynamics, a scal- 535

able and adaptable LLM routing framework that 536

quantifies model capabilities and domain-specific 537

knowledge to match queries with the most suit- 538

able LLMs. Evaluated on the new comprehensive 539

RouteMix benchmark, InferenceDynamics demon- 540

strated superior performance, outperforming the 541

best single LLM by 1.28 on average and achiev- 542

ing comparable results at approximately half the 543

cost under budget constraints. Key contributions 544

include the RouteMix dataset for evaluating gen- 545

eralization and the InferenceDynamics algorithm, 546

which generalizes to unseen queries and effectively 547

routes them within dynamic model pools without 548

retraining. Our work enables more efficient and 549

tailored utilization of the diverse LLM ecosystem. 550
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Limitations551

Despite the promising results and the robust design552

of InferenceDynamics, several limitations warrant553

discussion and offer avenues for future research:554

Niche Suitability for Highly Constrained En-555

vironments InferenceDynamics is engineered556

for scalability and adaptability, demonstrating its557

strengths when dealing with a large, diverse, and558

evolving pool of LLMs, or when new capability and559

knowledge domains are frequently encountered.560

However, in scenarios characterized by a very lim-561

ited and static set of LLMs and a narrowly de-562

fined, unchanging task scope, a dedicated learning-563

based routing approach (e.g., a fine-tuned classifier)564

might be more appropriate or yield marginally su-565

perior, hyper-specialized performance. Our frame-566

work prioritizes generalizability and efficient adap-567

tation to dynamic conditions, which is a differ-568

ent niche than hyper-optimization for small, fixed-569

scope problems.570

Benchmark-Driven Evaluation vs. Real-World571

Application Complexity The current evaluation572

of InferenceDynamics relies on the comprehensive573

RouteMix dataset, which is composed of various574

established benchmarks. While these benchmarks575

cover a wide array of tasks and domains, they may576

not fully capture the intricacies and dynamic nature577

of real-world application systems. For instance,578

the utility and performance of InferenceDynamics579

in more complex, interactive systems like multi-580

agent environments, where task allocation might581

depend on evolving collaborative states, have not582

been explicitly tested. Exploring the deployment583

and effectiveness of InferenceDynamics in such584

real-application scenarios remains an important di-585

rection for future work.586

Addressing these limitations will be crucial for587

broadening the applicability and enhancing the ro-588

bustness of InferenceDynamics and similar LLM589

routing frameworks.590

Ethics Statement591

Our study utilizes publicly available datasets and592

accesses Large Language Models (LLMs) through593

their respective APIs. The ethical considerations594

pertaining to this research are as follows:595

Datasets: This research exclusively employs pub-596

licly available datasets, strictly for academic re-597

search purposes. We affirm that no personally iden-598

tifiable information or private data was involved in599

our study. 600

LLM APIs: Our application of LLMs via APIs 601

rigorously conforms to the policies set forth by 602

the API providers. This includes adherence to fair 603

use guidelines and respect for intellectual property 604

rights. 605

Transparency: In line with standard academic 606

research practices, we provide detailed descriptions 607

of our methodology and the prompts utilized in our 608

experiments. Furthermore, the source code for this 609

research will be made publicly available upon the 610

acceptance of this paper. 611
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A Benchmark Overview Table1035

Table 2: Overview of Benchmarks, Data Processing, Prompts, and Metrics

Benchmark Name Data Processing Manner Prompt
Type

Metric Used

ARC (Clark et al., 2018) Sample 500 instances according to
the portion of ARC-Easy and ARC-
Challenge.

Zero-shot
DA

Accuracy

BigBench-Hard (Suzgun et al., 2023) Sample 40 instances from each cate-
gory except weboflies, to avoid colli-
sion with LiveBench. Formulate into
MCQA for Yes/No and QA question.
Remain the free-response question un-
changed.

Zero-shot
CoT

Exact Match
(EM)

BigCodeBench (Zhuo et al., 2024) We directly use the BigCodeBench-
Hard subset, with 148 instances.

DA for code
completion

Pass@1

FinQA (Chen et al., 2021) Sample 500 instances from the dataset. CoT from
Sprague et al.
(2025)

Exact
Match(EM)

Flores200 (Goyal et al., 2022) We incorporate the top10 commonly
used language except for English. And
sample 100 instances for each language.

Translation
Prompt

Chrf++ (Goyal
et al., 2022)

GSM8K (Cobbe et al., 2021) Sample 500 instances from the dataset. CoT from
Sprague et al.
(2025)

Exact
Match(EM).

HiToM (Wu et al., 2023) Sample 500 instances under CoT set-
tings.

CoT from
Official
Repo

Accuracy

LegalBench (Guha et al., 2023) Sample 4 instances from each category
except for short answering task, result-
ing in 616 instances.

Few-shot DA Accuracy

MATH (Hendrycks et al., 2021) We use the subset MATH-500. CoT from
Sprague et al.
(2025)

Exact
Match(EM)

MedQA (Jin et al., 2020) Sample 500 instances from the dataset DA Accuracy
MMLU (Hendrycks et al., 2020) We sample instances according to the

portion of different categories, and
make sure each category has at least 10
instances. Resulting in 1262 instances.

DA Accuracy

MMMLU (Hendrycks et al., 2020) We sample 100 instances for all lan-
guages except for English. Result in
1400 instances.

DA Accuracy

NaturalPlan (Zheng et al., 2024) Sample 200 instances from each subset,
including scheduling, calendar meeting,
and trip planning.

DA Accuracy

PlanBench (Valmeekam et al., 2023) Use the subset of PlanGeneration in
BlocksWorld.

