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Figure 1: Our method trains a unified mapper on many keywords simultaneously to learn the rela-
tionship between CLIP text embeddings and latent embeddings of GANs.

ABSTRACT

Our paper tackles the problem of adapting image generators to new keyword-
defined domains without training on any new images. We combine the power of
CLIP models for image-text similarity with the disentangled representation of im-
ages found in the latent spaces of generative adversarial networks (GANs). We
present the latent mapper (LAMDA) which maps directions in CLIP text space
to directions in the GAN latent space. Using a latent mapper enables training on
a large number of keywords simultaneously which was not previously possible,
and allows benefiting from the interrelations between different keywords. It also
leads to higher image quality while requiring only a fraction of the training time
and parameters of state-of-the-art methods. As a result of learning those relation-
ships, LAMDA produces excellent results when composing multiple words and
generates semantically meaningful images. We demonstrate the generalizability
of LAMDA by showcasing results on unseen words at test-time, as well as results
on different kinds of style-based GANs.

1 INTRODUCTION

The success of unconditional GANs (Goodfellow et al., 2014; Radford et al., 2015; Brock et al.,
2018; Karras et al., 2017; 2019) in generating realistic images inspired many researchers to investi-
gate the latent space. Investigating how GANs map latent codes to images leads to methods that can
control the generative process. This allowed generating images with a specific pose or facial expres-
sion (Patashnik et al., 2021; Gal et al., 2021; Wu et al., 2021; Singh et al., 2019; Alharbi & Wonka,
2020). On the other hand, investigating how to map a real image into the latent space allows finding
the latent code that can generate an image that is as similar as possible to a real image. This is often
referred to as GAN inversion in literature. GAN inversion allows leveraging the disentangled latent
space for editing real images (Abdal et al., 2019; Richardson et al., 2021; Tov et al., 2021; Abdal
et al., 2020).
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The latent space offers many desirable properties in comparison with pixel space. For example, in
the case of GANs trained on face images, editing the pose or facial expression is much easier in
latent space than in pixel space. Although the latent space is still hard to explore because it requires
manual examination, the emergence of language-image models alleviates this issue. The ability to
compute similarity between a word and an image without human intervention is vital to domain
adaption methods.

Domain adaptation of image generators enables performing edits on real images that are difficult
and time-consuming to do manually, such as sketching a face or replicating a certain artistic style.
However, the performance of previous methods is severely limited. For example, the most successful
method, StyleGAN-NADA (Gal et al., 2021), shows results of high quality, but it needs to finetune a
separate network per keyword. This is undesirable in multiple ways. First, it requires finetuning and
storing a network per keyword, which is costly and not scalable. Second, it ignores the relationships
between keywords and foregoes the opportunity to learn more information from these relationships.
Third, it does not accommodate the composition of keywords.

We propose a novel approach for domain adaption of image generators tackling these opportunities
for improvement. Our approach leverages both the inter-relationships between different keywords
and the relationships between text embeddings and latent codes to train a latent mapper. Compared
with the state-of-the-art, the benefits of our approach are:

• Scalable domain adaptation of GANs. We demonstrate results for training with 100 key-
words simultaneously.

• Better quality of adapted images.
• Better composition of keywords.
• An order of magnitude fewer parameters and faster training time.
• Generalization to some unseen keywords, 3DGANs, and transformer style-based GANs.

2 RELATED WORK

2.1 STYLE TRANSFER

In the case of style transfer, the goal is produce an image that reflects the content of one image but
the style of another image. The input is usually a pair of images: one defining the style and the other
defining the content. However, in our case, we aim to adapt a generator to exhibit certain keywords.
It is not trivial how to extend style transfer to generators and keywords.

Pixel space is not suitable for this task as it does not disentangle between lower and higher level
concepts. This sparks interest in disentangled deep representations of images. One of the most
successful approaches (Gatys et al., 2015) proposes using deep features of pretrained networks as
content and style descriptors. Specifically, the authors show that raw values of deeper features are
good descriptors of content as they preserve high-level details while being less sensitive to low-
level details. To describe style, the authors propose using feature map statistics in different layers
of the network. This idea is refined further in Adaptive Instance Normalization (AdaIN) (Huang &
Belongie, 2017), where the authors show that we could specify the style of an image by manipulating
the mean and variance of deep features. This viewpoint influenced one of the most successful variant
of GANs: Style-based GANs.

2.2 UNCONDITIONAL GANS

GANs have shown considerable progress in generating realistic images (Goodfellow et al., 2014;
Radford et al., 2015; Brock et al., 2018; Karras et al., 2017). In the unconditional case, the GAN is
simply given a set of images with the goal of generating similar images without the ability to specify
which class of images to generate.

