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ABSTRACT

Both long-tailed and noisily labeled data frequently appear in real-world applica-
tions and impose significant challenges for learning. Most prior works treat either
problem in an isolated way and do not explicitly consider the coupling effects of
the two. Our empirical observation reveals that such solutions fail to consistently
improve the learning when the dataset is long-tailed with label noise. Moreover,
with the presence of label noise, existing methods do not observe universal im-
provements across different sub-populations; in other words, some sub-populations
enjoyed the benefits of improved accuracy at the cost of hurting others. Based
on these observations, we introduce the Fairness Regularizer (FR), inspired by
regularizing the performance gap between any two sub-populations. We show that
the introduced fairness regularizer improves the performances of sub-populations
on the tail and the overall learning performance. Extensive experiments demon-
strate the effectiveness of the proposed solution when complemented with certain
existing popular robust or class-balanced methods.

1 INTRODUCTION
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Figure 1: Overview of our work: Differ-
ent robust solutions incur varied impacts on
noisily labeled long-tailed distributed sub-
populations. We show adding Fairness
Regularizer (FR) between head and tail pop-
ulations encourages the classifier to achieve
relatively fair performances by reducing per-
formance gaps among sub-populations, and
improves the overall learning performance.

Biased and noisy training datasets are prevalent and
impose challenges for learning (Salakhutdinov et al.,
2011; Zhu et al., 2014; Liu, 2021). The biases and
noise can happen both at the sampling and label col-
lection stages: A dataset often contains numerous
sub-populations and the size of these sub-populations
tends to be long-tailed distributed (Salakhutdinov
et al., 2011; Zhu et al., 2014), where the tail sub-
populations have an exponentially scaled probability
of being under-sampled. Meanwhile, a dataset tends
to suffer from noisy labels if collected from unver-
ified sources (Wei et al., 2022c). Most prior works
treat either population bias or label noise in an iso-
lated way and do not explicitly consider the coupling
effects of the two. In particular, existing works on
learning with noisy labels mainly focus on a homo-
geneous treatment of the entire population, and the
underlying clean data is often balanced (Natarajan
et al., 2013; Liu & Tao, 2015; Patrini et al., 2017; Liu
& Guo, 2020; Cheng et al., 2021).

The main inquiry of our paper is to understand and mitigate the possible heterogeneous effects of
label noise when considering the imbalanced distribution of sub-populations. We start by presenting
strong evidence of disparate impacts of sub-populations with a synthetic long-tailed noisy CIFAR-100
dataset (Krizhevsky et al., 2009) when using existing learning with noisy labels methods. Figure 2
illustrates the per-population (100 sub-populations in all, where we consider the class information as
a natural separation of sub-populations) performance comparisons between applying the traditional
Cross-Entropy (CE) loss and the recently proposed robust treatment to either noisy (i.e., Label
Smoothing (LS) (Lukasik et al., 2020) and PeerLoss (PL) (Liu & Guo, 2020)) or long-tailed data
(Focal (Lin et al., 2017), Logit-adjustment (Menon et al., 2021)). There are three main takeaways:
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Figure 2: How each method improves per sub-population test accuracy w.r.t. CE loss on CIFAR-100
dataset. All methods are trained on 20 coarse classes in CIFAR-100. Each coarse class includes 5
different sub-populations (fine classes in CIFAR-100). For each sub-figure, x-axis indicates the CE
accuracy. y-axis denotes the performance of robust/long-tail approaches. Each dot denotes the test
accuracy pair (AccCE,AccMethod) for each sub-population. The line y = x means that CE performs
the same as the robust treatment on a particular sub-population. The blue (red) dot above (below)
the line shows the robust treatment has positive (negative) effect on this sub-population compared
with CE. In sub-titles, "Balance" denotes the balanced training data (w.r.t. clean labels); "Imbalance"
means the training dataset follows a long-tailed distribution where the ratio between max and min
number of samples in the sub-populations is 100; "Clean": the labels of training samples are clean;
"Noisy": 25.6% training samples are wrongly labeled. The test dataset is clean and balanced.

First, the same robust treatment may have disparate impacts on different sub-populations, e.g.,
different sub-populations are improved differently by losses such as the Logit-adj loss (Menon et al.,
2021). Second, different robust treatments have disparate impacts on the same part of data, e.g., LS
(Lukasik et al., 2020) performs badly (almost 0 accuracies) on sub-populations with low CE accuracy
(<50) and improves the others, while PL (Liu & Guo, 2020) has a reversed effect that the high CE
accuracy part (>50) is likely to be degraded. Third, the prior works fail to address the coupling effects
of population imbalance and noisy labels.

The above observations motivate us to explore how sub-population data should be treated when
learning from noisily labeled long-tailed data. This work formally investigates the influence of
sub-populations when learning with long-tailed and noisily labeled data. The analysis inspires us to
define a fairness regularizer for this learning task. Figure 1 overviews our work. Our contributions
are primarily two-fold. We quantify the influence of sub-populations using a number of metrics
and discover disparate impacts of long-tailed sub-populations when label noise presents (Section 3).
Following the above observation, we propose the Fairness Regularizer (FR), which encourages the
learned classifier to reduce the performance gap between the head and tail sub-populations. As a
result, our approach not only improves the performances of tail populations but also improves overall
learning performance. Extensive experiments on the CIFAR and Clothing1M datasets demonstrate
the effectiveness of FR when complemented with certain robust or long-tailed solutions (Section 5).

Contrary to most existing fairness-accuracy trade-offs observed in the literature (Hardt et al., 2016;
Menon & Williamson, 2018; Martinez et al., 2019; Zhao & Gordon, 2019; Ustun et al., 2019;
Islam et al., 2021), we show that adding this fairness regularizer alleviates disparate impacts across
populations of different sizes and improves the learning from noisily labeled long-tailed data.

1.1 RELATED WORKS

Learning with Noisy Labels Obtaining perfect annotations in supervised learning is a challenging
task (Xiao et al., 2015; Luo et al., 2020; Wei et al., 2022c;d). Due to the restrictions of human
recognition, noisy annotations impose challenges to performing robust training. A line of popular
approaches of learning with label noise firstly estimates the noise transition matrix, and then proceeds
to use this knowledge to perform loss or sample correction (Jiang et al., 2022; Natarajan et al., 2013;
Liu & Tao, 2015; Patrini et al., 2017; Zhu et al., 2021b; Li et al., 2022), i.e., the surrogate loss uses
the transition matrix to define unbiased estimates of the true losses (Scott et al., 2013; Natarajan et al.,
2013; Scott, 2015; Van Rooyen et al., 2015; Menon et al., 2015). Noting that the estimation of the
noise transition matrix is non-trivial (Zhu et al., 2021b; 2022b), another line of works aims to propose
training methods without requiring knowing the noise rates, e.g., using robust loss functions (Kim
et al., 2019; Liu & Guo, 2020; Wei & Liu, 2020; Wei et al., 2022b) training deep neural nets directly
without the knowledge of noise rates (Han et al., 2018; Wei et al., 2020; 2022a; Qin et al., 2022),
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making use of the early stopping strategy (Liu et al., 2020; Xia et al., 2021a; Liu et al., 2022a;b;
Huang et al., 2022), or designing a pipeline which dynamically selects/corrects and trains on "clean"
samples with small loss (Cheng et al., 2021; Xia et al., 2021b; 2022b; Jiang et al., 2022; Zhang et al.,
2022a). Recent works also explored the possibility of using open-set data to improve the closed-set
robustness (Wei et al., 2021a; Xia et al., 2022a).

Learning with Long-Tailed Data The most relevant mainstream solution of learning with long-
tailed clean data is the logit/loss adjustment approaches, which modify the loss values during the
training procedure, for example, adjust the loss values w.r.t. the label frequency (Ren et al., 2020),
sample influence (Park et al., 2021), or the distribution alignment between model prediction and a
set of the balanced validation set (Wei et al., 2023), among many other solutions. More recently,
based on the label frequencies, the logit adjustments over classic approaches (Menon et al., 2021) are
proposed, either through a post-hoc modification w.r.t. a trained model or enforcement in the loss
during training. Open-set data may also be used to improve complement long-tailed data (Wei et al.,
2021a). Please refer to a comprehensive survey (Zhang et al., 2023) for more details.

Existing robust approaches targeted mainly the class or sub-population level balanced training data.
More recently, the literature observed several approaches to address the issue of label-noise in the
long-tailed tasks, through decoupled treatments for head classes and tail ones, i.e., detecting noisy
labels and performing robust solutions to the head class, meanwhile adopting a self/semi-supervised
learning manner to deal with the tail classes (Zhong et al., 2019; Wei et al., 2021c; Karthik et al.,
2021). Beyond classes, it has been demonstrated that sub-populations with different noise rates cause
disparate impacts (Liu, 2021; Zhu et al., 2022a) and need decoupled treatments (Zhu et al., 2021a;
Wang et al., 2021), which is more crucial for long-tailed sub-populations.

2 PRELIMINARY

2.1 SUB-POPULATIONS OF FEATURES

In a K-class classification task, denote a set of data samples with clean labels as S := {(xi, yi)}ni=1,
given by random variables (X,Y ), which is assumed to be drawn from D. In this work, we are
interested in how sub-populations intervene with learning. Formally, we denote G ∈ {1, 2, ..., N} as
the random variable for the index of sub-population, and each sample (xi, yi) is further associated
with a gi. The set of sub-population k could then be denote as Gk := {i : gi = k}. We consider a
long-tail scenario where the head population and the tail population differ significantly in their sizes,
i.e., maxk |Gk| ≫ mink′ |Gk′ |.
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Figure 3: Count plot of a synthetic long-tailed
CIFAR-100 train dataset: x-axis denotes the
sub-population index; y-axis indicates the
number of samples in each sub-population.