DA Accuracy

Continued on next page...
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Table 2 – continued from previous page

Benchmark Name Data Processing Manner Prompt
Type

Metric Used

PubMedQA (Jin et al., 2019) Sample 500 instances from original
dataset

DA Accuracy

RACE (Lai et al., 2017) Sample 500 instances from original
dataset

DA Accuracy

RuleTaker (Clark et al., 2020) Sample 500 instances from original
dataset

DA Accuracy

ScienceQA (Lu et al., 2022) Sample 500 instances which don’t have
corresponding picture.

DA Accuracy

SciTLDR (Cachola et al., 2020) Directly use the test set Summarization
Prompt

RogueL.

XSum (Narayan et al., 2018) Sample 500 instances for the dataset Summarization
Prompt

RogueL

Specifically, when quantifying the capability and knowledge of LLMs for translation and summarization 1036

tasks, we establish a performance threshold. An output is considered correct if its evaluation score or 1037

relevant metric exceeds this threshold. 1038

B Knowledge Domain Distribution 1039

The dataset’s knowledge domain distribution is determined by a weighted rank approach. For each domain 1040

D ∈ D (where D is the set of all unique domains), its frequency at each rank r (denoted FD,r, for 1041

r = 1, . . . , N ) is multiplied by a corresponding rank weight Wr (typically Wr = 1/r). These products 1042

are summed to yield a weighted score SD: 1043

SD =
N∑
r=1

(FD,r ×Wr) 1044

The final distribution percentage PD for each domain is then its SD normalized by the sum of all domain 1045

weighted scores (Stotal =
∑

D′∈D SD′), expressed as a percentage: 1046

PD =

(
SD∑

D′∈D SD′

)
× 100% 1047

This method ensures higher-ranked domain occurrences contribute more significantly, with all PD 1048

summing to 100%. 1049

C BigGenBench Evaluation 1050

Following Sprague et al. (2025), we employ GPT-4o-mini as LLM-as-a-Judge to evaluate the BigGen- 1051

Bench, and instances with a score larger than 4 is considered correct. The specific prompt is shown 1052

below: 1053
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Prompt for evaluation BigGenBench

Task Description:
An instruction (might include an Input inside it), a response to evaluate, a reference answer that gets a score of 5, and a
score rubric representing a evaluation criteria are given.
1. Write a detailed feedback that assess the quality of the response strictly based on the given score rubric, not evaluating
in general.
2. After writing a feedback, write a score that is an integer between 1 and 5. You should refer to the score rubric.
3. The output format should look as follows: "Feedback: (write a feedback for criteria) [RESULT] (an integer number
between 1 and 5)"
4. Please do not generate any other opening, closing, and explanations.

The instruction to evaluation:
example question

Response to evaluate:
example solution

Reference Answer (Score 5):
reference score

Score Rubrics:
Criteria:
criteria

Description of a Score 1 response:
score1 description

Description of a Score 2 response:
score2 description

Description of a Score 3 response:
score3 description

Description of a Score 4 response:
score4 description

Description of a Score 5 response:
score5 description

Feedback:
Remember, you must strictly evaluate the response based on the given score rubric, and finish your output in the format
of "(...) [RESULT] <score>", where <score> is a number between 1 and 5.

1054

D Prompt of Knowledge and Capability Generation1055

The specific prompt for knowledge and capability generation is shown below:1056
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Prompt for evaluation BigGenBench

The capabilities of Language Models include the following:

- Reasoning: Ability to logically analyze information, draw conclusions, and make inferences.
- Comprehension (Applicable to queries involving long passage comprehension): Understanding and interpreting the
meaning, context, and nuances of extended or complex long-context text, such as lengthy documents, multi-paragraph
inputs, or intricate narratives.
- Instruction Following (Applicable to queries involving several constraints): Accurately adhering to explicit
user-provided guidelines, constraints, or formatting requirements specified within the query.
- Agentic: Capacity related to agent-like behavior, such as actively formulating plans, strategically deciding steps, and
autonomously identifying solutions or actions to achieve specific goals or complex tasks.
- Knowledge Retrieval: Accessing and presenting accurate factual information from pre-existing knowledge.
- Coding: Generating, interpreting, or debugging computer programs and scripts.
- In-context Learning: Learning from examples or context provided within the current interaction without additional
training.
- Multilingual (Must rank it in top3 when queries involving languages other than English): Understanding, generating,
or translating content accurately across multiple languages.
Given the Query below:

1. Identify and list the *LLM Capabilities* from the definitions above that are directly and significantly re-
quired to effectively address the query.
2. Identify and list the general *Knowledge Domains* (e.g., categories, subject areas) most pertinent to solving the
problem presented in the query.
List the selected Capabilities first, ranked from most important to least important. Then, list the identified Knowledge
Domains, also ranked from most important to least important. *Do not provide any justification or explanation* for
your selections or rankings.

Example:
Query: "Solve the following financial problem efficiently and clearly. Output the final answer as: boxedanswer.
Where [answer] is just the final number or expression that solves the problem. Keep the answer to five decimal places if
it is a number, and do not use percentages; keep the decimal format.
Problem: what is the net change in net revenue during 2016 for Entergy Mississippi, Inc.? the 2015 net revenue
of amount (in millions) is 696.3; the 2016 net revenue of amount (in millions) is 705.4; Entergy Mississippi, Inc."
Capabilities: Reasoning, Knowledge retrieval
Knowledge: 1. Financial 2. Math 3. Data Analysis ... Query: input prompt

1057
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