The most successful variant of GANs for unconditional face image generation in terms of disen-
tanglement and image quality is the style-based generator(Karras et al., 2019). It inspires many
works that obtain the best results on the FFHQ dataset (Wang et al., 2022; Humayun et al., 2022;
Sauer et al., 2022; Karnewar & Wang, 2020; Zhao et al., 2020). The success is due mainly to the
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special attention dedicated to the latent space. Prior to StyleGAN, the common approach used a
single linear layer to map a randomly-sampled code to a tensor. Then, the tensor is continuously
upsampled and convolved to obtain the final image. StyleGAN, on the other hand, proposes using
8 fully-connected layers to map the random code to another space called W space. Rather than
upsampling and convolving w codes to generate the images, they are used to modulate each feature
map to generate the final image. The W space shows many desirable properties. First, it has better
disentanglement scores than the randomly-sampled codes. Second, they can be used to encode real
images into GANs with high fidelty (Abdal et al., 2019; Wu et al., 2021; Tov et al., 2021; Richardson
et al., 2021).

The utilization of GANs to edit real images is driven by the success of two research areas: disen-
tangled generation and GAN inversion. Research in disentangled generation provides GANs that
allow control over most aspects of generation. For example, FineGAN (Singh et al., 2019) and
structured noise injection (Alharbi & Wonka, 2020) design the GAN such that background and style
information can be changed independently from local detail. Additionally, researchers found that it
is possible to find disentangled editing directions within existing standard GANs(Abdal et al., 2019;
Wu et al., 2021; Tov et al., 2021; Richardson et al., 2021). Research in GAN inversion enables
mapping real images to latent spaces of GANs. In the case of style-based generators, recent papers
show that we can encode real images with high fidelity into the W + and S spaces.

In summary, the W latent space of StyleGAN exhibits disentanglement between high-level and low-
level details of the images. In addition, it seems capable of representing any real image in the same
domain as the training data with high fidelity.

2.3 TEXT-TO-IMAGE GENERATION

Many recent advances in text-to-image generation are driven by the success of language-image
training, specifically the CLIP model(Radford et al., 2021). CLIP learns a joint representation space
between sentences and images allowing the ability to measure similarity between a sentence and an
image. Dall-E 2 (Ramesh et al., 2022) and Stable Diffusion (Rombach et al., 2022) two of the most
successful text-to-image models make use of the CLIP model as a core part of their methods.

Text-to-image generation often requires large scale training with billions of images and parameters.
In contrast, text-driven domain adaptation does not require new training images for the adapted
domains. Instead, it leverages the existing power of pretrained generators in addition to CLIP to
generate images in new domains.

2.4 TEXT-DRIVEN DOMAIN ADAPTATION OF GANS

Our work falls in the category of text-driven domain adaptation of generated images. Given a trained
generator that can generate realistic images, the goal is to be able to adapt it to generate image of
other domains. For example, given a generator that can generate realistic face images, we aim to
adapt it to generate sketches or paintings of those faces in specific artistic styles. Similarly to the
text-to-image generation case, it is essential to be able to compare an image to a keyword. This is
only possible due to the success of language-image models such as CLIP.

StyleCLIP (Patashnik et al., 2021) is one of the earliest works in literature that leverages text-image
similarity for editing generated images. The authors explore the task from three different angles:
optimizing a specific latent code to exhibit a certain keyword, training a mapper network to transform
any latent code into a certain keyword, and optimizing global directions that exhibit certain keywords
independently of input latent codes. The main drawback to StyleCLIP is the inability to handle out-
of-domain keywords. While it can generate faces in a certain hairstyle, it cannot be used to generated
sketches. StyleGAN-NADA (Gal et al., 2021) overcomes this issue by finetuning the GAN to allow
generating out-of-domain concepts. In order to adapt StyleGAN to generate images exhibiting a
certain keyword, StyleGAN-NADA finetunes it using a directional CLIP loss so that the generator
would only generate images exhibiting that keyword. While the training procedure is fast, there are
several main limitations to StyleGAN-NADA. First, StyleGAN-NADA requires a separate training
procedure and a separate generator per keyword. This does not scale well if the generator needs
to be adapted to many keywords. It is also oblivious to the natural interrelations between different
keywords. Second, it produces lower quality images on certain keywords. Third, it lacks the ability
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to compose different words. Since each keyword requires a separate network, producing an image
that reflects multiple words is difficult.