Consider Figure 3 for an example of sub-population
separations using the CIFAR-100 dataset (Krizhevsky
et al., 2009): images are grouped into 20 coarse
classes, and each coarse class could be further catego-
rized into 5 fine classes. For example, the coarse class
"aquatic mammals" was further split into "beaver",
"dolphin", "otter", "seal", and "whale". From Figure
3, we observe a strong imbalanced distribution of dif-
ferent sub-populations and a long-tailed pattern. In
Section 5.1, we provide more details on long-tail data
generation models for our synthetic experiments.

2.2 OUR TASK

In practice, obtaining "clean" labels from human annotators is both time-consuming and expensive.
The obtained human-annotated labels usually consist of certain noisy labels (Xiao et al., 2015; Lee
et al., 2018; Jiang et al., 2020; Wei et al., 2022c). The flipping from clean labels to noisy labels is
usually described by the noise transition matrix T (X), with its element denoted by Tij(X) = P(Ỹ =

j|Y = i,X). We denote the obtained noisy training dataset as S̃ := {(xi, ỹi)}ni=1, given by random
variables (X, Ỹ ), which is assumed to be drawn from D̃.
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Though we only have access to noisily labeled long-tailed data S̃, our goal remains to obtain the opti-
mal classifier with respect to a clean and balanced distribution D: minf∈F E(X,Y )∼D [ℓ(f(X), Y )],
where f is the classifier chosen from the hypothesis space F , and ℓ(·) is a calibrated loss function
(e.g., CE) Furthermore, we do not assume the knowledge of the sub-population information during
training. We are interested in how sub-populations intervene with the learning performance and how
we could improve by treating the sub-populations with special care.

3 DISPARATE INFLUENCES OF SUB-POPULATIONS: AN EMPIRICAL STUDY

In this section, we empirically illustrate the disparate influence of sub-populations when learning with
noisily labeled data. Inspired by the literature on using the influence function to capture the impact of
training samples, we define influence metrics at the sub-population level and perform a multi-faceted
evaluation of how imbalanced sub-populations affect the learning performance. We take the long-tail
populations for illustration and defer the results of head populations to Appendix C.4.

Influences: In the literature of explainable deep learning, the notions of influence can be different,
e.g., the influences of features on an individual sample prediction (Ribeiro et al., 2016; Sundararajan
et al., 2017; Lundberg & Lee, 2017; Feldman & Zhang, 2020), the influences of features on the
loss/accuracy of the model (Owen & Prieur, 2017; Owen, 2014), the influences of training samples
on the loss/accuracy of the model (Jia et al., 2019). In this section, we focus on the influence of a
sub-population on both the sub-population level and the individual sample level.

We now empirically demonstrate the role of sub-populations when measuring the test accuracy, and
the prediction of model confidence on test samples. For the synthetic long-tailed noisy training
dataset, we first flip clean labels of the class-balanced CIFAR-10 dataset to any other classes, and
there exist 20% wrong labels in all. We then adopt the class-imbalanced (Cui et al., 2019) CIFAR-10
dataset to select a long-tailed distributed amount of samples for each class (by referring to clean
labels). As for the separation of sub-populations, we adopt the k-means clustering to categorize the
extracted features of each feature given by the Image-Net pre-trained model. Since sub-population
information sometimes may not be available for training use, understanding the influences of such
division of sub-populations is beneficial. More details can be found at 5.1.

We explore the influences of tail sub-populations on performances of cross-entropy (ce) loss, the
forward loss correction (fw) (Patrini et al., 2017), label smoothing (ls) (Lukasik et al., 2020), and the
peer loss (pl) (Liu & Guo, 2020). There are 17 sub-populations (train) with less than 50 instances
considered as the tail section. We illustrate observations on several randomly selected tail sub-
populations. Results of more sub-populations are deferred to Appendix C.1.

3.1 INFLUENCES ON SUB-POPULATION LEVEL (TEST ACCURACY)

We start with the influence of sub-populations in the test set. We adopt the (population-level) test
accuracy changes when removing all samples in the sub-population Gi during the training procedure
to capture the influences of a sub-population on each sub-population at the test set:

Accp(A, S̃, i, j) = P f←A(S̃)

(X′,Y ′,G=j)

(f(X ′) = Y ′)− P
f←A(S̃\i)

(X′,Y ′,G=j)

(f(X ′) = Y ′),

where in the above two quantities, f ← A(S̃) indicates that the classifier f is trained from the whole
noisy training dataset S̃ via Algorithm A, f ← A(S̃\i) means f is trained on S̃ without samples in
the sub-population Gi. (X ′, Y ′, G = j) denotes the test data distribution given that the samples are
from the j-th sub-population.

In Figure 4, the x-axis denotes the loss function for training, and the y-axis visualized the distribution
of {Accp(A, S, i, j)}j∈[100] (left) and {Accp(A, S̃, i, j)}j∈[100] (right) for several randomly selected
long-tail sub-populations (i = 52, 70, 91, results of more populations can be found in Appendix C.1)
under each robust method, where "S" refers to the clean training samples and "S̃" denotes the noisy
version. The blue zone shows the 25-th percentile (Q1) and 75-th percentile (Q3) accuracy changes,
and the orange line indicates the median value. Accuracy changes that are drawn as circles are viewed
as outliers. Note that all sub-figures (distributions) have the same amount of samples, it is clear to
observe the left three figures have lower variance than the right ones, indicating that:

4



Under review as a conference paper at ICLR 2024

ce fw ls pl
0.4

0.2

0.0

0.2

0.4

Ch
an

ge
s o

f T
es

t A
cc

Remove sub-population 52

ce fw ls pl
0.4

0.2

0.0

0.2

0.4
Remove sub-population 70

ce fw ls pl
0.4

0.2

0.0

0.2

0.4
Remove sub-population 91

ce fw ls pl
0.4

0.2

0.0

0.2

0.4

Ch
an

ge
s o

f T
es

t A
cc

Remove sub-population 52

ce fw ls pl
0.4

0.2

0.0

0.2

0.4
Remove sub-population 70

ce fw ls pl
0.4

0.2

0.0

0.2

0.4
Remove sub-population 91

Figure 4: Box plot of the population-level test accuracy changes when removing all samples of a
selected long-tailed sub-population during the training w.r.t. 4 methods. (Left: trained on clean labels;
Right: trained on noisy labels.)
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Figure 5: Distribution plot w.r.t. the changes of model confidence on the test data samples using CE
loss (Left: trained on clean labels; Right: trained on noisy labels). See Appendix C.1 for more details.

Observation 3.1. The tail sub-populations in the noisy training tend to have a more signifi-
cant influence on the test accuracy than that in clean training.

3.2 INFLUENCES ON SAMPLE LEVEL (PREDICTION CONFIDENCE)

Note that grouping testing samples into classes/sub-populations for analysis may ignore some
individual behavior changes, we next consider the influence of sub-populations on the individual test
samples. Instead of insisting on the accuracy measure, we adopt the model prediction confidence as a
proxy, to see how each test sample was influenced. And we introduce Infl(A, S̃, i, j) to quantify the
influence of a sub-population on a specific test sample:

Infl(A, S̃, i, j) = Pf←A(S̃)(f(x
′
j) = y′j)− Pf←A(S̃\i)(f(x

′
j) = y′j).

As shown in Figure 5, we visualize Infl(A, S, i, j) (left) and Infl(A, S̃, i, j) (right), where j ∈ [10000]

means 10K test samples. For example, Infl(A, S̃, i, j) = −1 means the model prediction confidence
on test sample x′j changed from 0 to 1. With the presence of label noise, we observe:

Observation 3.2. Compared with clean training, removing certain tail sub-populations in
the noisy training leads to significant changes/influences on the model prediction confidence
of more test samples.

Concluding this section, we have shown that given certain robust methods, significant disparate
impacts on sub-populations are observed, when learning from long-tailed data with noisy labels. Such
impacts also differ when complemented with different robust solutions, i.e., robust loss functions
implicitly incur disparate impacts on the populations/samples. Recall in Figure 2, we revealed that
existing robust treatments may result in unfair performances among sub-populations, when learning
from noisily labeled long-tailed data. All these observations motivate us to explore ways that will
reduce the gaps between the head and the tail populations.

4 FAIRNESS REGULARIZER (FR)

In this section, we propose to assign fairness constraints to the learning objective function. Leveraged
into its Lagrangian form, such fairness constraints could be viewed as fairness regularizers that
explicitly encourage the classifier to achieve fair performances among sub-populations. We name
our solution the Fairness Regularizer (FR), which encourages the learned classifier to achieve fair
performance across sub-populations.

4.1 FAIRNESS CONSTRAINTS

Note that when learning with robust methods, the classifier tends to result in fitting on certain sub-
populations more easily. We propose to constrain the classifier’s performance on sub-populations:

min
f :domain(X)→[K]

E(X,Ỹ )∼D̃[ℓ(f(X), Ỹ )], s.t. Constraint w.r.t. P(f(X) = Ỹ | G = i), (1)
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where ℓ is a generic loss function that could be any robust losses and the ultimate goal of the classifier
f is categorizing the feature X into a specific class within [K]. Since we do not wish certain sub-
populations to fall much behind others, i.e., in terms of accuracy, we constrain the performance gap
between any two sub-populations by adopting the following constraint for Eqn. (1), specifically, for
any sub-population i ∈ [N ], we require its performance to have a bounded distance from the average
performance. Define Disti :=

∣∣∣P(f(X) = Ỹ | G = i) − P(f(X) = Ỹ )
∣∣∣ as the distance (absolute

performance gap), then the optimization problem is formulated as:

min
f :X→[K]

E(X,Ỹ )∼D̃[ℓ(f(X), Ỹ )], s.t. Disti ≤ δ, ∀i ∈ [N ], (2)

where δ ≥ 0 is a constant. Setting δ = 0 implies that the classifier should achieve fair performances
among all sub-populations, in order to satisfy the constraints.

