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Abstract

We revisit the Bayesian Black-Litterman (BL)
portfolio model and remove its reliance on sub-
jective investor views. Classical BL requires an
investor “view”: a forecast vector ¢ and its un-
certainty matrix {2 that describe how much a
chosen portfolio should outperform the market.
Our key idea is to treat (g, €2) as latent variables
and learn them from market data within a single
Bayesian network. Consequently, the resulting
posterior estimation admits closed-form expres-
sion, enabling fast inference and stable portfo-
lio weights. Building on these, we propose two
mechanisms to capture how features interact with
returns: shared-latent parametrization and feature-
influenced views; both recover classical BL and
Markowitz portfolios as special cases. Empiri-
cally, on 30-year Dow-Jones and 20-year sector-
ETF data, we improve Sharpe ratios by 50% and
cut turnover by 55% relative to Markowitz and the
index baselines. This work turns BL into a fully
data-driven, view-free, and coherent Bayesian
framework for portfolio optimization.

1 Introduction

We propose a Bayesian reformulation of the Black-
Litterman model for portfolio optimization. Our moti-
vation comes from the early works of the model (Black
& Litterman, 1992; Lee, 2000; Salomons, 2007; Idzorek,
2007) where human experts are required to specify the
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value of investor views and corresponding uncertainties
(g, 2). For example, the i-th views “the 2nd asset will out-
perform the 1st asset by 9 + 3%” is encoded as {P; =
[-1,1,...,0];¢; = 0.09;; = 0.03%}. Across decades,
this heuristic framework attracts many research (Beach &
Orlov, 2007; Palomba, 2008; Duqi et al., 2014; Silva et al.,
2017; Deng, 2018; Kara et al., 2019; Kolm & Ritter, 2021)
working on this estimation. Among them, one common
approach is to take asset features and generate (g, 2) by
external models. However, relying on external estimators in
these methods leads to incoherent parameter learning and
error propagation across the separate models.

In this work, we offer a new approach. Our reformulation
recasts the Black-Litterman model as a Bayesian network
to integrate the features. Under different scenarios, we
identify two potential effects caused by the features and
accordingly present this network as specific models. Under
the scenarios without subjective investor views, this network
treats ¢ and € as latent — rather than externally estimated
— parameters, and thereby estimates posterior distribution
over both asset returns r and their parameters 6 directly
from data, i.e., features. In summary, our approach provides
a unification of feature integration and parameter inference
within a single framework, ensuring coherent estimations
and mitigating error propagation.

Contributions. Our contributions include:

* Eliminating Subjective Human Input. We introduce
a Bayesian network formulation of the Black-Litterman
model, treating (g, {2) as latent variables. This enables
direct estimation from feature data, bypassing heuristic
human inputs and potential bias while subsuming the
classical Black-Litterman model as a special case.

* Unified Feature Integration and Parameter Inference.
Unlike prior works, our approach avoids error propaga-
tion from external estimators by unifying feature integra-
tion and parameter inference into a single framework.

* Empirical Outperformance. = Our model achieves
a 49.8% mean improvement in Sharpe ratios over the
Markowitz model (0.66-0.87 vs. 0.35-0.62) and market
indices (S&P 500, DJIA) on 20-year and 30-year datasets,
respectively. It achieves a 55.1% reduction in turnover
rates while showing robustness to hyperparameters.
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Organization. Section 2 includes preliminaries. Section 3
introduces our models and their theoretical analysis. Sec-
tion 4 presents empirical studies to backup our work. Ap-
pendix A offers a practical guide for our models. We defer
conclusions and related works to Section 5 and Appendix B.

2 Preliminaries

Consider m assets, and let r € R™ be the returns of the
m assets. Consider k sets of specified portfolio weights
on the m assets, and encode each weight into each row
of a portfolio weight matrix P € R¥*™_ Let ¢ € RF be
the investor views on the k specified portfolio returns and
encode the variance of each view into diagonal elements
of a diagonal uncertainty matrix Q € R¥**_ Larger Q;
implies greater uncertainty in (PE[r]); and Q;; = 0 implies
absolute certainty.

Markowitz (1952) introduces the theory of portfolio opti-
mization, suggesting a suitable portfolio weight is the opti-
mal trade-off between the mean and variance of the portfolio.
To be concrete, we provide a formal definition below.

Definition 2.1 (Unconstrained Risk-Adjusted Mean-Vari-
ance Optimization). Let » € R™ be the returns of the m
assets, 7 denote the unobserved (or future) asset returns, and
Jd € [0, 00| be a risk-adjusted coefficient. The optimization
goal is to find w € R™ maximizing the objective function:

max {wTE[F] - ngCov[ﬂw} .

One major challenge of this framework is the reliance on
estimating 7

Problem 1 (Predictive Estimation of Unobserved Asset Re-
turns). Letr € R™ represent the returns of the m assets and
7 denote the unobserved (or future) asset returns. Precisely,
given observed data D, the goal is to estimate unobserved
asset returns 7 ~ p(r|D).

In this work, we refer to methods addressing such estima-
tion challenge (Problem 1) as portfolio models or simply
portfolios. Following the predictive estimation of 7, we
apply the mean-variance optimization framework to obtain
a decision vector w, referred to as portfolio weights.

A basic approach, termed the traditional Markowitz model
(Markowitz, 1952), involves predicting the expected returns
and the covariance matrix of asset returns directly from
historical data using the sample mean and sample covari-
ance. This method relies on the assumption that historical
estimates are accurate representations of future parameters.
However, in practice, estimation errors in the expected re-
turns and covariance matrix lead to extreme and highly
sensitive portfolio weights (Michaud, 1989; DeMiguel et al.,
2009). To mitigate this issue, the Black-Litterman model
integrates the market equilibrium with investor views by
Black-Litterman formula, thereby producing more stable

and diversified portfolio weights (Black & Litterman, 1992).
The following context elaborates on this model in detail.

Black-Litterman. Black-Litterman (BL) model outputs
a posterior of the asset returns mean E[r], termed Black-
Litterman formula, by Bayes’ theorems, taking investor
views and market equilibrium price as input. Upon this, the
model offers a predictive estimate 7 on asset returns:

Theorem 2.1 (Black-Litterman (BL) Formula and Predic-
tive Estimation, Theorem 1 of (Satchell & Scowcroft, 2007)).
Let » € R™ be the vector of asset returns with covariance
¥ == Cov|r]. Let P € R**™ be the portfolio weight matrix
for k specified portfolios, and (g, ) € R¥ x RF*¥ represent
investor views and their uncertainty. Let II € R™ repre-
sent the market equilibrium price and 7 > 0 be a scaling
factor. Assume a prior P E[r] ~ N(q, ) and a likelihood
II | E[r] ~ N(E[r],7%), then the posterior mean of r
given II is

Elr | 11] ~ N(G;'[(r2)"'+ PTQ ™! ¢),G; 1),

T

where G, = (7X)71 + PT Q! P. Moreover, the predic-
tive distribution 7 := r|II is

7~ N(G;l [(r=)" '+ PTQq], = + G;l).

The Black-Litterman formula (Theorem 2.1) is a well-
known result of the Black-Litterman model. However, the
derivation lacks explanations of the assumptions used. Most
early works, including the original paper (Black & Litter-
man, 1992), provide heuristic derivation, while many (Lee,
2000; Salomons, 2007; Idzorek, 2007) share different under-
lying assumptions. This inconsistency leads to confusion
for both the analysis of the model and a rigorous inter-
pretation with Bayesian statistics. To solve the issues, the
Black-Litterman-Bayes (BLB) model (Kolm & Ritter, 2017)
provides a reformulation of the Black-Litterman model.

Black-Litterman-Bayes (BLB). Kolm & Ritter (2017)
introduce the Black-Litterman-Bayes model to perform
Bayesian inference on 6, treating the market equilibrium as
prior and the investor views as likelihood:

Definition 2.2 (BLB Model (6, r, ¢, €2), Modified from Def-
inition 1 of (Kolm & Ritter, 2017)). Let » € R™ be the
returns of the m assets, parametrized by 6, with - ~ p(r|6).
Let ¢ € R¥ represent the views on the returns of the k speci-
fied portfolio and © € R*** be the uncertainty matrix. The
Black-Litterman-Bayes (BLB) model is a portfolio model
composed of three fundamental density functions:

1. Parametrized Asset Returns: p(r|6), the distribution of
asset returns given the parameter.

2. Prior: 7(0), representing market equilibrium.

3. Likelihood: L(|q, ) == p(q, |6), capturing the rela-
tionship between the parameter and the investor views.
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Appendix C.1 details modelings of the prior and likelihood.

To recap, the Black-Litterman-Bayes model is a portfolio
model aiming to address the estimation challenge of asset re-
turns (Problem 1). It solves the problem by using Bayesian
inference to obtain the posterior of the model parameter
p(0]g, ), and subsequently produce the predictive estima-
tion of unobserved asset returns 7. Following the estimation,
we apply the mean-variance optimization framework (Defi-
nition 2.1) to obtain the portfolio weights wpr,p.

The intuition of the model is to simulate the dynamics of
how the market adapts to new information after observing it.
Here, the market equilibrium represents the initial state, and
the investor views approximates the unobserved information.
‘When there is no investor views, the model remains in the
initial state of market equilibrium.

