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Abstract

In recent years, multi-vector retrieval has emerged
as the state-of-the-art in dense retrieval applica-
tions by representing queries and documents as
sets and employing set-to-set similarity measures.
Popularized by the seminal ColBERT work, this
paradigm of search offers expressive representa-
tions and superior accuracy, albeit at the cost of
high storage and computation costs.

To accelerate the adoption of the multi-vector ap-
proach in large scale retrieval applications, effi-
cient and easy-to-use algorithms for multi-vector
nearest neighbor search are needed. Our work
aims to address this as follows:

• We develop a robust theoretical model study-
ing the effects of non-metric similarity func-
tions on the performance of graph-based
nearest neighbor data structures. This is par-
ticularly relevant for the popular Chamfer
distance, on which ColBERT is based.

• Practically, we demonstrate that graph-based
data structures can seamlessly support these
non-metrics, using the Chamfer similarity
as an example. Our algorithm marginally
outperforms prior SOTA in the 1Recall@100
setting, while achieving at least 61% more
recall for the more relevant 100@100 recall
setting.

1. Introduction
The nearest neighbor search problem is fundamental to in-
formation retrieval. Given a dataset P and a query q, the
goal is to find the point in P closest to q using a similarity
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function D. However, the ”curse of dimensionality” of-
ten necessitates relaxations such as c-approximate nearest
neighbor search or Recall@k. Typically, P consists of high-
dimensional vectors from Machine Learning (ML) models
(e.g., text embeddings), and D is a single-vector calculation
like Euclidean distance.

While foundational, this single-vector paradigm often fails
to capture the nuanced semantics of larger and more com-
plex data objects (Gao et al., 2021; Hofstätter et al., 2022;
Lee et al., 2024; Qian et al., 2022; Wang et al., 2021; Yao
et al., 2021). Consequently, multi-vector approaches, where
each data point pi ∈ P is a collection of embeddings, have
gained traction (Khattab & Zaharia, 2020). Similarity is then
measured between these collections, a prominent example
being the Chamfer similarity, which aggregates the mini-
mum distances between query embeddings and document
embeddings.

This fine-grained multi-vector approach, however, intro-
duces challenges:

• Computational Cost. Multi-vector similarities are
costlier to compute and require more space to store the
representations.

• Theoretical Guarantees. Similarities such as Cham-
fer are not necessarily metrics, possibly invalidating
known guarantees of single-vector algorithms.

• Downstream Tasks. Usecases for the embeddings,
such as retrieval, are tailored to single-vector metrics,
such as ℓ2. Additional work may be needed to adapt
them for multi-vector computations.

Thus, recent solutions for nearest neighbor search with
multi-vector similarities (all specializing for Chamfer) have
been proposed, including:

• Re-ranking baselines. These approaches, namely
DESSERT (Engels et al., 2024) and PLAID (San-
thanam et al., 2022), use an inexpensive, noisy compu-
tation to heavily prune the dataset P . The remaining
candidates are then re-ranked using the more accurate
and costlier multi-vector similarity (such as Chamfer).
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However, this initial pruning can discard relevant re-
sults, compromising accuracy and potentially leading
to an Ω(n) worst-case runtime. Among such base-
lines, PLAID is often preferred among these due to its
empirically higher recall (Dhulipala et al., 2024).

• MUVERA (Dhulipala et al., 2024). As the current
state-of-the-art, MUVERA offers significant speed im-
provements (up to 5.7X) over PLAID. It approximates
Chamfer similarity with an inner product after apply-
ing a suitable transformation, effectively reducing the
problem to single-vector search. However, there is
additional overhead for computing the transformation.
Furthermore, its theoretical accuracy and convergence
guarantees are unclear: the transformations for queries
and documents differ, potentially leading to an Ω(n)
runtime in worst-case scenarios.

In light of the limitations of prior methods, we are motivated
to ask:

Can we obtain a practical nearest neighbor search
algorithm capable of handling general multi-vector

similarities with provable guarantees?

Our Results: We affirmatively answer this question for a
broad class of multi-vector similarity functions, both theo-
retically and practically. Our approach adapts the DiskANN
algorithm (Jayaram Subramanya et al., 2019), a popular
single-vector index, by treating it as a black box: we sub-
stitute its single-vector similarity computations with multi-
vector ones. Our key contributions then are:

1. Theoretical Advances. We formally introduce quasi-
metrics (Definition 2.2), a concept capturing a wide
array of non-metric similarities, including Chamfer.
We prove our algorithm converges to a (1 + ϵ)-
approximate nearest neighbor in sublinear (in n) steps
for these quasimetrics (Theorem 3.6). This extends
prior DiskANN analysis by (Indyk & Xu, 2023), which
was limited to single-vector metrics.

2. Practical Contributions. We demonstrate improved
empirical results over MUVERA, the previous state-of-
the-art. On top of marginal improvements in queries
per second (QPS) for 1Recall@100 (defined in Section
4.2), our method achieves significant accuracy gains
(at least 61%) on the larger BEIR (Thakur et al., 2021)
datasets for the more challenging 100Recall@100 met-
ric. We believe that this metric is particularly infor-
mative for large-scale nearest neighbor search systems
(Jayaram Subramanya et al., 2019; Fu et al., 2019).

Our approach also offers distinct advantages:

• Simplicity. It avoids additional overhead, such as train-
ing or computing new embeddings beyond the initial
document collections. Existing implementations of
DiskANN can be used directly.