4.2 USING FAIRNESS CONSTRAINTS AS A REGULARIZER

In practice, forcing sub-populations to achieve absolutely fair or equalized performances (i.e., accu-
racy) may produce side effects. For example, one trivial solution to achieve δ = 0 is simply reducing
the performance of all the other sub-populations to be aligned with the worst sub-population, leading
to poor overall performance. Even though we can fine-tune δ to set an appropriate tolerance of the
gap, the sub-population with the worst performance may still violate the constraint. Noting our goal
is to improve the overall performance on clean and balanced test data, it is arguably a better strategy
to not over-addressing the worst sub-population.

To balance the trade-off between mitigating the disparate impacts among sub-populations and the
possible negative effect due to constraining, rather than strictly solving the constrained optimization
problem in Eqn. (2), we use the constraint as a regularizer by converting it to its Lagrangian form:

min
f :X→[K]

Lλ(f) := E(X,Ỹ )∼D̃[ℓ(f(X), Ỹ )] +

N∑
i=1

λiDisti
→FR

,

where λi ≥ 0. Different from the traditional dual ascent of Lagrange multipliers (Boyd et al., 2011),
we fix λi during our training. Intuitively, applying dual ascent is likely to result in a large λi on the
worst sub-population, inducing possible negative effects as we discussed above. Therefore, in such a
minimization task, the accuracy/performance gaps between sub-populations are encouraged to be
small and do not have to be exactly lower than any threshold. To clarify, we do not require strict fair
performance among sub-populations, instead, we wish to improve the worst group performance at
the minimum cost of the better group. Hence, we did explore the usage of other fairness constraints
since all these definitions/constraints will serve with the same purpose – avoiding the performance
gap among sub-populations from being overly large, in the setting of noisy labeled long-tailed data.

Implementation Denote by fx[ỹ] the model’s prediction probability on the noisy label ỹ given
input x. Noting the probability in Disti is non-differentiable w.r.t f , we apply the following empirical
relaxation (Wang et al., 2022):

Disti :=
∣∣∣∑N

k=1 fxk
[ỹk] · 1(gk = i)∑N

k=1 1(gk = i)
−

∑N
k=1 fxk

[ỹk]

N

∣∣∣, (3)

where 1(gk = i) = 1 when gk = i and 0 otherwise. For simplicity, we set all λi to a constant λ.

To demonstrate why FR helps with improving the learning from noisily labeled long-tailed data, we
will provide extensive experiment studies in the next section. We also adopted a binary Gaussian
example and provide Observation 4.1. Detailed discussions are deferred to Appendix A.3.

Observation 4.1. Theoretically, we show the connection between error probability under
the noisy data distribution and under the clean data distribution. Then, we provide insights
on how FR mitigates the incurred bias term brought by the noisy data distribution.
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Table 1: Performance comparisons on synthetic long-tailed noisy CIFAR datasets (noise type:
imbalance-noise & symmetric noise), best-achieved averaged accuracy on a class-balanced test data
are reported. Results in bold: FR improves the performance of the baseline methods, respectively.

Noise type: Imbalance Noise
Noise Ratio CIFAR-10 (ρ = 0.2) CIFAR-10 (ρ = 0.5) CIFAR-100 (ρ = 0.2) CIFAR-100 (ρ = 0.5)

Imbalance Ratio r = 10 r = 50 r = 100 r = 10 r = 50 r = 100 r = 10 r = 50 r = 100 r = 10 r = 50 r = 100

CE 79.75 65.98 60.03 65.38 47.51 37.44 46.02 31.44 26.98 29.58 16.93 13.87
CE + FR (KNN) 80.46 69.00 61.64 65.87 46.69 39.97 46.18 31.03 27.60 30.25 16.79 15.19
CE + FR (G2) 80.44 67.29 65.12 68.62 49.43 39.69 46.38 32.32 28.53 32.35 19.03 15.93

LS (Lukasik et al., 2020) 82.52 69.08 59.07 67.73 36.17 32.92 47.80 33.66 26.36 34.02 17.28 14.10
LS + FR (KNN) 82.78 70.06 59.27 68.99 36.55 36.63 48.27 33.01 27.60 32.01 17.14 14.07
LS + FR (G2) 82.02 70.24 60.33 70.50 44.11 35.49 47.30 33.86 29.67 34.51 17.84 16.68

NLS (Wei et al., 2021b) 79.91 65.98 58.82 64.74 41.01 34.16 46.05 31.48 27.09 29.86 16.84 13.87
NLS + FR (KNN) 80.17 68.61 62.88 68.65 47.42 36.79 45.72 32.25 27.01 28.85 17.23 14.18
NLS + FR (G2) 80.36 68.25 63.50 69.70 49.01 38.26 43.15 33.78 28.69 32.30 19.62 15.64

Focal (Lin et al., 2017) 76.24 64.16 57.68 62.40 40.25 34.56 43.63 29.10 24.88 26.93 14.45 12.57
Focal + FR (KNN) 77.54 62.97 57.24 61.47 42.28 37.04 42.44 28.90 25.14 28.34 16.02 13.27
Focal + FR (G2) 78.56 66.07 56.55 64.10 43.61 38.15 45.63 31.87 27.58 29.80 17.67 15.30

PL (Liu & Guo, 2020) 78.43 55.61 54.20 47.71 31.96 30.13 45.32 33.05 29.91 28.01 20.25 16.65
PL + FR (KNN) 79.50 65.37 53.36 51.82 35.68 30.16 44.89 33.12 28.63 27.66 19.79 17.72
PL + FR (G2) 78.79 66.16 54.39 50.72 33.22 28.01 44.78 33.35 29.51 29.82 20.15 16.81

Logit-adj (Menon et al., 2021) 82.09 73.23 68.18 68.30 51.51 42.17 47.28 33.11 29.47 30.92 17.97 14.68
Logit-adj + FR (G2) 82.92 75.67 72.20 73.72 55.09 40.85 41.21 35.39 28.84 27.57 18.93 15.44

Logit-adj + FR (KNN) 82.48 73.65 68.48 70.89 49.23 42.93 47.66 33.18 29.50 31.85 17.59 15.25
Noise type: Symmetric Noise

Noise Ratio CIFAR-10 (ρ = 0.2) CIFAR-10 (ρ = 0.5) CIFAR-100 (ρ = 0.2) CIFAR-100 (ρ = 0.5)
Imbalance Ratio r = 10 r = 50 r = 100 r = 10 r = 50 r = 100 r = 10 r = 50 r = 100 r = 10 r = 50 r = 100

CE 80.70 65.04 61.80 70.48 51.53 36.44 46.02 30.93 26.98 29.93 16.70 4.76
CE + FR (KNN) 81.19 69.95 63.97 71.75 52.93 45.63 46.33 30.82 27.19 31.12 17.68 15.39
CE + FR (G2) 81.64 70.84 65.14 71.44 56.50 46.33 47.70 34.34 30.78 31.58 21.70 19.10

LS (Lukasik et al., 2020) 83.23 71.69 65.69 72.85 50.59 30.98 47.90 33.81 29.95 26.56 21.74 19.39
LS + FR (KNN) 83.28 70.64 60.91 73.92 53.01 43.48 49.05 33.40 30.05 34.86 20.73 19.10
LS + FR (G2) 82.22 70.85 62.43 74.59 54.15 44.77 48.16 34.08 30.69 36.40 22.06 20.10

NLS (Wei et al., 2021b) 80.79 66.22 61.47 70.11 50.57 36.55 46.11 31.14 27.32 30.51 17.16 5.18
NLS + FR (KNN) 81.08 69.29 63.58 70.27 54.86 36.50 48.20 35.03 28.29 28.87 19.10 6.65
NLS + FR (G2) 81.37 70.60 64.73 71.30 56.24 37.29 47.67 34.32 30.75 29.62 22.17 8.04

Focal (Lin et al., 2017) 77.77 61.54 56.02 67.20 43.12 38.20 35.93 23.23 21.84 27.31 16.18 14.71
Focal + FR (KNN) 78.03 64.57 56.77 67.87 41.89 36.34 42.79 30.17 25.08 28.22 16.37 14.50
Focal + FR (G2) 78.83 65.56 60.35 68.21 47.09 41.74 46.33 32.56 27.77 29.70 16.47 15.29

PL (Liu & Guo, 2020) 79.73 66.82 42.12 55.52 33.18 33.06 44.60 32.91 28.69 27.38 18.52 17.25
PL + FR (KNN) 79.42 64.91 58.80 53.86 38.41 32.71 45.60 32.32 28.34 27.63 18.86 16.48
PL + FR (G2) 79.37 66.71 58.98 55.68 38.08 33.52 46.83 33.17 29.67 28.12 19.48 17.62

Logit-adj (Menon et al., 2021) 80.50 62.42 50.28 60.38 32.45 27.32 46.50 29.24 23.80 28.79 12.65 9.22
Logit-adj + FR (KNN) 80.66 62.07 51.04 62.32 31.23 22.41 47.22 29.34 24.70 29.95 12.44 9.28
Logit-adj + FR (G2) 81.82 62.62 52.35 63.34 31.14 21.93 48.13 30.18 24.06 29.35 12.37 9.26

5 EXPERIMENTS

In this section, we verify the effectiveness of FR on the synthetic long-tailed noisy CIFAR datasets
(Krizhevsky et al., 2009) and a real-world large-scale noisily labeled long-tailed dataset Clothing1M
(Xiao et al., 2015).

5.1 EXPERIMENT DESIGNS ON SYNTHETIC NOISILY LABELED LONG-TAILED CIFAR
DATASETS

We empirically test the performance of FR on CIFAR-10, and CIFAR-100 (Krizhevsky et al., 2009).

Generation of Synthetic Long-Tailed Data with Noisy Labels Note that the class information
could be viewed as a special case of sub-populations, in this subsection, we treat classes as the natural
separation of sub-populations and consider the class-imbalance experiment setting with noisy labels.
For the balanced K-class classification task with n samples per class, the synthetic long-tail setting
assumes that k−th class has only n/(r

k−1
K−1 ) samples by referring to the ground-truth labels (Cui

et al., 2019). We adopt two label-noise transition models below.