A key difference between our method and previous methods is that we propose adapting genera-
tors to many keywords simultaneously. This enables simple composition of words and allows the
network to benefit from the common information between different keywords. A single mapper
network is trained to map directions in CLIP text space into directions in the latent space of GANs.
As a result, we accommodate test-time translation of 100 keywords to latent space. To the best of
our knowledge, all previous methods require a separate training procedure for each keyword as they
use a single text embedding to guide the training. In contrast, the mapper in our networks sees many
text embeddings which leads to meaningful composition of keywords at test time and even extends
to some unseen keywords.

3 METHOD

Figure 2: An illustration of our method. The directional CLIP loss is used to guide a network that
maps CLIP text directions into GAN W directions.

3.1 INTUITION

There are two reasons that guide our design choice.

First, we hypothesize that we can adapt style-based image generators without finetuning by mapping
into the latent space. The latent spaces of style-based GANs are heavily-explored in literature.
They are understood to contain a high-level representation of the image. They are also disentangled
to some degree, such that certain concepts can be mapped to specific layers (Wu et al., 2021).
Furthermore, there is evidence that even when trained on realistic face images, the latent spaces are
capable of encoding artistic style and even non-face images (Abdal et al., 2019).

Second, we hypothesize that modeling the relationship between CLIP text embeddings will improve
training speed and image quality. Previous methods adapt generators to each keyword individually,
which does not benefit from the similarity between many words. For example, when adapting the
generator to produce certain facial expressions, it should be expected that many expressions will
modify similar layers in W space.

Consequently, we propose LAMDA to simultaneously learn how to translate many keywords into
direction in the latent space of a pretrained generator without finetuning.

3.2 LATENT MAPPING

The idea behind our work is to map directions in CLIP text space into directions in the GANs W+

space. Given a source keyword and a target keyword, the mapper will translate the direction between
them into a direction in W+ such moving in that direction in W+ space will introduce the target
keyword. The learned directions are global and can be applied to any w+ code.
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The CLIP text embeddings are computed from the source and target words. They are used to obtain
the normalized keyword direction.

CLIPtext dir =
CLIPtarget − CLIPsource

|CLIPtarget − CLIPsource|
(1)

The latent mapper takes the word directions described above as inputs and translates them into W+

directions.
LAMDA : CLIPtext dir → W+

latent dir (2)

The new w+ code that reflects the target word can be computed by adding the learned w+ direction
to any w+ code.

w+
source→target = w+ + LAMDA(CLIPtext dir) (3)

Where:

CLIPtext dir ∈ R512×1

w+
latent dir ∈ R512×18 (4)

3.3 IDENTITY PRESERVATION

One issue with our current proposal is that there is no incentive for the network to maintain the
identity of the original generated face. We propose two loss terms for identity preservation: the
dictionary description loss, and the direction magnitude loss.

We compute a description of each generated face before and after translation. The description is the
CLIP similarity loss between the generated image and each of the 100 training keywords (except
for the two keywords used for this training step). At each training iteration, we incentivize the map-
ping network to maintain the identity by penalizing it based on the difference between the keyword
similarities before and after translation.

LID =
1

n

n∑
i

i ̸=s
i̸=t

||Global CLIP Loss(CLIPw+ , CLIPkeywords[i])−

Global CLIP Loss(CLIPw+
s→t

, CLIPkeywords[i])||22

(5)

Where:
w+

s→t = w+ + LAMDA(CLIPkeywords[s]→keywords[t]) (6)

This can be achieved with minimal cost by leveraging the precomputed CLIP text embeddings of
our 100 training keywords. The only additional cost is the computation of dot products which is
negligible. The global CLIP loss is a dot product between the image and text embeddings.

Additionally, we penalize the learned directions based on their magnitudes. We find that the weight
assigned to this loss term offers a trade-off between keyword resemblance and identity preservation.

Lmagnitude = ||LAMDA(CLIPtext dir)||22 (7)

3.4 DIRECTIONAL MARGIN

One of the main benefits of learning latent directions is enabling composition of keywords. While
previous domain adaptation methods can interpolate between keywords, they struggle to perform
composition. Consider the task of adapting a generator to produce images that contain several
keywords at once, for example (”sad”, ”bangs”, ”sketch”, and ”goatee”). It is not immediately clear
how to obtain this with previous methods as simply training StyleGAN-NADA on longer sentences
does not produce the required results.

In our method, the composition is as simple as adding more directions to the w code. The quality of
composition can be used to assess entanglement. If composing two words introduces new features
or leads to artifacts, then this is an indicator that the network might be overfitting to the training
keywords.
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# of parameters Training time
Ours 5M 1.5 min / word

StyleGAN-NADA 300M 5min / word

Table 1: A comparison of training time and number of parameters between our method and
StyleGAN-NADA. Our method requires a fraction of the parameters and can be trained much faster.

