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“A bear dancing and jumping to upbeat music, moving his whole body”

Input Video

Figure 1: Video Editing with Dreamix: By conditioning on the text prompt “A bear dancing and jumping
to upbeat music, moving his whole body”, Dreamix transforms the eating monkey (top row) into a dancing
bear (bottom row), affecting motion and appearance. It maintains fidelity to color and pose, and results in
a temporally consistent video. We strongly encourage the reviewer to view the supplementary videos

Abstract

Text-driven image and video diffusion models have recently achieved unprecedented gener-
ation realism. While diffusion models have been successfully applied for image editing, few
can edit motion in video. We present a diffusion-based method that is able to perform
text-based motion and appearance editing of general, real-world videos. Our approach uses
a video diffusion model to combine, at inference time, the low-resolution spatio-temporal
information from the original video with new, high resolution information that it synthe-
sized to align with the guiding text prompt. As maintaining high-fidelity to the original
video requires retaining some of its high-resolution information, we add a preliminary stage
of finetuning the model on the original video, significantly boosting fidelity. We propose to
improve motion editability by using a mixed objective that jointly finetunes with full tem-
poral attention and with temporal attention masking. We extend our method for animating
images, bringing them to life by adding motion to existing or new objects, and camera move-
ments. Extensive experiments showcase our method’s remarkable ability to edit motion in
videos.

1 Introduction

Recent advancements in generative models (Ho et al., 2020; Chang et al., 2022; Yu et al., 2022; Chang et al.,
2023) and multimodal vision-language models (Radford et al., 2021), paved the way to large-scale text-to-
image models capable of unprecedented generation realism and diversity (Ramesh et al., 2022; Rombach
et al., 2022; Saharia et al., 2022b; Nichol et al., 2021; Avrahami et al., 2023). These models have ushered in
a new era of creativity, applications, and research. Although these models offer new creative processes, they
are limited to synthesizing new images rather than editing existing ones. To bridge this gap, intuitive image
editing methods offer text-based editing of generated and real images while maintaining some of their original
attributes (Hertz et al., 2022; Tumanyan et al., 2023; Brooks et al., 2023; Kawar et al., 2023; Valevski et al.,
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Input Video

“A blue pickup truck crossing a deep river”

Input Video

“A puppy leaping”

Figure 2: Video Motion Editing: Dreamix can significantly change the actions and motions of subjects
in a video (e.g. making a puppy leap) while maintaining temporal consistency

2023). Similarly to images, text-to-video models have recently been proposed (Ho et al., 2022c;a; Singer
et al., 2022; Yu et al., 2023), however, editing the motion of real videos remains a challenging task.

In text-guided video editing, the user provides an input video and a text prompt describing the desired
attributes of the resulting video (Fig. 1). The objectives are three-fold: i) alignment: the edited video
should conform with the input text prompt ii) fidelity: the edited video should preserve the content of the
original input iii) quality: the edited video should be of high-quality. Video editing is more challenging than
image editing, as it requires synthesizing new motion, not merely modifying appearance. It also requires
temporal consistency. As a result, applying image-level editing methods e.g. SDEdit (Meng et al., 2021) or
Prompt-to-Prompt (Hertz et al., 2022) sequentially on the video frames is insufficient.

We present a new method, Dreamix, to adapt a text-conditioned video diffusion model (VDM) for video
editing, in a manner inspired by UniTune (Valevski et al., 2023). The core of our method is enabling a
text-conditioned VDM to maintain high fidelity to an input video via two main ideas. First, instead of
using pure-noise as initialization for the model, we use a degraded version of the original video, keeping
only low spatio-temporal information by downscaling it and adding noise. This is similar to SDEdit but the
degradation includes not merely noise, but also downscaling. Second, we further improve the fidelity to the
original video by finetuning the model on the original video. Finetuning ensures the model has knowledge of
the high-resolution attributes of the original video. Naively finetuning on the input video results in relatively
low motion editability as the model learns to prefer the original motion instead of following the text prompt.
We propose a novel use for the mixed finetuning approach, suggested in VDM (Ho et al., 2022c) and Imagen-
Video (Ho et al., 2022a), in which the VDMs are trained on both images and video. In our approach, we
finetune the model on both the original video but also on its (unordered) frames individually. This allows
us to perform significantly larger motion edits with high fidelity to the original video.

As a further contribution, we leverage our video editing model to add motion to still images (see Fig. 3) e.g.,
animating the objects and background in an image or creating dynamic camera motion. To do so, we first
create a coarse video by simple image processing operations, e.g., frame replication or geometric image trans-
formation. We then edit it with our Dreamix video editor. Our framework can also perform subject-driven
video generation (see Fig. 3), extending the scope of current image-based methods e.g., Dreambooth(Ruiz
et al., 2023) to video and motion editing. We evaluate our method extensively, demonstrating its remarkable
capabilities unmatched by the baseline methods.

To summarize, our main contributions are:

1. Proposing a method for text-based motion editing of real-world videos.

2. Repurposing mixed training as a finetuning objective that significantly improves motion editing.

3. Presenting a new framework for text-guided image animation, by applying our video editor method
on top of simple image preprocessing operations.
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2 Related Work

2.1 Diffusion Models for Synthesis

Deep diffusion models recently emerged as a powerful new paradigm for image generation (Ho et al., 2020;
Song et al., 2020), and have their roots in score-matching (Hyvärinen & Dayan, 2005; Vincent, 2011; Sohl-
Dickstein et al., 2015). They outperform (Dhariwal & Nichol, 2021) the previous state-of-the-art approach,
generative adversarial networks (GANs) (Goodfellow et al., 2020). While they have multiple formulations,
EDM (Karras et al., 2022) showed they are equivalent. Outstanding progress was made in text-to-image
generation (Saharia et al., 2022b; Ramesh et al., 2022; Rombach et al., 2022; Avrahami et al., 2023), where
new images are sampled conditioned on an input text prompt. Extending diffusion models to video generation
is a challenging computational and algorithmic task. Early work include (Ho et al., 2022c) and text-to-
video extensions by (Ho et al., 2022a; Singer et al., 2022; Blattmann et al., 2023; Voleti et al., 2022; Wang
et al., 2023a; Ge et al., 2023; Esser et al., 2023). Another line of work extends synthesis to various image
reconstruction tasks (Saharia et al., 2022c;a; Ho et al., 2022b; Lugmayr et al., 2022; Chung et al., 2022),
(Horwitz & Hoshen, 2022) extracts confidence intervals for reconstruction tasks.

