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ABSTRACT

Recent methods for learning unsupervised visual representations, dubbed con-
trastive learning, optimize the noise-contrastive estimation (NCE) bound on mu-
tual information between two transformations of an image. NCE typically uses
randomly sampled negative examples to normalize the objective, but this may
often include many uninformative examples either because they are too easy or
too hard to discriminate. Taking inspiration from metric learning, we show that
choosing semi-hard negatives can yield stronger contrastive representations. To do
this, we introduce a family of mutual information estimators that sample negatives
conditionally – in a “ring” around each positive. We prove that these estimators
remain lower-bounds of mutual information, with higher bias but lower variance
than NCE. Experimentally, we find our approach, applied on top of existing mod-
els (IR, CMC, and MoCo) improves accuracy by 2-5% absolute points in each
case, measured by linear evaluation on four standard image benchmarks. More-
over, we find continued benefits when transferring features to a variety of new im-
age distributions from the Meta-Dataset collection and to a variety of downstream
tasks such as object detection, instance segmentation, and key-point detection.

1 INTRODUCTION

Supervised learning has given rise to human-level performance in several visual tasks (Russakovsky
et al., 2015; He et al., 2017), relying heavily on large image datasets paired with semantic anno-
tations. These annotations vary in difficulty and cost, spanning from simple class labels to more
granular descriptions like bounding boxes and key-points. As it is impractical to scale high quality
annotations, this reliance on supervision poses a barrier to widespread adoption. While supervised
pretraining is still the dominant approach in computer vision, recent studies using unsupervised
“contrastive” objectives, have achieved remarkable results in the last two years, closing the gap to
supervised baselines (Wu et al., 2018; Oord et al., 2018; Hjelm et al., 2018; Zhuang et al., 2019;
Hénaff et al., 2019; Misra & Maaten, 2020; He et al., 2019; Chen et al., 2020a;b; Grill et al., 2020).

Many contrastive algorithms are estimators of mutual information (Oord et al., 2018; Hjelm et al.,
2018; Bachman et al., 2019), capturing the intuition that a good low-dimensional “representation”
is one that linearizes the useful information embedded within a high-dimensional data point. In
vision, these estimators maximize the similarity of encodings for two augmentations of the same
image. This is trivial (e.g. assign all image pairs maximum similarity) unless the similarity function
is normalized. This is typically done by comparing an image to “negative examples”, which a
model must assign low similarity to. We hypothesize that how we choose these negatives greatly
impacts the representation quality. With harder negatives, the encoder is encouraged to capture
more granular information that may improve performance on downstream tasks. While research
in contrastive learning has explored architectures, augmentations, and pretext tasks, there has been
little attention given to the negative sampling procedure. Meanwhile, there is a rich body of work
in deep metric learning showing semi-hard negative mining to improve the efficacy of triplet losses.
Inspired by this, we hope to bring harder negative sampling to modern contrastive learning.

Naively choosing difficult negatives may yield an objective that no longer bounds mutual informa-
tion, removing a theoretical connection that is core to contrastive learning and has been shown to
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be important for downstream performance (Tian et al., 2020). In this paper, we present a new esti-
mator of mutual information based on the popular noise-contrastive estimator (NCE) that supports
sampling negatives from conditional distributions. We summarize our contributions below:

1. We prove our Conditional-NCE (CNCE) objective to lower bound mutual information.
Further, we show that although CNCE is a looser bound than NCE, it has lower variance.
This motivates its value for representation learning.

2. We use CNCE to generalize contrastive algorithms that utilize a memory structure like IR,
CMC, and MoCo to sample semi-hard negatives in just a few lines of code and minimal
compute overhead.

3. We find that the naive strategy of sampling hard negatives throughout training can be detri-
mental. We then show that slowly introducing harder negatives yields good performance.

4. On four image classification benchmarks, we find improvements of 2-5% absolute points.
We also find consistent improvements (1) when transferring features to new image datasets
and (2) in object detection, instance segmentation, and key-point detection.

2 BACKGROUND

We focus on exemplar-based contrastive objectives, where examples are compared to one another
to learn a representation. Many of these objectives (Hjelm et al., 2018; Wu et al., 2018; Bachman
et al., 2019; Tian et al., 2019; Chen et al., 2020a) are equivalent to NCE (Oord et al., 2018; Poole
et al., 2019), a popular lower bound on the mutual information, denoted by I, between two random
variables. This connection is well-known and stated in several works (Chen et al., 2020a; Tschannen
et al., 2019; Tian et al., 2020; Wu et al., 2020). To review, recall:

I(X;Y ) � INCE(X;Y ) = Exi,yi⇠p(x,y)Ey1:k⇠p(y)

"
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ef✓(xi,yi)
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(1)

where x, y are realizations of two random variables, X and Y , and f✓ : X ⇥ Y ! R is a similarity
function. We call y1:k = {y1, . . . yk} negative examples, being other realizations of Y .