• Generalizability. Our quasimetric framework (Def-
inition 2.2) extends to a broad class of similarities.
This includes Chamfer (where the summed underly-
ing similarity can be any metric, like any ℓp norm) and
asymmetric similarities that satisfy the triangle inequal-
ity, such as hinge-distance (Lai & Hockenmaier, 2017;
Lou et al., 2020; Chheda et al., 2021; Roy et al., 2023).

2. Preliminaries
Exact nearest neighbor search in high-dimensional single-
vector spaces is challenging due to the “curse of dimen-
sionality (Rubinstein, 2018).” Consequently, researchers
typically consider two types of relaxations. Theoretical
work usually focuses on the c-approximate nearest neigh-
bor problem, which aims to find a point p′ ∈ P such that
its distance to the query q is at most c times the distance
to the true nearest neighbor (Indyk & Motwani, 1998). In
practice, performance is commonly evaluated using a re-
call measure, which represents the fraction of the true top-k
nearest neighbors retrieved by the search algorithm (Järvelin
& Kekäläinen, 2002) (details in Section 4.2).

This work focuses on generalizing nearest neighbor search
to the multi-vector setting. In this paradigm, the ambient
space Rd is equipped with a metric m : Rd × Rd → R,
and each document p ∈ P is represented with a set of lp
vectors, i.e. p ∈ Rlp×d. The main multi-vector similarity
we consider is the Chamfer similarity, a common similarity
measure between two point sets in machine learning, espe-
cially in the context of text data (Barrow et al., 1977; Atasu
& Mittelholzer, 2019; Bakshi et al., 2024; Kusner et al.,
2015; Wan et al., 2019). It is defined as follows:

Definition 2.1 (Chamfer distance). For a query q ∈ Rlq×d

the Chamfer distance is defined as

C(q, p) =

lq∑
i

argmin
j∈[lp]

(m(qi, pj))

where qi or pj denotes the ith or jth vector in q or p, respec-
tively.

It is important to note that ’Chamfer distance’ is a bit of a
misnomer: this measure is not a true metric because it is
asymmetric and does not satisfy the triangle inequality. To
accommodate this, we define a broader class of similarity
measures:

Definition 2.2 (k-quasimetric). A function D is a k-
quasimetric if:
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1. D(p, p) = 0,

2. For p ̸= q, D(p, q) ≥ 0,

3. There exists a k ≥ 1 such that for any p1, p2, p ∈
P , the following inequality holds: D(p1, p2) ≤
D(p1, p) + k · D(p, p2). Note that k is dataset de-
pendent (as shown below).

Indeed, the Chamfer distance is easily shown to be a k-
quasimetric.

Lemma 2.3. Consider a multivector dataset P , where for
each p ∈ P , |p| = lp. If m is a metric then the Chamfer
distance is a k-quasimetric for k = argmaxp∈P lp.

Proof. We just need to verify the third condition. For a
point in a ∈ p1, let b ∈ p2 and c ∈ p be its nearest neighbor
in p2 and p respectively. Then m(a, b) ≤ m(a, b′) for all
b′ ∈ p2. In particular, if we choose b′ to be the nearest
neighbor of c in p2, we have

m(a, b) ≤ m(a, b′) ≤ m(a, c) +m(c, b′).

Note that the sum of m(a, c) over all a is simply D(p1, p).
Likewise, the sum of m(c, b′) over all c is D(p, p2). Since
any c ∈ p can be mapped to by at most |p1| many a’s
∈ p1, the claim follows, as only the second sum m(c, b′) is
counted with multiplicity.

By generalizing Chamfer to this definition, we are able to
extend the theoretical guarantees of single-vector search
data structures (reviewed below) to the multi-vector setting
at large. We discuss this further in Section 3.

We note that special care must be taken in designating the
parameters of D. Since D is not symmetric, D(q, p) is not
the same as D(p, q). Throughout this paper, we consistently
use the first parameter to denote the “query” and the second
to denote a “document” from the dataset. This convention
aligns with prior work on Chamfer similarity in text retrieval
(Dhulipala et al., 2024).

DiskANN Review. Finally, we give a quick overview of
DiskANN (Jayaram Subramanya et al., 2019), the main
single-vector nearest neighbor search algorithm which we
build off of. At a high-level, DiskANN builds a directed
graph (called Vamana) on a set of n vectors, satisfying the
so called α-reachable property. It guarantees that for every
pair x, y of vectors, either the graph has an edge, or there
is a vector z such that x can navigate to y via z and the
distances are not distorted by more than an α factor. Later
Indyk & Xu (2023) showed that an α-reachable graph can
be provably used to solve the approximate nearest neighbor
problem via a greedy search, with the runtime bounded by
the maximum degree of the graph. Furthermore, they were

able to bound degree of the graph via the doubling dimen-
sion of the underlying dataset, a data-dependent measure
of intrinsic dimensionality (Indyk & Naor, 2007; Aumüller
& Ceccarello, 2019; Narayanan et al., 2021; Indyk & Xu,
2023). For a set of points P , is defined as the λP such that
2λP is sufficient to cover any ball in the dataset with balls of
half the radius. Full descriptions of the DiskANN algorithm
can be found in Appendix A. Note that the results in (Indyk
& Xu, 2023) are proven for symmetric distance functions,
leaving it unclear whether similar results hold for asymmet-
ric distance functions or more generally for k-quasimetric
functions like Chamfer.

Lastly, ∆ denotes the aspect ratio of the dataset P , defined
as (maxp,p′∈P D(p, p′))/(minp,p′∈P D(p, p′).