2.2 Diffusion Models for Editing

Image editing with generative models has been studied extensively, in past years many of the models were
based on GANs (Vinker et al., 2021; Patashnik et al., 2021; Gal et al., 2021; Roich et al., 2022; Wang et al.,
2018b; Park et al., 2019; Bau et al., 2020; Skorokhodov et al., 2022; Jamriška et al., 2019; Wang et al.,
2018a; Tzaban et al., 2022; Xu et al., 2022; Liu et al., 2022). Another recent line of works demonstrated
preliminary generation and editing capabilities using masked image models (Yu et al., 2023; Villegas et al.,
2022; Yao et al., 2021; Nash et al., 2022). However, most of the recent editing methods adopt diffusion
models (Avrahami et al., 2022b;a; Voynov et al., 2023). SDEdit (Meng et al., 2021) proposed to add targeted
noise to an input image, and then use diffusion models for reversing the process. Prompt-to-Prompt (Hertz
et al., 2022; Tumanyan et al., 2023; Mokady et al., 2023) perform semantic edits by mixing activations
extracted with the original and target prompts. For InstructPix2Pix (Brooks et al., 2023) this is only needed
for constructing the training dataset. Other works (e.g. (Gal et al., 2022; Ruiz et al., 2023)) use finetuning
and optimization to allow for personalization of the model, learning a special token describing the content.
UniTune (Valevski et al., 2023) and Imagic (Kawar et al., 2023) finetune on a single image, allowing better
editability while maintaining good fidelity. However, the methods are image-centric and do not use temporal
information. Neural Atlases (Kasten et al., 2021) and Text2Live (Bar-Tal et al., 2022) allow some texture-
based video editing, however, unlike our method they cannot edit the motion of a video. Recently, many
methods proposed to adapt an image diffusion model for video editing (Wu et al., 2023; Geyer et al., 2023;
Chai et al., 2023; Yang et al., 2023; Wang et al., 2023b; Qi et al., 2023; Kim et al., 2023; Khachatryan
et al., 2023; Liu et al., 2023; Wang et al., 2024; Guo et al., 2023). Despite their promising results, they use
a text-to-image backbone that can edit video appearance but not motion. Their results are also not fully
temporally consistent. In contrast, our method uses a text-to-video backbone, enabling motion editing while
maintaining smoothness and temporal consistency.

3 Background: Video Diffusion Models

Denoising Model Training. Diffusion models rely on a deep denoising neural network denoted by Dθ.
Let us denote the ground truth video as v, an i.i.d Gaussian noise tensor of the same dimensions as the
video as ϵ ∼ N(0, I), and the noise level at time s as σs. The noisy video is given by: zs = γsv + σsϵ, where
γs =

√
1 − σ2

s . Furthermore, let us denote a conditioning text prompt as t and a conditioning video c (for
super-resolution, c is a low-resolution version of v). The objective of the denoising network Dθ is to recover
the ground truth video v given the noisy input video zs, the time s, prompt t and conditioning video c. The
model is trained on a (large) training corpus V consisting of pairs of video v and text prompts t.

Sampling from Diffusion Models. The key challenge in diffusion models is to use the denoiser network Dθ

to sample from the distribution of videos conditioned on the text prompt t and conditioning video c, P (v|t, c).

3



Under review as submission to TMLR

“Underwater shot of a sea turtle with a shark approaching from behind”Input Image

“Volcano eruption fiery red lava coming down the mountain, leaves blowing in the wind”Input Image

“Emperor penguins returning to their home”Input Image

“A toy fireman is dancing”

“A toy fireman is lifting weights”

Input Images

Input Images

Figure 3: Image-to-Video editing with Dreamix: Dreamix instills complex motion in a static image
(first row), adding a moving shark and making the turtle swim. In this case, visual fidelity to object location
and background was preserved but the turtle direction was flipped. In the subject-driven case (second row),
Dreamix extracts the visual features of a subject given multiple images and animates it in different scenarios
such as weightlifting

While the derivation of such sampling rule is non-trivial (see e.g. Karras et al. (2022)), the implementation
of such sampling is relatively simple in practice. We follow Ho et al. (2022a) in using stochastic DDIM
sampling. At a heuristic level, at each step, we first use the denoiser network to estimate the noise. We then
remove a fraction of the estimated noise and finally add randomly generated Gaussian noise, with magnitude
corresponding to half of the removed noise.

Cascaded Video Diffusion Models. Training high-resolution text-to-video models is very challenging
due to the high computational complexity. Several diffusion models overcome this by using cascaded archi-
tectures. We use a model that follows the architecture of Ho et al. (2022a), which consists of a cascade of 7
models. The base model maps the input text prompt into a 5-second video of 24×40×16 frames. It is then
followed by 3 spatial super-resolution models and 3 temporal super-resolution models. For implementation
details, see Appendix C.

4 Editing by Video Diffusion Models

We propose a new method for video editing using text-guided video diffusion models. We extended it to
image animation in Sec. 5.

