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ABSTRACT

Distributed Mean Estimation (DME), in which n clients communicate vectors to a
parameter server that estimates their average, is a fundamental building block in
communication-efficient federated learning. In this paper, we improve on previous
DME techniques that achieve the optimal O(1/n) Normalized Mean Squared Error
(NMSE) guarantee by asymptotically improving the complexity for either encoding
or decoding (or both). To achieve this, we formalize the problem in a novel way that
allows us to use off-the-shelf mathematical solvers to design the quantization.

1 INTRODUCTION

Federated learning McMahan et al. (2017); Kairouz et al. (2019), is a technique to train models across
multiple clients without having to share their data. During each training round, the participating
clients send their model updates (hereafter referred to as gradients) to a parameter server that
calculates their mean and updates the model for the next round. Collecting the gradients from the
participating clients is often communication-intensive, which implies that the network becomes a
bottleneck. A promising approach for alleviating this bottleneck and thus accelerating federated
learning applications is compression . We identify the Distributed Mean Estimation (DME) problem
as a fundamental building block that is used for that purpose either to directly communicate the
gradients Suresh et al. (2017); Konečnỳ & Richtárik (2018); Vargaftik et al. (2021; 2022); Davies et al.
(2021) or as part of more complex acceleration mechanisms Richtárik et al. (2021; 2022); Gorbunov
et al. (2021); Szlendak et al. (2022); Condat et al. (2022b); Basu et al. (2019); Condat et al. (2022a);
Condat & Richtárik (2022); Horváth et al. (2023); Tyurin & Richtárik (2023); He et al. (2023).

DME is defined as follows. Consider n clients with d-dimensional vectors (e.g., gradients) to report;
each client sends an approximation of its vector to a parameter server (hereafter referred to as ‘server’)
which estimates the vectors’ mean. We briefly survey the most relevant and recent related works
for DME. Common to these techniques is that they preprocess the input vectors into a different
representation that allows for better compression, generally through quantization of the coordinates.

For example, in Suresh et al. (2017), each client, in O(d · log d) time, uses a Randomized Hadamard
Transform (RHT) to preprocess its vector and then applies stochastic quantization. The transformed
vector has a smaller coordinate range (in expectation), which reduces the quantization error. The
server then aggregates the transformed vectors before applying the inverse transform to estimate the
mean, for a total of O(n · d+ d · log d) time. Such a method has a Normalized Mean Squared Error
(NMSE ) that is bounded by O (log d/n) using O(1) bits per coordinate. Hereafter, we refer to this
method as ‘Hadamard’. This work also suggests an alternative method that uses entropy encoding to
achieve an NMSE of O(1/n), which is optimal. However, entropy encoding is a compute-intensive
process that does not efficiently translate to GPU execution, resulting in a slow decode time.

A different approach to DME computes the Kashin’s representation Kashin (1977); Lyubarskii &
Vershynin (2010) of a client’s vector x before applying quantization Caldas et al. (2018); Safaryan
et al. (2020). Intuitively, this replaces the d-dimensional input vector by O(d) coefficients, each
bounded by O(∥x∥2/

√
d). Applying quantization to the coefficients instead of the original vectors

allows the server to estimate the mean using O(1) bits per coordinate with an O(1/n) NMSE .
However, computing the coefficients requires applying multiple RHTs, asymptotically slowing down
its encoding time from Hadamard’s O(d · log d) to O(d · log d · log(n · d)).
The works of Vargaftik et al. (2021; 2022) transform the input vectors in the same manner as Suresh
et al. (2017), but with two differences: (1) clients must use independent transforms; (2) clients
use deterministic (biased) quantization, derived using existing information-theoretic tools like the
Lloyd-Max quantizer, on their transformed vectors. Interestingly, the server still achieves an unbiased
estimate of each client’s input vector after multiplying the estimated vector by a real-valued ‘scale’
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Algorithm Enc. complexity Dec. complexity NMSE
QSGD Alistarh et al. (2017) O(d) O(n · d) O(d/n)
Hadamard Suresh et al. (2017) O(d · log d) O(n · d+ d · log d) O(log d/n)
Kashin Caldas et al. (2018); Safaryan et al. (2020) O(d · log d · log(n · d)) O(n · d+ d · log d) O(1/n)
EDEN-RHT Vargaftik et al. (2022) O(d · log d) O(n · d · log d) O(1)
EDEN-URR Vargaftik et al. (2022) O(d3) O(n · d3) O(1/n)
QUIC-FL (New) O(d · log d) O(n · d+ d · log d) O(1/n)

Table 1: DME worst-case guarantees (without variable-length encoding; see App. B) for b = O(1).
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Figure 1: Normalized Mean Squared Error vs. processing time.

(that is sent by the client) and applying the inverse transform. Using uniform random rotations, which
RHT approximates, such a process achieves O(1/n) NMSE and is empirically more accurate than
Kashin’s representation. With RHT, their encoding complexity is O(d · log d), matching that of Suresh
et al. (2017). However, since the clients transform their vectors independently of each other (and thus
the server must invert their transforms individually, i.e., perform n inverse transforms), the decode time
is asymptotically increased to O(n·d·log d) compared to Hadamard’s O(n·d+d·log d). Further, with
RHT the algorithm is biased, and thus its worse-case NMSE does not decrease in 1/n; empirically,
it works well for gradient distributions, but we show in Appendix A, there are adversarial cases.

While the above methods suggest aggregating the gradients directly using DME, recent works leverage
it as a building block. For example, in EF21 Richtárik et al. (2021), each client sends the compressed
difference between its local gradient and local state, and the server estimates the mean to update the
global state. Similarly, DIANA Mishchenko et al. (2019) uses DME to estimate the average gradient
difference. Thus, better DME techniques can improve their performance (see Appendix J.2). We
defer further discussion of frameworks that use DME as a building block to Appendix B.

In this work, we present Quick Unbiased Compression for Federated Learning (QUIC-FL), a DME
method with O(d · log d) encode and O(n · d + d · log d) decode times, and the optimal O(1/n)
NMSE . As summarized in Table 1, QUIC-FL asymptotically improves over the best encoding and/or
decoding times of techniques with this NMSE guarantee.

In QUIC-FL, each client applies RHT and quantizes its transformed vector using an unbiased
method we develop to minimize the quantization error. Critically, all clients use the same trans-
form, thus allowing the server to aggregate the results before applying a single inverse transform.
QUIC-FL’s quantization features two new techniques; first, we present Bounded Support Quantiza-
tion (BSQ), where clients send a small fraction of their largest (transformed) coordinates exactly,
thus minimizing the difference between the largest quantized coordinate and the smallest one and
thereby the quantization error. Second, we design a near-optimal distribution-aware unbiased quan-
tization. To the best of our knowledge, such a method is not known in the information-theory
literature and may be of independent interest.

We implement QUIC-FL in PyTorch Paszke et al. (2019) and TensorFlow Abadi et al. (2015) and
evaluate it on different FL tasks (Section 4). We show that QUIC-FL can compress vectors with
over 33 million coordinates within 44 milliseconds and is markedly more accurate than existing
O(n · d) and O(n · d + d · log d) decode time approaches such as QSGD Alistarh et al. (2017),
Hadamard Suresh et al. (2017), and Kashin Caldas et al. (2018); Safaryan et al. (2020). Compared
with DRIVE Vargaftik et al. (2021) and EDEN Vargaftik et al. (2022), QUIC-FL has a competitive
NMSE while asymptotically improving the estimation time, as shown in Figure 1. Recent academic
and industry sources (e.g., McMahan et al. (2022); Bonawitz et al. (2019)) discuss FL deployments
with thousands to tens of thousands of clients per round; thus, this speedup can lead to large savings in
time and/or resources. The figure illustrates the encode and decode times vs. NMSE for b = 4 bits per
coordinate, d = 220 dimensions, and n = 256 clients. Our code will be released upon publication.
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2 PRELIMINARIES

Notation. Capital letters denote random variables (e.g., Ic) or functions (e.g., T (·)); overlines
denote vectors (e.g., xc); calligraphic letters stand for sets (e.g., Xb) with the exception of N and U
that denote the normal and uniform distributions; and hats denote estimators (e.g., x̂avg ).

Problems and Metrics. Given a nonzero vector x ∈ Rd, a vector compression protocol consists of
a client that sends a message to a server that uses it to estimate x̂ ∈ Rd. The vector Normalized Mean

Squared Error (vNMSE ) of the protocol is defined as
E
[
∥x̂−x∥2

2

]
∥x∥2

2

.

The above generalizes to Distributed Mean Estimation (DME), where each of n clients has a
nonzero vector xc ∈ Rd, where c ∈ {0, . . . , n− 1}, that they compress and communicate to a
server. We are interested in minimizing the Normalized Mean Squared Error (NMSE ), defined

as
E
[
∥x̂avg− 1

n

∑n−1
c=0 xc∥2

2

]
1
n ·

∑n−1
c=0 ∥xc∥2

2

, where x̂avg is our estimate of the average 1
n ·
∑n−1

c=0 xc. For unbiased

algorithms and independent estimates, we that NMSE = vNMSE/n.

Randomness. We use global (common to all clients and the server) and client-specific shared
randomness (one client and server). Client-only randomness is called private.

3 THE QUIC-FL ALGORITHM

We first describe our design goals in Section 3.1. Then, in Sections 3.2 and 3.3, we successively
present two new tools we have developed to achieve our goals, namely, bounded support quantization
and distribution-aware unbiased quantization. In Section 3.4, we present QUIC-FL’s pseudocode and
discuss its properties and guarantees. Finally, in Section 3.5, we overview additional optimizations.

3.1 DESIGN GOALS

We aim to develop a DME technique that requires less computational overhead while achieving the
same accuracy at the same compression level as the best previous techniques.

As shown by recent works Suresh et al. (2017); Lyubarskii & Vershynin (2010); Caldas et al. (2018);
Safaryan et al. (2020); Vargaftik et al. (2021; 2022), a preprocessing stage that transforms each
client’s vector to a vector with a different distribution (such as applying a uniform random rotation or
RHT) can lead to smaller quantization errors and asymptotically lower NMSE . However, in existing
DME techniques that achieve the asymptotically optimal NMSE of O(1/n), such preprocessing
incurs a high computational overhead on either the clients (i.e., Lyubarskii & Vershynin (2010);
Caldas et al. (2018); Safaryan et al. (2020)) or the server (i.e., Lyubarskii & Vershynin (2010); Caldas
et al. (2018); Safaryan et al. (2020); Vargaftik et al. (2021; 2022)). The question is then how to
preserve the appealing NMSE of O(1/n) but reduce the computational burden?

In QUIC-FL, similarly to previous DME techniques, we use a preprocessing stage1 where each client
applies a uniform random rotation on its input vector. After the rotation, the coordinates’ distribution
approaches independent normal random variables for high dimensions Vargaftik et al. (2021). We use
our knowledge of the resulting distribution to devise a fast and near-optimal unbiased quantization
scheme that both preserves the appealing O(1/n) NMSE guarantee and is asymptotically faster than
existing DME techniques with similar NMSE guarantees. A particularly important aspect of our
scheme is that we can avoid decompressing each client’s compressed vector at the server by having
all clients use the same rotation (determined by shared randomness), so that the server can directly
sum the compressed results and perform a single inverse rotation.