Suppose the two random variables in Eq. 1 are both transformations of a common random variable
X . Let T be a family of transformations where each member t is a composition of cropping, color
jittering, gaussian blurring, among others (Wu et al., 2018; Bachman et al., 2019; Chen et al., 2020a).
We call a transformed input t(x) a “view” of x. Let p(t) denote a distribution over T , a common
choice being uniform. Next, introduce an encoder g✓ : X ! Sn�1 that maps an example to a
L2-normalized representation. Suppose we have a dataset D = {xi}ni=1 of n values for X sampled
from a distribution p(x). Then, the contrastive objective for the i-th example is:

L(xi) = Et,t0,t1:k⇠p(t)Ex1:k⇠p(x)
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(2)

where ⌧ is a temperature. The equivalence of Eq. 2 to NCE is immediate given f✓(x, y) =
g✓(x)T g✓(y)/⌧ . Maximizing Eq. 2 chooses an embedding that pulls two views of the same example
together while pushing two views of distinct examples apart. A drawback to this framework is that
the number of negatives k must be large to faithfully approximate the true partition. In practice, k is
limited by memory. Recent innovations have focused on tackling this challenge:

Instance Discrimination (Wu et al., 2018), or IR, introduces a memory bank of n entries to cache
embeddings of each example throughout training. Since every epoch we observe each example once,
the memory bank will save the embedding of the view of the i-th example observed last epoch in its i-
th entry. Representations stored in the memory bank are removed from the automatic differentiation
tape, but in return, we can choose a large k by querying M . A follow up work, Contrastive Multiview
Coding (Tian et al., 2019), or CMC, decomposes an image into two color modalities. Then, CMC
sums two IR losses where the memory banks for each modality are swapped.

Momentum Contrast (He et al., 2019), or MoCo, observed that the representations stored in the
memory bank grow stale, since possibly thousands of optimization steps pass before updating an
entry again. So, MoCo makes two important changes. First, it replaces the memory bank with a
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first-in first-out (FIFO) queue of size k. During each minibatch, representations are cached into
the queue while the most stale ones are removed. Second, MoCo introduces a second (momentum)
encoder g0✓0 as a copy of g✓. The primary encoder g✓ is used to embed one view of xi whereas the
momentum encoder is used to embed the other. Again, gradients are not propagated to g0✓0 .

In this work, we focus on contrastive algorithms that utilize a memory structure that we repurpose
in Sec. 4 to efficiently sample hard negatives from. In Sec. 7, we briefly discuss generalizations to
contrastive algorithms that do not use a memory structure.

3 CONDITIONAL NOISE CONTRASTIVE ESTIMATION

In NCE, the negative examples are sampled i.i.d. from the marginal distribution, p(y). Indeed, the
existing proof that NCE lower bounds mutual information (Poole et al., 2019) assumes this to be
true. However, choosing negatives in this manner may not be the best choice for learning a good
representation. For instance, prior work in metric learning has shown the effectiveness of semi-
hard negative mining in optimizing triplet losses (Wu et al., 2017; Yuan et al., 2017; Schroff et al.,
2015). We similarly wish to exploit choosing semi-hard negatives in NCE conditional on the current

example but to do so in a manner that preserves the lower bound on mutual information.

In presenting the theory, we assume two random variables X and Y , deriving a general bound; we
will return to the contrastive learning setting in Sec. 4. To begin, in Eq. 1, suppose we sample
negatives from a distribution q(y|x) conditional on a value x ⇠ p(x) rather than the marginal p(y),
which is independent of X . Ideally, we would like to freely choose q(y|x) to be any distribution but
not all choices preserve a bound on mutual information1. This does not, however, imply that we can
only sample negatives from p(y) (Poole et al., 2019; Oord et al., 2018). One of our contributions
is to formally define a family of conditional distributions Q such that for any q(y|x) 2 Q, drawing
negative examples from q defines an estimator that lower bounds I(X;Y ). We call this new bound
the Conditional Noise Contrastive Estimator, or CNCE. We first prove CNCE to be a bound:
Theorem 3.1. (The Conditional NCE bound) Define d-dimensional random variables X and Y
by a joint distribution p(x, y) and let Y1, ..., Yk be i.i.d. copies of Y with the marginal distribution

p(y). Fix any function f : (X,Y ) ! R, any realization x of X , and let c = Ey⇠p(y)[e
f(x,y)], the

expected exponentiated similarity. Pick a set B ⇢ R strictly lower-bounded by c. Assume the pulled

back set SB = {y|ef(x,y) 2 B} has non-zero probability (i.e. p(SB) > 0). For A1, . . . , Ak in the

Borel �-algebra over Rd
, define A = A1 ⇥ . . .⇥Ak and let

q((Y1, . . . , Yk) 2 A|X = x) =
kY

j=1

p(Aj |SB).

Let ICNCE(X;Y ) = Ex,y⇠p(x,y)Ey1,...,yk⇠q(y1,...,yk|x)


log ef(x,y)

1
k
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j=1 ef(x,yj)

�
. Then ICNCE  INCE.