4.1 Video Editing by Inverting Corruptions

We wish to edit an input video using the guidance of a text prompt t describing the video after the edit.
In order to do so we leverage the power of a cascade of VDMs. The key idea is to first corrupt the video
by downsampling followed by adding noise. We then apply the sampling process of the cascaded diffusion
models from the time step corresponding to the noise level, conditioned on t, which upscales the video to
the final spatio-temporal resolution. The effect is that the VDM will use the low-resolution details provided
by the degraded input video, but synthesize new high spatio-temporal resolution information using the text
prompt guidance. While this procedure is essentially a text-guided version of SDEdit (Meng et al., 2021),
for complex edits e.g., motion editing this by itself does not result in sufficiently high-fidelity videos. To
mitigate this issue, we use a mixed-finetuning objective described in Sec. 4.2.

Input Video Degradation. We downsample the input video to the resolution of the base model (16 frames
of 24 × 40). We then add i.i.d Gaussian noise with variance σ2

s to further corrupt the input video. The noise
strength is equivalent to time s in the diffusion process of the base model. For s = 0, no noise is added,
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Figure 4: Mixed Video-Image Finetuning: Finetuning the VDM on the input video alone limits the
extent of motion change. Instead, we use a mixed objective that beside the original objective (bottom left)
also finetunes on the unordered set of frames. We use “masked temporal attention” to prevent the temporal
attention and convolution from changing (bottom right). This allows adding motion to a static video

while for s = 1, the video is replaced by pure Gaussian noise. Note, that even when no noise is added, the
input video is highly corrupted due to the extreme downsampling ratio.

Text-Guided Corruption Inversion. We can now use the cascaded VDMs to map the corrupted, low-
resolution video into a high-resolution video that aligns with the text. The core idea here is that given a
noisy, very low spatio-temporal resolution video, there are many perfectly feasible, high-resolution videos
that correspond to it. We use the target text prompt t to select the feasible outputs that not only correspond
to the low-resolution of the original video but are also aligned to edits desired by the user. The base model
starts with the corrupted video, which has the same noise as the diffusion process at time s. We use the
model to reverse the diffusion process up to time 0. We then upscale the video through the entire cascade
of super-resolution models (see Appendix C for additional information). All models are conditioned on the
prompt t.

4.2 Mixed Video-Image Finetuning

The naive method presented in Sec. 4.1 relies on a corrupted version of the input video which does not
include enough information to preserve high-resolution details such as fine textures or object identity. We
tackle this by adding a preliminary stage of finetuning the model on the input video v. Note that this only
needs to be done once for the video, which can then be edited by many prompts without further finetuning.
We would like the model to separately update its prior both on the appearance and the motion of the input
video. Our approach therefore treats the input video, both as a single video clip and as an unordered set of
M frames, denoted by u = {x1, x2, .., xM }. We use a rare string t∗ as the text prompt, following Ruiz et al.
(2023). We finetune the denoising models by a combination of two objectives. The first objective updates
the model prior on both motion and appearance by requiring it to reconstruct the input video v given its
noisy versions zs.

Lvid
θ (v) = Eϵ∼N(0,I),s∈U(0,1)∥Dθ′(zs, s, t∗, c) − v∥2 (1)

Additionally, we train the model to reconstruct each of the frames individually given their noisy version.
This enhances the appearance prior of the model, separately from the motion. Technically, the model is
trained on a sequence of frames u by replacing the temporal attention layers by trivial fixed masks ensuring
the model only pays attention within each frame, and also by masking the residual temporal convolution
blocks. We denote the attention masked denoising model as Da

θ . The masked attention objective is:

Lframe
θ (u) = Eϵ∼N(0,I),s∈U(0,1)∥Da

θ′(zs, s, t∗, c) − u∥2 (2)
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Application Dependent Preprocessing

Photo duplication + perspective transform

no-op

(don’t pass input)

Video Editing

Image-to-Video

Subject Driven 
Video Generation

Input

video diffusion model

“A bear 
eating pizza”

Down sample +
 add noise

Dreamix Video Editor

Dreamix 
Finetuning

Figure 5: Inference Overview: Our method supports multiple applications by converting the input into
a uniform video format (left). For image-to-video, the input image is duplicated and transformed using
perspective transformations, synthesizing a coarse video with some camera motion. For subject-driven video
generation, the input is omitted - finetuning alone takes care of the fidelity. This coarse video is then edited
using our general “Dreamix Video Editor” (right): we first corrupt the video by downsampling followed
by adding noise. We then apply the finetuned text-guided VDM, which upscales the video to the final
spatio-temporal resolution

We train the joint objective:
θ = arg min

θ′
αLvid

θ′ (v) + (1 − α)Lframe
θ′ (u) (3)

Where α is a constant factor, see Fig. 4. Training on a single video or a handful of frames can easily lead to
overfitting, reducing the editing ability of the original model. To mitigate overfitting, we use a small number
of finetuning iterations and a low learning rate (see Appendix C). Note that while such a training objective
was used by Imagen-Video (Ho et al., 2022a) and VDM (Ho et al., 2022c), its purpose was different. There,
the aim was to increase dataset size and diversity by training on large image datasets. Here, the aim is to
enforce the style of the video in the model, while allowing motion editing.

5 Applications of Dreamix

The method proposed in Sec. 4, can edit motion and appearance in real-world videos. In this section, we
propose a framework for using our Dreamix video editor for general, text-conditioned image-to-video editing,
see Fig. 5 for an overview.