3.2 BOUNDED SUPPORT QUANTIZATION

Our first contribution is the introduction of bounded support quantization (BSQ). For a parameter
p ∈ (0, 1], we pick a threshold tp such that up to d · p values can fall outside [−tp, tp]. BSQ separates
the vector into two parts: the small values in the range [−tp, tp], and the remaining (large) values. The
large values are sent exactly (matching the precision of the input), whereas the small values are stochas-
tically quantized and sent using a small number of bits each. This approach decreases the error of the
quantized values by bounding their support at the cost of sending a small number of values exactly.

1In Section 3.5, move to the computationally efficient RHT instead, while preserving Table 1’s guarantees.
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For the exactly sent values, we also need to send their indices. There are different ways to do so. For
example, it is possible to encode these indices using log

(
d
d·p
)
≈ d·p·log(1/p) bits at the cost of higher

complexity. When the d · p indices are uniformly distributed (which will be essentially our case later),
then delta coding methods can be applied (see, e.g., Section 2.3 of Vaidya et al. (2022)). Alternatively,
we can send these indices without any additional encoding using d · p · ⌈log d⌉ bits (i.e., ⌈log d⌉ bits
per transmitted index) or transmit a bit-vector with an indicator for each value whether it is exact or
quantized. Empirically, sending the indices using ⌈log d⌉ bits each without encoding is most useful,
as p · log d≪ 1 in our settings, resulting in fast processing time and small bandwidth overhead.

In Appendix C, we prove that BSQ admits a worst-case NMSE of 1
n·p·(2b−1)2

when using b bits
per quantized value. In particular, when p and b are constants, we get an NMSE of O(1/n) with
encoding and decoding times of O(d) and O(n · d), respectively.

However, the linear dependence on p means that the hidden constant in the O(1/n) NMSE is often
impractical. For example, if p = 2−5 and b = 1, we need three bits per value on average: two for
sending the exact values and their indices (assuming values are single precision floats and indices are
32-bit integers) and another for stochastically quantizing the remaining values using 1-bit stochastic
quantization. In turn, we get an NMSE bound of 1

n·2−5·(21−1)2
= 32/n.

In the following, we show that combining BSQ with our chosen random rotation preprocessing allows
us to get an O(1/n) NMSE with a much lower constant for small values of p. For example, a basic
version of QUIC-FL with p = 2−9 and b = 1 can reach an NMSE of 8.58/n, a 3.72× improvement
despite using 2.66× less bandwidth (i.e., 1.125 bits per value instead of 3).

3.3 DISTRIBUTION-AWARE UNBIASED QUANTIZATION

The first step towards our goal involves randomly rotating and scaling an input vector and then
using BSQ to send values (rotated and scaled coordinates) outside the range [−tp, tp] exactly. The
values in the range [−tp, tp] are sent using stochastic quantization, which ensures unbiasedness
for any choice of quantization-values that cover that range. Now we seek quantization-values
that minimize the estimation variance and thereby the NMSE . We take advantage of the fact
that, after randomly rotating a vector x ∈ Rd and scaling it by

√
d/ ∥x∥2, the rotated and scaled

coordinates approach the distribution of independent normal random variables N (0, 1) as d in-
creases Vargaftik et al. (2021; 2022). We thus choose to optimize the quantization-values for the
normal distribution and later show that it yields a near-optimal quantization for the actual rotated
coordinates (see Appendix D for further discussion). That is, since we know both the distribution of
the coordinates after the random rotation and scaling and we know the range of the values we are
stochastically quantizing, we can design an unbiased quantization scheme that is optimized for this
specific distribution rather than using, e.g., the standard approach of uniformly sized intervals.

Formally, for b bits per quantized value and a BSQ parameter p, we find the set of quantization-values
Qb,p that minimizes the estimation variance of the random variable Z | Z ∈ [−tp, tp] where Z ∼
N (0, 1), after stochastically quantizing it to a value in Qb,p (i.e., the quantization is unbiased). Then,
we show how to use this precomputed set of quantization-values Qb,p on any preprocessed vector.

Consider parameters p and b and let Xb =
{
0, . . . , 2b−1

}
. Then, for a message x ∈ Xb, we denote

by S(z, x) the probability that the sender quantizes a value z ∈ [−tp, tp] to R(x), the value that the
receiver associates with x. With these notations at hand, we solve the following optimization problem
to find the setQb,p that minimizes the estimation variance (we are omitting the constant factor 1/

√
2π

in the normal distribution’s pdf from the minimization as it does not affect the solution):

minimize
S,R

∫ tp

−tp

∑
x∈Xb

S(z, x) · (z −R(x))
2 · e−z2

2 dz subject to

(Unbiasedness)
∑
x∈Xb

S(z, x) ·R(x) = z ∀ z ∈ [−tp, tp]

(Probability)
∑
x∈Xb

S(z, x) = 1 ∀ z ∈ [−tp, tp] , S(z, x) ≥ 0 ∀ z ∈ [−tp, tp], x ∈ Xb

.

Observe that Qb,p = {R(x) | x ∈ Xb} is the set of quantization-values that we are seeking. We note
that the problem is known to be non-convex for any b ≥ 2 (Faghri et al., 2020, Appendix B).
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While there exist solutions to this problem excluding the unbiasedness constraint (e.g., the Lloyd-Max
Scalar Quantizer Lloyd (1982); Max (1960)), we are unaware of existing methods for solving the
above problem analytically. Instead, we propose a discrete relaxation, allowing us to approach the
problem with a solver.2 To that end, we discretize the problem by approximating the truncated normal
distribution using a finite set of m quantiles. Denote Im = {0, . . . ,m− 1} and let Z ∼ N (0, 1).
Then, Ap,m = {Ap,m(i) | i ∈ Im}, where the quantile Ap,m(i) satisfies

Pr [Z ≤ Ap,m(i) | Z ∈ [−tp, tp]] = i
m−1 .

We find it convenient to denote S′(i, x) = S(Ap,m(i), x). Accordingly, the discretized unbiased
quantization problem is defined as (we omit the 1/m constant as it does not affect the solution):

minimize
S′,R

∑
i∈Im,x∈Xb

S′(i, x) · (Ap,m(i)−R(x))
2 subject to

(Unbiasedness)
∑
x∈Xb

S′(i, x) ·R(x) = Ap,m(i) ∀ i ∈ Im

(Probability)
∑
x∈Xb

S′(i, x) = 1 ∀ i ∈ Im , S′(i, x) ≥ 0 ∀ i ∈ Im, x ∈ Xb

The solution to this optimization problem yields the set of quantization-values Qb,p =
{R(x) | x ∈ Xb} we are seeking. A value z ∈ [−tp, tp] (not just the quantiles) is then stochas-
tically quantized to one of the two nearest values in Qb,p. Such quantization is optimal for a fixed set
of quantization-values, so we do not need S at this point.

Unlike in vanilla BSQ (Section 3.2), in QUIC-FL, as implied by the optimization problem, the
number of values that fall outside the range [−tp, tp] may slightly deviate from d · p (and our
guarantees are unaffected by this). This is because we precompute the optimal quantization-values
set Qb,p for a given b and p and set tp according to the N (0, 1) distribution. In turn, this allows
the clients to use Qb,p when encoding rather than compute tp and then Qb,p for each preprocessed
vector separately. This results in a near-optimal quantization for the actual rotated and scaled
coordinates, in the sense that: (1) for large d values, the distribution of the rotated and scaled
coordinates converges to that of independent normal random variables; (2) for large m values,
the discrete problem converges to the continuous one.

3.4 PUTTING IT ALL TOGETHER

The pseudo-code of QUIC-FL appears in Algorithm 1. As mentioned, we use the uniform random
rotation as a preprocessing stage done by the clients. Crucially, similarly to Suresh et al. (2017), and
unlike in Vargaftik et al. (2021; 2022), all clients use the same rotation, which is a key ingredient in
achieving fast decoding complexity.

To compute this rotation (and its inverse by the server), the parties rely on global shared randomness as
mentioned in Section 2. In practice, having shared randomness only requires the round’s participants
and the server to agree on a pseudo-random number generator seed, which is standard practice.

Clients. Each client c uses global shared randomness to compute its rotated vector T (xc). Impor-
tantly, all clients use the same rotation. As discussed, for large dimensions, the distribution of each
entry in the rotated vector converges to N (0, ∥xc∥22 /d). Thus, c normalizes it by

√
d/ ∥xc∥2 so the

values of Zc are approximately distributed asN (0, 1) (line 1). (Note that we do not assume the values
are actually normally distributed; this is not required for our algorithm or our analysis.) Next, the
client divides the preprocessed vector into large and small values (lines 2-4). The small values (i.e.,
whose absolute value is smaller than tp) are stochastically quantized (i.e., in an unbiased manner) to
values in the precomputed setQb,p. We implementQb,p as an array whereQb,p[x] stands for the x’th
quantization-value; this allows us to transmit just the quantization-value indices over the network (line
5). Finally, each client sends to the server the vector’s norm ∥xc∥2, the indices Xc of the quantization-
values of V c (i.e., the small values), and the exact large values with their indices in Zc (line 6).

Server. For each client c, the server uses Xc to look up the quantization-values V̂ c of the small
coordinates (line 8) and constructs the estimated scaled rotated vector Ẑc using V̂ c and the accurate

2We use the Gekko Beal et al. (2018) software package that provides a Python wrapper to the APMoni-
tor Hedengren et al. (2014) environment, running the solvers IPOPT IPO and APOPT APO.
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Algorithm 1 QUIC-FL
Input: Bit budget b, BSQ parameter p, and their threshold tp and precomputed quantization-values Qb,p.

Client c:
1: Zc ←

√
d

∥xc∥2
· T (xc)

(
2: U c ←

{
Zc[i]

∣∣ ∣∣Zc[i]
∣∣ > tp

}
3: Ic ←

{
i
∣∣ ∣∣Zc[i]

∣∣ > tp
}

4: V c ←
{
Zc[i]

∣∣ ∣∣Zc[i]
∣∣ ≤ tp

}
5: Xc ← Stochastically quantize V c usingQb,p

6: Send
(
∥xc∥2 , U c, Ic, Xc

)
to server

Server:
7: For all c:

8: V̂ c ←
{
Qb,p[x] for x in Xc

}
9: Ẑc ←Merge V̂ c and

(
U c, Ic

)
10: Ẑavg ← 1

n ·
∑n−1

c=0
∥xc∥2√

d
· Ẑc

11: x̂avg ← T−1
(
Ẑavg

)
information about the large coordinates U c and their indices Ic (line 9). Then, the server computes
the estimate Ẑavg of the average rotated and scaled vector by averaging the reconstructed clients’
scaled and rotated vectors and multiplying the results by the inverse scaling factor ∥xc∥2√

d
(line 10).

Finally, the server performs a single inverse rotation using the global shared randomness to obtain the
estimate of the mean vector x̂avg (line 11).

In Appendix E, we formally establish the following error guarantee for QUIC-FL (i.e., Algorithm 1).

Theorem 3.1. Let Z ∼ N (0, 1) and let Ẑ be its estimation by our distribution-aware unbiased
quantization scheme. Then, for any number of clients n and any set of d-dimentional input vectors{
xc ∈ Rd | c ∈ {0, . . . , n− 1}

}
, we have that QUIC-FL’s NMSE respects

NMSE =
1

n
· E

[ (
Z−Ẑ

)2 ]
+O

( 1

n
·
√

log d

d

)
.