Here we show the Black-Litterman formula (Theorem 2.1) is
the posterior estimation on € of the Black-Litterman-Bayes
model under Assumptions C.1 and C.2:

Lemma 2.1 (Estimations by BLB Model). Let the market
capitalization weight on m assets be weap, € R™ and § €
[0, 00] be a risk-adjusted coefficient. Let P € R¥*™ be the
portfolio weight matrix for £ specified portfolios. Given a
BLB model (0, r, g, ) (Definition 2.2), assume

r~N,3), @.1)
0 ~ N (0o, %0), (2.2)
Pd=qg+e e~ N(0,0Q), (2.3)

where X, ¥y € R™*™ are given intrinsic and prior covari-
ance. The posterior mean is
p(0q,Q) = N(6;G (2500 + PTQ7'q) ,G™),
2.4)

where G == X ! 4 PTQ~1P. The predictive estimation of
unobserved asset returns 7 := 7|q, ) is

FoN(F G H(Sg ' B4+ Dweap + PTQ1q), S+ G71).
(2.5)

Proof. See Appendix E.1 for a detailed proof. O

Lemma 2.1 provides a solution to Problem 1. With the
predictive estimation of asset returns 7, the mean-variance
optimization framework (Definition 2.1) determines the port-
folio weights wpr,p. However, it relies on the subjective
investor views and corresponding uncertainty (g, Q).

'Besides providing the Bayesian inference formulation of the
Black-Litterman model (Definition 2.2), the original work (Kolm
& Ritter, 2017) and its follow-up work (Kolm & Ritter, 2021)
consider external data, specifically factors in Arbitrage Pricing
Theory (APT) model. Yet, these works focus on how their Black-
Litterman-Bayes (BLB) approach applies to the APT model and
do not address the issues of subjective investor views.

To address this issue, in this work, we propose a Bayesian
reformulation of the Black-Litterman model without the
need for subjective (g, 2) from humans.

3 Method

In this work, we recast the Black-Litterman model as
Bayesian networks for principled estimation of both investor
views and asset returns, eliminating the need for subjective
inputs. This Bayesian formulation serves as a conceptual
baseline for subsequent portfolio model specifications.

In Section 3.1, we introduce the Bayesian Black-Litterman
network, which underpins the Black-Litterman-Bayes
model (Kolm & Ritter, 2017). Building on this, Section 3.2
extends the network to incorporate external features, yield-
ing the feature-integrated Black-Litterman network.

‘We then examine two scenarios:

¢ In Section 3.3, where investor views are observed, we
illustrate the corresponding network (Figure 2) and define
the Mixed-effect Black-Litterman (M-BL) model (Defini-
tion 3.3).

* In Section 3.4, where no subjective views are given, we
present two alternative probabilistic graphical models
(Figure 3) and define the Shared-Latent-Parametrization
Black-Litterman (SLP-BL) and Feature-Influenced-
Views Black-Litterman (FIV-BL) models (Definitions 3.4
and 3.6).

3.1 Bayesian Black-Litterman Network

We introduce a Black-Litterman network (6, r, ¢, 2) with
the two causal relationships. First, the asset returns r are
realizations of the process governed by its parameter 6. Sec-
ond, the investor views ¢ are formed based on # with an
associated error term ¢ ~ N (0, ). We visualize this con-
ceptual network in Figure 1.

Figure 1: Black-Litterman network (0, r, g, §2).

3.2 Bayesian Feature-Integrated Black-Litterman
Network

Building upon the Black-Litterman Network, we introduce
a feature-integrated Black-Litterman network as a Black-
Litterman network that integrates features F' and their ef-
fects. Specifically, features F' exert two causal effects:

« Effect 1: Features F’ are extracted from the parameter 6.
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 Effect 2: Features F' influence the formation of views q.

We quantitatively specify Effect 1 and 2 in Sections 3.3
and 3.4.

3.3 General Scenario: Features with Observed Views

In this section, we discuss the general scenario where views
are observed (Problem 2) by specifying the two causal ef-
fects introduced in Section 3.2. Incorporating these effects
into the network, we showcase it in Figure 2 and define
the Mixed-effect Black-Litterman (M-BL) model (Defini-
tion 3.3) based on it. Then, we estimate posterior distribu-
tion over both asset returns r and their parameter 6 (Corol-
lary 3.1.1 and Theorem 3.1).

Consider the following problem:

Problem 2 (Feature-and-Views Hybrid Predictive Estima-
tion). Let r € R™ represent the returns of the m assets
and 7 denote the unobserved (or future) asset returns. Let
q € R” represent the views on returns of the & portfolios.
Let f; € R represent the features on the i-th asset and
F € R™*™ be a block-diagonal matrix defined as

F = diag(f;r,f;—,...7f;).

Given D = (q,Q, F,QF) where (¢q,9, F) are estimated
from observations of asset returns, views, and features
{(ri,qu, F)}1, and QF is the homoscedastic error matrix
corresponding to the observations { £}, the goal is to
estimate unobserved asset returns 7 ~ p(r|D).

We aim to solve Problem 2 by feature-integrated Black-
Litterman network, incorporating a mix of two causal effects
of features in Section 3.2. Specifically,

» Effect 1: Features F' are extracted from the parameter
0. Consequently, the features F', along with their error
term €& ~ N(0,QF), share the common parameter ¢
with asset returns r and investor views q.

* Effect 2: Features F' influence the formation of views q.
Consequently, the features F' and the parameter 6 jointly
determine the views ¢ with an uncertain € ~ N (0, ).

We visualize the network in Figure 2 under this general

scenario.

Figure 2: Feature-Integrated BL network with features and
observed views (6,7, q,Q, F, Q).

To capture Effect 1, we define a 6 <> F’ relationship:

Definition 3.1 (§ < F Linear Model). Given features
F € R™Xdm et r € R™ be the returns of the m assets,
parametrized by 6, with r ~ p(r|f). Define regression
intercept vector af” € R™, regression coefficient vector
BF e R¥™ random error ¢/’ € R™, and error matrix Q' €
R™>™ such that:

0=a" + FpF + 8, € ~ N(0,0).

To capture Effect 2, we define a g <> F' <+ 0 relationship:

Definition 3.2 (¢ <+ F' < 6 Linear Model). Given features
F € R™*™ and portfolio weight matrix for k specified
portfolios P € R¥*™ let r € R™ be the returns of the m
assets, parametrized by 6, with 7 ~ p(r|0) and ¢ € R¥ be
the views on returns of the k portfolios. Define regression
intercept vector a € R™, regression coefficient vector 8 €
R scale constant ¥ € R, random error ¢ € R™, and
uncertainty matrix 2 € R™*™ such that:

g+e=Pla+FpB++0), e~ N(0,Q). 3.1

Remark 3.1 (Rationale). (3.1) extends the classical noisy
views model ¢ + ¢ = P# (Black & Litterman, 1992) to
incorporate the features F', where the LHS remains the
k-dimensional noisy views and the RHS generalizes the
classical Pf term by introducing a feature-driven term o +
F3, and a scaled parameter 6. It recovers the classical
model whena =0, 3 =0,and v = 1.

By mixing two effects of the features characterized by the
two linear models (Definitions 3.1 and 3.2), we showcase the
feature-integrated Black-Litterman network as the following
Mixed-effect Black-Litterman (M-BL) model:

Definition 3.3 (Mixed-effect Black-Litterman (M-BL)
Model (0, 7,q,Q, F,QF)). Let r € R™ be the returns of
the m assets, parametrized by 6, with r ~ p(r|f). Let
q € RF represent the views on the returns of the k specified
portfolio and Q € R¥** be the uncertainty matrix. Let
F € R™*4™ be the features of the m assets and error ma-
trix QF € R™*™ The M-BL model is a portfolio model
composed of four fundamental density functions:

1. Parametrized Asset Returns: p(r|6), the distribution of
asset returns given the parameter.

2

Prior: 7(0), representing market equilibrium.

3. Likelihood of Features: L(0|F, QF) := p(F, QF|0), the
0 <> F relationship (Definition 3.1).

4. Observation Likelihood: L(f, F|q, ?) := p(q, |0, F),
the ¢ <> F' <> 6 relationship (Definition 3.2).

We show the posterior estimation on 6 of the M-BL model:

Theorem 3.1 (Parameter Estimation of the M-BL Model).

Given a M-BL model (0,r,q,$, F,Qf) (Definition 3.3)

and regression parameters (of, ¥ a, B,7) € R™ x R¥™ x
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R™ x R¥™ x R, assume

0 ~ N (6o, o), (3.2)
0=af + FF + ', € ~ N(0,QF), (3.3)
q+e=Pla+FB+~0), e~ N(0,9Q). (3.4)

Define GM := X5 ' +(QF) =1 +42PTQ =1 P. The posterior
mean is
p(0|qa Q7 Fa QF) = N(av Ho|q,, F,QF (GM)il)a
where
tgjg.0,rar = (GM) 71 [S5 100 + (QF) ' (" + FBF)
+yPTQ (¢ — Pa— PFP)].