Dreamix for Single Images. Provided our general video editing method, Dreamix, we now propose a
framework for image animation conditioned on a text prompt. The idea is to transform the image or a set
of images into a coarse, corrupted video and edit it using Dreamix. For example, given a single image x
as input, we can transform it to a video by replicating it 16 times to form a static video v = [x, x, x...x].
We can then edit its appearance and motion using Dreamix conditioned on a text prompt. Here, we do not
wish to incorporate the motion of the input video (as it is static and meaningless) and therefore use only
the masked temporal attention finetuning (α = 0). To create “cinematic” effects, we can further control
the output video by simulating camera motion, such as panning and zoom. We perform this by sampling a
smooth sequence of 16 perspective transformations T1, T2..T16 and apply each on the original image. When
the perspective requires pixels outside the input image, we simply outpaint them using reflection padding.
We concatenate the sequence of transformed images into a low quality input video v = [T1(x), T2(x)..T16(x)].
While this does not result in realistic video, Dreamix can transform it into a high-quality edited video. See
Appendix D for details on the applied transformations.

Dreamix for subject-driven video generation. We propose to use Dreamix for text-conditioned video
generation given an image collection. Differently from existing methods, e.g., Dreambooth (Ruiz et al.,
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“A unicorn running in the foggy forest, zoom out”Input Image

“The Merced river is overflowing, birds flying in the sky, camera is zooming out to reveal an 
American Buffalo bathing in the river”Input Image

“A grizzly bear walking around the lake, large birds flying in the sky”Input Image

“Time-Lapse of black beans plant sprouting”Input Image

“Filling a glass with warm coffee”Input Image

“A bigfoot walking in the snowstorm”Input Image

“A camel walking in the sand dunes”Input Image

“Underwater shot of a sea turtle with a shark approaching from behind”Input Image

“Volcano eruption fiery red lava coming down the mountain, leaves blowing in the wind”Input Image

“Emperor penguins returning to their home”Input Image

Figure 6: Additional Image-to-Video Results: Dreamix can perform animated camera motion based
on a single image, as in the first row where the image is zoomed out to reveal a bathing buffalo. Dreamix
can also instill motion in a static image as in the second row where the glass is gradually filled with coffee.
In addition, Dreamix can add animated subjects into an image, in the third row, multiple penguins are
animated into the image

2023), it can add motion and not only change appearance. The input to our method is a set of images, each
containing the subject of interest. This can also use different frames from the same video, as long as they
show the same subject. Higher diversity of viewing angles and backgrounds is beneficial for the performance
of the method. We then use the finetuning method from Sec. 4.2, where we only use the masked attention
finetuning (α = 0). After finetuning, we use the text-to-video model without a conditioning video, but rather
only using a text prompt (which includes the special token t∗).

6 Experiments

In this section, we establish that Dreamix is able to edit motion in real-world videos and images, a major
improvement over the existing methods. To fully experience our results, please see the supplementary videos.

6.1 Qualitative Results

Video Editing. In Fig. 1, we change the motion to dancing and the appearance from monkey to bear
while keeping the coarse attributes of the video fixed. Dreamix can also generate new motion that does
not necessarily align with the input video (puppy in Fig. 2, orangutan Fig. 15), and can control camera
movements (zoom-out example in Fig. 16). Dreamix can generate smooth visual modifications that align
with the temporal information in the input video. This includes adding effects (field in Fig. 13 and saxophone
in Fig. 16), adding or replacing objects (cake in Fig. 7, hat and robot in Fig. 13, skateboard in Fig. 14), and
changing the background (truck in Fig. 16).

Image-driven Videos. When the input is a single image, Dreamix can use its video prior to add new
moving objects (penguins in Fig. 6 and camel in Fig. 17), inject motion into the input (turtle in Fig. 3 and
coffee in Fig. 6), or new camera movements (buffalo in Fig. 6). Our method is unique in adding large motions
and moving objects into general, real-world images.
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Input Video

“A beach with palm trees and swans in the water”

Input Video

“A knife is cutting a cake on a red plate”

Figure 7: Additional Video Editing Results: Dreamix can replace objects and appearance in real videos,
for example, replacing the papaya with a cake

“A bear walking”

“A bear is drinking from a glass”

“A bear walking”

Input Images

Input Images

Input Images

“A streching caterpillar crawling on soft leaves”

“Examining streching caterpillar toy with a magnifying glass”

Input Images

Input Images

Figure 8: Additional Subject-driven Video Generation Results: Dreamix can use a small number
of independent images to learn the visual appearance of a subject and animate it in a realistic manner.
In the first row, the bear animated to walk while maintaining fidelity to the original bear. Dreamix can
also compose a real subject with objects present in a prompt. In the second row, the magnifying glass is
composed and animated into a scene with the caterpillar

Subject-driven Video Generation. Dreamix can take an image collection showing the same subject and
generate new videos with this subject in motion. We demonstrate this on a range of subjects and actions
including: the weight-lifting toy fireman in Fig. 3, walking and drinking bear in Fig. 8 and Fig. 18. It can
also place the subjects in new surroundings, e.g., moving caterpillar on a leaf or even under a magnifying
glass (Fig. 18 and Fig. 8).

6.2 Baseline Comparisons

Baselines. We compare our method against three baselines: Unconditional. Directly mapping the text
prompt to a video, without conditioning on the input video using a model similar to Imagen-Video. Plug-
and-Play (PnP). Applying PnP(Tumanyan et al., 2023) on each video frame independently. Tune-a-Video
(TaVid). Finetuning Tune-a-Video(Wu et al., 2023) on the input video.

Data. We created a dataset of 29 videos taken from YouTube-8M (Abu-El-Haija et al., 2016) and 127 text
prompts, spanning different categories (see Appendix E).