The theorem accounts for the cost of quantizing the actual rotated and scaled coordinates (which are
not independent and follow a shifted-beta distribution) instead of independent and truncated normal
variables. The difference manifests in the O(1/n ·

√
log d/d) = O(1/n) term; this quickly decays

with the dimension and number of clients.

As the theorem suggests, NMSE ≈ 1
n · E[(Z−Ẑ)2] for QUIC-FL in settings of interest. Moreover,

E
[(

Z−Ẑ
)2]

= E
[ (

Z−Ẑ
)2 ∣∣ Z ∈ [−tp, tp]

]
· Pr[Z ∈ [−tp, tp]]

+ E
[ (

Z−Ẑ
)2 ∣∣ Z ̸∈ [−tp, tp]

]
· Pr[Z ̸∈ [−tp, tp]] ,

where the first summand is exactly the quantization error of our distribution-aware unbiased BSQ,
and the second summand is 0 as such values are sent exactly. This means that for any b and
p, we can exactly compute E[(Z−Ẑ)2] given the solver’s output (i.e., the precomputed quantiza-
tion values). For example, it is ≈ 8.58 for b = 1 and p = 2−9. Another important corollary of The-
orem 3.1 is that the convergence speed with QUIC-FL matches the vanilla SGD since its estimates
are unbiased and with an O(1/n) NMSE (e.g., see Remark 5 in Karimireddy et al. (2019)).

3.5 OPTIMIZATIONS

We introduce two optimizations for QUIC-FL: we further reduce NMSE with client-specific shared
randomness and then accelerate the processing time via the randomized Hadamard transform.

QUIC-FL with client-specific shared randomness. Past works (e.g., Ben Basat et al. (2021); Chen
et al. (2020); Roberts (1962b)) on optimizing the quantization-bandwidth tradeoff show the benefit of
using shared randomness to reduce the quantization error. Here, we show how to leverage this (client-
specific) shared randomness to design near-optimal quantization of the rotated and scaled vector.

To that end, in Appendix F, we first extend our optimization problem to allow client-specific shared
randomness and then derive the related discretized problem. Importantly, we also discretize the
client-specific shared randomness where each client, for each rotated and quantized coordinate, uses
a shared random ℓ-bit value H ∼ U [Hl] whereHℓ =

{
0, . . . , 2ℓ − 1

}
.

The resulting optimization problem is given as follows (additions are highlighted in red):
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minimize
S′,R

∑
h∈Hℓ, i∈Im, x∈Xb

S′(h, i, x) · (Ap,m(i)−R(h, x))
2 subject to

(Unbiasedness)
1

2ℓ
·

∑
h∈Hℓ, x∈Xb

S′(h, i, x) ·R(h, x) = Ap,m(i) ∀ i ∈ Im

(Probability)
∑
x∈Xb

S′(h, i, x) = 1∀h ∈ Hℓ, i ∈ Im , S′(h, i, x) ≥ 0 ∀h ∈ Hℓ, i ∈ Im, x ∈ Xb

Here S′(h, i, x) = S(h,Ap,m(i), x) represents the probability that the sender sends the message
x ∈ Xb given the shared randomness value h for the input value Ap,m(i). Similarly, R(h, x) is
the value the receiver associates with the message x when the shared randomness is h. We explain
how to use R(h, x) to determine the appropriate message for the sender on a general input z, along
with further details, in Appendix F. We note that Theorem 3.1 trivially applies to QUIC-FL with
client-specific shared randomness as this only lowers the quantization’s expected squared error, i.e.,
E[(Z − Ẑ)

2
], and thus the resulting NMSE .

Here, we provide an example based on the solver’s solution for the case of using a single shared
random bit (i.e., H ∼ U [H1]), a single-bit message (b = 1), and p = 2−9 (tp ≈ 3.097); We can then
use the following algorithm, where X is the sent message and α = 0.7975, β = 5.397 are constants:

X =


1 if H = 0 and Z ≥ 0

0 if H = 1 and Z < 0

Bernoulli( 2Z
α+β

) If H = 1 and Z ≥ 0

1− Bernoulli(−2Z
α+β

) If H = 0 and Z < 0

Ẑ =


−β if H = X = 0

−α if H = 1 and X = 0

α If H = 0 and X = 1

β If H = X = 1

.

For example, consider Z = 1, and recall that H = 0 w.p. 1/2 and H = 1 otherwise. Then:

• If H = 0, we have X = 1 and thus Ẑ = α.
• If H = 1, then X = 1 w.p. 2

α+β and we get Ẑ = β. Otherwise (if X = 0), we get Ẑ = −α.

Indeed, we have that the estimate is unbiased since:

E[Ẑ | Z = 1] = 1
2
· α+ 1

2
·
(

2
α+β
· β + α+β−2

α+β
· (−α)

)
= 1.

We next calculate the expected squared error (by symmetry, we integrate over positive z):

E
[
(Z − Ẑ)2

]
=

√
2
π

(∫ tp
0

1
2
·
(
(z − α)2 + 2z

α+β
· (z − β)2 + α+β−2z

α+β
· (z + α)2

)
· e−z2/2dz

)
≈ 3.29.

Observe that it is significantly lower than the 8.58 quantization error obtained without shared random-
ness. As we illustrate (Figure 2), the error further decreases when using more shared random bits.

Accelerating QUIC-FL with RHT. Similarly to previous algorithms that use random rotations
as a preprocessing state (e.g., Suresh et al. (2017); Vargaftik et al. (2021; 2022)) we propose to use
the Randomized Hadamard Transform (RHT) Ailon & Chazelle (2009) instead of uniform random
rotations. Although RHT does not induce a uniform distribution on the sphere, it is considerably
more efficient to compute, and, under mild assumptions, the resulting distribution is close to that of a
uniform random rotation Vargaftik et al. (2021). Nevertheless, we are interested in establishing how
using RHT instead of a uniform random rotation affects the formal guarantees of QUIC-FL.

As shown in Appendix G, QUIC-FL with RHT remains unbiased and has the same asymptotic guar-
antee as with random rotations, albeit with a larger constant (constant factor increases in the fraction
of exactly sent values and NMSE ). See also Appendix D for further discussion and references.

We note that these guarantees are still stronger than those of DRIVE Vargaftik et al. (2021) and
EDEN Vargaftik et al. (2022), which only prove RHT bounds for vectors whose coordinates are
sampled i.i.d. from a distribution with finite moments, and are not applicable to adversarial vectors.

For example, when p = 2−9 and we use ℓ = 4 shared random bits per quantized coordi-
nate, our analysis shows that the NMSE for b = 1, 2, 3, 4 is bounded by 4.831/n, 0.692/n,
0.131/n, 0.0272/n, accordingly, and that the expected number of coordinates outside [−tp, tp]
is bounded by 3.2 · p · d ≈ 0.006 · d. We note that this result does not have the O

(
1/n ·

√
log d/d

)
7
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Figure 2: The NMSE of QUIC-FL (with n = 256 clients) as a function of the bit budget b, fraction
p, and shared random bits ℓ. In the leftmost figure, p = 2−9, while the other two use b = 4.
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Figure 3: Comparison to alternatives with n clients that have the same LogNormal(0, 1) input vector.
The default values are n = 256 clients, b = 4 bit budget, and d = 220 dimensions.

additive NMSE term. The reason is that we directly analyze the error for the Hadamard-rotated
coordinates (whereas Theorem 3.1 relies on analyzing the error in quantizing normal variables and
factoring in the difference in distributions). In particular, we get that for p = 2−9, b ∈ {1, 2, 3},
running QUIC-FL with Hadamard and (b+ 1 + 2.2 · p) ≈ b+ 1.0043 bits per coordinate has lower
NMSE than b-bits QUIC-FL with uniform random rotation. That is, one can compensate for the
increased error caused by using RHT by adding one bit per coordinate. In practice, as shown in the
evaluation, the actual performance is (as one might expect) actually close to the theoretical results for
uniform random rotations; improving the bounds is left as future work.

Finally, Table 1 summarizes the theoretical guarantees of QUIC-FL in comparison to state-of-the-art
DME techniques. The encoding complexity of QUIC-FL is dominated by RHT and is done in
O(d · log d) time. The decoding of QUIC-FL only requires the addition of all estimated rotated
clients’ vectors and a single inverse RHT transform resulting in O(n · d + d · log d) time. As
mentioned, the NMSE with RHT remains O(1/n). Observe that QUIC-FL has an asymptotic speed
improvement either at the clients or the server among the techniques that achieve O(1/n) NMSE .

A lower bound on the continuous problem. QUIC-FL obtains a solution for the above problem via
the discretization of the distribution and shared randomness. To obtain a lower bound on the vNMSE
of the continuous problem, we can use the Lloyd-Max quantizer, which finds the optimal biased
quantization for a given distribution. In particular, we get that the optimal (non-discrete) vNMSE is
at least 0.35, 0.11, 0.031, 0.0082 for b = 1, 2, 3, 4, accordingly, Compared to unbiased QUIC-FL’s
vNMSE of 1.52, 0.223, 0.044, 0.0098. Note that as b grows, QUIC-FL’s vNMSE quickly approaches
the Lloyd-Max lower bound for biased quantization.

4 EVALUATION

In this section, we evaluate the fully-fledged version of QUIC-FL that leverages RHT and client-
specific shared randomness, as given in Appendix F and Algorithm 3.

Parameter selection. We experiment with how the different parameters (number of quantiles m,
the fraction of coordinates sent exactly p, the number of shared random bits ℓ, etc.) affect the
performance of our algorithm. As shown in Figure 2, introducing shared randomness significantly
decreases the NMSE compared with Algorithm 1 (i.e., ℓ = 0). We note that these results are
essentially independent of the input data (because of the RHT). Additionally, the benefit from adding
each additional shared random bit diminishes, and the gain beyond ℓ = 4 is negligible, especially for
large b. Accordingly, we hereafter use ℓ = 6 for b = 1, ℓ = 5 for b = 2, and ℓ = 4 for b ∈ {3, 4}.
With respect to p, we determined 1/512 as a good balance between the NMSE and bandwidth
overhead for accurately sent values and their indices.

Comparison to state-of-the-art DME techniques. Next, we compare the performance of QUIC-FL
to the baseline algorithms in terms of NMSE , encoding speed, and decoding speed, using an NVIDIA
3080 RTX GPU machine with 32GB RAM and i7-10700K CPU @ 3.80GHz. Specifically, we
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compare with inputs where each coordinate is independently LogNormal(0, 1) Chmiel et al. (2020).
Hadamard Suresh et al. (2017), Kashin’s representation Caldas et al. (2018); Safaryan et al. (2020),
QSGD Alistarh et al. (2017), and EDEN Vargaftik et al. (2022). We evaluate two variants of Kashin’s
representation: (1) The TensorFlow (TF) implementation Google that, by default, limits the decompo-
sition to three iterations, and (2) the theoretical algorithm that requires O(log(n · d)) iterations. For
this experiment, the coordinates are As shown in Figure 3, QUIC-FL has significantly faster decoding
than EDEN (as previously conveyed in Figure 1), the only alternative with competitive NMSE .