Model 1 (Imb): The entries of the noise transition matrix are given by Ti,j := P(Ỹ = j|Y = i,X =

x): Ti,j returns 1− ρ if i = j; otherwise, P(Y=j)·ρ
1−P(Y=i) . ρ is viewed as the overall error/noise rate. The

Imb noise model (Wei et al., 2021c) assumes that samples are more likely to be mislabeled as frequent
ones in real-world situations.

Model 2 (Sym): The generation of the symmetric noisy dataset is adopted from (Kim et al., 2019),
where it assumed that Ti,j = ρ

K−1 ,∀i ̸= j, indicating that any other classes i ̸= j has the same
chance of being flipped to class j. The diagonal entry Ti,i (chance of a correct label) becomes 1− ρ.
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Figure 6: How FR improves per class test accuracy w.r.t. the baseline method on CIFAR-10. In each
sub-figure, the x-axis indicates the accuracy of a baseline. y-axis denotes the performance of baseline
when FR is introduced. Each dot denotes the test accuracy pair (AccMethod,AccMethod+FR) for each
sub-population. The black line y = x stands for the case that FR has no effects on a particular
sub-population. The blue (red) dot above (below) the line shows the robust treatment has positive
(negative) effect on this sub-population compared with CE.

For both noise settings, we test FR with noise rates ρ ∈ {0.2, 0.5}, meaning the proportion of wrong
labels in the long-tailed training set is 0.2 or 0.5.

Separation of Gi We consider two kinds of sub-population separation methods for FR.

• Separation with Clustering Methods: ∀x ∈ X , the representation of feature x is given by
the representation extractor ϕ(x), where ϕ(·) : X → Rd maps the feature x to a d-dimensional
representation vector. Given a distance metric DM (i.e., the Euclidean distance), the distance
between two extracted representations ϕ(x1), ϕ(x2) is DM(ϕ(x1), ϕ(x2)). The sub-population
could be separated through clustering algorithms such as k-means (k = N here). Admittedly,
obtaining a good representation extractor is non-trivial, we want to highlight that the separation of
sub-populations is not highly demanding on the quality of the representation extractor, and the
focus is to perform fairness regularizations on varied features.

• Separation Directly via Pre-Trained Models: In this case, ∀x ∈ X , we adopt an (Image-
Net) pre-trained model for the separation, i.e., such a feature extractor ϕ(·) maps each x into a
d = N -dimensional representation vector so that all features are automatically categorized into N
sub-populations.

5.2 EXPERIMENT RESULTS ON CIFAR DATASETS

In Table 1, we empirically show how FR helps with improving the classifier’s performance when
complemented with several methods in robust losses as well as approaches in class-imbalanced
learning, under synthetic class-imbalanced CIFAR datasets with noisy labels, including Cross-Entropy
loss (CE), Label Smoothing (LS) (Lukasik et al., 2020), Negative Label Smoothing (NLS) (Wei
et al., 2021b), Focal Loss (Lin et al., 2017), PeerLoss (PL) (Liu & Guo, 2020), and Logit-adjustment
(Logit-adj) (Menon et al., 2021). We fix the same training samples and labels for all methods. More
details are available in Appendix C.2.

For FR, we adopted the fixed λ for all sub-populations. We consider two types of sub-population
separation methods: (i) KNN clustering, which splits the extracted features into K clusters, with K
being the number of classes; (ii) Generate the separation by referring to the direct prediction made by
a (Image-Net) pre-trained model. In our experiments, this method separates features into a head and
a tail sub-population, and the ratio w.r.t. the amount of samples between two sub-populations is ≈ 5.

Results In Table 1, we provide the baseline performance as well as the corresponding performances
when FR is introduced. FR (KNN) denotes the scenario where we adopt the KNN clustering for
sub-population separation, and the number of sub-populations is the same as the number of classes.
We did not consider the noisy (class) labels as the sub-population index due to the fact that the noisy
labels may contain the wrong ones. Empirically, we observe that FR (KNN) consistently improves
the baseline methods on the class-imbalanced CIFAR-10 dataset, under the Imb and Sym noise.
However, FR (KNN) could not improve significantly on the class-imbalanced CIFAR-100 dataset.
One reason is that, in the batch update, the number of samples in each sub-population is too small
(the average number is 128/100 = 1.28), resulting in large variance in calculating FR as Eqn. (3).
As an alternative, we report the performance of FR (G2) as well, where samples are categorized
into 2 sub-populations by the (Image-Net) pre-trained model. Surprisingly, FR (G2) improves the
performance of 6 baselines in most settings, as highlighted in Table 1. Constraining the classifier to
have relative fairness performances is beneficial when learning with noisy and long-tailed data.
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We further adopt the CIFAR-10 dataset (ρ = 0.5, r = 50) and visualize how FR influences the
per-class accuracy by referring to the performance of each baseline. Each blue point in Figure 6
indicates the scenario where FR improves the test accuracy of a class over the corresponding baseline.
Points in the lower left corner (where tail populations are usually located) further illustrate that FR
consistently improves the performance of tail sub-populations.

Table 2: Paired student t-test results w.r.t. the effectiveness
of FR. Rows marked with "

√
" mean FR improve the perfor-

mance of the baseline methods significantly (p-value satisfies
that p < 0.1 and the statistics is positive); "–" indicates there
exist no significant differences after adopting FR.

CIFAR-10 CIFAR-100
Method FR Type statistics p-value Better statistics p-value Better

CE FR (KNN) 2.962 0.013
√

1.489 0.165 –
CE FR (G2) 4.313 0.001

√
3.083 0.010

√

LS FR (KNN) 1.214 0.250 – 0.748 0.470 –
LS FR (G2) 1.851 0.091

√
1.926 0.080

√

NLS FR (KNN) 4.235 0.001
√

1.692 0.119 –
NLS FR (G2) 4.909 <0.000

√
3.237 0.008

√

PL FR (KNN) 1.859 0.090
√

-0.620 0.548 –
PL FR (G2) 1.847 0.092

√
2.345 0.039

√

Focal FR (KNN) 0.886 0.395 – 2.218 0.049
√

Focal FR (G2) 5.249 <0.000
√

4.105 0.002
√

Logit-adj FR (KNN) 1.171 0.266 – -0.419 0.684 –
Logit-adj FR (G2) 0.255 0.803 – 2.410 0.035

√

Hypothesis Testing w.r.t. FR We
adopt paired student t-test to verify the
conclusion that FR helps with improv-
ing the test accuracy. In Table 2, posi-
tive statistics indicate that the FR gen-
erally improves the performance (test
accuracy) of the baseline method. The
p-value that is smaller than 0.1 means
there exist significant differences be-
tween the two accuracy lists. In such
scenarios, we should reject the null
hypothesis and adopt the alternative
hypothesis. Table 2 shows that FR
(G2) brings significant performance
improvements in most settings (5/6
in CIFAR-10 and 6/6 in CIFAR-100),
indicating the effectiveness of our method. Besides, FR (KNN) shows significant performance
improvements only in several settings (but there are still improvements in most cases), which can be
explained by our previous discussion that a large number of sub-populations may make the learning
unstable. More details appear in Appendix C.2.

5.3 EXPERIMENT RESULTS ON CLOTHING1M DATASET

Table 3: Performance comparisons on real-world imbalanced
noisily labeled dataset (Clothing1M), best and last-epoch
achieved test accuracy are reported. Results in bold mean FR
improves the performance of the baseline methods, respec-
tively. Performances of FR with different λs are provided.

Method λ 0.0 0.1 0.2 0.4 0.6 0.8 1.0 2.0

CE Best 72.68 72.44 72.93 72.74 73.10 72.80 72.99 72.45
Last 72.22 71.99 72.25 72.24 72.51 72.53 72.58 72.20

LS Best 72.55 72.71 72.69 72.34 72.41 72.44 72.70 72.56
Last 72.03 72.11 72.14 72.12 72.12 72.06 72.33 72.24

NLS Best 74.46 74.48 74.47 74.49 74.48 74.49 74.49 74.50
Last 74.00 73.99 73.97 73.98 73.98 73.97 73.97 73.97

PL Best 73.00 73.27 73.13 73.15 73.13 73.22 73.08 73.02
Last 72.73 72.91 72.87 72.69 72.76 73.12 72.71 72.69

Focal Best 72.71 72.60 72.71 72.60 72.92 72.66 72.91 72.46
Last 72.16 72.21 72.04 72.18 72.30 72.36 72.51 72.46

Logit-adj Best 72.43 72.52 72.48 71.88 72.22 72.45 72.67 72.06
Last 72.22 72.15 72.14 71.58 71.83 71.94 72.23 71.92

Clothing1M is a large-scale feature-
dependent human-level noisy clothes
dataset. We adopt the same baselines
as reported in CIFAR experiments for
Clothing1M. More detailed descrip-
tions are given in Appendix C.3.

We try implementing FR with
different λ chosen from the set
{0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0},
where λ = 0.0 indicates the training
of baseline methods without FR. In
Table 3, the default setting of FR
(λ = 1.0) consistently reaches com-
petitive performances by comparing
to other λs, except for the experiments w.r.t. NLS. Besides, we observe that most positive λs that
are close to λ = 1.0 tend to have better performances than those close to λ = 0.0, indicating the
effectiveness as well as hyper-parameter in-sensitiveness of the introduced fairness regularizer.