Proof. To show ICNCE  INCE, we show Ep[log
Pk

j=1 e
f(x,yj)] < Eq[log

Pk
j=1 e

f(x,yj)]. To see
this, apply Jensen’s to the left-hand side of logEp[

Pk
j=1 e

f(x,yj)] < log
Pk

j=1 e
f(x,yj), which holds

if yj 2 SB for j = 1, . . . , k, and then take the expectation Eq of both sides. The last inequality
holds by monoticity of log, linearity of expectation, and the fact that Ep[ef(x,yj)]  ef(x,yj).

Theorem Intuition. For intuition, although using arbitrary negative distributions in NCE does not
bound mutual information, we have found a restricted class of distributions Q where every member
q(y|x) “subsets the support” of the distribution p(y). That is, given some fixed value x, we have
defined q(y|x) to constrain the support of p(y) to a set SB whose members are “close” to x as
measured by the similarity function f . For every element y 2 SB , the distribution q(y|x) wants
to assign to it the same probability as p(y). However, as q(y|x) is not defined outside of SB , we
must renormalize it to sum to one (hence p(Aj |SB) =

p(Aj\SB)
p(SB) ). Intuitively, q(y|x) cannot change

p(y) too much: it must redistribute mass proportionally. The primary distinction then, is the smaller

1We provide a counterexample in Sec. A.1.
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Figure 1: Visual illustration of Ring Discrimination. Black: view of example xi; gray: second
view of xi; red: negative samples; gray area: distribution q(x|t(xi)). In subfigure (c), the negative
samples are annealed to be closer to t(xi) through training. In other words, the support of q shrinks.

support of q(y|x), which forces samples from it to be harder for f to distinguish from x. Thm. 3.1
shows that substituting q(y|x) for p(y) in NCE still bounds mutual information.

Theorem Example 3.1. We give a concrete example for the choice B that will be used in Sec. 4.
For any realization x, suppose we define two similarity thresholds !`,!u 2 R where c < !` < !u.
Then, choose B = [w`, wu]. In this case, the set SB , which defines the support of the distribution
q(y|x), contains values of y that are not “too-close” to x but not “too-far”. In contrastive learning,
we might pick these similarity thresholds to vary the difficulty of negative samples.

Interestingly, Thm. 3.1 states that CNCE is looser than NCE, which raises the question: when is a

looser bound useful? In reply, we show that while CNCE is a more biased estimator than NCE, in
return it has lower variance. Intuitively, because q(y|x) is the result of restricting p(y) to a smaller
support, samples from q(y|x) have less opportunity to deviate, hence lower variance. Formally:

Theorem 3.2. (Bias and Variance Tradeoff) Pick any x, y ⇠ p(x, y). Fix the distribution q(y1:k|x)

as stated in Theorem 3.1. Define a new random variable Z(y1:k) = log

✓
ef(x,y)

1
k

Pk
j=1 ef(x,yj)

◆
repre-

senting the normalized similarity. By Theorem 3.1, the expressions Ep(y1:k)[Z] and Eq(y1:k|x)[Z]
are estimators for I(X;Y ). Suppose that the set SB is chosen to ensure Varq(y1:k|x)[Z] 
Varq̃(y1:k|x)[Z], where q̃(A) = p(A| complement of SB). That is, we assume the variance of

the normalized similarity when using y1:k 2 SB is smaller than when using y1:k /2 SB . Then

Biasp(y1:k)(Z)  Biasq(y1:k|x)(Z) and Varp(y1:k)(Z) � Varq(y1:k|x)(Z).

The proof can be found in Sec. A.2. Thm. 3.2 provides one answer to our question of looseness. In
stochastic optimization, a lower variance objective may lead to better local optima. For representa-
tion learning, using CNCE to sample more difficult negatives may (1) encourage the representation
to distinguish fine-grained features useful in transfer tasks, and (2) provide less noisy gradients.

4 RING DISCRIMINATION

We have shown CNCE to be a new bound on the mutual information that uses hard negative samples.
Now we wish to apply CNCE to contrastive learning where the two random variables are again
transformations of a single variable X . In this setting, for a fixed xi ⇠ p(x), the CNCE distribution
is written as q(x|t(xi)) for some transform t 2 T . Samples from x ⇠ q(x|t(xi)) will be such
that the exponentiated distance, exp{g✓(t(xi))T g✓(t0(x))}, is at least a minimum value c. As in
Example 3.1, we will choose B = [!`,!u], a closed interval in R defined by two thresholds.