QUIC-FL is also significantly more accurate than all other approaches. We observe that the default TF
configuration of Kashin’s representation suffers from a bias, and therefore its NMSE is not O(1/n).
In contrast, the theoretical algorithm is unbiased but has an asymptotically slower encoding time.
We observed similar trends for different n, b, and d values. We consider the algorithms’ bandwidth
over all coordinates (i.e., with b+ 64

512 bits for QUIC-FL, namely a float and a 32-bit index for each
accurately sent entry). We evaluate the algorithms on additional input distributions and report similar
results in Appendix H. Overall, the empirical measurements fall in line with the bounds in Table 1.
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Figure 4: FedAvg over the Shakespeare next-word prediction task at various bit budgets (rows). We
report training accuracy per round with a rolling mean of 200 rounds.

Federated Learning Experiments. We evaluate QUIC-FL over the Shakespeare next-word predic-
tion task Shakespeare; McMahan et al. (2017) using an LSTM recurrent model. It was first suggested
in McMahan et al. (2017) to naturally simulate a realistic heterogeneous federated learning setting.
We run FedAvg McMahan et al. (2017) with the Adam server optimizer Kingma & Ba (2015) and
sample n = 10 clients per round. We use the setup from the federated learning benchmark of Reddi
et al. (2021), restated for convenience in Appendix I. Figure 4 shows how QUIC-FL is competitive
with the asymptotically slower EDEN and markedly more accurate than other alternatives.

Due to space limits, experiments for image classification (Appendix J.1), a framework that uses DME
as a building block (Appendix J.2), and power iteration (Appendix J.3), appear in the appendix.

5 RELATED WORKS

In Section 1, we gave an extensive overview of most related works, namely, other DME methods.
In Appendix B, we give a broader overview of other compression and acceleration techniques,
including frameworks that use DME as a building block; bounded support quantization alternatives;
distribution-aware quantization; Entropy encoding techniques; methods that use client-side memory;
error feedback solutions; opportunities in aggregating things other than gradients (such as gradient
differences); in-network aggregation; sparsification approaches; shared randomness applications; non-
uniform quantization; improvements by leveraging gradient correlations; and privacy concerns.

6 LIMITATIONS

We view the main limitation of QUIC-FL as its inability to leverage structure in the gradient (e.g., cor-
relations across coordinates). While some structure (e.g., sparsity) is extractable (e.g., by encoding just
the non-zero coordinates and separately encoding the coordinate positions that are zero), other types
of structure may be ruined by applying RHT. For example, if all the coordinates are ±1, it is possible
to send the gradient exactly using one bit per coordinate, while QUIC-FL would have a small error.
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A ON EDEN AND DRIVE WITH RHT

EDEN Vargaftik et al. (2022) and DRIVE Vargaftik et al. (2021) are only proven to be unbiased when
using uniform random rotation (which takes Θ(d3) time). When using RHT, its quantization is biased
and (if gradients are similar to each other) can have an NMSE that does not decay as a function
of n. For example, consider DRIVE (or EDEN with b = 1), i.e., using the centroids ±1/

√
2 and

the input (1, 0.99, 0, 0, . . . , 0). Both algorithms with RHT will estimate the vector as (1, 0, 0, . . . , 0)
since sign(HDx) is only determined by D[0] and transformed coordinates are quantized to 1/

√
2

if their sign is positive or −1/
√
2 otherwise. This means that the quantization is biased and that if all

clients hold the above vector the NMSE would be O(1) and not O(1/n).

B EXTENDED RELATED WORK

This paper focused on the Distributed Mean Estimation (DME) problem where clients send lossily
compressed vectors to a centralized server for averaging. While this problem is worthy of study
on its own merits, we are particularly interested in applications to federated learning, where there
are many variations and practical considerations, which have led to many alternative compression
methods to be considered.

We note that in essence, QUIC-FL is a compression scheme. However, unlike previous DME
approaches such as Suresh et al. (2017); Vargaftik et al. (2021; 2022), it brings benefits only in a
distributed setting with multiple clients, distinguishing it from standard vector quantization methods.

Frameworks that use DME as a building block. In addition to EF21 Richtárik et al. (2021)
and MARINA Gorbunov et al. (2021); Szlendak et al. (2022) which are discussed in detail
below, there are additional frameworks that leverage DME as a building block. For exam-
ple, EF-BV Condat et al. (2022b), Qsparse-local-SGD Basu et al. (2019), 3PC Richtárik et al.
(2022), CompressedScaffnew Condat et al. (2022a), MURANA Condat & Richtárik (2022),
and DIANA Horváth et al. (2023) accelerate the convergence of non-convex learning tasks via
variance reduction, control variates, and compression. These approaches are orthogonal and
can benefit from better DME techniques such as QUIC-FL.

Bounded support quantization. Previous works on compression in federated learning observed
considered bounding the range of the updates. They suggest ad-hoc mitigations, such as clipping
Zhang et al. (2020); Wen et al. (2017); Zhang et al. (2022); Charles et al. (2021), preconditioning
Suresh et al. (2017); Caldas et al. (2018), and bucketing Alistarh et al. (2017). On the other hand,
methods such as Top-k Stich et al. (2018a); Sinha et al. (2020) demonstrate that considering the
largest coordinates is advantageous. Horváth & Richtarik (2021) provides convergence guarantees
from combining biased and unbiased compressed estimators. BSQ similarly tries to benefit by sending
the largest transformed coordinates exactly while sending the rest via unbiased compression.

We note that BSQ is also related to the threshold-v algorithm Dutta et al. (2020) (for some v > 0) that
sends accurately all the coordinates instead of [−v, v]. Namely, if we pick v = tp such that no more
than p-fraction of the coordinates can fall outside [−tp, tp], the algorithms coincide. There are some
notable differences: first, we analyze the theoretical vNMSE of BSQ and show that it asymptotically
improves the worst-case compared to without BSQ. Second, we use it in conjunction with RHT to
obtain a bounded support distribution that we can optimize the quantization for using our solver.

Distribution-aware quantization. Quantization over a distribution, and over a Gaussian source in
particular, has been studied for almost a century (for a comprehensive overview, we refer to Gray &
Neuhoff (1998)). Nevertheless, to our knowledge, such research has not focused on the unbiasedness
constraint. The only comparable methods that we are aware of are based on stochastic quantization and
introduce an error that increases with the vector’s dimension. There are additional unbiased methods
that use shared randomness (e.g., Roberts (1962a); Ben Basat et al. (2021)), but again, we are unaware
of any work that directly optimizes quantization for a distribution with an unbiasedness constraint. As
previously mentioned, perhaps the closest to our approach is the Lloyd-Max Scalar Quantizer Lloyd
(1982); Max (1960), which optimizes the mean squared error without unbiasedness constraints.
Interestingly, there are many generalizations to Lloyd-Max, such as vector quantization Linde et al.
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(1980) methods and lattice quantization Gersho (1979). In future work, we plan to investigate these
approaches and extend our distribution-aware unbiasedness quantization framework accordingly.

Entropy encoding. When the encoding and decoding time is less important, some previous ap-
proaches have suggested using an entropy encoding such as Huffman or arithmetic encoding to
improve the accuracy (e.g., Alistarh et al. (2017); Suresh et al. (2017); Vargaftik et al. (2022); Dorf-
man et al. (2023)). Intuitively, such encodings allow us to losslessly compress the lossily compressed
vector to reduce its representation size, thereby allowing less aggressive quantization. However, we
are unaware of available GPU-friendly entropy encoding implementation and thus such methods
incur a significant time overhead.

Client-side memory. Critically, for the basic DME problem, the assumption is that this is a one-shot
process where the goal is to optimize the accuracy without relying on client-side memory. This
model naturally fits cross-device federated learning, where different clients are sampled in each
round. We focused on unbiased compression, which is standard in prior works Suresh et al. (2017);
Konečnỳ & Richtárik (2018); Vargaftik et al. (2021); Davies et al. (2021); Mitchell et al. (2022).
However, if the compression error is low enough, and under some assumptions, SGD can be proven
to converge even with biased compression Beznosikov et al. (2020).

Error feedback. In other settings, such as distributed learning or cross-silo federated learning,
we may assume that clients are persistent and have a memory that keeps state between rounds. A
prominent option to leverage such a state is to use Error Feedback (EF). In EF, clients can track the
compression error and add it to the vector computed in the consecutive round. This scheme is often
shown to recover the model’s convergence rate and resulting accuracy Seide et al. (2014); Alistarh
et al. (2018); Richtárik et al. (2021); Karimireddy et al. (2019) and enables biased compressors such
as Top-k Stich et al. (2018a) and SignSGD Bernstein et al. (2018). We compare with the state of the
art technique, EF21 Richtárik et al. (2021), in addition to showing how it can be used in conjunction
with QUIC-FL to facilitate further improvement in Appendix J.

Gradient differences. An orthogonal proposal that works with persistent clients, which is also
applicable with QUIC-FL, is to encode the difference between the current vector and the previous one
instead of directly compressing the vector Mishchenko et al. (2019); Gorbunov et al. (2021). Broadly
speaking, this allows a compression error proportional to the L2 norm of the difference and not the
vector and can decrease the error if consecutive vectors are similar to each other.

In-network aggregation. When running distributed learning in cluster settings, recent works show
how in-network aggregation can accelerate the learning process Sapio et al. (2021); Lao et al. (2021);
Segal et al. (2021); Li et al. (2023). IntSGD Mishchenko et al. (2022) is another compression scheme
that allows one to aggregate the compressed integer vectors in the network. However, their solution
may require sending 14 bits per coordinate while we consider 1−5 bits per coordinate in QUIC-FL. In-
tuitively, switches are designed to move data at high speeds, and recent advances in switch programma-
bility enable them to easily perform simple aggregation operations like summation while processing
the data. Extending QUIC-FL to allow efficient in-network aggregation is left as future work.

Sparsification. Another line of work focuses on sparsifying the vectors before compressing
them Konečný et al. (2017); Aji & Heafield (2017); Konečnỳ & Richtárik (2018); Wangni et al.
(2018); Stich et al. (2018b); Fei et al. (2021); Vargaftik et al. (2022). Intuitively, in some learning
settings, many of the coordinates are small, and we can improve the accuracy to bandwidth tradeoff
by removing all small coordinates prior to compression. Another form of sparsification is random
sampling, which allows us to avoid sending the coordinate indices Konečný et al. (2017); Vargaftik
et al. (2022). We note that combining such approaches with QUIC-FL is straightforward, as we can
use QUIC-FL to compress just the non-zero entries of the sparsified vectors.

Deep gradient compression. By combining techniques like warm-up training, vector clipping,
momentum factor masking, momentum correction, and deep vector compression, Lin et al. (2018)
reports savings of two orders of magnitude in the bandwidth required for distributed learning.
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Shared randomness. As shown in Ben Basat et al. (2021), shared randomness can reduce the worst-
case error of quantizing a single [0, 1] value both in biased and unbiased settings. However, applying
this approach directly to the vector’s entries results in O(d/n) NMSE for any b = O(1). Another
promising orthogonal approach is to leverage shared randomness to push the clients’ compression to
yield errors in opposite directions, thus making them cancel out and lowering the overall NMSE Suresh
et al. (2022); Szlendak et al. (2022).

Non-uniform quantization. The QUIC-FL algorithm, based on the output of the solver (see
§3), uses non-uniform quantization, i.e., has quantization levels that are not uniformly spaced.
Indeed, recent works observed that non-uniform quantization improves the estimation accuracy and
accelerates the learning convergence Ramezani-Kebrya et al. (2019); Faghri et al. (2020).