Proof. See Appendix E.2 for a detailed proof. O

The posterior estimation of parameter 6 enables a predictive
estimation on 7

Corollary 3.1.1 (Predictive Estimation by the M-BL Model).
Define GM = ¥5! + (QF)~! + PTQ™'P. Assume r ~
N(0,%). Then, under Theorem 3.1, M-BL model gives the
predictive estimation of unobserved asset returns 7 := r |
7,9, F,QF as

7~ N(0; ugjq.0,r,0F, 5 + (GM)=1),
where
tojg.0,r0r = (GM) 71 S50 + (QF) ' (" + FBF)
+vPTQ "' (¢ — Pa— PFB)].

Remark 3.2 (Classical Black-Litterman Recovery). M-BL
model recovers classical Black-Litterman model when:

1. Features becomes uninformative, i.e., uncertainty ap-
proaches infinity: QF — oo, equivalently (QF)~1 — 0,
so the error matrix (Q2F)~! disappears from G™.

2. The q <> F + 0 linear model (Definition 3.2) reduces
to the classical noisy views model (Black & Litterman,
1992): (e, B,7) = (0,0, 1), so the residual (¢ — Pa —
PFpB) — q.

Under these conditions, we have
GM 5yt PTQTP =G,
and thus, we recover (2.5):
rlg, Q0 ~ N(G—l (2500 + PTQ ], + G—l).

Remark 3.3 (Ground-Truth Limit). Corollary 3.1.1 accu-
rately and precisely predict ground-truth asset returns with:

1. Perfect information: ) — 0, equivalently Q1 — oo.

2. Accurate views: ¢ — Pr* where r* is true asset returns.

3. The q +» F < 0 linear model (Definition 3.2) reduces
to the classical noisy views model (Black & Litterman,
1992): («, B8,7v) = (0,0, 1), so the residual (¢ — Pa —
PFB) = q.

The M-BL posterior mean satisfies:

im f1g)4.0,p.0r = (G~ PTQ™Y(Pr* — Pa— PFp)
—

q—r*

dominant term

+ 35100 + ()M + FBY)
bounded
= (GM)7UPTQ I Pr* + 0o(Q7Y))
(a.s.)

where the last step follows GM = Y;' 4+ (QF)~1 +
PTQ 1P - PTQ7IP, (GM)"1o(Q71) — 0. Asare-
sult, Corollary 3.1.1 becomes

:7’*

?ié,.* as Q—0,q— Pr*

where §,.» denotes the Dirac measure at 7*.

Corollary 3.1.1 estimates asset returns under the general
scenario where views are observed, i.e., solves Problem 2.
It generalizes the classical Black-Litterman model, recov-
ering its form when features are uninformative, and ap-
proaches the true returns with accurate and precise views
(Remarks 3.2 and 3.3). With the predictive estimation of
asset returns 7, the mean-variance optimization framework
(Definition 2.1) determines the portfolio weights wy;—pr..

3.4 Scenario: Features with Latent Views

In the previous section, we solve Problem 2 with features
and observed views. However, an investor using the Black-
Litterman model may not be an expert at quantifying the
views. In this section, we discuss the scenario without the
views (Problem 3) by specifying two effects of the features
introduced in Section 3.2 and treating ¢ and (2 as latent
variables. Incorporating the effects into the network, we
showcase two graphical forms in Figure 2 and define the
Shared-Latent-Parametrization Black-Litterman (SLP-BL)
and Feature-Influenced-Views Black-Litterman (FIV-BL)
models (Definitions 3.4 and 3.6) based on them. Then, we
estimate posterior distribution over both asset returns r and
their parameter 6 (Corollary 3.1.1 and Theorem 3.1).

Consider the following problem:

Problem 3 (Feature-Integrated Predictive Estimation). Let
r € R™ represent the returns of the m assets and 7 denote
the unobserved (or future) asset returns. Let f; € R? rep-
resent the features of the i-th asset and F' € R™*9™ be a
block-diagonal matrix defined as

F = diag(f{, f3,- .-, fm)-
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Given D = (F, Q) where F is estimated from observa-
tions of asset returns and features {(r;, F})}7, and Q% is
the homoscedastic error matrix corresponding to the obser-
vations {F;}]' ,, the goal is to estimate unobserved asset
returns 7 ~ p(r|D).

We aim to solve Problem 3 by feature-integrated Black-
Litterman network. We approach this by considering the
two causal effects in Section 3.2 and treating the views and
uncertainty matrix (g, €2) as latent parameters. Specifically,

» Effect 1: Features F are extracted from the parameter
0. Consequently, the features F', along with their error
term " ~ N(0,QF), share the common parameter ¢
with asset returns r and investor views q.

e Effect 2: Features I influence the formation of views
q. In this scenario, the features F', along with their error
term e ~ N(0,QF), are related to the latent views ¢
through a separate equation from the parameter 6.

However, in this section, we do not mix the two effects.

Remark 3.4 (Rationale of Differentiating Effect 1 and 2).
We differentiate the two effects because, in the scenario
without investor views, the previous M-BL model (Defi-
nition 3.3) estimates the parameter 6 directly by (F, (),
meaning Effect 1 dominates over Effect 2 when both are
present. If, in the general scenario where views are observed,
Effect 2 is more significant than Effect 1, then, when views
are latent, the ignorance of Effect 2 leads to biased estima-
tion. This matches the intuition: if we select the features not
directly related to the asset (Effect 1) but highly influence
the investor views (Effect 2), such as macroeconomic indi-
cators like interest rates or CPI, then using these features to
estimate asset returns directly is biased. To avoid this bias,
we differentiate the two effects with two modeling strate-
gies. One handles the case where Effect 1 dominates, and
the other handles the case where Effect 2 is more significant.

We showcase the feature-integrated Black-Litterman net-
work as two configurations: one incorporating Effect 1 and
another incorporating Effect 2. Intuitively, the first better
captures generic features while the second more effectively
handles the non-asset-related features.

This implies that, in practice, if an investor takes generic fea-
tures of assets (e.g. indicators derived from the time series
of each asset, as shown in our experiment), configuration 1
should be used. If an investor takes features not specific to
individual assets (e.g. interest rates), configuration 2 should
be used. The two configurations are not contradicting, so
one can take both types of features and incorporate them
correspondingly.

We visualize two configurations of the network in Figure 3
and define one model for each configuration accordingly.

Configuration 1: Shared Latent Parametrization.

Configuration 2: Feature-Influenced Views.

Figure 3: Feature-Integrated Black-Litterman network with fea-
tures and latent Views (6,7, ¢, Q, F, Q).

CONFIGURATION 1: SHARED LATENT PARAMETRIZATION

To capture Effect 1, we follow the 8§ < F' relationship
(Definition 3.1). By incorporating Effect 1, we showcase
the feature-integrated Black-Litterman network as Shared-
Latent-Parametrization Black-Litterman (SLP-BL) model:

Definition 3.4 (SLP-BL model (0,7, ¢, 2, F, Q). Letr €
R™ be the returns of the m assets, parametrized by 6, with
r ~ p(r|). Let ¢ € R¥ represent the views on the returns
of the k specified portfolio and 2 € R¥*¥ be the uncertainty
matrix. Let £ € R™*X9™ be the features of the m assets and
error matrix Qf € R™>™ The SLP-BL model is a portfolio
model composed of four fundamental density functions:

1. Parametrized Asset Returns: p(r|6), the distribution of
asset returns given the parameter.

2. Prior: 7(0), representing market equilibrium.

3. Likelihood of Views: L(6|q, Q) := p(q, ©2|0), the rela-
tionship between the parameter and the views.

4. Likelihood of Features: L(0|F,QF) == p(F,QF|0), the
0 <> F relationship (Definition 3.1).
We show the posterior estimation on 6 of the SLP-BL model:

Theorem 3.2 (Parameter Estimation of the SLP-BL Model).
Given a SLP-BL model (6,7, q, Q, F, Q") (Definition 3.4)
and regression parameters (af", ') € R™ x R9™, assume

0 ~ N(0y,%0), (3.5)
0=af + B+, € ~ N(0,0F). (3.6)
Define G := ¥5! + (QF)~!. The posterior mean is
p(01F, Q") = N (6;(G") " [Z5 160
+@Q) P + FBT)] (G

Proof. See Appendix E.3 for a detailed proof. O
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The posterior estimation of parameter 6 enables a predictive
estimation on 7

Corollary 3.2.1 (Predictive Estimation by the SLP-BL
Model). Define GF = ¥g! + (QF)~'. Assume r ~
N(6,%). Then, under Theorem 3.2, SLP-BL model gives
the predictive estimation of unobserved asset returns 7 :=
r|F,QF as
7~ N (GF [Z5100
+QF) o + FAT)], T+ (G) 7).

Remark 3.5 (Features Replace Views). Corollary 3.1.1 is
equialvent to classical Black-Litterman model if:

1. Features recover investor views: af’ + FgF — P~ 1q

2. Error matrix recovers uncertainty: (Q)~! — PTQ-1p

Under these conditions, we have G — 20_1 +PTQ P =
G, and thus recover (2.5):

rlg, Q2 ~ N(G—l (2500 + PTQ ], + G—l).

Corollary 3.2.1 estimates asset returns without the views,
i.e., solves Problem 3. With the predictive estimation of
asset returns 7, the mean-variance optimization framework
(Definition 2.1) outputs the portfolio weights wsr,p_pr,. See
Appendix A for the selection of {3, ¥, 6y, of', B¥, QF}.