Quality ↑ Diversity ↑
Ours 59% 0.63

StyleGAN-NADA 41% 0.69

Table 2: A comparison of quality and diversity between our method and StyleGAN-NADA. Our
method is consistenly preferred over StyleGAN-NADA while still being diverse.

We propose to reduce overfitting and improve composition quality by adding a margin loss. During
training, each learned direction d is perturbed by ϵ.

w+
s→t = w+ + (LAMDA(keywords[s], keywords[t]) +N (0, ϵ)) (8)

This serves two benefits: it increases disentanglement between learned directions, and it allows for
a small amount of variation for each keyword.

3.5 TRAINING LOSS

We use the directional CLIP loss from (Gal et al., 2021) to penalize the directions produced by our
latent mapper. During each step of training, we randomly generate a w code and randomly pick two
words out of the keyword list. We use the latent mapper to map the text direction between the two
words into a latent direction in W space. The directional loss can be computed as:

CLIPtext dir =
CLIPtarget − CLIPsource

|CLIPtarget − CLIPsource|
,

CLIPimage dir =
CLIPG(w+LAMDA(CLIPtext dir)) − CLIPG(w)

|CLIPG(w+LAMDA(CLIPtext dir)) − CLIPG(w)|
,

Ldirection = 1− (CLIPtext dir · CLIPimage dir) ,

(9)

So our final loss function is:

Ltotal = αLdirection + βLID + γLmagnitude (10)

In training, the hyper parameters α, β, γ, and ϵ control the relative importance of fidelity to key-
words, fidelity to input identity, and composition quality.

4 EXPERIMENTS

4.1 QUANTITATIVE ANALYSIS

We perform a user study to assess the quality of our model in comparison with the state-of-the-
art model StyleGAN-NADA. We train 100 StyleGAN-NADA models, one for each keyword to
compare against our latent mapper model. We present users with the keyword, an image generated
by the StyleGAN-NADA model trained on that keyword, and an image generated by our model
when given that keyword. Since both our model and StyleGAN-NADA preserve the original W
space from StyleGAN, we input the same w code to both our model and the StyleGAN-NADA
model.

To quantify the diversity of the adapted generators, we use LPIPS (Zhang et al., 2018) computed
on 1000 pairs of images. The identity of the faces (w code) in each pair is kept the same between
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StyleGAN-NADA and our method, such that the diversity in style would be the main source of
variation.

Figure 3: Top row: StyleGAN-NADA. Bottom row: LAMDA. Even though StyleGAN-NADA
finetunes a separate network per keyword, LAMDA produces higher quality results on difficult
keywords.

4.2 QUALITATIVE ANALYSIS

We show a visual comparison between our work and StyleGAN-NADA in Figure3 for several diffi-
cult words. We observe that for difficult keywords there is a clear advantage for our method. Even
though StyleGAN-NADA finetunes the network parameters, it still fails to produce large appearance
changes. On the other hand, our method finds global direction without finetuning.

Figure 4: The quality of our method when composing multiple words at test-time. This is done by
adding the learned directions corresponding to each word together.

4.2.1 COMPOSITION QUALITY

It is incredibly valuable to be able to generate images that reflect the composition of more than
just word. This is highly desirable as it allows for a very large degree of freedom in the generated
images after training. In addition, it also serves to asses the disentanglement of the global directions.
If adding multiple learned global directions leads to artifacts or loss of quality, it would indicate
entanglement and overfitting.

As shown in Figure 4, our method produces aesthetically-pleasing images that reflect the multi-
ple keywords. This is a major advantage over StyleGAN-NADA as it does not naturally support
composition.

4.3 COMPATIBILITY WITH DIFFERENT GANS

Our method is not restricted to StyleGAN and it can be used easily with other style-based GANs.
We showcase our results when mapping text embeddings to latent spaces of EG3D(Chan et al.,
2022) and StyleSwin(Zhang et al., 2022). Both architectures are complex and finetuning for each
keyword is not scalable. For example, EG3D contains a rendering component and StyleSwin is a
transformer-based GANs that has almost 10 times as many parameters as StyleGAN2.

By mapping into the latent spaces without finetuning we enable adaptation of those image generators
to a 100 keywords. In Figure5 we show the results of using our method to find latent directions
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Figure 5: Our method can be used to find meaningful directions in EG3D latent space. Top row:
”surprise”. Middle row: ”werewolf.” Bottom row: ”white walker.” First column: adapted images.
Second column: depth images. Third column: 3D rendering.