Our algorithm significantly improves the worst-case error bound obtained by NUQSGD Ramezani-
Kebrya et al. (2019), ALQ Faghri et al. (2020), and AMQ Faghri et al. (2020). Namely (see (Faghri
et al., 2020, Section 1) and (Ramezani-Kebrya et al., 2019, Theorem 4)), for the parameter range b =
O(1) that we consider in this paper, the vNMSE of NUQSGD, ALQ, and AMQ is O(

√
d) while QUIC-

FL’s is O(1). Indeed, these works showed the benefit of choosing non-uniform quantization levels
and improved the O(d) vNMSE of QSGD. Further, their vNMSEs match the Ω(

√
d) lower bound

for non-uniform stochastic quantization that applies to algorithms that select the quantization levels
directly for the input vector. However, this lower bound does not apply when using preprocessing (e.g.,
RHT), bounding the support (e.g., BSQ), or utilizing shared randomness, which are the techniques
that allowed us to drive the vNMSE to a small constant that is independent of d.

Correlations. Some techniques further reduce the error by leveraging potential correlations between
coordinates Mitchell et al. (2022) or client vectors Davies et al. (2021); it is unclear how to combine
these with QUIC-FL and we leave this for future work.

Privacy concerns Several works optimize the communication-accuracy tradeoff while also con-
sidering the privacy of clients’ data. For example the authors of Chen et al. (2020) optimize the
triple communication-accuracy-privacy tradeoff, while Gandikota et al. (2021) addresses the harder
problem of compressing the gradients while maintaining differential privacy. Their results can be
split into two groups: (1) algorithms that require O(log d) bits per coordinate to reach the O(1/n)
NMSE, and (2) an algorithm that needs Oϵ(1) bits per coordinate (which hides functions of ϵ) to
reach an NMSE of 1

n·(1−ϵ) . In particular, the vNMSE of this approach is always larger than that of
QUIC-FL, even for b = 1.

Spherical compression. Spherical compression (SC) Albasyoni et al. (2020) is a highly accurate
biased quantization method that draws random points on a unit sphere until one is ϵ-close to the
vector’s direction; it then sends just the number of points needed and the server uses the same pseudo-
random number generator seed to compute the estimate. The algorithm runs in time O(d/p), where
p is the probability that a sampled point is ϵ-close to the input and satisfies p = 1

2 F(d−1)/2, 1/2(α),
where F is the CDF of the Beta distribution and α is desired the vNMSE bound. Evaluating this
expression shows that is excessively large when d is not very small. For example, for d = 100, they
would require over 1033 samples on average (while we consider d in the millions). More generally,
1/p ≥ (1/α)d/2, thus the encoding and decoding complexities are exponential. This is implied by
the lower bound of Safaryan et al. (2020). Finally, we note that QUIC-FL is unbiased while the SC
algorithm is biased (and thus, its NMSE does not decrease linearly in n).

Sparse dithering. Sparse dithering is a compression method that is shown to be near-optimal in the
sense that it requires at most constant factor more bandwidth than the lower bound for the same error
rate. We compare with it in Appendix J.4.

Natural compression Natural Compression and Dithering Horvóth et al. (2022) are schemes
optimized for processing speed by taking into consideration the representation of floating point values
when designing the compression. However, In order to get constant vNMSE , they seem to require
O(d log d) bits compared with O(d) bits in QUIC-FL and their vNMSE is lower bounded by 1/8,
while QUIC-FL achieves a vNMSE of ≈ 0.0444,≈ 0.00982 with 3 and 4 bits per coordinate.
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We refer the reader to Konečný et al. (2017); Kairouz et al. (2019); Xu et al. (2020); Wang et al.
(2021) for an extensive review of the current state of the art and challenges.

C ANALYSIS OF THE BOUNDED SUPPORT QUANTIZATION TECHNIQUE

In this appendix, we analyze the Bounded Support Quantization (BSQ) approach that sends all
coordinates outside a range [−tp, tp] exactly and performs a standard (i.e., uniform) stochastic
quantization for the rest.

Let p ∈ (0, 1) and denote tp =
∥x∥2√
d·p ; notice that there can be at most d · p coordinates outside

[−tp, tp]. Using b bits, we split this range into 2b − 1 intervals of size 2tp
2b−1

, meaning that each

coordinate’s expected squared error is at most
(

2tp
2b−1

)2
/4. The MSE of the algorithm is therefore

bounded by

E
[∥∥∥x− x̂

∥∥∥2
2

]
= d ·

(
2tp

2b − 1

)2

/4 =
∥x∥22

p · (2b − 1)
2 .

This gives the result

vNMSE ≤ 1

p · (2b − 1)
2 .

Thus, as clients use independent randomness for the quantization, we have that

NMSE ≤ 1

n · p · (2b − 1)
2 .

Let r be the representation length of each coordinate in the input vector (e.g., r = 32 for single-
precision floats) and i be the number of bits that represent a coordinate’s index (e.g., i = 32, assuming
log d ≤ 32). Then, we get that BSQ sends a message with less than p · (r+ i) + b bits per coordinate.
Further, this method has O(d) time for encoding and decoding and is GPU-friendly.

As mentioned in Section 3.2, it is possible to encode the indices of the exactly sent coordinates using
only log

(
d
d·p
)

bits at the cost of additional complexity. Also, it is possible to send a bit vector to
indicate whether each coordinate is exactly sent or quantized and obtain a message with fewer than
p · r + b+ 1 bits.

However, empirically we find the method of transmitting the indices without encoding most useful as
p · log d≪ 1 in our settings, resulting in fast processing time and small bandwidth overhead.

D ON THE DISTRIBUTION OF ROTATED VECTORS

While our framework does not depend on any particular distribution of the input vectors, as we have
noted we can apply pre-processing by applying a random rotation so that each coordinate is provably
approximately normally distributed, and design once a near-optimal table for that case.

We further emphasize that the results obtained in this paper (Theorem G.3 and Theorem G.2) hold
when using RHT and for any input vector as well when using the same near-optimal tables designed
for the uniform rotation (as they consider the actual resulting distribution).

We discuss here the relevant theory of random rotations and RHT that form the basis for these results.

As analyzed by (Vargaftik et al., 2021, Appendix A.4), after a uniform random rotation, the coordinates
follow a “shifted Beta” distribution, namely, if Y ∼ Beta( 12 ,

d−1
2 ), then the distribution of each

coordinate is identical to that of: Y+1
2 . Next, it is known that this distribution quickly approaches

that of a normal distribution when d grows. Namely, if Xn ∼ Beta(αn, βn) then
√
n
(
Xn − α

α+β

)
converges to a normal random variable with mean 0 and variance αβ

(α+β)3 as n increases.

With RHT, the resulting distribution slightly differs from the above. However, as proved in (Vargaftik
et al., 2021, Section 6.2), it remains very similar under reasonable assumptions about the distribution
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of the input vector, with the first five moments (and all odd ones) matching that of a normal
distribution.

Again, the RHT-related results of Theorem G.3 and Theorem G.2 do not rely on this analysis of the
transformed coordinate distribution.

E QUIC-FL’S NMSE PROOF

In this appendix, we analyze the vNMSE and then theNMSE of our algorithm.

Let χ = E[(Z − Ẑ)2] denote the error of the quantization of a normal random variable Z ∼ N (0, 1).
Our analysis is general and covers QUIC-FL, but is also applicable to any unbiased quantization
method that is used following a uniform random rotation preprocessing.

Essentially, we show that QUIC-FL’s vNMSE is χ plus a small additional additive error term (arising
because the rotation does not yield exactly normally distributed and independent coordinates) that
quickly tends to 0 as the dimension increases.
Lemma E.1. For QUIC-FL, it holds that:

vNMSE ≤ χ+O

(√
log d

d

)
.

Proof. The proof follows similar lines to that of Vargaftik et al. (2021; 2022). However, here the
vNMSE expression is different and is somewhat simpler as it takes advantage of our unbiased
quantization technique.

A rotation preserves a vector’s euclidean norm. Thus, according to Algorithms 1 and 3 it holds that∥∥∥x− x̂
∥∥∥2
2
=
∥∥∥T (x− x̂

)∥∥∥2
2
=
∥∥∥T (x)− T

(
x̂
)∥∥∥2

2
=∥∥∥∥∥x∥2√d · Z − ∥x∥2√d · Ẑ

∥∥∥∥2
2

=
∥x∥22
d
·
∥∥∥Z − Ẑ

∥∥∥2
2
.

(1)

Taking expectation and dividing by ∥x∥22 yields

vNMSE ≜ E


∥∥∥x− x̂

∥∥∥2
2

∥x∥22

 =
1

d
· E
[∥∥∥Z − Ẑ

∥∥∥2
2

]

=
1

d
· E
[
d−1∑
i=0

(
Z[i]− Ẑ[i]

)2]
=

1

d
·
d−1∑
i=0

E
[(

Z[i]− Ẑ[i]
)2]

.

(2)

Let Z̃ be a vector of d independent N (0, 1) random variables. Then the distribution of each

transformed and scaled coordinate Z[i] is given by Z[i] ∼
√
d · Z̃[i]∥∥∥Z̃∥∥∥

2

(e.g., see Vargaftik et al.

(2021); Muller (1959)).

This means that all coordinates of Z follow the same distribution, and thus all coordinates of Ẑ follow
the same (different) distribution. Thus, without loss of generality, we obtain

vNMSE ≜ E


∥∥∥x− x̂

∥∥∥2
2

∥x∥22

 = E
[(

Z[0]− Ẑ[0]
)2]

= E


 √

d∥∥∥Z̃∥∥∥
2

· Z̃[0]− Ẑ[0]


2 . (3)

For some 0 < α < 1
2 , denote the event

E =

{
d · (1− α) ≤

∥∥∥Z̃∥∥∥2
2
≤ d · (1 + α)

}
.

20



Under review as a conference paper at ICLR 2024

Let E c be the complementary event of E . By Lemma D.2 in Vargaftik et al. (2022) it holds that
Pr[E c] ≤ 2 · e−α2

8 ·d . Also, by the law of total expectation

E


 √

d∥∥∥Z̃∥∥∥
2

· Z̃[0]− Ẑ[0]


2 ≤

E


 √

d∥∥∥Z̃∥∥∥
2

· Z̃[0]− Ẑ[0]


2 ∣∣∣∣∣E

 · Pr[E ] + E


 √

d∥∥∥Z̃∥∥∥
2

· Z̃[0]− Ẑ[0]


2 ∣∣∣∣∣E c

 · Pr[E c] ≤

E


 √

d∥∥∥Z̃∥∥∥
2

· Z̃[0]− Ẑ[0]


2 ∣∣∣∣∣E

 · Pr[E ] +M · Pr[E c] ,

(4)

where M = (vNMSEmax)
2 and vNMSEmax is the maximal value that the server can reconstruct

(i.e., max(Qb,p) in Algorithm 1 or max(R) in Algorithm 3) which is a constant that is independent
of the vector’s dimension. Next,

E


 √

d∥∥∥Z̃∥∥∥
2

· Z̃[0]− Ẑ[0]


2 ∣∣∣∣∣E

 = E


(Z̃[0]− Ẑ[0]

)
+

 √
d∥∥∥Z̃∥∥∥
2

− 1

 · Z̃[0]


2 ∣∣∣∣∣E

 =

E

[(
Z̃[0]− Ẑ[0]

)2 ∣∣∣∣∣E
]
+ 2 · E

(Z̃[0]− Ẑ[0]
)
·

 √
d∥∥∥Z̃∥∥∥
2

− 1

 · Z̃[0]

∣∣∣∣∣E
+

E



 √

d∥∥∥Z̃∥∥∥
2

− 1

 · Z̃[0]


2 ∣∣∣∣∣E



(5)

Also,

E

(Z̃[0]− Ẑ[0]
)
·

 √
d∥∥∥Z̃∥∥∥
2

− 1

 · Z̃[0]

∣∣∣∣∣E
 · Pr[E ] ≤

(
1√

1− α
− 1

)
·
∣∣∣E [(Z̃[0]− Ẑ[0]

)
· Z̃[0]

∣∣E ] · Pr[E ]
∣∣∣ ≤(

1√
1− α

− 1

)
·
∣∣∣∣E [(Z̃[0]

)2
− Ẑ[0] · Z̃[0]

∣∣∣∣E ] · Pr[E ]

∣∣∣∣ ≤(
1√

1− α
− 1

)
· 1 +

(
1√

1− α
− 1

)
· 1√

1− α
=

α

1− α
≤ 2α .