6 CONCLUSIONS

In this paper, we qualitatively and quantitatively analyzed the influence of sub-populations under
various metrics, where we observed disparate impacts incurred by sub-populations, especially when
the label noise presents. What is more, our experiment results also reveal that existing robust solutions
improve the performance of certain sub-populations at the cost of hurting others, hence leading to
unfair performances among sub-populations. We then propose Fairness Regularizer (FR), which
encourages the learned classifier to achieve fair performances across sub-populations. Extensive
experiment results demonstrate the effectiveness of FR, indicating that fairness constraints improve
the learning from noisily labeled long-tailed data. One limitation is that our proposed method has only
been tested on image classification tasks. The performance on other tasks needs more exploration.
We defer more detailed discussions to the beginning of the Appendix.
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APPENDIX

Broader Impacts This paper considers the setting where the classification task observes noisy
annotations and imbalanced clean label priors. Most prior works treat either population bias or label
noise in an isolated way and do not explicitly consider the coupling effects of the two. However, in
practical cases, real-world data is noisy and imbalanced. Our proposed Fairness Regularizer (FR)
addresses this practical case and can be viewed as a plug-in item to extend existing solutions easily.

Code of Ethics There is no sensitive attribute in our method and results. Therefore, the potential
negative impacts do not apply to our work. Our code is uploaded along with other supplementary
materials.

Limitations The proposed method has only been tested on the image classification tasks. The
performance on other tasks (i.e., text classification) needs more exploration.

Before presenting more materials, we find it necessary to clarify potential misunderstandings.

Clarification Throughout this work, the saying of groups is a generalized definition of the separation
of samples, which includes many popular settings as special cases, i.e.,

• Class-relevant: the class name is actually a natural separation of samples, such separations could
be more fine-grained class-related (such as further splitting the class “cat” into finer separations by
referring to the breed of cats);

• Class-irrelevant: such population could also be class-irrelevant, for example, in image classification
tasks where the gender information is the (hidden) attribute information of each image while the
class/label does not disclose this information.

Organization The rest of the Appendix is organized as follows.

• Section A theoretically demonstrates why special treatments on sub-populations are necessary, and
why Fairness Regularizer (FR) improves learning from the noisily labeled long-tailed data.

• Section B includes all omitted proofs for theoretical conclusions.
• Section C gives additional experiment details and results.
• Section D gives detailed discussions/comparisons with several more recent related works.

A LONG-TAILED SUB-POPULATIONS DESERVE SPECIAL TREATMENTS

In light of the empirical observations, we now theoretically explore the impacts of sub-populations
when learning with long-tailed noisy data, through a binary Gaussian example. Note that classes
could be viewed as a special case of sub-populations, we adopt the class-level long-tailed distributions
for illustration.

A.1 FORMULATION

Consider the binary classification task such that K = 2, and the data samples are generated by PXY ,
which is the mixture of two Gaussians. Suppose X± := (X|Y = ±1) ∼ N (µ±, σ

2) where N is
the Gaussian distribution, and P(Y = +1) = P(Y = −1). W.l.o.g., we assume that µ+ > µ−.
Suppose a classifier f was trained on the noisy (and potentially imbalanced/long-tailed) training data
XI := {xi}ni=1 where the corresponding noisy label of xi is ỹi ∈ Ỹ , ∀i ∈ [n]. Samples xi were
drawn non-uniformly (i.e., imbalance) from X , and the ground-truth label of samples xi is yi given
by Y .

To inspect on the influence of sub-populations, we further split the imbalanced noisily labeled training
data into two parts by referring to their clean labels: head-Gaussian data and tail-Gaussian data. For
xi ∼ X±, y ∈ {±1}, we denote the set of head and tail data in class ±1 as S±H := XI ∩X±H , S±T :=

XI∩X±T , where X±H := {x ∼ X±|x−µ±
σ ·y ≥ −η}, X±T := {x ∼ X±|x−µ±

σ ·y < −η} respectively.
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To clarify, replacing all “±” symbols by +1 will return the notation for class +1. And G ∈ {H,T} in
this setting.
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Figure 7: An illustration of head/tail separations: when µ+ = +5, µ− = −5, σ2 = 1, η = 1, the
probability density distribution of Class +1 (Pink) and Class -1 (Blue) are drawn. x-axis indicates the
Gaussian samples drawn from two Gaussian distributions, y-axis is the corresponding probability
density of samples being equal to x.

In the view of sub-populations, we assume that the noise transition differs w.r.t. the head and tail
proportion, since tail populations are more misleading in the classification (i.e., in Figure 7, the label
of samples in the “tail-zone" is more likely to be wrongly given). Assume that the noise transition
matrix in the head samples and tail samples follow TH, TT respectively:

TH =

(
1− ρ−H ρ−H
ρ+H 1− ρ+H

)
, TT =

(
1− ρ−T ρ−T
ρ+T 1− ρ+T

)
.

To refer to the noisy labels, we add the ·̃ sign for the notations that are w.r.t. Ỹ instead of Y : i.e.,
X̃± := (X|Ỹ = ±1), S̃±H := XI ∩ X̃±H , with X̃±H denoting the noisy data distribution such that the
clean data distribution belongs to the head subpopulation (either X+

H or X−H ), and its noisy label is ±.

Similarly, S̃±T := XI ∩ X̃±T , with X̃±T denoting the noisy data distribution such that the clean data
distribution belongs to the tail subpopulation (either X+

T or X−T ), and its noisy label is ±.

An example If ρ+H = 0.2, ρ−H = 0.3,

• With probability 0.2, the sample x0 drawn from X+
H will flip its label from class + to class

−; and with probability 0.8, the sample x0 drawn from X+
H will keep its label (class +)

unchanged.

• With probability 0.3, the sample x1 drawn from X−H will flip its label from class − to class
+; and with probability 0.7, the sample x1 drawn from X−H will keep its label (class −)
unchanged.

W.l.o.g., we assume that the noise rates are not too large, i.e., ρ±H , ρ±T ∈ [0.0.5). Besides, we are
interested in the scenario where the ground-truth samples are imbalanced. And we can assume that
the imbalance ratio r :=

|S+
H |+|S

+
T |

|S−
H |+|S

−
T |

satisfies r > 1.

A.2 THE ERROR PROBABILITY

Given a classifier f , the Error probability is defined as the percentage of error rates under a given
data distribution:

Definition A.1 (Error probability). The error probability of a classifier f on the data distribution
(X,Y ) is defined as ErrX(f) := P(X,Y )(f(X) ̸= Y ).
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Denote by Φ the cumulative distribution function (CDF) of the standard Gaussian distributionN (0, 1),
we derive the error probability for the four populations as:
Proposition A.2. For any linear classifier of the form f(x) = sign(x− θ), we have:

ErrX±
T
(f)− ErrX±

H
(f) ∝ Φ ((θ − µ±) · (±1)) · sign ((µ± − θ) · (±1)− ησ) .

µ± denotes the mean of two Gaussians and the Bayes optimal classifier adopts the threshold θ∗ :=
µ−+µ+

2 . We take the tail class −1 (replace all symbols “±” by “−”) as an illustration:

• When θ ≥ µ− + ησ, the error probability gap ErrX±
T
(f)− ErrX±

H
(f) is monotonically increasing

w.r.t. the increase of Φ((θ − µ−)) · sign ((θ − µ−)− ησ) = Φ ((θ − µ−)) . Without additional treat-
ments, the classifier over-fits on the head class to achieve a lower error probability. As a result, θ
decreases, and the error gap between two populations in the tail class enlarges.

• When θ decreases small enough, i.e., θ < µ−+ησ, the error probability gap ErrX±
T
(f)−ErrX±

H
(f)

is monotonically increasing w.r.t. the increase of −Φ((θ − µ−)) . Further decreasing θ will make
both populations in the tail class yield a large error probability.

A.3 WHY DOES FR HELP WITH IMPROVEMENTS

Building upon the previous discussions, to show why FR helps with improving the learning, we first
derive the per sub-population error probability w.r.t. the noisy labels, since in practice, clean labels
are not available for the FR to constrain.
Lemma A.3. The error probability of a classifier f on the per-population noisy data distribution
(X, Ỹ ) could be expressed in the forms of error probabilities under the clean data distribution,
specifically:

Err
X̃+

H

(f) = p · (1− ρ+H ) · ErrX+
H
+ (1− p) · ρ−H · (1− ErrX−

H
);

Err
X̃−

H

(f) = p · ρ+H · ErrX+
H
+ (1− p) · (1− ρ−H ) · (1− ErrX−

H
);

Err
X̃+

T

(f) = p · (1− ρ+T ) · ErrX+
T
+ (1− p) · ρ−T · (1− ErrX−

T
);

Err
X̃−

T

(f) = p · ρ+T · ErrX+
T
+ (1− p) · (1− ρ−T ) · (1− ErrX−

T
).

Although the overall error probability on the clean data distribution is:

Err(f) := P(X+
H ) · ErrX+

H
(f) + P(X−H ) · ErrX−

H
(f) + P(X+

T ) · ErrX+
T
(f) + P(X−T ) · ErrX−

T
(f).

when learning with noisy data distribution with imbalanced sub-populations, the optimal f w.r.t. the
noisy data distribution is supposed to be given by the optimum of the following Risk Minimization:

RM: min
f

Ẽrr(f) := P(X̃+
H ) · Err

X̃+
H

(f) + P(X̃−H ) · Err
X̃−

H

(f) + P(X̃+
T ) · Err

X̃+
T

(f) + P(X̃−T ) · Err
X̃−

T

(f).

To distinguish the overall error probability under noisy and clean data distribution, we offer Theorem
A.4:
Theorem A.4. When P(Y = +1) = P(Y = −1), an equivalent form of the minimization w.r.t.
Ẽrr(f) is characterized by:

min
f

Ẽrr(f) ⇐⇒ min
f

Err(f)− 2r · ρH ·
(

Err
X̃+

H

(f)− Err
X̃−

H

(f)

)
− ρT ·

(
Err

X̃+
T

(f)− Err
X̃−

T

(f)

)
,

where we define the noise rate gaps as ρH := ρ+H − ρ−H , ρT := ρ+T − ρ−T , and the sub-population
imbalance ratio as r := 1−Φ(−η)

Φ(−η) .