3. Main Theoretical Results
We now present the main theoretical results of our work,
focusing on k-quasimetric functions. Our approach is based
on analyzing the graph-based data structure of DiskANN,
and we believe a key contribution of our work is proving
that DiskANN can be adapted for k-quasimetric functions.
Our theoretical findings (with proofs presented later in Sec-
tion 5) directly support our superior empirical performance
compared to all prior approaches for the Chamfer, which
is given in Section 4. To this end, we first recall the notion
of doubling dimension, with the definition specialized to
k-quasimetrics.
Definition 3.1 (Doubling dimension). Consider a multivec-
tor dataset P and a k-quasimetric D. The doubling constant
is the smallest C such that for all R > 0 and any v ∈ P ,
the ball of radius R centered at v, B(v,R), can be covered
by C balls of radius R/2 (centered at other points in the
dataset inside B(v,R)). The doubling dimension is logC.

Intuitively, a dataset in Rd may not require all d dimensions
to represent its full information, and the doubling dimension
is a tool used to identify this “intrinsic” dimension of the
dataset, similar to the single vector case. Although the
definition of doubling dimension is based on balls of radius
R/2, we can iterate to bound the number of balls of radius
R/k needed to cover all points within B(v,R).
Lemma 3.2 (Doubling Dimension Property). Consider a
multivector dataset P whose doubling dimension is x with
respect to a k-quasimetric D. For any p ∈ P and R > 0,
the ball B(p,R) can be covered with m ≤ (2k)x balls
centered around points in B(p,R) of radius at most r/k,
where k > 1.

We are now prepared to define α-reachable graphs for k-
quasimetric functions. Our definition is a natural extension
of the one in (Indyk & Xu, 2023), carefully adapted to
account for the asymmetries specific to k-quasimetric func-
tions.
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Definition 3.3 (k-quasi α-reachability). Consider a graph
G = (V,E) paired with a multivector dataset P , where
each p ∈ P is associated with some node v ∈ V . G is
α-reachable for a k-quasimetric D if for any nodes u, v in
G, there exists a node t such that the (directed) edge (u, t)
exists and D(t, v) ≤ 1

αD(u, v) for the corresponding points
in P .

As discussed earlier, the concept of reachable graphs origi-
nates from the DiskANN and its analysis in (Indyk & Xu,
2023), where the authors demonstrate that the local greedy
search algorithm on these graphs converges to a good ap-
proximate nearest neighbor solution. In our first main result,
we present an analogous finding for the k-quasimetric case.
The approximation factor for k-quasimetric is more com-
plex than for symmetric distance functions, as it depends on
both the quasimetric parameter k and the asymmetry of the
distance function. The precise approximation factor and the
number of steps required for the local greedy search to reach
this approximation are outlined in the following lemma.

Lemma 3.4 (Approximation of greedy search). Consider
a α-reachable graph G with respect to a k-quasimetric
function D. For any starting point s, the greedy search
procedure takes O(polylog(k∆ϵν ) log(n)) steps to reach a
( βk
α−k2 + α

α−k2 + ϵ)-approximate nearest neighbor solution

with respect to D, where β = D(a,q)
D(q,a) and ν is a parameter-

ized by β, k and α. Furthermore, if α > Ω((k2 + βk)/ϵ),
the greedy search procedure outputs a (1 + ϵ)-approximate
nearest neighbor solution.

Note that for symmetric distance functions, the values of k
and β are both equal to 1, which allows us to recover the
results from (Indyk & Xu, 2023) for symmetric distance
functions. Since the results in (Indyk & Xu, 2023) are tight,
we also emphasize that our findings are tight in the worst
case.

While the above lemma provides a bound on the number of
steps, the total number of distance comparisons (and thus
the runtime) performed during the search is upper bounded
by the number of steps multiplied by the maximum degree
of the graph. Therefore, bounding the degree is crucial, and
we will address this in the following lemma.

Lemma 3.5 (Degree Bound for k-Quasi α-Reachable
Graphs). For any multivector dataset P and a k-quasimetric
D, there exists a α-reachable graph with respect to D whose
maximum degree is upper bounded by O((4α)x log(∆)),
where x is the doubling dimension of the dataset P with re-
spect to D. Furthermore, there exists an efficient algorithm
to compute an α-reachable graph with respect to D with a
degree bound of O((4α)x log(∆) log n).

The above result demonstrates the existence of reachable
graphs with favorable degree properties and provides an

efficient algorithm for constructing these graphs with only
a slight degree overhead. By combining these two results,
we arrive at our final main theorem, which we summarize
below.

Theorem 3.6 (Final Complexity). Consider a multivec-
tor dataset P ⊂ Rd whose doubling dimension is x
with respect to a k-quasimetric D. There exists a graph
based data structure which can be constructed efficiently
in time polynomial in |P | and d. For any query q and any
ϵ > 0, the data structure outputs a ( βk

α−k2 + α
α−k2 + ϵ)-

approximate nearest neighbor solution with respect to D,
where β = D(a,q)

D(q,a) . The total search time of our algorithm

is upper bounded by Õ(d(4α)x log∆).1 Furthermore, by
setting α > Ω((k2 + βk)/ϵ), our search algorithm outputs
a (1 + ϵ)-approximate nearest neighbor solution.

In practice, we can expect both β = O(1) and k = O(1)
(see Table 1 and Table 2), as these terms are determined by
the gap in size between query and document sets. Thus, this
theorem intuitively shows that by setting α to be sufficiently
large (α > C

ϵ for some C), this algorithm can achieve a
(1 + ϵ)-approximate nearest neighbor.