(6)

Here, we used that

E
[(

Z̃[0]
)2 ∣∣E ] · Pr[E ] ≤ E

[(
Z̃[0]

)2]
= 1 ,

and that

E
[
Ẑ[0] · Z̃[0]

∣∣E ] · Pr[E ] = E
[
E
[
Ẑ[0] · Z̃[0]

∣∣E , Z̃
]]
· Pr[E ]

= E

 √d∥∥∥Z̃∥∥∥
2

·
(
Z̃[0]

)2 ∣∣E
 · Pr[E ] ≤ 1√

1− α
· E
[(

Z̃[0]
)2]

=
1√

1− α
. (7)
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Next, we similarly obtain

E



 √

d∥∥∥Z̃∥∥∥
2

− 1

 · Z̃[0]


2 ∣∣∣∣∣ E

 · Pr[E ] ≤
(

1√
1− α

− 1

)
+

(
1− 1√

1 + α

)
≤ 2α. (8)

Thus,

vNMSE ≤ E
[(

Z̃[0]− Ẑ[0]
)2]

+ 4α+ 2 · e−α2

8 ·d ·M . (9)

Setting α =
√

8 log d
d yields vNMSE ≤ E

[(
Z̃[0]− Ẑ[0]

)2]
+O

(√
log d
d

)
.

Since Z̃[0] ∼ N (0, 1), we can write

vNMSE ≤ E
[(

Z − Ẑ
)2]

+O

(√
log d

d

)
.

This concludes the proof of the Lemma.

We are now ready to prove the theorem.

Theorem 3.1. Let Z ∼ N (0, 1) and let Ẑ be its estimation by our distribution-aware unbiased
quantization scheme. Then, for any number of clients n and any set of d-dimentional input vectors{
xc ∈ Rd | c ∈ {0, . . . , n− 1}

}
, we have that QUIC-FL’s NMSE respects

NMSE =
1

n
· E

[ (
Z−Ẑ

)2 ]
+O

( 1

n
·
√

log d

d

)
.

Proof. We start by analyzing QUIC-FL’s χ. We can write:

χ = E
[(

Z−Ẑ
)2]

= E
[(

Z−Ẑ
)2
| Z ∈ [−tp, tp]

]
· Pr[Z ∈ [−tp, tp]] +

E
[(

Z−Ẑ
)2
| Z ̸∈ [−tp, tp]

]
· Pr[Z ̸∈ [−tp, tp]], (10)

where the first summand is exactly the quantization error of our distribution-aware unbiased BSQ,
and the second summand is 0 as such values are sent exactly.

This means that for any b and p, we can exactly compute χ given the solver’s output (i.e., the
precomputed quantization-values or tables). For example, it is ≈ 8.58 for b = 1, ℓ = 0 and p = 2−9.

By Lemma E.1, we get that QUIC-FL’s vNMSE is χ+O

(√
log d
d

)
= O(1).

Since the clients’ quantization is independent, we immediately obtain the result as NMSE =
1
n · vNMSE .

F QUIC-FL WITH CLIENT-SPECIFIC SHARED RANDOMNESS

In the most general problem formulation, we assume that the sender and receiver have access to
a shared h ∼ U [0, 1] random variable. This corresponds to having infinite shared random bits.
Using this shared randomness, for each message x ∈ Xb, the sending client chooses the probability
S(h, z, x) to quantize its value z ∈ [−tp, tp] to the associated value R(h, x) reconstructed by the
receiver. We emphasize that h does not need to be transmitted. We further note that the unbiasedness
constraint is now defined with respect to both the private randomness of the client (which is used to
pick a message with respect to the distribution S) and the (client-specific) shared randomness h. This
yields the following optimization problem:

22



Under review as a conference paper at ICLR 2024

minimize
S,R

∫ 1

0

∫ tp

−tp

∑
x∈Xb

S(h, z, x) · (z −R(h, x))
2 · e−z2

2 dzdh

subject to

(Unbiasedness)
∫ 1

0

∑
x∈Xb

S(h, z, x) ·R(h, x) dh = z, ∀z ∈ [−tp, tp]

(Probability)
∑
x∈Xb

S(h, z, x) = 1, ∀h ∈ [0, 1], z ∈ [−tp, tp]

S(h, z, x) ≥ 0, ∀h ∈ [0, 1], z ∈ [−tp, tp], x ∈ Xb

As in the case without shared randomness, we are unaware of analytical methods for solving this
continuous problem. Therefore, we discretize it to get a problem with finitely many variables. To that
end, we further discretize the client-specific shared randomness, allowing h ∈ Hℓ =

{
0, . . . , 2ℓ − 1

}
to have ℓ shared random bits. As with the number of quantiles m, the parameter ℓ gives a tradeoff
between the complexity of the resulting (discretized) problem and the error of the quantization.
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Algorithm 2 QUIC-FL with client-specific shared randomness and stoch. quantizing to quantiles
Input: Bit budget b, shared random bits ℓ, BSQ parameter p and its threshold tp and precomputed

quantiles Ap,m, sender table S and receiver table R.

Client c:
1. Zc ←

√
d

∥xc∥2
· T (xc)

(
2. U c, Ic ←

{
Zc[i]

∣∣ ∣∣Zc[i]
∣∣ > tp

}
,
{
i
∣∣ ∣∣Zc[i]

∣∣ > tp
}

3. V c ←
{
z ∈ Zc

∣∣ |z| ≤ tp
}

4. Ṽ c ← Stochastically quantize V c using Ap,m

5. Hc ←
{
∀i : Sample Hc[i] ∼ U [Hℓ]

}
6. Xc ←

{
∀i : Sample Xc[i] ∼

{
x with prob. S(Hc[i], Ṽ c[i], x) | x ∈ Xb

}}
7. Send

(
∥xc∥2 , Xc, U c, Ic

)
to server

Server:

8. For all c:
9. Hc ←

{
∀i : Sample Hc[i] ∼ U [Hℓ]

}
10. V̂ c ←

{
∀i : R(Hc[i], Xc[i])

}
11. Ẑc ←Merge V̂ c and

(
U c, Ic

)
12. Ẑavg ← 1

n ·
∑n−1

c=0
∥xc∥2√

d
· Ẑc

13. x̂avg ← T−1
(
Ẑavg

)
We give the formulation below (with the differences from the no-client-specific-shared-randomness
version highlighted in red.)

minimize
S′,R

∑
h∈Hℓ
i∈Im
x∈Xb

S′(h, i, x) · (Ap,m(i)−R(h, x))2

subject to

(Unbiasedness)
1
2ℓ
· ∑

h∈Hℓ
x∈Xb

S′(h, i, x) ·R(h, x) = Ap,m(i), ∀ i ∈ Im

(Probability)
∑
x∈Xb

S′(h, i, x) = 1, ∀h ∈ Hℓ, i ∈ Im

S′(h, i, x) ≥ 0, ∀h ∈ Hℓ, i ∈ Im, x ∈ Xb

Unlike without client-specific shared randomness, the solver’s output does not directly yield an
implementable algorithm, as it only associates probabilities to each ⟨h, i, x⟩ tuple. A natural option
is to first stochastically quantize every rotated coordinate Z ∈ [−tp, tp] to a one of the two closest
quantiles before running the algorithm that is derived from solving the discrete optimization problem.
The resulting pseudocode is shown in Algorithm 2.

The resulting algorithm is near-optimal in the sense that as the number of quantiles and shared random
bits tend to infinity, we converge to an optimal algorithm. In practice, the solver is only able to
produce an output for finite m, ℓ values; this means that the algorithm would be optimal if coordinates
are uniformly distributed over Ap,m.
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In words Algorithm 2 starts similarly to Algorithm 1 by transforming and scaling the vector be-
fore splitting it to the large coordinates (that are sent accurately along with their indices) and the
small coordinates (that are to be quantized). The difference is in the quantization process; Al-
gorithm 2 first stochastically quantizes each small coordinate to a quantile in Ap,m. Next, the
client generates the (client-specific) shared randomness Hc and uses the pre-computed table S
to sample a message for each coordinate. That is, for each coordinate i, knowing the shared
random value Hc[i] and the (rounded-to-quantile) transformed coordinate Ṽ c[i], for all x ∈ Xb,

S(Hc[i], Ṽ c[i], x) is the probability that the client should send the message x. We note that the

message for the i’th coordinate is sampled from x w.p. S(Hc[i], Ṽ c[i], x) using the client’s private
randomness. Finally, the client sends its vector’s norm, the sampled messages, and the values and
indices of the large transformed coordinates.

In turn, the server’s algorithm is also similar to Algorithm 1, except for the estimation of the small
transformed coordinates. In particular, for each client c, the server generates the client-specific shared
randomness Hc and uses it to estimate each transformed coordinate i using R(Hc[i], Xc[i]).

F.1 INTERPOLATING THE SOLVER’S SOLUTION

A different approach, based on our examination of solver outputs, to yield an implementable algorithm
from the optimal solution to the discrete problem is to calculate the message distribution directly
from the rotated values without stochastically quantizing as we do in Algorithm 2. Indeed, we have
found this approach somewhat faster and more accurate.

A crucial ingredient in getting a human-readable solution from the solver is that we, without loss of
generality, force monotonicity in both h and x, i.e., (x ≥ x′) ∧ (h ≥ h′) =⇒ R(h, x) ≥ R(h′, x′).
We further found symmetry in the optimal sender and receiver tables for small values of ℓ and m.
We then forced this symmetry to reduce the complexity of the solver’s optimization problem size for
larger ℓ and m values. We use this symmetry in our interpolation.

Examples, intuition and pseudocode. We first explain the process by considering an example.
We consider the setting of p = 1

512 (tp ≈ 3.097), m = 512 quantiles, b = 2 bits per coordinate, and
ℓ = 2 bits of shared randomness. The solver’s solution for the server’s table R is given below:

x = 0 x = 1 x = 2 x = 3
h = 0 -5.48 -1.23 0.164 1.68
h = 1 -3.04 -0.831 0.490 2.18
h = 2 -2.18 -0.490 0.831 3.04
h = 3 -1.68 -0.164 1.23 5.48

Table 2: Optimal server values (R(h, x)) for x ∈ X2, h ∈ H2 when p = 1/512 and m = 512,
rounded to 3 significant digits.