Quantitative Comparison. We measure alignment by the frame-level CLIP Score (Hessel et al., 2021)
and quality (stability) with LPIPS (Zhang et al., 2018) between consecutive frames. As automatic metrics
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Table 1: User Study: Users rated editing results
by quality, fidelity to the base video, and alignment
with the text prompt. Based on visual inspection,
we require an edit to score greater than 2.5 in all di-
mensions to be successful and observe that Dreamix
is the only method to achieve the desired trade off

Method Quality Fidelity Alignment Success
PnP 2.16 ±1.13 3.78 ±0.99 3.39 ±1.38 20%
TaVid 1.99 ±0.92 3.29 ±1.21 2.69 ±1.55 13%
Ours 3.58 ±1.04 3.55 ±1.09 3.79 ±1.33 76%
Uncond. 3.43 ±1.09 2.49 ±1.12 4.28 ±1.02 45%

Table 2: Baseline Comparisons: Our method
achieves better temporal consistency than PnP and
Tune-a-Video (TaVid). Moreover, Dreamix is suc-
cessful at motion editing while other methods cannot.
This is reflected in the better quality (low LPIPS) and
alignment (high CLIP Score). While the unconditional
method seems to outperform Dreamix, it has poor fi-
delity as it is not conditioned on the input video

Metric PnP TaVid Ours Uncond.
LPIPS ↓ 0.209 0.145 0.112 0.101
CLIP Score ↑ 0.304 0.303 0.317 0.320
Fidelity See user study (Tab. 1)
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“An orangutan next to a pond waving both arms in the air”
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Figure 9: Comparison to Baseline Methods for Motion Edits: Although the quality and alignment
of unconditional generation are high, there is no resemblance to the original video (low fidelity). While PnP
and Tune-a-Video preserve the scene, they fail to edit the motion according to the prompt (no waving) and
suffer from poor temporal consistency (flickering). Our method is able to edit the motion according to the
prompt while preserving the fidelity and generating a high quality video. Moreover, video-based methods
(Uncond. and ours) exhibit motion blur, also present in real videos

do not measure fidelity and are imperfectly aligned with human judgement, we also conduct a user study. A
panel of 20 evaluators rated each video/prompt pair on a scale of 1 − 5 to evaluate its quality, fidelity and
alignment. When visually inspecting the results we discover that videos that received a score lower than 2.5
in any of the dimensions are usually clear failure cases. Therefore we also report the percentage of items
where all dimensions are larger than 2.5 (i.e. “Success”). See Appendices F and G for additional details on
the evaluation protocol.
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“A grizzly bear walking 
around the lake, large 
birds flying in the sky”
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Figure 10: Image-driven Videos Comparison: We compare Dreamix against different SoTA image-
driven video baselines. Gen2 and Pika are commercial products, although they maintain great visual fidelity
to the input image, they did not add motion and animated objects that align with our input prompt.
VideoComposer fails to maintain fidelity to the original image and underperforms in terms of temporal
consistency and alignment. Dreamix is able to add large motion and animated objects to the image

The evaluation and user study are presented in Tab. 2 and Tab. 1. Image-based methods (PnP, Tune-a-Video)
exhibit impaired temporal consistency, resulting in low quality. Moreover, they are unable to perform motion
edits, resulting in poor alignment and high fidelity. Video-based methods maintain temporal consistency
while allowing motion editing. Although unconditional generation outperforms our method in the automatic
evaluations (Tab. 2), it has poor fidelity (Tab. 1) as it is not conditioned on the input video. Overall, our
method has the highest success rate.

Qualitative Comparison. Figure 9 presents an example of motion editing by Dreamix compared to the
baselines. The text-to-video model achieves low fidelity edits as it is not conditioned on the original video.
PnP preserves the scene but fails to perform the edit and lacks consistency between different frames. Tune-
a-Video exhibits better temporal consistency but still fails to perform the motion edit. Dreamix performs
well on all three objectives, adding the desired motion while preserving fidelity and high-quality.

Application Comparison. We compare Dreamix to recent methods designed specifically for Image-driven
video generation (e.g. VideoComposer (Wang et al., 2024), Gen2 (gen), PikaLabs (pik)). We present the
results in Fig. 10, Dreamix is the only method that is able to add large motion and animated objects to the
image. For more comparisons see the supplementary videos, for more details see Appendix C.4.

6.3 Ablation Study

We ablate the use of finetuning and the mixed video-image finetuning by performing a user study using
the dataset described above. The ablation indeed supports the idea of using finetuning in cases where
high-editability is required. We can see that Motion changes require high-editability and are thus improved
by finetuning. Moreover, as the noising corrupts the video, preserving fine-details in background, color
or texture edits requires finetuning. In contrast, denoising without finetuning worked well for style edits,
where finetuning was often detrimental. This is expected as style edits are often conflicted with high fidelity
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Figure 11: Noise-Finetuning Tradeoffs: We
compare the effect of noise magnitude and number of
finetuning iterations on edited videos. Higher noise
allows for larger edits but reduces fidelity, more it-
erations improve fidelity at higher noises. The best
results are obtained for high noise and a large num-
ber of finetuning iterations (bottom left is input)

Figure 12: Ablation Study: Left: Users were
asked to compare text-guided video edits of with
(w/ Ft) and without (w/o Ft) finetuning. “None”
indicates failure of both methods according to user.
Apart from style-based edits, where high fidelity is
not needed, finetuning significantly improves the re-
sults. Right: Users were asked to compare video
finetuning (Vid) with mixed video-image finetuning
(Mix). Mixed finetuning significantly improves the
results for most cases

Edit
Type

# of
Edits w/o Ft. w/ Ft. None Vid Mix

Motion 36 17% 72% 11% 35% 65%
Object 44 36% 48% 16% 62% 38%
Background 32 19% 77% 9% 36% 64%
Style 15 67% 27% 6% 26% 74%

preservation (e.g. changing the texture of an object means reducing fidelity). The ablation shows that in
most cases mixed finetuning improves the results by a wide margin. We present a visual ablation in Fig. 11
and user study results in Fig. 12.

7 Limitations

While Dreamix is the first diffusion-based video method that can edit motion, it has limitations.

Computational Cost. VDMs are computationally expensive. Finetuning our model using 4 TPU v4
accelerators requires around 30 minutes per video. Once finetuned, sampling takes roughly 2 minutes on
similar hardware. Speeding it up will allow Dreamix to be used for more applications.