Picking thresholds. We pick the thresholds conditioned on the i-th example in the dataset, hence
each example has a different set B. We first describe how to pick the upper threshold !u. Given
the i-example xi, we pick a number u 2 [0, 100] representing an upper “percentile”. We consider
each example x in the dataset to be in the support SB if and only if the (exponentiated) distance
between the embedding of xi and x, or exp{g✓(t(xi))T g✓(t0(x))}, is below the u-th percentile for
all x 2 D. Call this maximum distance !u. In other words, we construct q(x|t(xi)) such that
we ignore examples from the dataset whose embedding dot producted with the embedding of xi is
above !u. (Note that u = 100 recovers NCE.) For a small enough choice of u, the upper similarity
threshold !u will be greater than c (defined in Thm. 3.1 as the expected distance with respect to
p(x)), and the samples from q(x|t(xi)) will be harder negatives to discriminate from xi.
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In picking the lower threshold !`, one could choose it to be 0, so B = [0,!u). However, picking the
closest examples to t(xi) as its negative examples may be inappropriate, as these examples might
be better suited as positive views rather than negatives (Zhuang et al., 2019; Xie et al., 2020). As
an extreme case, if the same image is included in the dataset twice, we would not like to select
it as a negative example for itself. Furthermore, choosing negatives “too close” to the current in-
stance may result in representations that pick up on fine-grain details only, ignoring larger semantic
concepts. This suggests removing examples from q(x|t(xi)) we consider “too close” to xi. To
do this, we pick a lower percentile 0  ` < u. For each example x 2 D, we say it is in SB if
exp{g✓(t(xi))T g✓(t0(x))} is below !u and also if it is above the `-th percentile of all distances with
respect to D. Call this minimum distance !`. Fig. 2 visualizes this whole procedure.

dist(x ,x )=i 1

=dist(x ,x )i 1

dist(x ,x )=i 1 q(x|t(x ))i

T

Step 3: Sort distances. Step 4: Compute threhsolds. Step 5: Define distribution q.

l-th u-th

SB
lw

wu
R5 4 1 3 4x x x x x

Step 1: Pick two percentiles. Step 2: Compute distances.

dist(x,y)= e
g(t(x)) g(t’(y))T

0 l u 100

1 2 3 4 5x x x x x

x 

p(x)

i

SB

xi
i

5

dist(x ,x )

i
1

dis
t(x

 ,x
 )

Figure 2: Defining the CNCE distribution q(x|t(xi)). By choosing a lower and upper percentile `
and u, we implicitly define similarity thresholds !` and !u to construct a support of valid negative
examples, SB , which in turn, defines the distribution q(x|t(xi)).

Algorithm 1: MoCoRing
# g q , g k : e n c o d e r n e t w o r k s
# m: momentum ; t : t e m p e r a t u r e
# u : r i n g uppe r p e r c e n t i l e
# l : r i n g lower p e r c e n t i l e
t x 1 =aug ( x ) # random a u g m e n t a t i o n
t x 2 =aug ( x )
emb1=norm ( g q ( t x 1 ) )
emb2=norm ( g k ( t x 2 ) ) . d e t a c h ( )
dps=sum ( t x 1⇤ t x 2 ) / t # d o t p r o d u c t
# s o r t from c l o s e s t t o f a r t h e s t neg
a l l d p s = s o r t ( emb1@queue . T / t )
# f i n d i n d i c e s o f t h r e s h o l d s
i x l = l⇤ l e n ( queue )
i x u =u⇤ l e n ( queue )
r i n g d p s = a l l d p s [ : , i x l : i x u ]
# n o n p a r a m e t r i c so f tmax
l o s s=�dps+ logsumexp ( r i n g d p s )
l o s s . backward ( )
s t e p ( g q . params )
# moco u p d a t e s
g k . params = m⇤g k . params+\

(1�m)⇤ g q . params
enqueue ( queue , emb2 ) ; dequeue ( queue )
# t h r e s h o l d u p d a t e s
a n n e a l ( w l ) ; a n n e a l ( w u )

Ring Discrimination. Having defined !` and !u, we have
a practical method of choosing B, and thus SB to define
q(x|t(xi)) for i-th example. Intuitively, we construct a con-
ditional distribution for negative examples that are (1) not too
easy since their representations are fairly similar to that of xi

and (2) not too hard since we remove the “closest” instances
to xi from SB . We call this algorithm Ring Discrimination, or
Ring, inspired by the shape of negative set (see Fig. 1).

Ring can be easily added to popular contrastive algorithms. For
IR and CMC, this amounts to simply sampling entries in the
memory bank that fall within the `-th to u-th percentile of all
distances to the current example view (in representation space).
Similarly, for MoCo, we sample from a subset of the queue
(chosen to be in the `-th to u-th percentile), preserving the FIFO
ordering. In our experiments, we refer to these as IRing, CM-
CRing, MoCoRing, respectively. Alg. 1 shows PyTorch-like
pseudocode for MoCoRing. One of the strengths of this ap-
proach is the simplicity: the algorithm requires only a few lines
of code on top of existing implementations.

Annealing Policy. Naively using hard negatives can collapse to
a poor representation, especially if we choose the upper thresh-

old, !u, to be very small early in training. At the start of training, the encoder g✓ is randomly
initialized and cannot guarantee that elements in the `-th to u-th percentile are properly calibrated:
if the representations are near random, choosing negatives that are close in embedding distance may
detrimentally exclude those examples that are “actually” close. This could lock in poor local min-
ima. To avoid this, we propose to use an annealing policy that reduces !u (and thus the size of the
support SB) throughout training. Early in training we choose !u to be large. Over many epochs,
we slowly decrease !u closer to !l, thereby selecting more difficult negatives. We explored several
annealing policies and found a linear schedule to be well-performing and simple (see Sec. G). In our
experiments, annealing is shown to be crucial: being too aggressive with negatives early in training
produced representations that performed poorly on downstream tasks.