The way to interpret the table is that if the server receives a message x and the shared random value
was h, it should estimate the (quantized) coordinate value as R(h, x). For example, if x = h = 2, the
estimated value would be 0.831. We now explain what the table means for the sending client, starting
with an example.

Consider V c[i] = 0. The question is: what message distribution should the sender use, given that
V c[i] /∈ Ap,m (and without quantizing the value to a quantile)? Based on the shared randomness
value, we can use

Xc[i] =

{
1 If Hc[i] > 1

2 Otherwise
.

Indeed, we have that the estimate is unbiased as the receiver will estimate one of the bold entries
in Table 2 with equal probabilities, i.e., E

[
V̂ c[i]

]
= 1

4

∑
Hc[i]

R(Hc[i], Xc[i]) = 0.

Now, suppose that V c[i] ∈ (0, tp] (the case V c[i] ∈ [−tp, 0) is symmetric). The client can increase
the server estimate’s expected value (compared with the above choice of Xc[i]’s distribution for
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V c[i] = 0) by moving probability mass to larger Xc[i] values for some (or all) of the options for
Xc[i].

For any V c[i] ∈ (−tp, tp), there are infinitely many client alternatives that would yield an unbiased
estimate. For example, if V c[i] = 0.1, below are two client options (rounded to three significant
digit):

S1(Hc[i], V c[i], Xc[i]) ≈


1 If (Xc[i] = 1 ∧Hc[i] ≤ 2)

0.595 If (Xc[i] = 2 ∧Hc[i] = 3)

0.405 If (Xc[i] = 3 ∧Hc[i] = 3)

0 Otherwise

S2(Hc[i], V c[i], Xc[i]) ≈


1 If (Xc[i] = 2 ∧Hc[i] ≤ 1) ∨ (Xc[i] = 1 ∧Hc[i] = 3)

0.697 If (Xc[i] = 1 ∧Hc[i] = 2)

0.303 If (Xc[i] = 2 ∧Hc[i] = 2)

0 Otherwise

Note that while both S1 and S2 produce unbiased estimates, their expected squared errors differ.
Further, since 0.1 ̸∈ Ap,m, the solver’s output does not directly indicate what is the optimal message
distribution, even though the server table is known.

The approach we take corresponds to the following process. We move probability mass from the
leftmost, then uppermost entry with non-zero mass to its right neighbor in the server table. So, for
example, in Table 2, as V c[i] increases from 0, we first move mass from the entry Hc[i] = 2, Xc[i] =
1 to the entry Hc[i] = 2, Xc[i] = 2. That is, the client, based on its private randomness, increases
the probability of message Xc[i] = 2 and decreases the probability of message Xc[i] = 1 when
Hc[i] = 2. The amount of mass moved is always chosen to maintain unbiasedness. At some point, as
V c[i] increases, all of the probability mass will have moved, and then we start moving mass from
Hc[i] = 3, Xc[i] = 1 similarly. (And subsequently, from Hc[i] = 0, Xc[i] = 2 and so on.)

This process is visualized in Figure 5. Note that S(Hc[i], V c[i], Xc[i]) values are piecewise linear as
a function of V c[i], and further, these values either go from 0 to 1, 1 to 0, or 0 to 1 and back again (all
of which follow from our description). We can turn this description into formulae as explained below.
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Figure 5: The interpolated solver’s client algorithm for b = ℓ = 2,m = 512, p = 1
512 . Markers

correspond to quantiles in Ap,m, and the lines illustrate our interpolation.
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Derivation of the interpolation equations. We have found, by applying the mentioned monotonic-
ity constraints (i.e., (x ≥ x′) ∧ (h ≥ h′) =⇒ R(h, x) ≥ R(h′, x′)) and examining the solver’s
solutions for our parameter range, that the optimal approach for the client has a structure that we
can generalize beyond specific examples. Namely, when the server table is monotone, the optimal
solution deterministically quantizes the message to send in all but (at most) one shared randomness
value. For instance, S2 in the example above deterministically quantizes the message if Hc[i] ̸= 2
(sending Xc[i] = 1 if Hc[i] = 3 or Xc[i] = 2 if Hc[i] ∈ {0, 1}), or stochastically quantizes between
Xc[i] = 1 and Xc[i] = 2 when Hc[i] = 2. Furthermore, the shared randomness value in which we
should stochastically quantize the message is easy to calculate.

To capture this behavior, we define the following quantities:

• The minimal message Xc[i] the client may send for V c[i]:

x(V c[i]) = max

 x ∈ Xb

∣∣∣∣
 1

2ℓ
·
∑

Hc[i]∈Hℓ

R(Hc[i], x)

 ≤ V c[i]

 .

That is, x(V c[i]) is the maximal value such that sending x(V c[i]) regardless of the shared randomness
value would result in not overestimating V c[i] in expectation. For example, as illustrated in Table 2
(b = ℓ = 2), we have x(0) = 1, as the client sends either 1 or 2 (highlighted in bold) depending on
the shared randomness value.
• For convenience, we denote R(h, 2b) =∞ for all h ∈ Hℓ. Then, the shared randomness value for
which the sender stochastically quantizes is given by:

h(V c[i]) = max

h ∈ Hℓ

∣∣∣∣∣ 1

2ℓ
·

h−1∑
h′=0

R(h′, x(V c[i]) + 1) +

2ℓ−1∑
h′=h

R(h′, x(V c[i]))

 ≤ V c[i]

 .

That is, h(V c[i]) denotes the maximal value for which sending
(
x(V c[i]) + 1

)
if Hc[i] < h(V c[i])

or x(V c[i]) if Hc[i] ≥ h(V c[i]) would not overestimate V c[i] in expectation. In the same example
of Table 2 (b = ℓ = 2), we have h(0) = 2 since sending Xc[i] = 2 for h ≤ 2 would result in an
overestimation.

The sender-interpolated algorithm. Let us denote by µ the expectation we require for Hc[i] =
h(V c[i]) to ensure that our algorithm is unbiased:

µc[i] ≜ E
[
V̂ c[i]

∣∣ Hc[i] = h(V c[i])
]
=

2ℓ · V c[i]−
h(V c[i])−1∑

h=0

R
(
h, x(V c[i]) + 1

)
+

2ℓ−1∑
h=h(V c[i])+1

R
(
h, x(V c[i])

)
.

We further make the following definitions:

• The probability of rounding the message up to x(V c[i]) + 1 when Hc[i] = h:

pc[i] =
µc[i]−R(Hc[i], x(V c[i]))

R(Hc[i], x(V c[i]) + 1)−R(Hc[i], x(V c[i]))

• The probability of rounding the message down to x(V c[i]) when Hc[i] = h:

qc[i] = 1− pc[i] =
R(Hc[i], x(V c[i]) + 1)− µc[i]

R(Hc[i], x(V c[i]) + 1)−R(Hc[i], x(V c[i]))
.

Then, for any shared randomness value Hc[i] ∈ Hℓ, to-be-quantized value V c[i] ∈ [−tp, tp], and
message x ∈ Xb, the interpolated algorithm works as follows:

S(Hc[i], V c[i], x) =


1 If

(
x = x(V c[i]) ∧Hc[i] > h

)
∨
(
x = x(V c[i]) + 1 ∧Hc[i] < h

)
pc[i] If (x = x(V c[i]) + 1 ∧Hc[i] = h)

qc[i] If (x = x(V c[i]) ∧Hc[i] = h)

0 Otherwise

.

(11)
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Namely, if Hc[i] < h, the client deterministically sends
(
x(V c[i]) + 1

)
and if Hc[i] > h, the client

deterministically sends x(V c[i]). Finally, if Hc[i] = h, it sends
(
x(V c[i]) + 1

)
with probability pc[i]

and x(V c[i]) otherwise. Indeed, by our choice of µc[i], the algorithm is guaranteed to be unbiased
for all V c[i] ∈ [−tp, tp].
The pseudocode of this variant is given by Algorithm 3.

Algorithm 3 QUIC-FL with client-specific shared randomness and client interpolation
Input: Bit budget b, shared random bits ℓ, BSQ parameter p and its threshold tp and precomputed quantiles
Ap,m, and receiver table R. (The table S is not needed.)

Client c:
1. Zc ←

√
d

∥xc∥2
· T (xc)

(
2. Uc, Ic ←

{
Zc[i]

∣∣ ∣∣Zc[i]
∣∣ > tp

}
,
{
i
∣∣ ∣∣Zc[i]

∣∣ > tp
}

3. V c ←
{
z ∈ Zc

∣∣ |z| ≤ tp
}

4. Hc ←
{
∀i : Sample Hc[i] ∼ U [Hℓ]

}
5. Xc ←

{
∀i : Sample Xc[i] ∼

{
x with prob. S(Hc[i], V c[i], x)

}}
▷ According to Equation (11)

6. Send
(
∥xc∥2 , Xc, Uc, Ic

)
to server

Server:

7. For all c:

8. Hc ←
{
∀i : Sample Hc[i] ∼ U [Hℓ]

}
9. V̂ c ←

{
∀i : R(Hc[i], Xc[i])

}
10. Ẑc ←Merge V̂ c and

(
Uc, Ic

)
11. Ẑavg ← 1

n
·
∑n−1

c=0

∥xc∥2√
d
· Ẑc

12. x̂avg ← T−1
(
Ẑavg

)

F.2 MEMORY REQUIREMENTS

As explained above, the entire algorithm is determined by the server ’s table (whose size is 2b·ℓ).
The RHT happens in-place, so no additional space is needed other than for holding the gradient.
Depending on the implementation, additional memory may be used for (1) a parallel generation of
the shared randomness values (2) a parallel computation of the rounding probabilities.

G PERFORMANCE OF QUIC-FL WITH THE RANDOMIZED HADAMARD
TRANSFORM

As described earlier, while ideally we would like to use a fully random rotation on the d-dimensional
sphere as the first step to our algorithms, this is computationally expensive. Instead, we suggest using
a randomized Hadamard transform (RHT), which is computationally more efficient. We formally
show below that using RHT has the same asymptotic guarantee as with random rotations, albeit with
a larger constant (constant factor increases in the fraction of exactly sent coordinates and NMSE ).
Namely, we show that (1) the expected number of transformed and scaled coordinates that fall outside
[−tp, tp] (for the same choice of tp as a function of p), is bounded by 3.2p; (2) that we still get
O(1/n) NMSE for any b ≥ 1. Further, we find that running QUIC-FL with RHT and b+ 1 bits per
quantized coordinate has a lower NMSE than QUIC-FL with a uniform random rotation for p = 2−9

and any b ∈ {1, 2, 3}.
We note that some works suggest using two or three successive randomized Hadamard transforms
to obtain something that should be closer to a uniform random rotation Yu et al. (2016); Andoni
et al. (2015). This naturally takes more computation time. In our case, and in line with previous
works Vargaftik et al. (2021; 2022), we find empirically that one RHT appears to suffice. However,

28



Under review as a conference paper at ICLR 2024

unlike these works, our algorithm remains provably unbiased and maintains the O(1/n) NMSE
guarantee. Determining better provable bounds using two or more RHTs is left as an open problem.