Again, we note that analogous results for symmetric dis-
tance functions were established by (Indyk & Xu, 2023).
Our work is inspired by theirs, and while many of our proofs
share a similar spirit, they differ at critical points to address
the weaker triangle inequality and the asymmetry inher-
ent in k-quasimetric functions. Furthermore, our results
demonstrate the power of DiskANN to handle multivector
similarities in a black-box manner and justifies its use in our
experiments.

4. Evaluation
In addition to our theoretical framework for graph search on
k-quasimetrics, we evaluate DiskANN’s empirical perfor-
mance as a black-box for Chamfer distance, which we refer
to as Chamfer-DiskANN.

4.1. Setup

Hardware. All search experiments are performed on an
Azure E series VM with 96 vCPUs and 384 GB of RAM.

Datasets. We evaluate all three approaches on the MS-
MARCO development split and Quora, NQ, and HotpotQA
test split datasets from the BEIR (Thakur et al., 2021) bench-
mark. We pick these datasets because their sizes represent
reasonable workloads for scalable nearest neighbor search.
We refer the reader to Appendix B for more details regarding
these datasets.

1The Õ notation hides the poly log factors in log( k∆
ϵν

) and
log(n).
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Figure 1. The above plots illustrate the QPS versus 1Recall@100 difference between Chamfer-DiskANN and MUVERA. Chamfer-
DiskANN clearly outperforms MUVERA across all datasets.
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Figure 2. The above plots illustrate the QPS versus 100Recall@100 difference between Chamfer-DiskANN and MUVERA. Chamfer-
DiskANN clearly outperforms MUVERA across all datasets.

Embeddings. We use ColBERTv2.0 (Santhanam et al.,
2021) to generate embeddings from the MSMARCO and
Quora passages. Across all datasets, every embedding has
a dimension of 128 and each query passage is fixed to 32
embeddings. For Quora, this implies that a given distance
computation between a query and a document uses around
80000 floating point operations. Additionally, for the MU-
VERA embeddings, we use a custom implementation due
to the lack of publicly available software. We use the de-
fault recommended parameters from the original publication
(Dhulipala et al., 2024), resulting in 10248-dimensional em-
beddings representing the original multi-vector documents.

Indices. For MUVERA, we construct a Maximum In-
ner Product Search (MIPS) DiskANN index using the C++
implementation from the work of Dobson et al.. An expo-
sition detailing this variant of DiskANN can be found in
Appendix A. We use the recommended parameters (Dhuli-
pala et al., 2024) of R = 200 (degree bound) and L = 600
(beam width). For Chamfer-DiskANN, we change the dis-
tance function of the same DiskANN implementation from
MIPS to the Chamfer distance, leaving everything else un-
changed. As shown in Table 4, the MUVERA indices are
uniformly larger than the Chamfer-DiskANN indices, taking
up more space and having higher mean degree.

4.2. Main Empirical Evaluation

In this section, we describe two metrics that form the basis of
our empirical evaluation. The first metric, 1Recall@100 is

a common metric in retrieval and recommendation settings,
while 100Recall@100 is a metric we introduce in order to
better capture the necessities of large-scale retrieval settings.
Our results demonstrate that Chamfer-DiskANN surpasses
MUVERA, the current state-of-the-art, on both metrics,
even though MUVERA utilizes larger indices. To generate
recall/latency curves for all searches, we vary the beam-
width from L = 100 to L = 400.

1Recall@100 Evaluation. We first evaluate on the 1Re-
call@100 benchmark commonly found in other works study-
ing multivector retrieval (Dhulipala et al., 2024; Santhanam
et al., 2022). In this setting, all approaches are evaluated
against a real, human-labeled groundtruth: each query is
manually assigned with a small (e.g. 1-4) number of highly
relevant documents. For a given query, the goal is to retrieve
100 documents with at least one of the 100 documents being
in this ground-truth. This benchmark is best suited for ex-
pensive re-ranking routines tailor-made for certain datasets
(Ji et al., 2024), because it rewards finding a handful of
results (the human-labeled results) from a list of candidates.
While this is useful for smaller-scale retrieval use cases,
larger-scale retrieval settings require strong accuracy on far
more than the top few results: for example, a basic image
search on Google may require hundreds of valid images for
the search.

100Recall@100 Evaluation. To address the downsides of
the 1Recall@100 metric for larger-scale ANNS indices, we
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Figure 3. The above plots illustrate the QPS versus 100Recall@100 difference when sampling 25/50/75/100% of the vectors for the
queries.
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Figure 4. The above plots illustrate the QPS versus 100Recall@100 difference when sampling 25/50/75/100% of the vectors for the
documents.

propose a different method of evaluation for this multifilter
retrieval: the 100Recall@100 metric. For this benchmark,
we first construct a groundtruth of 100 results by computing
Chamfer in a bruteforce fashion on a given dataset. Then,
we simply evaluate our algorithm on said dataset against
the groundtruth. In comparison to the re-ranking friendly
1Recall@100 metric, 100Recall@100 is a better standard
for large-scale ANNS indices: it motivates algorithms to
quickly and recover a large number of relevant points that
are close to the query, rather than optimize for a select
few highly-relevant points in the 1Recall@100 setting. We
believe that evaluation on this metric is an exciting direction
for future work for multivector retrieval in bringing it to
large-scale deployments.