Thus, constraining the classifier to perform fair performances (i.e., same training error probabilities
such as Err

X̃+
H

(f) = Err
X̃−

H

(f), and Err
X̃+

T

(f) = Err
X̃−

T

(f)), the optimal classifier training on the

noisy data distribution with fairness regularizer yields the optimal classifier by refer to the clean data
distribution! We then have:
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Corollary A.5. When P(Y = +1) = P(Y = −1), FR constrains the error probability (performance

gap) between X̃+
H and X̃−H , X̃+

T and X̃−T . As a result, we have

min
f

Ẽrr(f) s.t. Err
X̃+

H

(f) = Err
X̃−

H

(f),Err
X̃+

T

(f) = Err
X̃−

T

(f)

⇐⇒ min
f

Err(f) s.t. Err
X̃+

H

(f) = Err
X̃−

H

(f),Err
X̃+

T

(f) = Err
X̃−

T

(f).

The proof is straightforward from the result in Theorem A.4.

B OMITTED PROOFS

B.1 PROOF OF PROPOSITION A.2

Proof. For the head population in Class +1, we can derive the error probability as:

ErrX+
H
(f) := P(X+

H ,Y )(f(X
+
H ) ̸= Y ) = P(X+

H ,Y )

(
(X+

H − θ)Y < 0
)
= P(X+

H ,Y )

(
X+

H < θ
)
.

Due to the separation of head and tail in Class +1, we then have:

ErrX+
H
(f) =

Px∼N (µ+,σ2)

(
x < θ, x−µ+

σ ≥ −η
)

Px∼N (µ+,σ2)(
x−µ+

σ ≥ −η)

=
P
(
N (µ+, σ

2) < θ,N (0, σ2) ≥ −ησ
)

P(N (0, 1) ≥ −η)

=
P
(
N (0, 1) < θ−µ+

σ ,N (0, 1) ≥ −η
)

1− Φ(−η)
.

where we denote by Φ the CDF of the standard Gaussian distributionN (0, 1), and Φ(a) = 1−Φ(−a).
Similarly, for the tail population in Class +1, we can derive the error probability as:

ErrX+
T
(f) := P(X+

T ,Y )(f(X
+
T ) ̸= Y ) = P(X+

T ,Y )

(
(X+

T − θ)Y < 0
)
= P(X+

T ,Y )

(
X+

T < θ
)

=
Px∼N (µ+,σ2)

(
x < θ, x−µ+

σ < −η
)

Px∼N (µ+,σ2)(
x−µ+

σ < −η)

=
P
(
N (µ+, σ

2) < θ,N (0, σ2) < −ησ
)

P(N (0, 1) < −η)

=
P
(
N (0, 1) < θ−µ+

σ ,N (0, 1) < −η
)

Φ(−η)
.

For the populations in Class −1, we have:

ErrX−
H
(f) := P(X−

H ,Y )(f(X
−
H ) ̸= Y ) = P(X−

H ,Y )

(
(X−H − θ)Y > 0

)
= P(X−

H ,Y )

(
X−H > θ

)
=
Px∼N (µ−,σ2)

(
x > θ, x−µ−

σ ≤ η
)

Px∼N (µ−,σ2)(
x−µ−

σ ≤ η)

=
P
(
N (µ−, σ

2) > θ,N (0, σ2) ≤ ησ
)

P(N (0, 1) ≤ η)

=
P
(
N (0, 1) > θ−µ−

σ ,N (0, 1) ≤ η
)

1− Φ(−η)
.
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ErrX−
T
(f) := P(X−

T ,Y )(f(X
−
T ) ̸= Y )

=P(X−
T ,Y )

(
(X−T − θ)Y > 0

)
=P(X−

T ,Y )

(
X−T > θ

)
=
Px∼N (µ−,σ2)

(
x > θ, x−µ−

σ > η
)

Px∼N (µ−,σ2)(
x−µ−

σ > η)

=
P
(
N (µ−, σ

2) > θ,N (0, σ2) > ησ
)

P(N (0, 1) > η)

=
P
(
N (0, 1) > θ−µ−

σ ,N (0, 1) > η
)

Φ(−η)
.

The above thresholds can be further simplified into following forms given the cumulative distribution
function (CDF) of the normal Gaussian distribution. If θ ≤ µ+ − ησ, then:

ErrX+
H
(f) =

0

1− Φ(−η)
= 0, ErrX+

T
(f) =

P
(
N (0, 1) < min( θ−µ+

σ ,−η)
)

Φ(−η)
=

Φ
( θ−µ+

σ

)
Φ(−η)

;

otherwise, we have θ > µ+ − ησ and:

ErrX+
H
(f) =

P
(
− η ≤ N (0, 1) < θ−µ+

σ

)
1− Φ(−η)

=
Φ( θ−µ+

σ )− Φ(−η)
1− Φ(−η)

, ErrX+
T
(f) = 1.

As for the class −1, when θ ≥ µ− + ησ, we obtain:

ErrX−
H
(f) =

0

1− Φ(−η)
= 0, ErrX−

T
(f) =

P
(
N (0, 1) > max( θ−µ−

σ , η)
)

Φ(−η)
=

Φ
(µ−−θ

σ

)
Φ(−η)

;

otherwise, we have θ < µ− + ησ and:

ErrX−
H
(f) =

P
( θ−µ−

σ < N (0, 1) ≤ η
)

1− Φ(−η)
=

Φ(µ−−θ
σ )− Φ(−η)
1− Φ(−η)

, ErrX−
T
(f) = 1.

We take Class −1 for illustration, when θ ≥ µ− + ησ, we have: (µ− − θ) · (−1)− ησ ≥ 0. In this
case, the difference of error probabilities in tail and head populations becomes:

ErrX−
T
(f)− ErrX−

H
(f) =

Φ
(µ−−θ

σ

)
Φ(−η)

∝ Φ
(µ− − θ

σ

)
∝ Φ(µ− − θ)

∝ Φ ((θ − µ−) · (−1)) · sign ((µ− − θ) · (−1)− ησ) .

When θ < µ− + ησ, we have: (µ− − θ) · (−1) − ησ < 0. In this case, the difference of error
probabilities in tail and head populations becomes:

ErrX−
T
(f)− ErrX−

H
(f) = 1−

Φ(µ−−θ
σ )− Φ(−η)
1− Φ(−η)

=
1− Φ(µ−−θ

σ )

1− Φ(−η)

=
Φ( θ−µ−

σ )

1− Φ(−η)
∝ Φ

(θ − µ−
σ

)
∝ Φ(µ− − θ) · (−1)

∝ Φ ((θ − µ−) · (−1)) · sign ((µ− − θ) · (−1)− ησ) .

For Class +1, the conclusion could be derived similarly.
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B.2 PROOF OF LEMMA A.3

Proof. Note that:

ErrX+
H
(f) =

P
(
N (0, 1) < θ−µ+

σ ,N (0, 1) ≥ −η
)

1− Φ(−η)
, ErrX+

T
(f) =

P
(
N (0, 1) < θ−µ+

σ ,N (0, 1) < −η
)

Φ(−η)
.

ErrX−
H
(f) =

P
(
N (0, 1) > θ−µ−

σ ,N (0, 1) ≤ η
)

1− Φ(−η)
, ErrX−

T
(f) =

P
(
N (0, 1) > θ−µ−

σ ,N (0, 1) > η
)

Φ(−η)
.

Thus, denote by p := P(Y = +), we have:

Err
X̃+

H

(f) = P
(X̃+

H ,Ỹ )
(f(X̃+

H ) ̸= Ỹ )

= P(Ỹ = +, Y = +|X+
H ) · P

(X̃+
H ,Ỹ )

(
(X̃+

H − θ)Y < 0
)
+ P(Ỹ = +, Y = −|X−H ) · P

(X̃+
H ,Ỹ )

(
(X̃+

H − θ)Y > 0
)

= p · (1− ρ+H ) · P(X+
H ,Y=+)

(
(X+

H − θ)Y < 0
)
+ (1− p) · ρ−H · P(X−

H ,Y=−)
(
(X−H − θ)Y > 0

)
= p · (1− ρ+H ) · P(X+

H ,Y=+)

(
X+

H < θ
)
+ (1− p) · ρ−H · P(X−

H ,Y=−)
(
X−H < θ

)
= p · (1− ρ+H ) · ErrX+

H
+ (1− p) · ρ−H · (1− ErrX−

H
).

Similarly, we could derive:

Err
X̃−

H

(f) = P
(X̃−

H ,Ỹ )
(f(X̃−H ) ̸= Ỹ )

= P(Ỹ = −, Y = +|X+
H ) · P

(X̃−
H ,Ỹ )

(
(X̃−H − θ)Ỹ > 0

)
+ P(Ỹ = −, Y = −|X−H ) · P

(X̃−
H ,Ỹ )

(
(X̃−H − θ)Ỹ > 0

)
= p · ρ+H · P(X+

H ,Y=+)

(
(X+

H − θ)Y < 0
)
+ (1− p) · (1− ρ−H ) · P(X−

H ,Y=−)
(
(X−H − θ)Y > 0

)
= p · ρ+H · P(X+

H ,Y=+)

(
X+

H < θ
)
+ (1− p) · (1− ρ−H ) · P(X−

H ,Y=−)
(
X−H < θ

)
= p · ρ+H · ErrX+

H
+ (1− p) · (1− ρ−H ) · (1− ErrX−

H
).

Err
X̃+

T

(f) = p · (1− ρ+T ) · ErrX+
T
+ (1− p) · ρ−T · (1− ErrX−

T
).

Err
X̃−

T

(f) = p · ρ+T · ErrX+
T
+ (1− p) · (1− ρ−T ) · (1− ErrX−

T
).