CONFIGURATION 2: FEATURE-INFLUENCED VIEWS

To capture Effect 2, we define a g > F' relationship by a
multivariate linear model with local dependency:

Definition 3.5 (¢ <+ F' Linear Model). Given features
F € R™*4™ and portfolio weight matrix for k specified
portfolios P € REXm et q € R* be the views on returns
of the k portfolios. Define regression intercept vector o €
R™, regression coefficient vector 3 € R%" random error
e € R™, and error matrix QF € R™*™ such that:

g=Pla+FB+€"), € ~N(0,0),

Furthermore, define 31, fs, . ..
of the vector 3 such that:

B=1[6T,87,....85]".

This captures the relationship without the loss of generality:

. Bm € R? as m partitions

Remark 3.6 (Noisy Implied Asset Returns). Based on the
intuition that the views g are formed on the returns of the &
specified portfolios, define the noisy implied asset returns

rf=a+ FB+ €
such that: ¢ = Prf'. Then, the dependency between each

element of this implied asset returns and d features becomes
local:

Tf:az+F@,6+6f:al+52—fl+€f7 Ze[m]

Remark 3.6 allows estimations of regression parameters
and the error matrix (o, 3, QF") based on the observations
{(r1, F1)}}-_,. See Appendix A for details.

We now introduce the final piece in this configuration: Re-
garding the uncertainty matrix {2, a simplified assumption
is that when an investor forms views based on features, the
error matrix 2" captures all the information about this un-
certainty. This would suggest omitting €2 from our model
due to the replacement with Q. Yet, in the general case, {2
remains necessary as it represents the intrinsic uncertainty
of the views, regardless of the (F, 2")?. Additionally, re-
taining {2 allows our model to remain applicable when both
(¢,2) and F' are observed. To treat (2 as a latent parameter,
a prior m(£2) must be specified to enable Bayesian inference.

By incorporating Effect 2 of the features characterized by
the ¢ <+ F' linear models (Definition 3.5) and a given prior
m(€2), we showcase the feature-integrated Black-Litterman
network as the following Feature-Influenced-Views Black-
Litterman (FIV-BL) model:

Definition 3.6 (FIV-BL model (6,7, q,Q, F, Q). Letr €
R™ be the returns of the m assets, parametrized by 6, with
r ~ p(r|d). Let ¢ € R¥ represent the views on the returns
of the k specified portfolio and Q2 € R¥*¥ be the uncertainty
matrix. Let £ € R™*X9™ be the features of the m assets and
error matrix Q' € R™*™ The FIV-BL model is a portfolio
model composed of five fundamental density functions:

1. Parametrized Asset Returns: p(r|6), the distribution of
asset returns given the parameter.

2. Prior: 7(0), representing market equilibrium.

3. Likelihood of Views: L(6|q, Q) := p(q, ©2|0), the rela-
tionship between the parameter and the views.

4. Views given Features: p(q|F, '), the q > F relation-
ship (Definition 3.5).

5. Prior on Uncertainty Matrix: 7(2), representing intrin-
sic uncertainty of the views.

The FIV-BL model marginalizing out latent parameters
(g, ) to estimate the posterior of 6:

Theorem 3.3 (Parameter Estimation of the FIV-BL Model).
Let P € R¥X™ be the portfolio weight matrix for k spec-
ified portfolios. Given a FIV-BL model (6,7, g, 2, F, QF)
(Definition 3.6), regression parameters (a, 3) € R™ x R%™,
and a prior 7(£2), assume

6 ~ N (6, %0) (3.7)
P=qg+e, e~ N(0,9Q), (3.8)
q=Pla+FB+€), € ~N(0,0F), (3.9)

This concept is similar to the existence of the intrinsic covari-
ance X regardless of the prior parameter (6o, Yo) of € in Lem-
mas 2.1 and C.1.
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where 6y € R™ and X9 € R™*™ are given prior mean and
covariance, and (e, ¢/") are mutually independent. Define
G =3, ! 4+ PTQ~1P. The posterior mean distribution is:

p(|F,QF) = /N(9§M0|Q,F,QF729\Q,F,QF)W(Q)dQ
(3.10)

where

toja,raor = G (2500 + PTQ™1P(a + FB)),
Soja,por =G+ GTIPTQTY(POQFPT)Q PG

Proof. See Appendix E.4 for a detailed proof. O

Remark 3.7 (Posterior Collapse Under Perfect Views). If
we omit the intrinsic uncertainty matrix by Q@ — 0, or
equivalently Q~! — 0, we have

G— PTQ7'P,
toja,For — G (PTQT'P(a+ FP)),
Searar — G+ G PTQTH(PQFPT)QTI PG
Thus, the posterior collapses to
O|F, QF =0|Q, F,QF ~ N(a+ Fj3,QF),

effectively recovering the 6 <+ F relationship § = a+ F 3+
e’ (Definition 3.1) except losing the prior information on 6.
Furthermore, reintroducing this prior leads to Theorem 3.2.

The integral (3.10) is a form of Infinite Gaussian Mixture
model IGMM) (Rasmussen, 1999). In general, there is no
further closed-form solution for it unless €2 is restricted to a
special conjugate family or effectively collapses to a point
mass (i.e., {2 is known and fixed). In non-conjugate settings,
the expression remains a continuous mixture of Gaussian
distributions, and must be evaluated or approximated nu-
merically (e.g. via Monte Carlo or approximation methods
(Newman & Barkema, 1999; Kruschke, 2010; Wainwright
et al., 2008; Blei et al., 2017)).

Since there is no trivial conjugate prior () for the likeli-
hood 6|2, F, QF, here we offer an approximation method.
We first substitute 2 with X o ror. Then, we approxi-
mate the mean of the likelihood pgo ror as a constant.
Finally, we assign a conjugate prior to0 ¥y ror as an
Inverse-Wishart (IW) distribution. This allows us to obtain
a tractable joint distribution p(6, F, Qf") — specifically a
Normal-Inverse-Wishart (NIW) distribution. As a result, the
posterior mean distribution p(6|F, Q") follows a student-t
distribution after marginalizing out Y| For:

Corollary 3.3.1 (Conjugate Prior). Consider a FIV-BL
model (0,r,q,Q, F,QF) (Definition 3.6) with constants
(P, ¥, 00, X0, ﬂ, Qo) € REXM o RMXM o R 5 RN ¢
R x R¥™ x R¥**_ Define G := X5 ' +PTQ ' P. Assume

012, F,QF ~ N(i/, ),
i = G250 + PTG Pla + FA)),
where
¥ =G '+ G PTQT(PQFPT)QT PG
Assume Y’ have an Inverse-Wishart prior:
m(Z) =IW (¥, v), (¥,v)eR™ xR (3.11)

Then the marginal posterior of 6 given (F, Q") follows a
multivariate-¢ distribution:

p(0 | F,QF) ~t, (9;u’, V_Wimﬂ)
Proof. See Appendix E.5 for a detailed proof. O

Since t-distribution lacks a conjugate prior, we omit intrinsic
covariance ¥ in estimating unobserved asset returns 7

Corollary 3.3.2 (Approximated Predictive Estimation by
the FIV-BL Model). Assume r ~ N(6,X). Under Theo-
rem 3.3, considering 8|2, F, QF ~ N (i, %), assume:

S~ IW (W, V),
p' is a constant G~ (S5 00 + PTQy ' Pa + Fp)) .

Then, as ¥ — 0, FIV-BL model gives the predictive estima-
tion 7 == r|F, QF as

N S
Tt T T 1)

Corollary 3.3.2 also estimates asset returns without the
views, i.e., solves Problem 3. With the predictive es-
timation of asset returns 7, the mean-variance optimiza-
tion framework (Definition 2.1) determines the portfolio

weights wrrv_pr. See Appendix A for the selection of
{Za EO& 007 Pa «, 63 QFa \I]l7 Vla QO}

4 Proof-of-Concept Experiments

Depart from the classic Black-Litterman model that relies
on subjective investor views, our model estimates the poste-
rior distribution over asset returns directly from the feature
data. To demonstrate this concept, we consider the setting
without subjective investor views. Specifically, we focus
on integrating asset-specific features, as discussed in Re-
mark 3.4, and choose the SLP-BL model (Definition 3.4)
accordingly. We show the model works under this setting
and consistently outperforms the benchmarks.

Dataset I: SPDR Sector ETFs. We collect adjusted daily
closing prices and volume for 11 Sector ETFs (Table 4)
from April 13, 2004 to February 22, 2024 (20 years). To
avoid selection bias, the portfolio selection list is updated in
sync with the introduction of new sectors.

Dataset II: Dow Jones Index. We collect adjusted daily
closing prices and volume for 41 stocks (Table 5) that have
been part of the Dow Jones index from January 5, 1994 to
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February 22, 2024 (30 years). To avoid selection bias, the
portfolio selection list is updated in sync with the index.

Backtest Task. We backtest our SLP-BL model for each
dataset period. On each monthly rebalance day, the model
outputs a portfolio weight wgrp_pr, that maximizes the
Sharpe ratio (Definition F.1), a standardized mean-variance
optimization framework (Definition 2.1). In the model, the
prior is set as traditional Markowitz model and the features
are selected based on nine generic indicators (Table 3) de-
rived from asset-specific data. We follow Appendix A for
the choice of {¥, X, 0y, o', B, QF} except that, to avoid
the issues of mismatch scale, we use price and indicators
data to derive the regression parameters.