Results. Despite the aforementioned issues with the 1Re-
call@100 benchmark, Figure 1 demonstrates Chamfer-
DiskANN’s strong performance on this metric: across
all datasets, Chamfer-DiskANN performs marginally bet-
ter (<1%) at worst, suggesting that even Chamfer-
DiskANN’s worst-case outperforms MUVERA for 1Re-
call@100. For the 100Recall@100 benchmark, Figure 2
Chamfer-DiskANN demonstrates considerable superiority
over MUVERA: Chamfer-DiskANN is at worst 61% more
accurate than MUVERA for all QPS across all datasets. This
benchmark highlights one key shortcoming of MUVERA,
in that approximating Chamfer with a standard inner prod-
uct introduces additional noise on top of approximating
the nearest neighbor search. This approximation introduces

an artificial ceiling on the accuracy MUVERA-based so-
lutions can provide. Since the true nearest neighbors are
computed with a brute force search (as opposed to human
labeling in the case of the 1Recall@100 benchmark), it is
possible for Chamfer-DiskANN to achieve perfect recall,
while MUVERA cannot due to the inherent approximation.

4.3. Improving Chamfer-DiskANN’s Latency: Sampling

The high latencies shown in Figure 1 and Figure 2 illustrate
the cost of exactly computing Chamfer. A natural fix to this
problem would then be to reduce the input sizes. Indeed, it
is known that by sampling a small number of vectors from
the input query, one can provably achieve a near linear-time
approximation of Chamfer (Bakshi et al., 2024). Inspired
by this result, we evaluate the latency/recall tradeoff when
sampling both query and document vectors2. Figure 3 and
Figure 4 demonstrates the negative impact of uniformly sam-
pling a set percentage of the query and document vectors,
respectively: in both settings, sampling never provides a
superior latency/recall curve.

One possible explanation for this is that the results from
Bakshi et al. require the number of vectors per document to
be very large: in the datasets evaluated, the number of vec-
tors per document is relatively low (which in turn minimizes
the impact of β and k). As such, sampling may become use-
ful for inputs with large numbers of vectors per document,

2Note that sampling document vectors does not come with the
same theoretical guarantees as sampling query vectors.
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which would ensure that β and k don’t heavily impact the
approximation factor of the search.

5. Theoretical Analysis
Here we provide proofs for our main results (Lemma 3.4
and Lemma 3.5).

5.1. Proof of Lemma 3.4

Here, we present the proof for Lemma 3.4, which bounds the
steps needed for local greedy search to converge to a good
approximate solution. First, we state a lemma that provides
the approximation guarantee of a locally optimal solution
produced by the greedy search. We analyze the locally
optimal solution because it is straightforward and serves as
a simple sanity check for the expected approximation factor.

Lemma 5.1 (local optimum lemma). Consider a query q,
k-quasimetric function D and a k-quasi α-reachable graph
G. For any α > k2, starting from any node s, any local
optimum solution vi for the greedy search algorithm satisfies
the following inequality:

d(q, vi) ≤
(

α

α− k2

)
d(q, a) +

(
k

α− k2

)
d(a, q) .

where a denotes the true nearest neighbor to q, that is,
a = argminp∈PD(q, p).

Proof. Since D is a k-quasimetric, we have that D(a, vi) ≤
D(a, q) + kD(q, vi) by the weak triangle inequality axiom.
Also, since G is α-reachable by definition, either the edge
(vi, a) exists or there exists some v′ such that (vi, v′) exists
and D(a, v′) ≤ D(a,vi)

α ≤ D(a,q)+kD(q,vi)
α .

Since vi is locally optimal, by definition we have D(q, vi) ≤
D(q, v′). Therefore, we have

D(q, vi) ≤ D(q, v′) ≤ D(q, a) + kD(a, v′)

≤ D(q, a) + k

(
D(a, q) + kD(q, vi)

α

)
Rearranging terms gives the desired result.

The result above demonstrates that all local optima of the
greedy local search algorithm are approximate solutions to
the nearest neighbor problem. However, it does not establish
a bound on the number of steps required to converge to a
good solution. In Lemma 3.4, we extend these proofs to
provide a bound on the number of steps needed to reach an
arbitrarily good approximate solution as a local optimum.
To do this, we first introduce an intermediate lemma, which
will be instrumental in proving Lemma 3.4. Below, we state
and prove this lemma, and later apply it to prove Lemma 3.4.

Lemma 5.2 (Convergence lemma). Consider a query q,
k-quasimetric function D and a k-quasi α-reachable graph
G. Starting from any node v0, let vt be the node reached by
the greedy search algorithm after t steps. Then for α > k2,
vt satisfies:

d(q, vt) ≤ (k
2

α )tD(q, s) + α
α−k2D(q, a) + k

α−k2D(a, q)
(1)

where a denotes the true nearest neighbor to q, that is,
a = argminp∈PD(q, p).

Proof. Recall Lemma 5.1’s proof, which gives D(a, v′) ≤
D(a,vt)

α ≤ D(a,q)+kD(q,vt)
α .