B.3 PROOF OF THEOREM A.4

Proof. For balanced clean prior (p = 0.5), we have:

Err(f) := (1− Φ(−η)) ·
(

ErrX+
H
(f) + ErrX−

H
(f)

)
+Φ(−η) ·

(
ErrX+

T
(f) + ErrX−

T
(f)

)
,

and

RM: min
f

P(X̃+
H ) · Err

X̃+
H

(f) + P(X̃−H ) · Err
X̃−

H

(f) + P(X̃+
T ) · Err

X̃+
T

(f) + P(X̃−T ) · Err
X̃−

T

(f)

=min
f

(1− Φ(−η)) ·
(
(1− ρ+H + ρ−H ) · Err

X̃+
H

(f) + (1 + ρ+H − ρ−H ) · Err
X̃−

H

(f)

)
+Φ(−η) ·

(
(1− ρ+T + ρ−T ) · Err

X̃+
T

(f) + (1− ρ−T + ρ+T ) · Err
X̃−

T

(f)

)
.
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Define the noise rate gaps ρH := ρ+H − ρ−H , ρT := ρ+T − ρ−T , and imbalance ratio r := 1−Φ(−η)
Φ(−η) , we

then have:

RM

⇐⇒min
f

r ·
(
(1− ρH) · Err

X̃+
H

(f) + (1 + ρH) · Err
X̃−

H

(f)

)
+

(
(1− ρT) · Err

X̃+
T

(f) + (1 + ρT) · Err
X̃−

T

(f)

)
⇐⇒min

f
r ·

(
(1− ρH) ·

[
(1− ρ+H ) · ErrX+

H
+ ρ−H · (1− ErrX−

H
)
]
+ (1 + ρH) ·

[
ρ+H · ErrX+

H
+ (1− ρ−H ) · (1− ErrX−

H
)
])

+
(
(1− ρT) ·

[
(1− ρ+T ) · ErrX+

T
+ ρ−T · (1− ErrX−

T
)
]
+ (1 + ρT) ·

[
ρ+T · ErrX+

T
+ (1− ρ−T ) · (1− ErrX−

T
)
])

⇐⇒min
f

r ·
([

(1− ρ+H ) · ErrX+
H
+ ρ−H · (1− ErrX−

H
)
]
+

[
ρ+H · ErrX+

H
+ (1− ρ−H ) · (1− ErrX−

H
)
])

+
([

(1− ρ+T ) · ErrX+
T
+ ρ−T · (1− ErrX−

T
)
]
+

[
ρ+T · ErrX+

T
+ (1− ρ−T ) · (1− ErrX−

T
)
])

− r · ρH ·
([

(1− ρ+H ) · ErrX+
H
+ ρ−H · (1− ErrX−

H
)− ρ+H · ErrX+

H
− (1− ρ−H ) · (1− ErrX−

H
)
])

− ρT ·
[
(1− ρ+T ) · ErrX+

T
+ ρ−T · (1− ErrX−

T
)− ρ+T · ErrX+

T
− (1− ρ−T ) · (1− ErrX−

T
)
]

⇐⇒min
f

r ·
(

ErrX+
H
+ ErrX−

H

)
+
(

ErrX+
T
+ ErrX−

T

)
− r · ρH ·

([
(1− 2ρ+H ) · ErrX+

H
− (1− 2ρ−H ) · (1− ErrX−

H
)
])

− ρT ·
[
(1− 2ρ+T ) · ErrX+

T
− (1− 2ρ−T ) · (1− ErrX−

T
)
]

⇐⇒min
f

Err(f)− r · ρH ·
([

(1− 2ρ+H ) · ErrX+
H
− (1− 2ρ−H ) · (1− ErrX−

H
)
])

− ρT ·
[
(1− 2ρ+T ) · ErrX+

T
− (1− 2ρ−T ) · (1− ErrX−

T
)
]
. (4)

To achieve relatively fair performances between X̃+
T and X̃−T , i.e., the performance gap between

Err
X̃+

T

(f) and Err
X̃−

T

(f) is supposed to be small. Note that:

Err
X̃+

T

(f)− Err
X̃−

T

(f)

=
[
p · (1− ρ+T ) · ErrX+

T
+ (1− p) · ρ−T · (1− ErrX−

T
)
]
−

[
p · ρ+T · ErrX+

T
+ (1− p) · (1− ρ−T ) · (1− ErrX−

T
)
]

=
1

2
·
[
(1− 2ρ+T ) · ErrX+

T
− (1− 2ρ−T ) · (1− ErrX−

T
)
]
.

Similarly, for the two head sub-populations, we could derive that:

Err
X̃+

H

(f)− Err
X̃−

H

(f)

=
[
p · (1− ρ+H ) · ErrX+

H
+ (1− p) · ρ−T · (1− ErrX−

H
)
]
−

[
p · ρ+H · ErrX+

H
+ (1− p) · (1− ρ−H ) · (1− ErrX−

H
)
]

=
1

2
·
[
(1− 2ρ+H ) · ErrX+

H
− (1− 2ρ−H ) · (1− ErrX−

H
)
]
.

Thus, by incorporating the above two performance gaps into Eqn. (4), the RM has its equivalent form
as below:

RM⇐⇒min
f

Err(f)− r · ρH ·
([

(1− 2ρ+H ) · ErrX+
H
− (1− 2ρ−H ) · (1− ErrX−

H
)
])

− ρT ·
[
(1− 2ρ+T ) · ErrX+

T
− (1− 2ρ−T ) · (1− ErrX−

T
)
]

⇐⇒min
f

Err(f)− 2r · ρH ·
(

Err
X̃+

H

(f)− Err
X̃−

H

(f)

)
− ρT ·

(
Err

X̃+
T

(f)− Err
X̃−

T

(f)

)
.
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C ADDITIONAL EXPERIMENT RESULTS AND DETAILS

C.1 INFLUENCES OF SUB-POPULATIONS ON TEST DATA

Influences on Class-Level Test Accuracy When removing all samples from the sub-population
Gi during the whole training procedure, remember that we defined the (class-level) test accuracy
changes as:

Accc(A, S̃, i, j) :=P f←A(S̃)
(X′,Y ′=j)

(f(X ′) = Y ′)− Pf←A(S̃\i)
(X′,Y ′=j)

(f(X ′) = Y ′),

where (X ′, Y ′ = j) denotes the test data distribution given the clean label j.
In Figure 8, the x-axis denotes the loss function for training, and the y-axis vi-
sualized the distribution of {Accc(A, S, i, j)}j∈[10] (above the dashed line) and
{Accc(A, S̃, i, j)}j∈[10] (below the dashed line) for several long-tailed sub-populations
(i = 52, 37, 75, 19, 81, 36, 91, 63, 70, 55, 67, 41, 98, 40, 61, 87, 71) under each robust method.
The blue zone shows the 25-th percentile (Q1) and 75-th percentile (Q3) accuracy changes, and the
orange line indicates the median value. Accuracy changes that are drawn as circles are viewed as
outliers. Note that all sub-figures have the same limits for y-axis, Observation 3.1 holds for more tail
sub-populations under class-level test accuracy as well.
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Figure 8: (Completed version) Box plot of the class-level test accuracy changes when removing all
samples of a selected long-tailed sub-population during the training w.r.t. 4 methods. (Above the
dashed line: trained on clean labels; below the dashed line: trained on noisy labels.)

Influences on Population-Level Test Accuracy When removed all samples from the sub-
population G(i) during the whole training procedure, remember the (population-level) test accuracy
changes is defined as:

Accp(A, S̃, i, j) :=P f←A(S̃)
(X′,Y ′,G=j)

(f(X ′) = Y ′)− P f←A(S̃\i)
(X′,Y ′,G=j)

(f(X ′) = Y ′),

where (X ′, Y ′, G = j) indicates the test data distribution given that the samples are from the
j-th population. In Figure 9, we repeat the previous step while visualize the distribution of
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{Accp(A, S, i, j)}j∈[100] (Above the dashed line) and {Accp(A, S̃, i, j)}j∈[100] (Below the dashed
line). Similarly, by referring to the wide range of box plotted distributions, Observation 3.1 holds for
more tail sub-populations as well. Besides, the variance and the extremer of the changes in the test
accuracy are much larger in the view of sub-populations.
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Figure 9: (Complete version) Box plot of the population-level test accuracy changes when removing
all samples of a selected long-tailed sub-population during the training w.r.t. 4 methods. (Above the
dashed line: trained on clean labels; Below the dashed line: trained on noisy labels.)

Influences on Sample-Level Prediction Confidence Remember that we characterize the influence
of a sub-population on a test sample as:

Infl(A, S̃, i, j) :=Pf←A(S̃)(f(x
′
j) = y′j)− Pf←A(S̃\i)(f(x

′
j) = y′j),

where in the above two quantities, f ← A(S̃) denotes that the classifier f is trained from the whole
noisy training dataset S̃ via Algorithm A, f ← A(S̃\i) means f got trained on S̃ without samples in
the sub-population G(i). And Infl(A, S̃, i, j) quantifies the influence of a certain sub-population on a
specific test data. As shown in Figure 10, we visualize Infl(A, S, i, j) (1st row) and Infl(A, S̃, i, j)
(2nd row), where j ∈ [10000] means 10K test samples. With the presence of label noise, Observations
3.2 holds for more tail sub-population as well.

C.2 EXPERIMENT DETAILS ON CIFAR DATASETS

The original CIFAR-10 (Krizhevsky et al., 2009) dataset contains 60k 32 × 32 color images, 50k
images for training, and 10k images for testing. The dataset is balanced and each image belongs
to one of ten completely mutually exclusive classes. CIFAR-100 dataset shares the same statistics,
except for containing 100 completely mutually exclusive classes.

Hyper-Parameter Settings For each baseline method, we adopt mini-batch size 128, optimizer
SGD, initial learning rate 0.1, momentum 0.9, weight decay 0.0005, number of epochs 200. As for
the learning rate scheduler, we followed (Cui et al., 2019) and chose a linear warm-up of learning rate
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Figure 10: (Complete version) Distribution plot w.r.t. the changes of model confidence on the test
data samples using CE loss and label smoothing (Above the dashed line: trained on clean labels;
Below the dashed line: trained on noisy labels).