Benchmarks and Evaluation. The benchmarks of our port-
folio model are set as (i) market index (e.g. S&P500 and
DIJIA) (ii) equal-weighted portfolio model (iii) traditional
Markowitz model. We evaluate the models with the follow-
ing metrics: Cumulative Return, Compound Annual Growth
Rate (CAGR), Sharpe Ratio, Maximum Drawdown, and
Volatility. We present the results for five pairs of traditional
Markowitz model and our Black-Litterman model with vary-
ing rolling window lengths of historical returns: 50 days, 80
days, 100 days, 120 days, and 150 days.

Results. The SLP-BL model consistently outperforms both
traditional Markowitz model and market indices across two
datasets (Tables 1, 2 and 6 and Figures 4, 5, 8 and 9). This
is attributed to the more stable portfolio weights based on
Bayesian framework, as shown by Figures 6 and 7.

Table 1: Performance on SPDR Sector ETFs Dataset.

Cumulative ~ CAGR  Sharpe Max Volatility

Return (%) 1T (%)1 Ratiot Drawdown (-%)) (%/ann.) |
EQW 450.74 6.11 0.61 44.90 16.40
S&P500 545.77 6.69 0.59 55.19 19.03
MV (50d) 134.12 3.00 0.35 53.11 15.99
BL (50d) 541.99 6.67 0.66 46.56 16.24
MV (80d) 291.21 4.85 0.50 38.58 16.33
BL (80d) 609.66 7.04 0.69 46.78 16.12
MV (100d) 411.83 5.84 0.57 36.37 16.91
BL (100d) 602.75 7.01 0.70 46.05 1591
MV (120d) 412.87 5.84 0.57 36.10 17.12
BL (120d) 587.50 6.93 0.70 46.11 15.74
MV (150d) 249.11 4.44 0.45 47.49 17.37
BL (150d) 556.13 6.75 0.68 44.54 15.91

5 Discussion and Conclusion

We propose a Bayesian reformulation of the Black-
Litterman model for portfolio optimization without the need
for subjective investor views. Our key contribution is a
unified Bayesian network that integrates features and infers
parameters. In the case of observed views (Problem 2), the
network estimates asset returns based on a mix of two fea-
ture effects (Theorem 3.1, Corollary 3.1.1), generalizing
the classical Black-Litterman model and recovering ground-
truth estimation with perfect views (Remark 3.3). In the case

Table 2: Performance on Dow Jones Index Dataset.

Cumulative =~ CAGR  Sharpe Max Volatility
Return (%) T (%)1 Ratio1 Drawdown (-%)) (%/ann.) |
EQW 4,606.66 9.22 0.75 58.90 19.54
DIJIA 932.51 5.49 0.52 53.78 17.97
MV (50d) 774.08 5.09 0.45 63.35 20.83
BL (50d) 3,980.23 8.86 0.78 42.42 17.84
MV (80d) 1,081.47 5.82 0.51 53.98 20.26
BL (80d) 4,603.82 9.22 0.84 39.95 16.81
MV (100d) 1,529.60 6.60 0.55 56.06 20.59
BL (100d) 4,557.03 9.19 0.85 39.92 16.56
MV (120d) 1,577.61 6.67 0.57 46.73 20.07
BL (120d) 4,819.83 9.33 0.87 39.81 16.42
MV (150d) 2,208.84 7.45 0.62 41.02 20.03
BL (150d) 3,405.78 8.49 0.80 40.42 16.51
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Figure 4: Cumulative Return on SPDR Sectors ETFs Dataset.
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Figure 5: Cumulative Return on Dow Jones Index Dataset.

of latent views (Problem 3), we differentiate the feature ef-
fects to handle distinct features (Remark 3.4). Accordingly,
we present two models: the first provides closed-form asset
return estimation (Theorem 3.2, Corollary 3.2.1), while the
second results in a mixture model that requires numerical
methods (Theorem 3.3, Corollary 3.3.1, Corollary 3.3.2).
Numerically, our model works without investor views and
demonstrates consistent, hyperparameter-robust improve-
ments over the Markowitz model and market indices across
long-term, real-world datasets (Section 4).
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Impact Statement

This work improves portfolio optimization by reducing sub-
jective human inputs. It enhances transparency and pro-
motes data-driven decision-making. The framework ben-
efits both institutional and individual investors with more
reliable and fair strategies. However, data-driven models
may amplify biases, so careful evaluation is needed for fair
outcomes. Overall, this work advances financial modeling
and emphasizes ethical implementation.
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A Hyperparameter Selections

Here we provide a practical guide to derive hyperparameter set {X, X, 6, of ¥ QF } for Shared-Latent-Parametrization
Black-Litterman model (SLP-BL model, Definition 3.4) and {3, X0, 6o, P, o, 3, QF, W', 1/ Qq} for Feature-Influenced-
Views Black-Litterman model (FIV-BL model, Definition 3.6)

Among the entries of {X, X, 6}, a practitioner first approximate ¥ using sample variance given {r;}" , and let £y = 73
be a matrix proportional to the covariance matrix, following (Salomons, 2007). Numerous papers (Black & Litterman, 1992;
Lee, 2000; Ellison, 2004; Idzorek, 2007; Salomons, 2007) address the choice of the scaling factor 7, mostly suggesting a
constant in (0, 1]. Given the approximated ¥ and X, one obtains 6 by Lemma C.1.

In this work, we take P = I as a m x m identity matrix because the features F’ are asset-specific (Problems 2 and 3). Given
the historical observations {(r;, F)}}"; in (Problems 2 and 3), define:

1 & _ B ~ —
F=—Yr, B=rn-7, F=-YF, F=F-F.
nl:l nl:l

The following context suggests how {(r;, F;)}7_, enables estimating {QF .aF  BF &, B}. We estimate the error matrix (¥
based on kernel density estimation on every feature. Specifically, consider a rule-of-thumb bandwidth parameter (Silverman,

2018):
= 4 =
dm + 2

where m is the number of assets, d the number of features for each asset, and n the sample size.

Recall that f; € R represent the features on the i-th asset and be part of the features F' € R™*4™:
Fo=diag(f, f2 .o fo)-
we scale element-wise variances of f;, or Var(f; ;) for j-th feature of the i-th asset by h to construct the diagonal matrix
H = diag(h - Var(fi.1), ..., h - Var(fm.q))-
Then, for each asset return r;, we compute the ordinary least squares (OLS) coefficients B; and intercept a; by predictors

f:>. These coefficients are aggregated into a block-diagonal matrix B € R™*9™_ The covariance estimate is OF = BHBT.

For {af’, ﬁF }, we conduct maximum likelihood estimation based on the § — F' model (Definition 3.1) and r ~ N (6, X).
By Lemma D.4, we obtain

o ~ LU Nl e
" =r—FB", B"= (L F @ +2)7R) YR (@ +3)
=1 =1

For {@, B\ }, we conduct maximum likelihood estimation in the ¢ — F' model (Definition 3.5), assuming that the observed
returns r; are samples from the noisy implied asset returns 7" defined in Remark 3.6. By Lemma D.4, we obtain

a=r—Fp, (ZFT @) lFl> ZFl 0r)-

For {¥', 1/ Qq}, the conjugate prior parameters (¥’,2/) in ¥/ ~ [ W(\Il’ ,') have distinct roles: ¥’ encodes prior
knowledge about the covariance shape and scale, acting as a ”pseudo-covariance matrix” with mean E[¥X'] = ¥/ /(v —m+1)
(if v/ > m — 1). Larger ¥’ implies stronger prior beliefs about higher covariances. The degrees of freedom v’ control prior
strength, functioning as an effective sample size. Smaller v/’ allows the data to dominate, while larger v’ enforces ¥’. For a
weakly informative prior, the rule of thumb is to set ¥/ = I (minimal informative scale matrix) and v/ = m + 2, assuming
no strong prior correlations. Gelman et al. (1995); Hoff (2009); Murphy (2012) discuss details on this topic.

Selecting (¥’, ') allows us to compute the approximated constant €2y. Since ¥’ is a deterministic function of (2, F, Q),
Q) is likewise a deterministic function of (X', F, QF"). Therefore, we let Qo = Q(Xf, F, QF) where &) = ¥/ /(v —m + 1)
is the mean of the distribution JTW (¥’ v").

30One may adjust the targetted data to avoid the issues of misaligned scale. For example, price versus momentum indicators.
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B Related Work

B.1 Bayesian Portfolio Optimization

Why Bayesian? To address the parameter estimation risk in traditional portfolio optimization shown by (Markowitz,
1952; Kalymon, 1971), Barry (1974); Klein & Bawa (1976); Brown (1976) advocate Bayesian framework upon prior
information in portfolio optimization. Foundational works by (Jorion, 1986) and (Black & Litterman, 1992) demonstrate
how Bayesian shrinkage improves covariance estimation, reducing overfitting and highly sensitive weight in Markowitz-style
allocations (Meucci, 2005; DeMiguel et al., 2009). Subsequent studies on robust Bayesian portfolio optimization include
multiple approaches such as uncertainty estimation (Qiu et al., 2015; Yang et al., 2015), alternative prior specifications
(e.g., heavy-tailed or non-conjugate priors) (Garlappi et al., 2007; Tu & Zhou, 2010; 2011), advanced sampling methods
(Michaud & Michaud, 2007; Huang et al., 2021), and regularized optimization considering transaction costs (Olivares-Nadal
& DeMiguel, 2018).