5 EXPERIMENTS

We explore our method applied to IR, CMC, and MoCo in four commonly used visual datasets. As
in prior work (Wu et al., 2018; Zhuang et al., 2019; He et al., 2019; Misra & Maaten, 2020; Hénaff
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et al., 2019; Kolesnikov et al., 2019; Donahue & Simonyan, 2019; Bachman et al., 2019; Tian et al.,
2019; Chen et al., 2020a), we evaluate each method by linear classification on frozen embeddings.
That is, we optimize a contrastive objective on a pretraining dataset to learn a representation; then,
using a transfer dataset, we fit logistic regression on representations only. A better representation
would contain more “object-centric” information, thereby achieving a higher classification score.

Training Details. We pick the upper percentile u = 10 and the lower percentile ` = 1 although we
anneal u starting from 100. We resize input images to be 256 by 256 pixels, and normalize them us-
ing dataset mean and standard deviation. The temperature ⌧ is set to 0.07. We use a composition of a
224 by 224-pixel random crop, random color jittering, random horizontal flip, and random grayscale
conversion as our augmentation family T . We use a ResNet-18 encoder with a output dimension
of 128. For CMC, we use two ResNet-18 encoders, doubling the number of parameters. For linear
classification, we treat the pre-pool output (size 512 ⇥ 7 ⇥ 7) after the last convolutional layer as
the input to the logistic regression. Note that this setup is equivalent to using a linear projection
head (Chen et al., 2020a;b). In pretraining, we use SGD with learning rate 0.03, momentum 0.9
and weight decay 1e-4 for 300 epochs and batch size 256 (128 for CMC). We drop the learning rate
twice by a factor of 10 on epochs 200 and 250. In transfer, we use SGD with learning rate 0.01,
momentum 0.9, and no weight decay for 100 epochs without dropping learning rate. These hyper-
parameters were taken from Wu et al. (2018) and used in all of Table 1 for a consistent comparison.
We found normalizing hyperparameters to be important for a fair comparison as many competing
algorithms use different hyperparameters. For a state-of-the-art comparison, see Table 5.

Model Linear Evaluation

IR 81.2
IRing 83.9 (+2.7)
CMC⇤ 85.6
CMCRing⇤ 87.6 (+2.0)
MoCo 83.1
MoCoRing 86.1 (+3.0)
LA 83.9

(a) CIFAR10

Model Linear Evaluation

IR 60.4
IRing 62.3 (+1.9)
CMC⇤ 56.0
CMCRing⇤ 56.0 (+0.0)
MoCo 59.1
MoCoRing 61.5 (+2.4)
LA 61.4

(b) CIFAR100

Model Linear Evaluation

IR 61.4
IRing 64.3 (+2.9)
CMC⇤ 63.8
CMCRing⇤ 66.4 (+2.6)
MoCo 63.8
MoCoRing 65.2 (+1.4)
LA 63.0

(c) STL10

Model Linear Evaluation

IR 43.2
IRing 48.4 (+5.2)
CMC⇤ 48.2
CMCRing⇤ 50.4 (+2.2)
MoCo 52.8
MoCoRing 54.6 (+1.8)
LA 48.0

(d) ImageNet

Table 1: Comparison of contrastive algorithms on four image domains. Superscript (⇤) indicates
models that use twice as many parameters as others e.g. CMC has “L” and “ab” encoders.

The results for CIFAR10, CIFAR100, STL10, and ImageNet are in Table 1. Overall, IR, CMC,
and MoCo all benefit from using more difficult negatives as shown by 2-5% absolute points of
improvement across the four datasets. While we find different contrastive objectives to perform best
in each dataset, the improvements from Ring are consistent: the Ring variant outperforms the base
for every model and every dataset. We also include as a baseline Local Aggregation, or LA (Zhuang
et al., 2019), a popular contrastive algorithm (see Sec. H) that implicitly uses hard negatives without
annealing. We find our methods to outperform LA by up to 4% absolute.

Model Linear Eval.

IR 81.2
IRing 83.9
IRing (No Anneal) 81.4
IRing (` = 0) 82.1

(a) CIFAR10
Model Linear Eval.

IR 43.2
IRing 48.4
IRing (No Anneal) 41.3
IRing (` = 0) 47.3

(b) ImageNet

Table 2: Lesioning the effects of
annealing and choice of `.

Ablations: Annealing and Upper Boundary. Having found
good performance with Ring Discrimination, we want to assess
the importance of the individual components that comprise Ring.
We focus on the annealing policy and the exclusion of very close
negatives from SB . Concretely, we measure the transfer accuracy
of (1) IRing without annealing and (2) IRing with an lower per-
centile ` = 0, thereby excluding no close negatives. That is, SB

contains all examples in the dataset with representation similarity
less than the !u (a “ball” instead of a “ring”). Table 2 compares
these ablations to IR and full IRing on CIFAR10 and ImageNet
classification transfer. We observe that both ablations result in
worse transfer accuracy, with proper annealing being especially
important to prevent convergence to bad minima. We also find
even with ` = 0, IRing outperforms IR, suggesting both remov-
ing negatives that are “too close” and “too far” contribute to the
improved representation quality.