3 2 1 0 1 2 3
Encoded Value (Vc[i])

10 2

10 1

100

101

M
SE

=
[ ( V

c[i
]

V c
[i]

)2 ]

t p−
t p

b = 1

b = 2

b = 3

b = 4

Figure 6: Expected squared error as a function of the encoded value (for p = 1
512 ,m = 512).

Theorem G.1. Let x ∈ Rd, let TRHT (x) be the result of a randomized Hadamard transform on x,
and let Z = V c[i] =

√
d

∥x∥2
TRHT (x)[i] be a coordinate in the transformed and scaled vector. For any

p, Pr [Z ̸∈ [−tp, tp]] ≤ 3.2p.

Proof. This follows from the theorem by Bentkus & Dzindzalieta (2015) (Theorem G.2), which we
restate below.

Theorem G.2 (Bentkus & Dzindzalieta (2015)). Let ϵ1, . . . , ϵd be i.i.d. Radamacher random

variables and let a ∈ Rd such that ∥a∥22≤1. For any t ∈ R, Pr

[
d−1∑
i=0

a[i] · ϵi ≥ t

]
≤ Pr[Z≥t]

4 Pr[Z≥
√
2]
≈

3.1787Pr [Z ≥ t], for Z ∼ N (0, 1).

In what follows, we present a general approach to bound the quantization error of each transformed
and scaled coordinate (and thus, the QUIC-FL’s NMSE ). Our method splits [0, tp] (the argument is
symmetric for [−tp, 0]) into several (e.g., three) intervals I0, . . . ,Iw (for some w ∈ N+), such that
the partitioning satisfies two properties:

• The maximal error for the i’th interval, maxz∈Ii
E
[
(z − ẑ)

2
]
, is lower than the j’th interval,

for any j < i.

• The probability that a normal random variable Z ∼ N (0, 1) falls outside I0 is less than
1/3.2.

These two properties allow us to use Theorem G.2 to upper bound the resulting quantization error.

We exemplify the method using p = 1
512 , the parameter of choice for our evaluation, although it is

applicable to any p. Since we believe it provides only a loose bound, we do not optimize the argument
beyond showing the technique.

Theorem G.3. Fix p = 1
512 ; let xc ∈ Rd and denote by Z = V c[i] =

√
d

∥xc∥2
TRHT (xc)[i] its i’th

coordinate after applying RHT and scaling. Denoting by Eb = E
[
(Z− Ẑb)

2
]

the mean squared error
using b bits per quantized coordinate, we have E1 ≤ 4.831, E2 ≤ 0.692, E3 ≤ 0.131, E4 ≤ 0.0272 .

Proof. We bound the MSE of quantizing Z, leveraging Theorem G.2. Since the MSE, as a function
of Z, is symmetric around 0 (as illustrated in Figure 6), we analyze the Z ≥ 0 case.
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We split [0, tp] into intervals that satisfy the above properties, e.g., I0 = [0, 1.5], I1 = (1.5, 2.2],
I2 = (2.2, tp]. We note that this choice of intervals is not optimized and that a finer-grained partition
to more intervals can improve the error bounds. Next, using Theorem G.2, we get that

• P0 ≜ Pr[Z ̸∈ I0] ≤ 3.2Pr[Z ̸∈ I0] ≤ 0.427.

• P1 ≜ Pr[Z ̸∈ (I0 ∪ I1)] ≤ 3.2Pr[Z ̸∈ (I0 ∪ I1)] ≤ 0.089.

Next, we provide the maximal error for each bit budget b and such interval:

b = 1 b = 2 b = 3 b = 4
I0 2.063 0.267 0.056 0.0134
I1 6.39 0.67 0.128 0.0285
I2 16.73 3.51 0.617 0.11

Table 3: For each interval Ii, i ∈ {0, 1, 2} and bit budget b ∈ {1, 2, 3, 4}, depicted is the maximal
MSE, i.e., maxz∈Ii

E
[
(z − ẑ)

2
]
.

Note that for any b ∈ {1, 2, 3, 4}, the MSEs in I2 are strictly larger than those in I1 which are strictly
larger than those in I0. This allows us to derive formal bounds on the error. For example, for b = 1,
we have that the error is bounded by

E1 ≤ (1− P0) · 2.063 + (P0 − P1) · 6.39 + P1 · 16.73 ≤ 4.831.

Repeating this argument, we also obtain:

E2 ≤ (1− P0) · 0.267 + (P0 − P1) · 0.67 + P1 · 3.51 ≤ 0.692

E3 ≤ (1− P0) · 0.056 + (P0 − P1) · 0.128 + P1 · 0.617 ≤ 0.131

E4 ≤ (1− P0) · 0.0134 + (P0 − P1) · 0.0285 + P1 · 0.11 ≤ 0.0272.

H EXPERIMENTS WITH ADDITIONAL DISTRIBUTIONS

While QUIC-FL’s NMSE is largely independent of the input vectors (for a large enough dimension),
other algorithms’ NMSE depends on the inputs. We thus repeat the experiment of Figure 3 for
additional distributions, with the results depicted in Figure 7 and Figure 8. As shown, in all cases,
QUIC-FL has an NMSE that is comparable with that of EDEN.

I SHAKESPEARE EXPERIMENTS DETAILS

The Shakespeare next-word prediction discussed in §4 was first suggested in McMahan et al. (2017)
to naturally simulate a realistic heterogeneous federated learning setting. Its dataset consists of 18,424
lines of text from Shakespeare plays Shakespeare partitioned among the respective 715 speakers
(i.e., clients). We train a standard LSTM recurrent model Hochreiter & Schmidhuber (1997) with
≈820K parameters and follow precisely the setup described in Reddi et al. (2021) for the Adam
server optimizer case. We restate the hyperparameters for convenience in Table 4.

Task Clients per round Rounds Batch size Client lr Server lr Adam’s ϵ
Shakespeare 10 1200 4 1 10−2 10−3

Table 4: Hyperparameters for the Shakespeare next-word prediction experiments.

J ADDITIONAL EVALUATION

Our code will be released as open source upon publication. As discussed, we use p = 1/512, ℓ = 6
for b = 1, ℓ = 5 for b = 2, and ℓ = 4 for b ∈ {3, 4}.
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Figure 7: NMSE vs. the the bit budget b.
J.1 IMAGE CLASSIFICATION

We evaluate QUIC-FL against other schemes with 10 persistent clients over uniformly distributed
CIFAR-10 and CIFAR-100 datasets Krizhevsky et al. (2009). We also evaluate Count-Sketch Charikar
et al. (2002) (denoted CS), often used for federated compression schemes (e.g., Ivkin et al. (2019))
and EF21 Richtárik et al. (2021) a recent SOTA error-feedback framework that uses top-k as a
building block with k = 0.05 ·d (translates to 1.6 bits per-coordinate ignoring the overhead of indices
encoding overhead). For QSGD, we use twice the bandwidth of the other algorithms (one bit for sign
and another for stochastic quantization). We note that QSGD also has a more accurate variant that
uses variable-length encoding Alistarh et al. (2017). However, it is not GPU-friendly, and therefore,
as with other variable-length encoding schemes, as we have discussed previously, we do not include
it in the experiment.

For CIFAR-10 and CIFAR-100, we use the ResNet-9 He et al. (2016) and ResNet-18 He et al. (2016)
architectires, and use learning rates of 0.1 and 0.05, respectively. For both datasets, the clients
perform a single optimization step at each round. Our setting includes an SGD optimizer with a
cross-entropy loss criterion, a batch size of 128, and a bit budget b = 1 for the DME methods (except
for EF21 and QSGD as stated above). The results are shown in Figure 9, with a rolling mean average
window of 500 rounds. As shown, QUIC-FL is competitive with EDEN and the Float32 baseline and
is more accurate than other methods.

Next, we repeat the above CIFAR-10 and CIFAR-100 experiments with the same bandwidth budgets
but consider a cross-device setup with the following changes: there are 50 clients (instead of 10) and
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Figure 8: NMSE vs. the the number of clients n.
at each training round, 10 out of 50 clients are randomly selected and perform training over 5 local
steps (instead of 1).

Figure 10 shows the results with a rolling mean window of 200 rounds. Again, QUIC-FL is
competitive with the asymptotically slower EDEN and the uncompressed baseline. Kashin-TF is less
accurate, followed by Hadamard.
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Figure 9: Cross-silo federated learning.
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Figure 10: Cross-device federated learning.

J.2 DME AS A BUILDING BLOCK

We pick EF21 Richtárik et al. (2021) as an example framework that uses DME as a building block.
In the paper, EF21 is used in conjunction with top-k as the compressor that is used by the clients
to transmit their messages, and the mean of the messages is estimated at the server. As shown in
Figure 11, using EF21 with QUIC-FL instead of top-k significantly improves the accuracy of EF21
despite using less bandwidth. For example, top-k with k = 0.1 · d needs to use 3.2 bits per coordinate
on average to send the values (in addition to the overhead of encoding the indices) while having
accuracy that is lower than EF21 with QUIC-FL and b = 2 bits per coordinate.
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Figure 11: The accuracy of EF21 with top-k and QUIC-FL as building blocks for DME.

J.3 DISTRIBUTED POWER ITERATION
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Figure 12: Distributed power iteration of MNIST and CIFAR-10 with 10 and 100 clients.

We simulate 10 clients that distributively compute the top eigenvector in a matrix (i.e., the matrix rows
are distributed among the clients). Particularly, each client executes a power iteration, compresses its
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top eigenvector, and sends it to the server. The server updates the next estimated eigenvector by the av-
eraged diffs (of each client to the eigenvector from the previous round) and scales it by a learning rate
of 0.1. Then, the estimated eigenvector is sent by the server to the clients and the next round can begin.

Figure 12 presents the L2 error of the obtained eigenvector by each compression scheme when
compared to the eigenvector that is achieved without compression. The results cover bit budget b
from one bit to four bits for both MNIST and CIFAR-10 Krizhevsky et al. (2009); LeCun et al. (1998;
2010) datasets. Each distributed power iteration simulation is executed for 50 rounds for the MNIST
dataset and for 200 rounds for the CIFAR-10 dataset.

As shown, QUIC-FL has an accuracy that is competitive with that of EDEN (especially for b ≥ 2)
while having asymptotically faster decoding, as EDEN requires decompressing the vector for each
client independently. At the same time, QUIC-FL is considerably better in terms of accuracy than
other algorithms that offer fast decoding time. Also, Kashin-TF is not unbiased (as illustrated by
Figure 2), and is, therefore, less competitive for a larger number of clients.
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Figure 13: Comparison with Sparse Dithering.

J.4 COMPARISON WITH SPARSE DITHERING

We compare QUIC-FL with Sparse Dithering (SD) Albasyoni et al. (2020). As shown in Figure 13,
QUIC-FL is markedly more accurate for the range of bit budgets (b ∈ {1, 2, 3, 4, 5}) that it supports.
The figure includes both the deterministic and randomized versions of SD.

The markers mark the evaluated points. QUIC-FL is configured with p = 2−9, and thus its per-
coordinate bandwidth is non-integer to factor in the coordinates sent exactly.

Further, our algorithm is proven to be GPU friendly, while we cannot determine whether the compo-
nents of the Sparse Dithering algorithm can be efficiently implemented. The paper does not include a
runtime evaluation that we can compare with.
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