Issues Around the Bayesian Framework. While these methods leverage analytical tractability to incorporate historical
data or expert views (UIf & Raimond, 2006), they often rely on restrictive assumptions (e.g., conjugate priors) or subjective
expert inputs. Recent advancements, such as Markov chain Monte Carlo (MCMC) methods (Greyserman et al., 2006),
relax these constraints, enabling inference in more complex hierarchical or time-series models. Meanwhile, contemporary
approaches increasingly emphasize data-driven techniques for deriving expert inputs, including investor views in the
Black-Litterman model (Black & Litterman, 1992).

B.2 Data-Driven Black-Litterman Model

Why Data-Driven? Across decades, the heuristic framework for deriving investor views (g, §2) in the Black-Litterman
model attracts research working on estimating investor views (Beach & Orlov, 2007; Palomba, 2008; Duqi et al., 2014;
Silva et al., 2017; Deng, 2018; Kara et al., 2019; Kolm & Ritter, 2021; Teplova et al., 2023). Early efforts to estimate (g, 2)
employ historical return data within GARCH frameworks, framing view derivation as a time series prediction task (Beach
& Orlov, 2007; Palomba, 2008; Dugqi et al., 2014), but financial time-series data often exhibit high noise and insufficient
signal-to-noise ratios for reliable prediction (Gémez & Maravall Herrero, 1998; Christensen & Li, 2014).

Advancement in Generating Views. Recent advances mitigate the previously mentioned weaknesses in time series
forecasting by integrating econometric models and machine learning — e.g., GARCH with neural networks (Bildirici &
Ersin, 2009) or LSTM (Kim & Won, 2018), support vector machines (Pérez-Cruz et al., 2003; Kara et al., 2019), grey
systems (Huang & Jane, 2009), and feature programming (Reneau et al., 2023). To embrace richer information, recent
studies incorporate external data sources such as macroeconomic indicators (Zhou, 2009; Cheung, 2013), factors (Geyer &
Lucivjanskd, 2016; Kolm & Ritter, 2017; 2021).

Neglected Issues from a Whole Perspective. However, while these advanced methods achieve high forecast accuracy in
isolation, errors can propagate through subsequent optimization pipelines when estimators (g, 2) are naively embedded in
the Black-Litterman framework. Finkel et al. (2006) addresses such issues of error propagation in multi-stage pipelines.
Furthermore, in some works, estimating ¢ and €2 independently risks misaligned confidence assumptions. Without joint
modeling, overconfidence in views (low £2) might amplify errors in ¢, and thus distort portfolio weights. Guo et al. (2017);
Kendall & Gal (2017) discuss such confidence calibration and uncertainty estimation.

Introduction of Bayesian Network. Meanwhile, prior work has explored the use of Bayesian networks for the Black-
Litterman model, which serve distinct purposes such as transferring the approach to factor models (Kolm & Ritter, 2017;
2021), addressing multiple expert views (Chen & Lim, 2020), or generalizing to multi-period frameworks (Abdelhakmi &
Lim, 2024). Yet, these approaches still rely on human experts to specify the parameters (g, ).

Our Work. To bridge these gaps—subjective inputs, error propagation, and incoherent estimation — we propose our
Bayesian network reformulation of the Black-Litterman model. This framework unifies historical or external features and
latent investor views (g, 2) into a single Bayesian network, enabling inference over parameters (Theorems 3.2 and 3.3)
and asset returns (Corollaries 3.2.1 and 3.3.2) directly from data. This eliminates reliance on heuristic inputs or disjointed
estimators, ensuring coherent estimation and fully data-driven portfolio optimization.
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C Supplementary Theoretical Backgrounds
C.1 Prior and Likelihood of the Black-Litterman-Bayes model

Here we show how to model the prior and likelihood in the Black-Litterman-Bayes model (Definition 2.2). To obtain the
prior 7(#), an investor sets a market portfolio and lets the prior be the market portfolio estimation. In the absence of views g,
the BLB model reduces to this market portfolio, producing an estimation (exactly the prior) on asset returns and outputting a
market portfolio weight Wmarket + by Definition 2.1. For example, if the investor takes the traditional Markowitz model as
the market portfolio, it would produce a normal distribution of the historical asset returns as the prior 7(6).

A commonly used market portfolio is market capitalization-weighted portfolio®. In this case, the market portfolio weight is
the market capitalization weight weap®:

Assumption C.1 (Market Capitalization Equilibrium Prior). In the absence of views ¢, the BLB model (Definition 2.2)
produces an estimation of asset returns 7 such that the mean-variance optimization framework (Definition 2.1) has an optimal
argument w* = Weap. In other words, r satisfied:

)
argmax {wTE[ﬂ — §wT Var[ﬂw} = Wilsayps (C.1)
where § € [0, 00] is a given risk-adjusted coefficient.

With Assumption C.1, we use a reverse optimization technique to derive the prior:

Lemma C.1 (Reverse Optimization for Prior, page 139 of (Satchell & Scowcroft, 2007)). Let r € R™ be m asset returns,
parametrized by 6, with r ~ p(r|€). Let the market capitalization weight on the m assets be weap, € R™ and 6 € [0, co] be
a risk-adjusted coefficient. Assume

TNN(Q,Z), GNN(H(LZO),
where X, X5 € R”*"™ are given intrinsic and prior covariance. Then the prior mean is
0o = 0(2 + o) Weap- (C2)
To obtain the likelihood function L(6|q), we assume a probabilistic relationship between parameter 6 and views g:

Assumption C.2 (Classical Noisy Views Model, page 35 of (Black & Litterman, 1992)). Let r € R™ be the returns of
the m assets, parametrized by 6, with r ~ p(r|6). Let P € R¥*™ be the specified portfolio weight matrix. Let ¢ € R*
represent the views on the returns of the k specified portfolio and 2 € R*** be the uncertainty matrix. Assume

PO =qg+e €~ N(0,Q).

Under Assumptions C.1 and C.2, we can derive the Black-Litterman formula (Theorem 2.1) as the posterior estimation on 6
of the Black-Litterman-Bayes model (Definition 2.2).

D Axillary Lemmas

D.1 Integral of the Product of Two Gaussian Distributions

Lemma D.1 (Integral of the Product of Two Gaussian Distributions, page 266 of (Aroian, 1947)). Let x € R™, and let
N(z; p1, 1) and N (z; pg, Xo) be two multivariate Gaussian distributions with means p1, g2 € R™ and positive definite
covariance matrices Y1, X9 € R™*", respectively. Then, the integral of their product over R" is given by:

/N({L', ‘LL1, El)N(Z, ‘ug, Zg)dﬁc = N(,U,l;/LQ, 21 —+ Eg) (Dl)

Proof. The product of two Gaussian PDFs is

1 1
N(z; p1, B1)N (23 p2, Xo) = 2m) [0 |2 [, 12 eXp <_2Q) ’ (D2)

*1dzorek (2007) names it Implied Equilibrium Return Vector.
>A market capitalization-weighted portfolio performs a market capitalization-weighted index (e.g., S&P 500).
5The weight vector proportional to each asset’s market cap.
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where Q = (z — 1) "2 (2 — 1) + (2 — p2) "85 (@ — po).
Expanding and combining terms:

Q=z"C +55 2 — 20" (27 + 25 ) + ¢

=(x—A) Az — A7) —b AT b+ ¢,
with A = 21_1 +3 b= Zl_lul + E;lug, and c = ulTEl_l,ul + H;Ez_lluQ.
Substituting back to (D.2):
N (@; p1, 1) N (3 po, o)
1
ex

(2m)"| 51| 1/2[55|1/2 p

Integrate over x € R™:

L T A 4ty o LT a1 L
<2(x A7D) Az — A b)+2bA b 5¢) -

(2m)"/2 AT Ly, 1
N(z; p1, 21)N(x; pa, Xo)dx = “b'ATb——c|. D.3
an (xaulv 1) (xau27 2) X (27T)n|21|1/2‘22|1/2 exp 2 26 ( )
Using [A71] = % we have
|A71|1/2 1 DA
PAREATCI DAY Y
Simplify the exponential term in (D.3) using the identity:
1 1 1
§bTA_1b — §C = —§(M1 — ug)T(Zl + 22>_1(,u1 — ;1,2). (DS)
Thus, by (D.4) and (D.5), (D.3) becomes
1 1 _
/N(x;ﬂl,&)N(x;Nz,Ez)dm = R PESNLE exp <—2(H1 —p2) T (Z1 4+ 82) N — /LQ))
= N(p1; p2, X1 + X2).
This completes the proof. ]

D.2 Sufficient Statistic for (2 in Corollary 3.3.1

Lemma D.2. Consider the hierarchical model where
0 | Q,AaB ~ N(H’(Q,AaB)a 7Z(QaA7B))7

with  as a parameter matrix, and A and B as fixed matrices. The mean u(Q2, A, B) and covariance (€2, A, B) depend on
(Q, A, B). Then, the conditional distribution p(6|€2, A, B) can be expressed only in terms of 3(Q2, A, B), A, B if and only
if, for all pairs (21, 22) such that (21, A, B) = 3(Q9, A, B), we also have u(Q1, A, B) = u(Q2, A, B). That is,

1(Q, A, B) is determined by X(2, A, B), A, B
< p0]Q,4,B)=p(0 | =(Q,4,B),4,B).