Transferring Features. Thus far we have only evaluated the
learned representations on unseen examples from the training distribution. As the goal of unsu-
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pervised learning is to capture general representations, we are also interested in their performance
on new, unseen distributions. To gauge this, we use the same linear classification paradigm on a suite
of image datasets from the “Meta Dataset” collection (Triantafillou et al., 2019) that have been used
before in contrastive literature (Chen et al., 2020a). All representations were trained on CIFAR10.
For each transfer dataset, we compute mean and variance from a training split to normalize input
images, which we found important for generalization to new visual domains.

Model Aircraft CUBirds DTD Fungi MNIST FashionMNIST TrafficSign VGGFlower MSCOCO

IR 40.9 17.9 39.2 2.7 96.9 91.7 97.1 68.1 52.4
IRing 40.6 (-0.3) 17.9 (+0.0) 39.5 (+0.3) 3.4 (+0.7) 97.8 (+0.9) 91.6 (+0.1) 98.8 (+1.7) 68.5 (+0.4) 52.5 (+0.1)
MoCo 41.5 18.0 39.7 3.1 96.9 90.9 97.3 64.5 52.0
MoCoRing 41.6(+0.1) 18.6 (+0.6) 39.5 (-0.2) 3.6 (+0.5) 97.9 (+1.0) 91.3 (+0.4) 99.3 (+2.0) 69.1 (+4.6) 52.6 (+0.6)
CMC 40.1 15.8 38.3 4.3 97.5 91.5 94.6 67.1 51.4
CMCRing 40.8 (+0.7) 16.8 (+1.0) 40.6 (+2.3) 4.2 (-0.1) 97.9 (+0.4) 92.1 (+0.6) 97.1 (+2.5) 69.1 (+2.0) 52.1 (+0.7)
LA 41.3 17.8 39.0 2.3 97.2 92.3 98.2 66.9 52.3

Table 3: Transferring CIFAR10 embeddings to various image distributions.

We find in Table 3 that the Ring models are competitive with the non-Ring analogues, with increases
in transfer accuracies of 0.5 to 2% absolute. Most notable are the TrafficSign and VGGFlower
datasets in which Ring models surpass others by a larger margin. We also observe that IRing largely
outperforms LA. This suggests the features learned with more difficult negatives are not only useful
for the training distribution but may also be transferrable to many visual datasets.

More Downstream Tasks. Object classification is a popular transfer task, but we want our learned
representations to capture holistic knowledge about the contents of an image. We must thus evaluate
performance on transfer tasks such as detection and segmentation that require different kinds of
visual information. We study four additional downstream tasks: object detection on COCO (Lin
et al., 2014) and Pascal VOC’07 (Everingham et al., 2010), instance segmentation on COCO, and
keypoint detection on COCO. In all cases, we employ embeddings trained on ImageNet with a
ResNet-18 encoder. We base these experiments after those found in He et al. (2019) with the same
hyperparameters. However, we use a smaller backbone (ResNet-18 versus ResNet-50) and we freeze
its parameters instead of finetuning them. We adapt code from Detectron2 (Wu et al., 2019).

COCO: Object Detection COCO: Inst. Segmentation COCO: Keypoint Detection VOC: Object Detection

Arch. Mask R-CNN, R18-FPN, 1x schedule R-CNN, R18-FPN Faster R-CNN, R18-C4

Model APbb APbb
50 APbb

75 APmk APmk
50 APmk

75 APkp APkp
50 APkp

75 APbb APbb
50 APbb

75

IR 8.6 19.0 6.6 8.5 17.4 7.4 34.6 63.0 32.9 5.5 14.5 3.3
IRing 10.9 22.9 8.7 11.0 20.9 9.6 37.2 66.1 35.7 7.6 20.3 4.4
MoCo 6.0 14.3 4.0 10.8 21.4 9.7 37.6 66.5 36.9 7.3 17.9 4.1
MoCoRing 9.4 20.3 7.6 12.0 22.9 10.8 38.7 67.7 37.9 8.0 22.1 4.8

LA 10.2 22.0 8.1 10.0 20.3 9.0 36.3 65.3 35.1 7.6 20.0 4.3

Table 4: Evaluation of ImageNet representations using four visual transfer tasks.

We find IRing outperforms IR by around 2.3 points in COCO object detection, 2.5 points in COCO
Instance Segmentation, 2.6 points in COCO keypoint detection, and 2.1 points in VOC object de-
tection. Similarly, MoCoRing finds consistent improvements of 1-3 points over MoCo on the four
tasks. Future work can investigate orthogonal directions of using larger encoders (e.g. ResNet-50)
and finetuning ResNet parameters for these individual tasks.