(Goyal et al., 2017) in the first 5 epochs, then decay 0.01 after the 160-th epoch and 180-th epoch.
Standard data augmentation is applied to each synthetic CIFAR dataset. We did not make use of any
advanced re-sampling strategies or data augmentation techniques. All experiments run on a cluster of
Nvidia RTX A5000 GPUs.

The Value of λ in FR (KNN) We tuned the performance of FR (KNN) w.r.t. a set
{0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0}, where λ = 0.0 indicates the training of baseline methods
without FR. Regarding the reported results in the main paper: for all methods w.r.t. CIFAR-100
dataset, we set λ = 0.1 since calculating the accuracy of tail sub-populations may be unstable. As for
methods on CIFAR-10 Imb noise, we set λ = 1.0 for CE loss, NLS, Focal loss and Peer Loss. One
exception is that LS requires a relative small λ, i.e., λ = 0.4. Also, we observe that for Imb noise, a
larger λ could be more beneficial for CE loss and Logit-adj loss under a higher noise regime. For
methods on CIFAR-10 Sym noise, the λ selection for LS, NLS, PeerLoss remains the same as that in
the Imb setting. For CE and Focal loss, a larger λ (i.e., λ = 2.0) could be more beneficial. While
Logit-adj prefers a smaller λ (i.e., λ = 0.5).

The Value of λ in FR (G2) Since there are only two sub-populations considered, the experiment
results on CIFAR-100 would be more stable than FR (KNN), hence a larger λ could be utilized. For
CE loss, NLS and Focal loss, we adopt λ = 1.0 for all CIFAR-10 experiments and λ = 2.0 for all
CIFAR-100 experiments. For LS, we set λ = 0.4 for all experiments, except for the extreme case
(CIFAR-100 with large noise ρ = 0.5), where we decide on a larger λ (0.8). As for PeerLoss, we
have to set a relatively small λ (i.e., λ = 0.8) for CIFAR-10 experiments and an even smaller one
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(λ = 0.2) on CIFAR-100 due to the scale of its loss. And we set λ = 1.0 for Logit-adj under all
settings. We do observe better results when adopting varied λ under each setting, but fixing the λ for
reporting under a specific dataset tends is more convenient and practical.

Hypothesis Testing w.r.t. FR We adopt paired student t-test to verify the conclusion that FR
helps with improving the learning of the classifier (i.e., test accuracy). Briefly speaking, for each
dataset and each baseline method, we statistically test whether FR results in significant test accuracy
improvements in Table 1.

Denote by PAρ,r
Method := (Accρ,rMethod,Accρ,rMethod+FR) the Paired Accuracies without/with FR under each

setting, i.e., when ρ = 0.2, r = 10, Method=CE, we have: PAρ,r
Method = (79.75, 80.46) (w.r.t. FR

(KNN)). The null and alternative hypotheses could be expressed as:

H0 :{Accρ,rMethod+FR}ρ,r come from the same distribution as {Accρ,rMethod)}ρ,r;
H1 :{Accρ,rMethod+FR}ρ,r come from different distributions as {Accρ,rMethod)}ρ,r,

where the above accuracy list {Accρ,rMethod}ρ,r includes both noise types (imb & sym), ρ ∈
[0.2, 0.5], and r ∈ [10, 50, 100], thus 12 elements for either dataset, similarly for the accuracy
list {Accρ,rMethod+FR}ρ,r.

C.3 EXPERIMENT DETAILS ON CLOTHING1M DATASET

We adopt the same baselines as reported in CIFAR experiments for Clothing1M. All methods use the
pre-trained ResNet50, optimizer SGD, momentum 0.9, and weight decay 1e-3. The initial learning
rate is 0.01, then it decays 0.1 for every 30 epochs so there are 120 epochs in all. Negative Label
Smoothing (NLS) (Wei et al., 2021b) resumes the last epoch training of CE, and proceeds to train
with NLS for another 40 epochs (learning rate 1e-7).

C.4 INFLUENCES OF HEAD SUB-POPULATIONS ON TEST DATA

Table 4 briefly introduces the influences of head populations (> 500 samples) on the overall test
accuracy. Clearly, the mentioned 5 head populations have different impacts: with the presence of
label noise, Pop-06 becomes harmful while Pop-02 and Pop-04 remain helpful.

Table 4: Influences of head populations on the overall test accuracy.
Clean

Remove
Pop-02

Remove
Pop-04

Remove
Pop-03

Remove
Pop-06

Remove
Pop-00

Test Acc -4.06 -3.09 -0.96 -0.15 +0.29
Noisy
ρ = 0.2

Remove
Pop-02

Remove
Pop-04

Remove
Pop-03

Remove
Pop-06

Remove
Pop-00

Test Acc -3.75 -4.80 -3.79 +0.62 +0.18

C.5 EXPERIMENTS ON LONG-TAILED DATA WITH REAL-WORLD NOISY LABELS

We further provide more experiment results on real-world noisily labeled long-tailed data, including
long-tailed CIFAR-10N, CIFAR-20N, CIFAR-100N, and Animal-10N.

Dataset Statistics Denote by ρ the percentage of wrong labels among the training set, CIFAR-10N
(Wei et al., 2022c) provides three types of real-world noisy human annotations on the CIFAR-10
training dataset, with ρ = 0.09, 0.18, 0.40. CIFAR-100 N (Wei et al., 2022c) provides each CIFAR-
100 training image with a human annotation where ρ = 0.40. In CIFAR-20N (Wei et al., 2022c)
(ρ = 0.25), each training/test image includes a coarse label (among 20 coarse classes) and a finer
label (among 100 fine classes). We view the coarse label as the class information for training, and we
illustrate the effectiveness of all methods by referring to their averaged performance on 100 groups at
the test time. Neither the number of groups nor the group information of each image is utilized during
the training. Animal-10N (Song et al., 2019) dataset is a ten classes classification task including
5 pairs of confusing animals with a total of 55,000 images. The simulation of long-tailed samples
follows the same procedure as the results in Table 1.
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Table 5: Performance comparisons on long-tailed datasets with real-world noisy labels, best-achieved
test accuracy are reported. Results in bold mean FR improves the performance of the baseline
methods, respectively.

Noise type: Real-World Human Noise
Imbalance Ratio (r = 10) CIFAR-10N (Agg) CIFAR-10N (Rand1) CIFAR-10N (Worse) CIFAR-100N CIFAR-20N Animal-10N

CE 83.60 81.53 71.83 43.10 60.08 71.18
CE + FR (G2) 83.69 81.86 74.67 44.79 61.24 72.04

Logit-adj (Menon et al., 2021) 84.03 78.85 64.41 41.93 58.98 67.78
Logit-adj + FR (G2) 84.88 80.37 65.15 43.48 59.89 69.64

Imbalance Ratio (r = 50) CIFAR-10N (Agg) CIFAR-10N (Rand1) CIFAR-10N (Worse) CIFAR-100N CIFAR-20N Animal-10N
CE 74.54 71.55 61.36 32.51 50.83 52.60

CE + FR (G2) 74.93 73.22 65.01 34.49 51.93 51.88
Logit-adj (Menon et al., 2021) 75.67 66.15 52.93 30.06 46.83 56.28

Logit-adj + FR (G2) 75.81 65.94 54.36 30.47 47.00 62.18
Imbalance Ratio (r = 100) CIFAR-10N (Agg) CIFAR-10N (Rand1) CIFAR-10N (Worse) CIFAR-100N CIFAR-20N Animal-10N

CE 69.09 64.58 57.40 29.04 45.64 42.64
CE + FR (G2) 69.75 66.43 59.14 31.97 46.70 45.28

Logit-adj (Menon et al., 2021) 71.35 61.96 47.86 26.91 40.80 13.06
Logit-adj + FR (G2) 70.39 59.19 47.48 28.12 41.09 48.30

Hyperparameters The training of CIFAR-10N, CIFAR-20N, and CIFAR-100N is the same as that
of synthetic noisy CIFAR datasets. For Animal10N, we adopt VGG19, a different backbone from
ResNet. In Animal10N, the settings follow the work (Song et al., 2019): we use VGG-19 with batch
normalization and the SGD optimizer. The network trained 100 epochs and we adopted an initial
learning rate of 0.1, which is divided by 5 at 50% and 75% of the total number of epochs.

Results As shown in the three tables below, we report the test accuracy on the class-balanced dataset
with clean labels, as we have done in Table 1 of the main paper. We adopt λ = 2 for CE+FR for all
settings and λ = 1 for Logit-adj loss for all settings. Experiment results show that FR helps with
improving the test accuracy in most settings, given CE loss or logit-adj loss. And we can conclude
that constraining the classifier to have relative fairness performances is beneficial when learning with
noisy and long-tailed data.

D COMPARISONS WITH MORE RECENT WORKS

We attach detailed discussion about several most-recent related works about learning from long-tailed
data with noisy labels as below.

The literature has observed recent efforts in learning with long-tailed data with noisy labels, for
example, Wei et al. (2021c) proposed a new prototypical noise detection method which robustly
detects label noise in long-tailed learning data, leveraging semi-supervised learning algorithms to
further improve generalization. However, the coupling effect of label noise and class imbalance,
which is a central theme in our work, is not explicitly considered in their methodology. Later Karthik
et al. (2021) bring the insight of self-supervised learning to cope with class imbalance and label
noise. Prototypical Classifier is another recent approach (Wei et al., 2022e) which is designed to
produce balanced predictions for all classes and detects noisy labels by thresholding the predicted
scores of examples. Despite its benefits, it fails to provide a universal improvement across different
sub-populations when label noise is present. The threshold adjustment technique is useful but
does not account for discrepancies in performance improvement across different sub-populations.
More recently, RCAL (Zhang et al., 2022b) method calibrates representation by assuming that
the representations of instances in each class conform to a Gaussian distribution. By recovering
underlying representation distributions from mislabeled and class-imbalanced data, they improve
classifier performance. Still, the method is limited by the assumption of the Gaussian distribution and
does not explicitly consider the impact of the interplay between class imbalance and label noise on
different sub-populations.
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