Comparison to Image-based Methods. Dreamix uses VDMs while previous approaches used image-
level methods. As VDMs are nascent and have lower resolution than image DMs, this presents an interesting
trade-off. Dreamix has the ability to edit motion and has high temporal consistency, while previous methods
e.g., PnP, Tune-a-Video, Gen-2, can have higher spatial resolution. Although Tune-a-Video can achieve high
alignment for appearance editing on videos with limited motion, it suffers from poor temporal consistency
(see supplementary videos). This highlights the importance of using a VDM backbone that provides temporal
consistency and enables motion editing.

Model Availability. Since our VDM is not currently publicly available, we conducted a preliminary
investigation on the publicly available “ModelScope” (Wang et al., 2023a). It is important to note that
“ModelScope” modified an image diffusion model (StableDiffusion) into a video diffusion model. It exhibits
some temporal modeling capabilities but not as much as a full VDM model which we use. We were none-
the-less able to reproduce our main findings by applying Dreamix on “ModelScope”. For more details see
Appendix C.5 and the supplementary videos. We note that when using the “ModelScope” backbone, the
computational cost of our method drops significantly and is on par with other editing methods (< 15 minutes
for training, < 2 minutes for inference, and roughly 24GB of GPU memory).

8 Conclusion

We presented a diffusion-based method that can edit motion in real-world videos. Our method can be
applied to image animation and subject-driven video generation. Extensive experiments demonstrated the
unprecedented capabilities of our method.
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A Attached Videos

In addition to this file, we include a number of videos, we highly encourage the reviewer to view them.
The included videos are:

1. “1_dreamix_overview_video.mp4” - An overview video of our method with audio narration.

2. “2_dreamix_video_editing_examples.mp4” - A number of video editing examples generated by our
method (Dreamix).

3. “3_dreamix_image2video_examples.mp4” - A number of image-to-video examples generated by our
method (Dreamix).

4. “4_dreamix_subject_driven_video_generation_examples.mp4” - A number of subject-driven video
generation examples generated by our method (Dreamix).

5. “5_dreamix_baseline_comparisons.mp4” - A number of videos comparing our method (Dreamix)
to the other baselines.

6. “6_dreamix_image2video_baseline_comparison.mp4” - A number of videos comparing our method
(Dreamix) to the other baselines for the task of image to video generation.

7. “7_dreamix_modelscope_comparison.mp4” - A number of videos of our method (Dreamix) running
on a ModelScope VDM backbone. We also ablate our method as opposed to regular finetuning with
the ModeScope backbone.

Note: to match the requirement of maximum 100MB for the supplementary, all the videos are
compressed, the uncompressed versions will be released in the final revision.

B Social Impact

Our primary aim in this work is to advance research on tools to enable users to animate their personal
content. While the development of end-user applications is out of the scope of this work, we recognize
both the opportunities and risks that may follow from our contributions. As discussed above, we anticipate
multiple possible applications for this work that have the potential to augment and extend creative practices.
The personalized component of our approach brings particular promise as it will enable users to better align
content with their intent, despite potential biases present in general VDMs. On the other hand, our method
carries similar risks as other highly capable media generation approaches. Malicious parties may try to
use edited videos to mis-lead viewers or to engage in targeted harassment. Future research must continue
investigating these concerns.

C Implementation Details

C.1 Architecture

All of our experiments were preformed on a VDM that is similar to Imagen-Video (Ho et al., 2022a), a
pertrained cascaded text-to-video diffusion model, with the following components:

1. A T5-XXL(Raffel et al., 2020) text encoder, that computes embeddings from the textual prompt.
This embeddings are then used as conditioning by all other models.

2. A base video diffusion model, conditioned on text. It generates videos at 16 × 24 × 40 × 3 resolution
(frames X height X width X channels) at 3 fps.
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3. 6 super-resolution video diffusion models, each conditioned on the text and the output video of the
previous model. Each model is either spatial (SSR), i.e. upscales resolution, or temporal (TSR),
i.e. fills in intermediate frames between the input frames. The order of super resolution models is
TSR (2x), SSR (2x), SSR(4x), TSR(2x), TSR(2x), and SSR(4x). The multiplier in the parenthesis
for output frames (for TSR), and for output pixels in height and width (for SSR). The final output
video is in 128 × 768 × 1280 × 3 at 24 fps.

Note that the diffusion models are pretrained on both videos and images, with frozen temporal attention
and convolution for the latter. Our mixed finetuning approach treats video frames as if they were images.

Distillation. For some of these models, we use a distilled version to allow for faster sampling times. The
base model is a distilled model with 64 sampling steps. The first two SSR models are non-distilled models
with 128 sampling steps (due to finetuning considerations, see below). All other SR models use 8 sampling
steps. All models use classifier-free-guidance weight of 1.0 (meaning that classifier free guidance is turned
off).

C.2 Finetuning

To reduce finetuning time, we only finetune the base model and the first 2 SSR models. In our experiments,
finetuning the first 2 SSR models using the distilled models (with 8 sampling steps) did not yield good
quality. We therefore use the non-distilled versions of these models for all experiments (including non-
finetuned experiments). When using “Mixed Video-Image Finetuning” we use α = 0.35, and finetune for
300 steps. For all our experiments we use a learning rate of 6 · 10−6.

C.3 Sampling

We use a DDIM sampler with stochastic noise correction, following (Ho et al., 2022a). For the last highest
resolution SSR, for capacity reasons, we use the model to sample a sub-chunks of 32 frames of the input
lower resolution videos, and then we concatenate all the outputs together back to 128 frame videos.