Proof. If
M(le Aa B) = IU’(QQa Aa B)a

whenever (1, A, B) = 3(Qs, A, B), then for a given value of 3, the pair (1, X) does not depend on which € generated
3. Hence specifying X(2, A, B), A, B alone suffices to determine the normal distribution of 6. Thus p(6 | Q, A, B) =

p(0 | (2, A, B), A, B). Conversely, if
p(0 QA B)=p(0|2(Q,A,B), A B).

Then any two values €2 and 25 yielding the same ¥(€2;, A, B) and ¥({22, A, B) must produce the same distribution for 6.
Since 6 is normally distributed, its mean must also match, i.e., u(21, A, B) = u(Q9, A, B). This completes the proof. [
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D.3 Integral of Normal-Inverse-Wishart (NIW) distribution

Lemma D.3. Given a joint Normal-Inverse-Wishart (NIW) distribution
p(e’zl) = NIW (9, E/;,L"/71,\II/3V/), 0| by NN(:“'/aE/)’ EINIW(\I}Ivl//)a

the marginal distribution of 6 is a multivariate ¢-distribution:

\Ij/
0~ ty (0, —),
(M 1/—m+1>

. . . !
with degrees of freedom +/, location parameter 4/, and scale matrix ——=——.
vi—m—+1

Proof. To derive the marginal distribution of 6, we integrate out X'

p(6) = [ 501 () 06)
The conditional distribution p(6 | ¥') is:
6| %) = Gz o (;w )T 0 - u')) . (.7)
The marginal distribution p(X') is:
) = g e ey (L)) ®8)

Substituting (D.7) and (D.8) into (D.6):
/7 1
p(0) o [ [ 2 exp (—2 (60— )T ()10 - ) + tr(ﬂz'@')l)]) .
Let S = (6 —p')(0 — u/)T + U, then:
’ ].

p(0) / |5/ |~ HmE2) /2 oxp (—Ztr ((z’)ls)> . (D.9)

Using the matrix integral identity ((Muirhead, 2009, Chapter 7.2) or (Gupta & Nagar, 2018, Chapter 1.4)):
1
/|zr<a+m+1>/2 exp (—2tr(ElB)) dY o |B|7%/2,

we identify a = v’ + 1 and B = S. (D.9) becomes:
p(0) o | S|~ /2, (D.10)

Expand | S| using the matrix determinant lemma:
(S = 1] (14 (0 = ) " (¥) 710 = 1)) - (D.11)

Substituting (D.11) back to (D.10), we have

(6 — )T (W) 16 - m)‘(”m” ’

p(0) (1 +

where v = v/ — m 4+ 1. This matches the kernel of a multivariate ¢-distribution:

o’ o’
O~t, (0, — )=ty |4, ———— ).
<u7y) <H’V’—m+1)

This completes the proof. O
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D.4 Regression Estimators

Lemma D.4 (Estimation of «, 5 under Homoscedastic and Correlated Errors). Consider a multivariate linear regression
model:

r=a+FB+e, € ~N(©0,QF), (D.12)

where Qf is a constant positive definite covariance matrix across observations (i.e. the error term e” is homoscedastic but
potentially correlated). Given observations {(r;, ;) }7;, the maximum likelihood estimators (MLE) for (c, ) are:

a=7—F§, (ZFT ©F) 1Fl) ZFl 3
=1
where
F—lir ri=1—T li F,—-F
_nl=1 = ’ n ’

Proof. The log-likelihood function for the model is:

n

~ 1 ~
log L(a, B) = _g log |QF | — 3 > (n—a-EFB)T Q") (1 — a— F8) + const. (D.13)
=1

Differentiate the log-likelihood (D.13) with respect to « and set it to zero:
D g L) = 23 2 [(r1-a - BOT@") (i - o B
da ’ 2 da

Q) —a— FB) =0.
1

n
=

Summing over all observations:

n

S@) My — @) e =Y (@) TR =0.
=1 =1
Solving for a:

a=7—F§B. (D.14)

Differentiate the log-likelihood (D.13) with respect to 3 and set it to zero:

1 " 8 AN —1
%mgu B) = Q;w[mammsﬂ”) (ri— o~ Fp)|

= ZFI(QF)*(W —a—FEp)=0. (D.15)

Using the expression for & (D.14), we have
n—a-Fpf=r—(F-FB) —Fp=(rn—7) —(F—F)B=r—Fp.
Substituting back to (D.15) with o = &

> RO 7 - Fig) =0,
=1
Since Y, 7 = 0and 3", F = 0, we have:

Zﬁl'r“’-\zF)—lFl . Zﬁl'r(S’-\zF)—lﬁlﬁ —0.
=1

=1
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Solving for B:
n -1 5
2 ST (OF\-17 mT(OF\—1~
- (L@ R) Y Ee)
1=1 1=1
Since €’ is neither uncorrelated nor homoscedastic, remaining QF is essential to obtain unbiased estimates of B.

This completes the proof. O

E Proofs of Main Text
E.1 Proof of Lemma 2.1

We separate the proof into two parts. One for (2.4) and another for (2.5):

Proof of (2.4).
p(0lq,€2) o< L(8]q, ) (0)

eXp{—;(q - PO)TQ (g - P@)} eXp{—;

(9 - HO)TZgl(e — 90)} (By (2.2) and (2.3))

exp{—; (0TPTQ'PY—2¢"Q PO+ q"Q g+ 0T 10 — 2005510 + 9320190)}

— exp{; (0T (PTQ P+ 2710 —2(¢"Q 'P+0]25 )0 +q Qg+ 655" 6o] } (E.1)
where the third equation is the result of the symmetric property of ¥y and €.
To simplify the above expression, we introduce
G=x'+PQP
D =%, +P'Q7q,
A=00%7"00+q"Q g,
then, we have:
07GO — 2D+ A= (GH)TG1GH —2DTGTIGH+ A
= (GO —-D)'G(GO-D)+A-D'G™'D
=0-G'D)'GO -G 'D)+A-D'G™'D.
Therefore, (E.1) becomes

p(0]q, Q) exp{—;(e -G 'D)'G(H - G‘lD)} =N(;G'D,G™1).

This completes the proof. ]

Proof of (2.5). From (2.1), we have:

p(r|0) = N (r;6,%). (E.2)
From Lemma C.1, we have:
0o = 0(X + o) Weap- (E.3)
From (2.4), we have:
pBlg) =N (6;G~ " (S5 "0+ PTQ 7 q) ,G1). (E.4)

Thus,
7~ p(rlg) = / p(F10)p(0q)d6
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= /N(F;O,Z) N (6;G1 (250 + PTQ 'q),G™ 1) db (By (E.2) and (E.4))
- N (5:; G (250 + PTQ 1), 2 + G_l) (From Lemma D.1)
=N (FG ' [6(55'S 4+ Dweap + PTQ '] , 2+ G71). (By (E3))
This completes the proof. O

E.2 Proof of Theorem 3.1
Proof of Theorem 3.1. The posterior 6 given the data is proportional to the product of three Gaussian densities:
p(0lg, 2, F,Q") o< p(ql0, F,Q) - p(0|F, Q") -w(9), (E.5)

Observation Likelihood Features Likelihood — Prior

where the observation likelihood, features likelihood, and prior distribution are respectively:

p(qld, F, Q) = exp (—; [¢—Pla+ FB+ ’y@)]T Q tg— Pla+ FB+ 79)]) , (By (3.4))
p(0|F, Q) = exp (-é [0 — (o + FpB5)] Tar [0 —(aF + F,BF)]> : (By (3.3))
() = exp (30~ 0) %5 0 ). (3 32)

Combining all quadratic forms in the exponent (ignoring constants) of p(8|q, Q2, F, '), we have
1 _ _
5[0 0075510~ 00) + [0 — (@ + FET)T (@) 0 - (aF + FBT)
+[q¢— Pa— PFB—~P0]TQ ' g — Pa— PFf — 'yPG]}
_— % (072510 207 50 + 07 55 6o

+9T(QF)—19_ 2(OéF —I—FBF)T(QF)_l@-i- (aF +F6F)T(QF)_1(04F +FBF)

+~20"PTQ7IPH — 27y(q — Pa— PFB) Q"1 P6

+ (¢~ Pa~ PFB) Q" (g~ Pa — PF)|

- %[(f [Zgt+ @) +42PTQ7 P g
GM
207 [S5100 + ()" + FBF) +vPTQ 7! (¢ — Pa — PF)] + constant } ,

b
where the second step groups similar terms and the first step expands the quadratic form.