We proceed with induction; the base case trivially holds.
We now analyze the induction step. Suppose Equation (1)
holds for vt. We wish to show that the inductive claim also
holds for vt+1. Since greedy search always picks the next
closest node vt+1 to the query q, by definition we have that
D(q, vt+1) ≤ D(q, v′) which further implies

D(q, vt+1) ≤ D(q, v′) ≤ D(q, a) + kD(a, v′)

≤ D(q, a) + kD(a,q)+kD(q,vt)
α

We now simplify the RHS:

D(q, a) + k · D(a,q)+kD(q,vt)
α

=
k2D(q, vt)

α
+

kD(a, q)

α
+D(q, a)

≤ k2

α
· k

2tD(q, s)

αt
+

k2

α
· 2αD(q, a)

α− k2

+
kD(a, q)

α
+D(q, a)

Note that the above inequality comes from applying the
inductive hypothesis for t. Rearranging terms then gives us
the required bound

k2(t+1)D(q, s)

αt+1
+

(
k

α− k2

)
D(a, q)+

(
α

α− k2

)
D(q, a)

concluding the proof.

The above convergence bound and a simple case analysis
forms the proof for Lemma 3.4, which we state below. Due
to space constraints we defer its proof to the Appendix D.
Lemma 3.4 (Approximation of greedy search). Consider
a α-reachable graph G with respect to a k-quasimetric
function D. For any starting point s, the greedy search
procedure takes O(polylog(k∆ϵν ) log(n)) steps to reach a
( βk
α−k2 + α

α−k2 + ϵ)-approximate nearest neighbor solution

with respect to D, where β = D(a,q)
D(q,a) and ν is a parameter-

ized by β, k and α. Furthermore, if α > Ω((k2 + βk)/ϵ),
the greedy search procedure outputs a (1 + ϵ)-approximate
nearest neighbor solution.
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Lemma 5.2 indicates that α-reachability is beneficial for
ensuring the convergence of greedy search to a good approx-
imate solution. However, it does not provide guarantees
on the complexity of graph-based methods. To bound the
complexity, we must establish limits on the degree of the
constructed reachable graphs. The total time complexity
of greedy search, i.e., the number of distance comparisons
made by the algorithm, is proportional to both the graph’s
degree and the number of steps. Below, we derive a bound
on the degree of the reachable graphs.

5.2. Proof of Lemma 3.5

We now present the proof of Lemma 3.5, which estab-
lishes a bound on the degree of α-reachable graphs for k-
quasimetric functions. Additionally, this result provides an
efficient algorithm for constructing these reachable graphs,
introducing only a logarithmic overhead to the degree of the
graphs. The result and its proof are summarized below.

Lemma 3.5 (Degree Bound for k-Quasi α-Reachable
Graphs). For any multivector dataset P and a k-quasimetric
D, there exists a α-reachable graph with respect to D whose
maximum degree is upper bounded by O((4α)x log(∆)),
where x is the doubling dimension of the dataset P with re-
spect to D. Furthermore, there exists an efficient algorithm
to compute an α-reachable graph with respect to D with a
degree bound of O((4α)x log(∆) log n).

Proof. We use the notion of a ring from the proof of Lemma
3.3 in (Indyk & Xu, 2023). For r1 < r2, let R(p, r1, r2)
be the set of all points in B(p, r2) but not in B(p, r1). For
each i ∈ [log2 ∆], we cover R(p, Dmax

2i , Dmax

2i−1 ) with balls
of radius Dmax

α2i and by Lemma 3.2 the number of such balls
needed is atmost (4α)x. We now provide the construction
of our α-reachable graph: for every p, we add out-neighbors
of p to be the centers of the balls covering all the points in
the rings around p that we defined earlier. In the remainder
of the proof, we show that our construction gives an α-
reachable graph and then provide a degree bound for our
construction. Finally, we end the proof, with its efficient
construction.

We start with the proof of α-reachability. Consider point
p and a p′ present in the ith ring. From our construction,
either there exists a direct edge from p to p′ or it must be
the case that there exists a ball that covers this point p′

and we added an edge to the center of this ball, lets call
this point q. As D(p, p′) ≥ Dmax

2i and D(q, p′) ≤ Dmax

α2i ,
we immediately get that D(q, p′) ≤ 1

αD(p, p′) and the α-
reachability constraint holds. As the above analysis holds
for all p and p′, we conclude that the graph constructed is a
α-reachable graph.

We now bound the out-degree of every node in the con-
structed graph. Using Lemma 3.2, which bounds the num-

ber of required balls to cover each ring by m ≤ (4α)x. As
there are at most log∆ many rings, we immediately get that
the out-degree of every node in our constructed graph is
upper bounded by O((4α)x log(∆)).

In the remainder of the proof, we provide an efficient con-
struction of the graph. Now consider an algorithm which
iterates over all points p ∈ P . For each p ∈ P , creates rings
as earlier and let R1, R2...., Rlog2 ∆ be these rings with re-
spect to point p. For each element in q ∈ P , if q ∈ Ri,
we create a set Sq = B(q, Dmax

α2i ) ∩Ri. These sets Sq give
us the required balls and our goal is to use these balls to
cover all the points in P . The minimum number of these Sq

balls needed to cover all the points in P is upper bounded
by O((4α)x log(∆)). However, we don’t know the efficient
way of picking the minimum number of balls. However,
the task at a hand is an instance of the set cover problem,
where we wish to cover whole P using sets Sq for all q ∈ P .
Set cover is a classical problem in computer science, which
is known to be NP-Hard. However, a polynomial time
O(log |P |) approximation algorithm is known for this prob-
lem. Invoking this algorithm in our setting, gives us an
efficient way to choosing at most O((4α)x log(∆) log |P |)
balls which cover all the points in P . Adding edges from p
to the centers of these balls and repeating this argument for
all p concludes our proof.