Figure 6: Our method can be used to find meaningful directions in StyleSwin latent space. From left
to right: original image, ”photo” →”angry”, ”photo” →”Raphael painting”, ”photo” →”zombie”

for EG3D. We find that in addition to the image quality, our method still preserves the desirable
qualities of EG3D in terms of the quality of the rendering and the depth image. When mapping to
the StyleSwin latent space we also obtain similar quality as show in Figure6. We also showcase our
results on cat images in Figure 7.

4.4 GENERALIZATION TO UNSEEN WORDS

After training on the 100 keywords we selected, we explore whether the joint training is beneficial
at all in terms of knowing the relationship between words. One extreme is if the network overfits
and learns to map each keyword in the training individually. The other extreme is if the network,
giving only a small set of keywords, can generalize to all other keywords.

We find that the network does extend to some unseen keywords demonstrating that the network is
learning at least some of the hidden relationships between words. In Figure8, we show that the latent
mapper can still produce meaningful directions for unseen words of different kinds. We believe this
proves that the network is not overfitting, and is instead learning relationships that can extend to
words outside of the training dataset.

4.5 DISCUSSION

Our experiments demonstrate the strengths of our method. We find that images adapted using out
method have higher quality that the state-of-the-art while training faster with fewer parameters. This
is because the latent mapper is able to assimilate information when learning from multiple keywords
during training. Most keywords share some similarity with other keywords. Previous methods train
from scratch for each keyword, while our method can use what it learns for one keyword to adapt to
other keywords.

In addition to the benefits mentioned above, our experiments show that the network is not simply
memorizing training keywords. We show that the network can compose the learned directions at
test-time to combine keyword effects. We also show that the mapper is capable of extending to new
unseen words at test-time.
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Figure 7: Our method can be used to find meaningful directions in StyleGAN-ADA latent space
(trained to produce cat images). We use the same 100 keywords used for human faces.

Figure 8: After training, the latent mapper produces acceptable results for several unseen words.
This shows that the network is not overfitting, and is learning the meaningful relationships between
words.

Finally, our experiments show that our method is not restricted to StyleGAN and can be applied
to other style-based generators. Specifically, we show that LAMDA can map into EG3D while
still producing consistent depth and geometry. It can also be trained to map into transformer-based
GANs such as StyleSwin.

5 LIMITATIONS AND FUTURE WORK

The main limitation is the sensitivity of training to the hyperparameters. Very high quality images
can be obtained but often at the cost of identity loss and worse composition performance.

Another limitation we share with previous method is the reliance on the source keyword. We observe
that while our method is less sensitive, the results can still vary based on the choice of the input word.

In terms of future work, we observe that with just 100 words the mapper can extend to many other
words. One interesting endeavor for future work is to investigate the possibility of training a mapper
with a large enough number of keywords such that it can extend to any natural word.

Furthermore, it would be useful to analyze words and their relationships based on the mapping. For
example, one can aim to produce an attention map per keyword to visualize its influence.

6 REPRODUCIBILITY STATEMENT

All codes and models used in this paper will be made publicly available. Additionally, results can
be reproduced without too much difficulty by training the fully-connected network LAMDA. Many
choices of parameters produce acceptable results. We report our specific training schedule and
hyperparameter selection in the appendix.
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A APPENDIX

A.1 TRAINING DETAILS AND SETUP

We manually formed the 100 keywords list. They cover 4 broad categories: facial editing, facial
expressions, artistic styles, and transformations. Facial editing keywords include keywords such
as ”bald” and ”raising eyebrows.” Facial expression keywords include ”happy” and ”disgusted.”
Artistic styles contains famous artists. Finally, transformations contains words that represent certain
characters such as ”minions” or ”disney princess.”

We use a fully-connected network to map input text directions into latent directions. For our network
that was used to produce figures and results in this paper, we used the hyperparameters: α = 1
β = 0.1 γ = 1 ϵ = 0.5

We used 1e−3 as the learning rate and trained for a total of 30 thousands steps. The learning rate
was multiplied by 0.8 every 2 thousand iterations.

11


	Introduction
	Related work
	Style transfer
	Unconditional GANs
	Text-to-image generation
	Text-driven domain adaptation of GANs

	Method
	Intuition
	Latent mapping
	Identity preservation
	Directional margin
	Training loss

	Experiments
	Quantitative analysis
	Qualitative analysis
	Composition quality

	Compatibility with different GANs
	Generalization to unseen words
	Discussion

	Limitations and future work
	Reproducibility statement
	Appendix
	Training details and setup