Completing the square in the form
1 T
=5 (0= poparar) G (0= poyarar),

the posterior distribution (E.5) becomes:
p(e‘q7 Qa Fa QF) =N (07 /-I’9|q,Q,F,QF7 (GM)_l)

where
GM =551 1 (QF) ' 4 42PTQ P,
tojg.0,r0r = (GM)7'b
= (G")7 [Sg 00 + (QF) (@ + FBT) + 9P Q7 (¢ - Pa — PFB)]
This completes the proof. O
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E.3 Proof of Theorem 3.2
Proof of Theorem 3.2. From the 6 <+ F model (Definition 3.1),

L(OIF,97) = p(F, Q716) ox exp( 5 [F57 — (0 — a")T(@) " [F57 — (0 — a")).
Thus, we have

p(0]F, Q) o< L(6]F, Q7)w(6)
1 1 _
o oxp(( 5 [F8 = (0~ aP)TO) FG" 0 o)) exp (=50 - )55 0 - ) )
(B\ (3.6) and (3.5) )

1
o< oxp (5 (0~ aF = FB7YT(@F) 0~ o ~ FA") 4 (0~ 60)755" (0 - 60} )
1
x exp ( S [OTQF) T+ 5510 — 2[85 M0 + (QF) e + FBF) T + const]>
X exp ( [0TG o —2(DF)To + Const]> ,
X exp < 9 popor)  GT (0 — popar) — HaT|F,QFGFu9\F,QF + COHStD ; (E.6)

where G == (QF)™1 + £; ! and DT == %510y + (7)1 (a” + FBT) and
poyror = (GF) DY = (GF)™' [£5100 + (QF) " (aF + FBT)] .
Substituting back to (E.6), the posterior distribution is:
p(0|F,QF) = N (6; (G") " [S5"60 + (7)) ' (" + FB)] . (GF) 7).
This completes the proof. O

E.4 Proof of Theorem 3.3
Proof of Theorem 3.3. The first two relations (3.7) and (3.8), from (2.4), leads to:

p(0q,Q) = N (6;G (500 + PTQq) ,G™Y), (E.7)
where G := X L4+ PTQ~1P. The third relation (3.9) leads to
p(a|F, Q) = N(g; P(a + F3), PQ"PT). (E.8)

Then, the posterior mean distribution

p(6]F,QF) = / p(6, 4, Q|F, QF )dgd?2,

_ /(/p(a,qm,F, QF)dq> 7(Q)d9,
= [ ([ sota.ontalr0f)aq) s(@yas (E9)

where the last step follows the conditional independence between 6 and (F, Q") given (g, ). Also, it is clear to see that

6|, F,QF ~ /p(9|q,9)p(q\F,QF)dq. (E.10)

Both p(f|q, ) (E.7) and p(q|F, ") (E.8) are Gaussian, so the inside integral of (E.9) is also Gaussian, with

/p(9|q, Q)p(q|F, Q" )dg = N (0; toj0, r0r » Sojo, r.aF ) -
By the law of total expectation,
tgja,r0r = E[0|Q, F, QF]
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— [ Ella. Qp(al P2 ) (By (E.10)
/G %500+ PTQ q) N (¢; P(a+ FB), PQYPT) dg (By (E.7) and (E.8))
(20 00+ PTQTP(a + FP)) . (By [ a-p(alF, Q2" )dg = E[q|F, Q"].)

Using the law of total variance,
29|Q,F,QF = Var[9|Q, F, QF]

=K [Var[9|q, QO F, QF]] + Var []E[9|q, O, F, QFH (By the law of total variance)

= E[Var[0|q, H + Var [E[0|q, Q]] (By conditional indcpondcncc)

/Var ¢9|q, p(q|F, Q" )dq +Var[ 9| q,Q]} (By (E.7))

——.
G5 teo+PTO g

=G+ G71PT971Var[q]971PG71 (By [ p(q|F, Q") = 1 and Var[Mq] = M Var[g]M ")

=G '+Gc'PTa (PP PG (By (E.8))

This completes the proof. O

E.5 Proof of Corollary 3.3.1

Proof of Corollary 3.3.1. From Lemma D.2, we have
oY, F,QF ~ N (i/,%).
From (3.11), we have
o~ IW (W, V)
We obtain the joint distribution by definition of the Normal-Inverse-Wishart distribution:
p(6.£'|F,QF) = p(6]%', F, Q" )n(<)
=N, X)) IW' )
=NIW (/' ,1,¥ ). (E.11)

Then the posterior mean distribution becomes

p(6]F,QF) = / p(6, S| F,QF s,

= /NIW(@,E/;[L/,1,\11/,1//)612,, (By (E.11))
\I//
=t |0, —
( e —m+ 1)
where the last step follows Lemma D.3. This completes the proof. [

23



Latent Variable Estimation in Bayesian Black-Litterman Models

F Experimental Details
F.1 Sharpe Ratio Maximization

In our experiment (Section 4), we consider a standardized version of the mean-variance optimization framework (Defini-
tion 2.1), taking Sharpe ratio as its maximization objective:

Definition F.1 (Mean-Variance Optimization on Sharpe ratio). Let » € R™ be the returns of the m assets and 7 be its

prediction. The optimization problem, under the constraint of (1) no leverage and (2) long only, is:

F.2 Table of Indicators

S.t. sz =1 and w; > 0.

Indicator Description Hyperparameters

ATR Measures market volatility based on price | Window length (default 14)
range.

ADX Measures the strength of a trend. Window length (default 14)

EMA Weighted moving average prioritizing re- | Window length (default 14)
cent prices.

MACD Difference between short- and long-term | Fast EMA window length (12),
EMAs, indicates momentum shifts. Slow EMA window length (26),

Signal window length (9)

SMA Average of prices over a specified window | Window length (default 20)
length, indicating short-term trends.

RSI Momentum oscillator identifying over- | Window length (default 14)
bought/oversold conditions.

BB (Upper & Lower) | Measures price volatility, expanding during | Window length (default 20), Stan-
high volatility and contracting during low. | dard deviation multiplier (default 2)

OBV (normalized) Volume indicator combined with price, nor- | None (computed from price and vol-
malized to range [0, 1]. ume)

Table 3: Common Indicators Used
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F.3 Tables of Datasets

Table 4: S&P Sector ETF Components

ETF Ticker Start Date End Date

XLB 2004-04-13  2024-02-22
XLE 2004-04-13  2024-02-22
XLF 2004-04-13  2024-02-22
XLI 2004-04-13  2024-02-22
XLK 2004-04-13  2024-02-22
XLP 2004-04-13  2024-02-22
XLU 2004-04-13  2024-02-22
XLV 2004-04-13  2024-02-22
XLY 2004-04-13  2024-02-22
XLRE 2015-10-08  2024-02-22
XLC 2018-06-19  2024-02-22
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Table 5: DJIA Components

Stock Ticker  Start Date End Date

AA 1994-01-05 2013-09-22
AIG 2004-04-08 2008-09-21
AAPL 2015-03-19  2024-02-22
AMGN 2020-08-31 2024-02-22
AXP 1994-01-05 2024-02-22
BA 1994-01-05 2024-02-22
BAC 2008-02-19  2013-09-22
C 1999-11-01  2009-06-07
CAT 1994-01-05 2024-02-22
CSCO 2009-06-08 2024-02-22
CVX 2008-02-19  2024-02-22
DD 1994-01-05 2019-04-01
DIS 1994-01-05 2024-02-22
FL 1994-01-05 1997-03-17
GE 1994-01-05 2018-06-25
GS 2013-09-23  2024-02-22
GT 1994-01-05 1999-11-01
HD 1999-11-01 2024-02-22
HON 1994-01-05 2024-02-22
HPQ 1997-03-17 2013-09-22
IBM 1994-01-05 2024-02-22
INTC 1999-11-01 2024-02-22
1P 1994-01-05 2004-04-08
INJ 1997-03-17 2024-02-22
JPM 1994-01-05 2024-02-22
KO 1994-01-05 2024-02-22
MCD 1994-01-05 2024-02-22
MMM 1994-01-05 2024-02-22
MO 1994-01-05 2008-02-18
MRK 1994-01-05 2024-02-22
MSFT 1999-11-01  2024-02-22
NKE 2013-09-23  2024-02-22
PFE 2004-04-08 2024-02-22
PG 1994-01-05 2024-02-22
T 1994-01-05 2015-03-18
TRV 1997-03-17 2024-02-22
UNH 2012-09-24  2024-02-22
VZ 2004-04-08 2024-02-22
WBA 2018-06-26  2024-02-22
WMT 1994-01-05 2024-02-22
XOM 1994-01-05 2024-02-22
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F.4 Figures of Asset Allocation

Asset Allocation Over Time
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Figure 6: Asset Allocation of traditional MV model (rolling window: 100 days) on SPDR Sectors ETFs Dataset.
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Figure 7: Asset Allocation of SLP-BL model (rolling window: 100 days) on SPDR Sectors ETFs Dataset.
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F.5

Turnover Rate Analysis

Average Turnover Rate (%)
on Dow Jones Index Dataset

Average Turnover Rate (%)

on SPDR Sector ETFs Dataset

MYV (50d) 65.48 61.75
BL (50d) 34.85 24.30
MYV (80d) 53.94 49.38
BL (80d) 25.62 19.56
MYV (100d) 47.79 48.73
BL (100d) 23.41 18.63
MYV (120d) 44.30 41.72
BL (120d) 20.89 18.09
MV (150d) 39.70 38.84
BL (150d) 19.17 17.00

Table 6: Average Turnover Rate (%) for SLP-BL and Markowitz model on the Dow Jones Index and SPDR Sector ETFs Datasets.

Turnover Rate

Portfolio Turnover Rate Over Time
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Figure 8: Turnover rate of traditional MV model (rolling window: 100 days) on Dow Jones Index Dataset.
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Portfolio Turnover Rate Over Time
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Figure 9: Turnover rate of SLP-BL model (rolling window: 100 days) on Dow Jones Index Dataset.
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