6. Conclusion
In this work, we present the first theoretical framework
that geometrically models nearest neighbor search for the
expressive multi-vector paradigm. We complement our the-
oretical with compelling empirical results, demonstrating
that simply employing DiskANN as a black-box for multi-
vector search remarkably outperforms prior state-of-the-art
methods in key recall scenarios.

In spite of the significant progress made in this work, open
questions and opportunities for improving practical perfor-
mance remain. For instance, future work could focus on:

• Hardware Acceleration. Because of the considerable
linear algebra based cost of computing Chamfer, clev-
erly offloading distance computations to a GPU would
allow the CPU to primarily focus on graph traversal.

• Reducing Input Sizes. In Section 4.3, we showed
that naive reduction of input sizes was a net-negative
on search performance. However, developing more
nuanced, data-dependent strategies for reducing input
vector set sizes could improve latency, although these
must be carefully balanced with computational effi-
ciency to ensure scalability.
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A. DiskANN Routines
Here we give a description of the DiskANN algorithm and
refer the reader to the original paper (Jayaram Subramanya
et al., 2019) for more details.

The DiskANN build routine Vamana starts with a random
directed graph G = (V,E), where each v ∈ V corre-
sponds to a point p ∈ P . From an appropriate starting
node s ∈ V and each remaining node i ∈ V , Vamana
runs GreedySearch(s, i, k, U) from s to i, saving all visited
nodes explored along its path in U . U is then sorted by prox-
imity to i, and truncated at the k-th element. Finally, the
truncated U is pruned with RobustPrune(i, U, α,R): upon
considering a new vertex p∗ ∈ U , all remaining vertices
p′ ∈ U such that α ·m(p∗, p′) ≤ m(i, p′) are removed from
U , where m denotes the underlying metric for the space.
The resulting set U becomes the out-neighbors of the node
i.

The DiskANN build routine admits a very natural
search routine for some query q; simply calling
GreedySearch(s, q, k, U) will output the top-k approximate
nearest neighbors to q. See the algorithm psuedocode below.

Algorithm 1 GreedySearch(s, xq , k, L)

Require: Graph G with initial node s, query vector xq,
boolean variable τ , search list size L.

Ensure: Result set L containing k approximate nearest
neighbors, and a set V containing all visited nodes.

1: Initialize sets L ← {s} and V ← ∅.
2: while L \ V ̸= ∅ do
3: Let p∗ ← argminp∈L\V ∥xp − xq∥
4: V ← V ∪ {p∗} and
5: L ← L ∪Nout(p

∗)
6: if |L| > L then
7: Update L with the closest L nodes to xq .
8: end if
9: end while

10: return [k NNs from L;V]

Algorithm 2 RobustPrune(p, V , α, R)

Require: Graph G, point p ∈ P , candidate set V , distance
threshold α ≥ 1, max outdegree bound R.

Ensure: G is modified by setting at most R out-neighbors
for p.

1: V ← V ∪Nout(p) \ {p}
2: Nout(p)← ∅
3: while V ≠ ∅ do
4: p∗ ← argminp′∈V d(p, p′)
5: Nout(p)← Nout(p) ∪ {p∗}
6: if |Nout(p)| = R then
7: break
8: end if
9: for p′ ∈ V do

10: if α · d(p∗, p′) ≤ d(p, p′) then
11: Remove p′ from V .
12: end if
13: end for
14: end while

Algorithm 3 Vamana (P, α, L,R) Indexing Algorithm

Require: Database P with n points where i-th point has
coords xi, parameters α,L,R.

Ensure: Directed graph G over P with out-degree ≤ R.
1: Initialize G to an empty graph
2: Let s denote the medoid of P
3: Let σ be a random permutation of [n]
4: for i ∈ [n] do
5: Let [None;V] ←

GREEDYSEARCH(s, xσ(i),None, L)
6: Run ROBUSTPRUNE(σ (i) ,V, α,R) to update out-

neighbors of σ (i).
7: for j ∈ Nout(σ (i)) do
8: if |Nout(j) ∪ {σ (i)}| > R then
9: Run ROBUSTPRUNE(j,Nout(j)∪{σ (i)}, α,R)

to update out-neighbors of j.
10: else
11: Update Nout(j)← Nout(j) ∪ {σ (i)}
12: end if
13: end for
14: end for
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B. Dataset statistics

Statistic Quora MSMarco HotpotQA NQ

99th pct. 2.79207 3.03490 4.60947 7.02222
99.9th pct. 4.04990 4.48803 6.62863 10.30660
Max 5.93× 104 1.16× 102 1.54× 104 5.32× 104

Table 1. Selected statistics for the β = D(a,q)
D(q,a)

parameter across
datasets.

Statistic Quora MSMarco HotpotQA NQ

99th percentile 5.35747 1.66125 3.50287 10.07200
99.9th percentile 13.75402 3.67374 8.20625 26.68467
Max k 88.47741 13.49132 28.80361 96.60723

Table 2. Selected statistics for the k parameter (e.g., from k-
quasimetric definition or related analysis) across datasets.

Statistic MSMARCO Hotpot NQ Quora

# Queries 6,980 7,405 3,452 10,000
# Corpus 8.84M 5.23M 2.68M 523K
Avg. # Emb.
per Doc. 78.8 68.65 100.3 18.28

Table 3. Dataset information.

In this section, we provide a series of key statistics that
characterize the datasets we evaluate on. In particular, we
point the reader towards Table 1 and Table 2, which show
that both β and k are usually very small. The theory then
suggests that we should get a good (i.e. (1+ϵ)) approximate
nearest neighbor for searches on these datasets, which as
Figure 1 and Figure 2 shows, is in fact the case.