C.4 Image-driven Video Generation Baselines

We compare our method with three recent image-driven video generation baselines (see video
“6_dreamix_image2video_baseline_comparison.mp4”). VideoComposer, Gen-2, and PikaLabs. For Video-
Composer we use the official implementation, for each of the examples we generate 5 samples from different,
random seeds. We display the best result out of the 5 samples. We can see the results fail to maintain fidelity
to the original image and underperform in terms of temporal consistency and alignment. Since PikaLabs is
a commercial product we only have access through the official discord channel. For each of the examples we
generate 5 different samples, and we display the best result out of the 5 samples. We can see that although
the video maintains great visual fidelity to the input image, it did not add motion and animated objects that
align with our input prompt. As Gen-2 is a commercial product we only have access through the official
website channel. Due to limited credits (that cost money), for each of the examples we generate 3 different
samples, and we display the best result out of the 3 samples. In addition, Gen-2 allows for some “cinematic”
effects, for the relevant examples we use the same transformations as the ones listed in Tab. 3. We can
see that although the video maintains great visual fidelity to the input image, it did not add motion and
animated objects that align with our input prompt. It is worth noting that all the methods also generate
shorter videos than our method.

C.5 Dreamix with ModelScope Backbone

Since our VDM is not currently publicly available, we conducted a preliminary investigation on the publicly
available “ModelScope” (Wang et al., 2023a) (see video “7_dreamix_modelscope_comparison.mp4”). For
each of the videos, we show the results of our method when used with the ModelScope backbone (named
“ModelScope + Ours” in the comparison video). In addition, we ablated the need for our method with the
ModelScope backbone by running a simple finetuning of ModelScope on the input video (named “ModelScope
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+ Finetuning” in the comparison video). We also include the results of Dreamix using the VDM backbone
used for the rest of the paper. In both cases, we finetune ModelScope for 750 steps with a learning rate
of 10−5, for our method we use, α = 0.5 with s = 0.85. For a fair comparison, we generate the results
in the same spatial resolution as the results generated by our method (320 × 192), however, higher spatial
generation resolution is possible when using ModelScope. We can see that our method can be applied to
other, open source backbones and indeed improves the fidelity and temporal consistency of the generated
results. It is important to note that “ModelScope” modified an image diffusion model (StableDiffusion) into
a video diffusion model. It exhibits some temporal modeling capabilities but not as much as the full VDM
model that we use.

D Image-to-Video Transformations

We only use perspective transformations to create “cinematic” effects, e.g., panning, zooming, and cam-
era shake. In our supplementary videos, we included Image-to-Video examples with different perspective
transformations applied to them. We detail these transformations in Tab. 3. Some of the examples did not
use the perspective transformations at all. Also, ensuring the smoothness of the transformed sequence is
unnecessary as this is fixed by the diffusion and super-resolution processes.

Table 3: Perspective Transformations

Video Timestamp Transformation Effect
Plant 00:00 Translate Pan
Turtle 00:11 Rand. translate Shake
Coffee 00:22 Translate Pan
Camel 00:33 None None
Volcano 00:43 Rand. translate Shake
Bear 00:54 Perspective Pan
Penguins 01:05 None None
Unicorn 01:15 Scale Zoom out
Buffalo 01:26 Scale Zoom out
Bigfoot 01:37 Translate Pan

E Evaluation dataset

In all evaluations described in the paper, we used a dataset of 29 videos with 127 edit prompts. The dataset
videos were selected from YouTube-8M (Abu-El-Haija et al., 2016) and show animals, people performing
actions, vehicles, and other objects. The edit prompt categories are motion, object, background, and style.
In the motion category the prompts perform motion editing (e.g. adding motion with the prompt “An
orangutan next to a pond waving both arms in the air”), the object category performs object level edits
(e.g. adding a party hat with the prompt “A puppy walking with a party hat”), the background category
performs edits of the background (e.g. adding a river with the prompt “A blue pickup truck crossing a deep
river”), and the style category performs style-transfer like edits (e.g. changing the style to cartoon with the
prompt “A cartoon of a man playing a saxophone”).

F Human evaluation details

We performed human evaluations for the baseline comparison and the ablation analysis. The evaluations
were conducted by a panel of 20 human raters using the dataset described in the main paper. The video
resolution shown to raters was 350 × 200, except for tune-a-video where we used a resolution of 200 × 200
(because we observed it performs better with square outputs).
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F.1 Ablation Study

In the ablation study the raters were asked to select the best edited video out of 12 hyperparameter combi-
nations:

• no finetuning, with s ∈ 0.4, 0.7, 0.8, 0.85

• video finetuning for 64 steps, with s ∈ 0.8, 0.9, 0.95, 0.98

• mixed finetuning, with (ftsteps, s) ∈ (150, 0.98), (200, 0.98), (200, 1.0), (300, 1.0)

F.2 Baseline Comparison

In the baseline comparisons described in the paper, raters evaluated videos on quality, fidelity and alignment.
The raters saw the original video alongside an edited video and answered the following questions on a scale
of 1 − 5:

1. “Rate the overall visual quality and smoothness of the edited video.”

2. “How well does the edited video match the textual edit description provided?”

3. “How well does the edited video preserve unedited details of the original video?”

F.3 Direct comparison

We also conducted a direct comparisons between the different editing methods. In this comparison raters
saw the videos simultaneously and selected the best edit. We conducted the comparison once with a fixed
set of hyperparameters for Dreamix, and once more showing a single Dreamix video chosen among 12
hyperparameters sets. Results can be seen in Tab. 4.