6 RELATED WORK

Several of the ideas in Ring Discrimination relate to existing work. Below, we explore these con-
nections, and at the same time, place our work in a fast-paced and growing field.

Hard negative mining. While it has not been deeply explored in modern contrastive learning,
negative mining has a rich line of research in the metric learning community. Deep metric learning
utilizes triplet objectives of the form Ltriplet = d(g✓(xi), g✓(x+))�d(g✓(xi), g✓(x�)+↵) where d is
a distance function (e.g. L2 distance), x+ and x� are a positive and negative example, respectively,
relative to xi, the current instance, and ↵ 2 R+ is a margin. In this context, several approaches pick
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semi-hard negatives: Schroff et al. (2015) treats the furthest (in L2 distance) example in the same
minibatch as xi as its negative, whereas Oh Song et al. (2016) weight each example in the mini-
batch by its distance to g✓(xi), thereby being a continuous version of Schroff et al. (2015). More
sophisticated negative sampling strategies developed over time. In Wu et al. (2017), the authors pick
negatives from a fixed normal distribution that is shown to approximate L2 normalized embeddings
in high dimensions. The authors show that weighting by this distribution samples more diverse neg-
atives. Similarly, HDC (Yuan et al., 2017) simulataneously optimizes a triplet loss using many levels
of “hardness” in negatives, again improving the diversity. Although triplet objectives paved the way
for modern NCE-based objectives, the focus on negative mining has largely been overlooked. Ring
Discrimination, being inspired by the deep metric learning literature, reminds that negative sampling
is still an effective way of learning stronger representations in the new NCE framework. As such,
an important contribution was to do so while retaining the theoretical properties of NCE, namely in
relation to mutual information. This, to the best of our knowledge, is novel as negative mining in
metric learning literature was not characterized in terms of information theory.

That being said, there are some cases of negative mining in contrastive literature. In CPC (Oord
et al., 2018), the authors explore using negatives from the same speaker versus from mixed speakers
in audio applications, the former of which can be interpreted as being more difficult. A recent paper,
InterCLR (Xie et al., 2020), also finds that using “semi-hard negatives” is beneficial to contrastive
learning whereas negatives that are too difficult or too easy produce worse representations. Where
InterCLR uses a margin-based approach to sample negatives, we explore a wider family of negative
distributions and show analysis that annealing offers a simple and easy solution to choosing between
easy and hard negatives. Further, as InterCLR’s negative sampling procedure is a special case of
CNCE, we provide theory grounding these approaches in information theory. Finally, a separate
line of work in contrastive learning explores using neighboring examples (in embedding space) as
“positive” views of the instance (Zhuang et al., 2019; Xie et al., 2020; Asano et al., 2019; Caron
et al., 2020; Li et al., 2020). That is, finding a set {xj} such that we consider xj = t(xi) for the
current instance xi. While this does not deal with negatives explicitly, it shares similarities to our
approach by employing other examples in the contrastive objective to learn better representations.
In the Appendix, we discuss how one of these algorithms, LA (Zhuang et al., 2019), implicitly uses
hard negatives and expand the Ring family with ideas inspired by it.

Contrastive learning. We focused primarily on comparing Ring Discrimination to three recent
and highly performing contrastive algorithms, but the field contains much more. The basic idea of
learning representations to be invariant under a family of transformations is an old one, having been
explored with self-organizing maps (Becker & Hinton, 1992) and dimensionality reduction (Hadsell
et al., 2006). Before IR, the idea of instance discrimination was studied (Dosovitskiy et al., 2014;
Wang & Gupta, 2015) among many pretext objectives such as position prediction (Doersch et al.,
2015), color prediction (Zhang et al., 2016), multi-task objectives (Doersch & Zisserman, 2017),
rotation prediction (Gidaris et al., 2018; Chen et al., 2019), and many other “pretext” objectives
(Pathak et al., 2017). As we have mentioned, one of the primary challenges to instance discrimi-
nation is making such a large softmax objective tractable. Moving from a parametric (Dosovitskiy
et al., 2014) to a nonparametric softmax reduced issues with vanishing gradients, shifting the chal-
lenge to efficient negative sampling. The memory bank approach (Wu et al., 2018) is a simple and
memory-efficient solution, quickly being adopted by the research community (Zhuang et al., 2019;
Tian et al., 2019; He et al., 2019; Chen et al., 2020b; Misra & Maaten, 2020). With enough compu-
tational resources, it is now also possible to reuse examples in a large minibatch and negatives of one
another (Ye et al., 2019; Ji et al., 2019; Chen et al., 2020a). In our work, we focus on hard negative
mining in the context of a memory bank or queue due to its computational efficiency. However,
the same principles should be applicable to batch-based methods (e.g. SimCLR): assuming a large
enough batch size, for each example, we only use a subset of the minibatch as negatives as in Ring.
Finally, more recent work (Grill et al., 2020) removes negatives altogether, which is speculated to
implicitly use negative samples via batch normalization (Ioffe & Szegedy, 2015); we leave a more
thorough understanding of negatives in this setting to future work.