C. Doubling dimension property proof
(Lemma 3.2)

Here we prove the property of doubling dimension that is
very crucial for all our main results.

Lemma 3.2 (Doubling Dimension Property). Consider a
multivector dataset P whose doubling dimension is x with
respect to a k-quasimetric D. For any p ∈ P and R > 0,
the ball B(p,R) can be covered with m ≤ (2k)x balls
centered around points in B(p,R) of radius at most r/k,
where k > 1.

Proof. Define subcenters(p, r) to be a set of centers of
minimum number of balls of radius r

2 needed to cover all
of B(p, r) ∩ P . Let m be the smallest integer such that the
following inequality holds 2m ≥ k; note that k ≥ 2m−1.
Now consider the following construction of 2mx balls of
radii r/k to cover all points in B(p, r) ∩ P . Let S0 be a
singleton set containing p and for any i ≥ 1 let Si be defined

Dataset Method Mean Deg. Idx Size (GB)

HotpotQA Chamfer 51.0865 1.02
MUVERA 93.6500 1.85

NQ Chamfer 61.6716 0.63
MUVERA 83.7390 0.85

MS MARCO Chamfer 67.8025 2.27
MUVERA 99.4127 3.31

Quora Chamfer 24.4257 0.05
MUVERA 48.8036 0.10

Table 4. Comparison of Chamfer and MuVERA Indices

as follows,

Si =
⋃

p′∈Si−1

subcenters(p′, r/2i−1) .

We can claim that balls of radii r/2i centered around points
in Si cover all points in B(p, r) and |Si| ≤ 2ix. We prove
this claim using induction. Note that the claim trivially
holds for i = 0 by the definition of B(p, r) and definition
of doubling dimension respectively. By induction over i, we
assume that the claim holds upto i−1 and show the claim for
i. For i the induction claim holds as for any point p′ in Si−1,
all points covered by B(p′, r/2i−1) are also covered by balls
of radii r/2i around subcenters(p, r). Therefore, balls of
radii r/2m ≤ r/k centered around points in Sm covers
all points in B(p, r). Furthermore, it is immediate that
|Si| ≤

∑
p′∈Si−1

|subcenters(p′, r/2i−1) ≤ |Si−1|2x ≤
2(i−1)x2x ≤ 2ix. We conclude the proof and the induction
claim holds for all i ≥ 0. The lemma statement holds
by applying the induction claim for Sm. Note that the
cardinality of Sm is upper bounded by 2mx. As k ≥ 2m−1,
we get that, 2mx ≤ (2k)x and we conclude the proof.

D. Proof of Lemma 3.4
Lemma 3.4 (Approximation of greedy search). Consider
a α-reachable graph G with respect to a k-quasimetric
function D. For any starting point s, the greedy search
procedure takes O(polylog(k∆ϵν ) log(n)) steps to reach a
( βk
α−k2 + α

α−k2 + ϵ)-approximate nearest neighbor solution

with respect to D, where β = D(a,q)
D(q,a) and ν is a parameter-

ized by β, k and α. Furthermore, if α > Ω((k2 + βk)/ϵ),
the greedy search procedure outputs a (1 + ϵ)-approximate
nearest neighbor solution.

Proof. We proceed by cases:

1. Suppose D(q, s) > 2kDmax. Then we have that
D(q, a) > D(q, s)−kD(a, s) > D(q, s)−kDmax >
D(q,s)

2 . Then, using equation (1), we can expand the
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approximation ratio ci =
D(q,vi)
D(q,a) as follows:

D(q, vi)

D(q, a)
≤

z−tD(q, s) + kD(a,q)+αD(q,a)
α−k2

D(q, a)

=
z−tD(q, s)

D(q, a)
+

kβ + α

α− k2

≤ 2z−t +
kβ + α

α− k2
= 2z−t +M

Therefore, for ϵ > 0, we obtain a (M+ϵ)-approximate
nearest neighbor in logz

2
ϵ steps.

2. Now, suppose D(q, s) ≤ 2kDmax, and D(q, a) ≥
vDmin. By equation (1), we can get an (M +
ϵ)-approximate nearest neighbor for z−tD(q, s) <
ϵD(q, a). Using the given bounds on D(q, s) and
D(q, a) results in needing logz

(
2k∆
ϵv

)
steps.

3. Finally, suppose D(q, s) ≤ 2kDmax, and D(q, a) <
vDmin. Say vt (i.e. the result at step t), such that
D(q, vt) > D(q, a), is not the nearest neighbor. We
now wish to show a lower bound for D(q, vt). See that
by definition,

D(a, v) ≤ D(a, q) + kD(q, v)

= βD(q, a) + kD(q, v)

≤ βD(q, v) + kD(q, v)

Thus Dmin

β+k ≤
D(a,v)
β+k ≤ D(q, v). With Equation (1),

if vt is not the nearest neighbor, it satisfies

Dmin

β + k
≤ D(q, vt) ≤ z−tD(q, s) + kD(a,q)+αD(q,a)

α−k2

≤ z−t2kDmax + vDmin(kβ+α)
α−k2

Canceling then rearranging terms gives

1

β + k
−
(

k

α− k2

)
βv −

(
α

α− k2

)
v ≤ z−t2k∆

Therefore, for t < logz
2k∆
v , the algorithm reaches the

exact nearest neighbor.

13