Table 4: Direct comparison of editing methods: Users were shown editing results of different editing
methods were asked to pick the best one. In the “Multiple HP” column, the Dreamix video was chosen
from a set of 12 hyperparameters. We show the number of times each method got a majority vote (out of 5
ratings)

Method Single HP Multiple HP
Plug-and-Play 2% 1%
Tune-a-Video 6% 6%
Ours 34% 77%
No good edit / Uncond. 58% 16%

G Quantitative Evaluation

In the quantitative baseline comparison described in the paper we reported alignment and quality. We
measure alignment by the frame-level CLIP Score (Hessel et al., 2021). That is, we compute the cosine
similarity between the CLIP (Radford et al., 2021) embedding and the CLIP text embedding for each frame.
For each video we take the average over all frames, finally we report the mean over all the videos. For quality
(stability) we compute the LPIPS (Zhang et al., 2018) distance between all pairs of consecutive frames. For
each video we take the average over all pairs of consecutive frames, finally we report the mean over all the
videos. To perform a fair comparison with Tune-a-Video (which outputs videos of 24 frames at 5 fps) we
subsampled the rest of the methods to match this framerate. Additionally, before passing through CLIP and
LPIPS, all the frames are preprocessed to match the required format (i.e. resize to 224, center crop to 224,
ImageNet normalization).
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H Image Attribution

• Desert - https://unsplash.com/photos/PP8Escz15d8

• Fuji mountain https://unsplash.com/photos/9Qwbfa_RM94

• Tree in snow - https://unsplash.com/photos/aQNy0za7x0k

• Hut in snow - https://unsplash.com/photos/qV2p17GHKbs

• Lake with trees - https://unsplash.com/photos/dIQlgwq6V3Y

• Plant - https://unsplash.com/photos/LrPKL7jOldI

• Turtle - https://unsplash.com/photos/za9MCg787eI

• Yosemite - https://unsplash.com/photos/NRQV-hBF10M

• Foggy forest - https://unsplash.com/photos/pKNqyx_v62s

• Coffee - https://unsplash.com/photos/SMPe5xfbPT0

• Monkey - https://www.pexels.com/video/a-brown-monkey-eating-bread-2436088/

I Additional Results

Below we present additional results of our method, for the best experience see the included videos.
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Input Video

“A man playing a saxophone with musical notes flying out”

Input Video

“A puppy walking with a party hat”

Input Video

“Stirring noodles in a pot”

Input Video

“Moving through a field on a wooden path with fire on all sides”

Input Video

“A hand drawing a big circle on a paper”

Input Video

“Robot claw writing on a paper”

Input Video

“A beach with palm trees and swans in the water”

Input Video

“A knife is cutting a cake on a red plate”

Figure 13: Additional Video Editing Results (1/4)
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Input Video

“A deer rolling on a skateboard”

Input Video

“A small brown dog and a large white dog are sleeping on the kitchen floor”

Input Video

“A hand drawing a big circle on a paper”

Input Video

“Robot claw writing on a paper”

Input Video

“A small brown dog and a large white dog are rolling a soccer ball on the kitchen floor”

Input Video

“A brown cat and a white cat on the kitchen floor”

Input Video

“A small brown dog and a large white dog are rolling a soccer ball on the kitchen floor”

Input Video

“A brown cat and a white cat on the kitchen floor”

Figure 14: Additional Video Editing Examples (2/4)
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Input Video

“A deer rolling on a skateboard”

Input Video

“A small brown dog and a large white dog are sleeping on the kitchen floor”

Input Video

“Stirring noodles in a pot”

Input Video

“Moving through a field on a wooden path with fire on all sides”

Input Video

“An orangutan next to a pond waving both arms in the air”

Input Video

“An orangutan with an orange hair bathing in a beautiful bathroom”

Input Video

“An orangutan with an orange hair walking next to a pond”

Input Video

“An orangutan with an orange hair waving hello next to a pond”

Figure 15: Additional Video Editing Examples (3/4)
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Input Video

“An old pickup truck carrying wood logs”

Input Video

“Zooming out from an old pickup truck”

Input Video

“A blue pickup truck crossing a deep river”

Input Video

“A puppy leaping”

Input Video

“An old pickup truck carrying wood logs”

Input Video

“Zooming out from an old pickup truck”

Input Video

“A man playing a saxophone with musical notes flying out”

Input Video

“A puppy walking with a party hat”

Figure 16: Additional Video Editing Examples (4/4)
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“Time-Lapse of black beans plant sprouting”Input Image

“Filling a glass with warm coffee”Input Image

“A bigfoot walking in the snowstorm”Input Image

“A camel walking in the sand dunes”Input Image

“A unicorn running in the foggy forest, zoom out”Input Image

“A beautiful sunset with rowing boats on the river, birds flying in the sky, zoom in”Input Image

“A grizzly bear walking around the lake, large birds flying in the sky”Input Image

“Time-Lapse of black beans plant sprouting”Input Image

“Filling a glass with warm coffee”Input Image

“A bigfoot walking in the snowstorm”Input Image

“A camel walking in the sand dunes”Input Image

“A unicorn running in the foggy forest, zoom out”Input Image

“A beautiful sunset with rowing boats on the river, birds flying in the sky, zoom in”Input Image

“A grizzly bear walking around the lake, large birds flying in the sky”Input Image

“Time-Lapse of black beans plant sprouting”Input Image

“Filling a glass with warm coffee”Input Image

“A bigfoot walking in the snowstorm”Input Image

“A camel walking in the sand dunes”Input Image

“Underwater shot of a sea turtle with a shark approaching from behind”Input Image

“Volcano eruption fiery red lava coming down the mountain, leaves blowing in the wind”Input Image

“Emperor penguins returning to their home”Input Image

Figure 17: Additional Image-to-Video Examples
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“A bear walking”

“A bear is drinking from a glass”

“A bear walking”

Input Images

Input Images

Input Images

“A streching caterpillar crawling on soft leaves”

“Examining streching caterpillar toy with a magnifying glass”

Input Images

Input Images

“A toy fireman is dancing”

“A toy fireman is lifting weights”

Input Images

Input Images

“A bear walking”

“A bear is drinking from a glass”

“A bear walking”

Input Images

Input Images

Input Images

Figure 18: Additional Subject-Driven Video Generation
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