7 DISCUSSION

Computational cost of Ring. To measure the cost of CNCE, we compare the cost an epoch of
training MoCo/IR versus MoCoRing/IRing on four image datasets. Table 5a reports the average
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Model CIFAR10 (sec.) ImageNet (min.)

IR 136.0 ± 4 43.9 ± 1
IRing 141.1 ± 5 (1.1x) 51.0 ± 1 (1.2x)

MoCo 318.4 ± 16 61.1 ± 1
MoCoRing 383.4 ± 12 (1.2x) 64.9 ± 1 (1.1x)

(a) Average Epoch Cost

Dataset Arch. MoCo-v2 MoCoRing-v2

CIFAR10 ResNet-18 90.1 91.9 (+1.8)
CIFAR10 ResNet-50 92.4 94.1 (+1.6)
CIFAR100 ResNet-18 65.1 67.3 (+2.2)
STL10 ResNet-18 74.8 76.7 (+1.9)

(b) Comparison with SOTA

Transfer Task MoCo MoCoRing

LibriSpeech Spk. ID (Panayotov et al., 2015) 95.5 96.6 (+1.1)
AudioMNIST (Becker et al., 2018) 87.4 91.3 (+3.9)
Google Commands (Warden, 2018) 38.5 41.4 (+2.9)
Fluent Actions (Lugosch et al., 2019) 36.5 36.8 (+0.3)
Fluent Objects (Lugosch et al., 2019) 41.9 44.1 (+2.2)
Fluent Locations (Lugosch et al., 2019) 60.9 63.9 (+3.0)

(c) Speech Extension

Dataset SimCLR SimCLRing

CIFAR10 88.9 89.3 (+0.4)
CIFAR100 63.5 64.1 (+0.6)
STL10 71.2 72.1 (+0.9)

(d) SimCLRing Extension

Table 5: Generalizations of Ring to a new modality (a) and a batch-based algorithm (b).

cost over 200 epochs. We observe that Ring models cost no more than 1.5 times the cost of standard
contrastive algorithms, amounting to a difference of 3 to 7 minutes in ImageNet and 10 to 60 seconds
in three other datasets per epoch. In the context of deep learning, we do not find the cost increases
to be substantial. In particular, since (1) the memory structure in IR and MoCo allow us to store and
reuse embeddings and (2) gradients are not propagated through the memory structure, the additional
compute of Ring amounts to one matrix multiplication, which is cheap on modern hardware. We
used a single Titan X GPU with 8 CPU workers, and PyTorch Lightning (Falcon et al., 2019).

Comparison with the state-of-the-art. Unlike the experiments in Sec. 5, we now choose the op-
timal hyperparameters for MoCo-v2 (Chen et al., 2020b) separately for CIFAR10, CIFAR100, and
STL10. Table 5b compares MoCo-v2 and its CNCE equivalent, MoCoRing-v2 using linear evalua-
tion. We observe comparable improvements as found in Table 1 even with optimal hyperparameters.
Notably, the gains generalize to ResNet-50 encoders. Refer to Sec. F for hyperparameter choices.

Generalization to other modalities. Thus far, we have focused on visual representation learning,
although the same ideas apply to other domains. To exemplify the generality of CNCE, we apply
MoCoRing to learning speech representations. Table 5c reports linear evaluation on six transfer
datasets, ranging from predicting speaker identity to speech recognition to intent prediction. We
find significant gains of 1 to 4 percent over 4 datasets and 6 transfer tasks with an average of 2.2
absolute percentage points. See Sec. E for experimental details.

Batch-based negative sampling. In Ring, we assumed to have a memory structure that stores
embeddings, which led to an efficient procedure of mining semi-hard negatives. However, an-
other flavor of contrastive algorithms removes the memory structure entirely, using the examples
in the minibatch as negatives of one another. Here, we motivate a possible extension of Ring
to SimCLR, and leave more careful study to future work. In SimCLR, we are given a mini-
batch M of examples. To sample hard negatives, as before, pick ` and u as lower and upper
percentiles. For every example xi in the minibatch, only consider the subset of the minibatch
{x : x ✓ M, exp{g✓(t(xi))T g✓(t0(x))} in the `-th and u-th percentiles in M} as negative exam-
ples for xi. This can be efficiently implemented as a matrix operation using an element-wise mask.
Thus, we ignore gradient signal for examples too far or too close to xi in representation. As before,
we anneal u from 100 to 10 and set ` = 1. Table 5d report consistent but moderate gains over
SimCLR, showing promise but room for improvement in future research.

8 CONCLUDING REMARKS

To conclude, we presented a family of mutual information estimators that approximate the partition
function using samples from a class of conditional distributions. We proved several theoretical
statements about this family, showing a bound on mutual information and a tradeoff between bias
and variance. Then, we applied these estimators as objectives in contrastive representation learning.
In doing so, we found that our representations outperform existing approaches consistently across a
spectrum of contrastive objectives, data distributions, and transfer tasks. Overall, we hope our work
to encourage more exploration of negative sampling in the recent growth of contrastive learning.
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