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ABSTRACT

Score-based generative models like the diffusion model have been testified to be
effective in modeling multi-modal data from image generation to reinforcement
learning (RL). However, the inference process of diffusion model can be slow, which
hinders its usage in RL with iterative sampling. We propose to apply the consistency
model as an efficient yet expressive policy representation, namely consistency
policy, with an actor-critic style algorithm for three typical RL settings: offline,
offline-to-online and online. For offline RL, we demonstrate the expressiveness of
generative models as policies from multi-modal data. For offline-to-online RL, the
consistency policy is shown to be more computational efficient than diffusion policy,
with a comparable performance. For online RL, the consistency policy demonstrates
significant speedup and even higher average performances than the diffusion policy.

1 INTRODUCTION

Parameterized policy representation is an important component for policy-based deep reinforcement
learning (DRL) (Sutton & Barto, 2018; Arulkumaran et al., 2017; Dong et al., 2020). Prior works have
developed a variety of policy parameterization methods. For discrete action space, existing policy pa-
rameterization includes Softmax action preferences (Sutton & Barto, 2018), Gumbel-Softmax for cate-
gorical distributions (Jang et al., 2016), decision trees (Frosst & Hinton, 2017; Ding et al., 2020), etc. For
continuous action space, the most typical choice is unimodal Gaussian distribution. However, in practice
the demonstration dataset often encompasses samples from a mixture of behavior policies. To capture
the multi-modality in data distribution, Gaussian mixture model (GMM) (Jacobs et al., 1991; Ren et al.,
2021), variational auto-encoders (VAE) (Kingma & Welling, 2013; Kumar et al., 2019), denoising diffu-
sion probabilistic model (DDPM) (Ho et al., 2020; Song et al., 2020; Wang et al., 2022; Chi et al., 2023;
Hansen-Estruch et al., 2023; Venkatraman et al., 2023) are adopted as policy representation.

The desiderata for policy representation in DRL includes: 1. The strong expressiveness of the function
class is found to be critical for modeling multi-modal data distribution in offline RL (Wang et al.,
2022) or imitation learning (IL) (Chi et al., 2023); 2. Differentiability of the model is usually required
for ease of optimization with stochastic gradient descent; 3. Computational and time efficiency for
sampling can be essential for RL agents learning from interactions with environments. Previous
works with action diffusion models (i.e., diffusion policy) testify the expressiveness of diffusion
models for multi-modal action distributions (Wang et al., 2022; Chi et al., 2023; Hansen-Estruch et al.,
2023; Janner et al., 2022; Ajay et al., 2022). Although GMM and VAE also capture multi-modality,
diffusion models with large sampling steps are found to be more expressive for IL and offline RL
scenarios (Wang et al., 2022; Chi et al., 2023). However, it is known that the diffusion model with
progressive denoising over a large number of steps can lead to slow sampling speed. The action
inference can be a critical bottleneck for online RL heavily depends on sampling from environments.
A direct usage of diffusion policies for online settings with policy gradient for optimization requires
backpropagating through the diffusion networks for the number of sampling steps, which is not scalable
for its large time consumption and memory occupancy. Consistency models (Song et al., 2023) based
on probability flow ordinary differential equation (ODE) is proposed as a rescue with comparable
performances as diffusion models but much less computational time, which allows few-step generation
process thus significantly reduce the time consumption at inference stage.

This paper takes the first step adapting the consistency model–an expressive yet efficient generative
model–as policy representation for DRL. The consistency policy is embedded in both behavioral
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cloning (BC) method and an actor-critic (AC) algorithm, namely Consistency-BC and Consistency-AC.
Experimental evaluation includes three typical RL settings: offline, offline-to-online and online.
Policies with two generative models–diffusion model and consistency model–are thoroughly compared
in all three settings on D4RL dataset (Fu et al., 2020). For offline RL, we propose a new loss scaling for
stabilizing the training process of consistency policy with policy regularization, and demonstrate the
expressiveness of two generative policy models. This is illustrated by showing BC with an expressive
model like diffusion or consistency provides fairly good policies outperforming some previous offline
RL methods. The performances are further improved by leveraging the actor-critic style algorithm
with necessary policy regularization to avoid generating out-of-distribution actions. The fast sampling
process of the consistency policy not only helps to reduce the training time, e.g., by 43% for offline
BC, but more importantly, improves the time efficiency for online interaction in the environments
by accelerating action inference. For offline-to-online setting with initialized models trained on offline
dataset and online setting with learning from scratch, the consistency policy shows comparable or even
higher performances than the diffusion policy in some tasks, using significantly shorter wall-clock
time for training and inference. The source code is available1.

2 RELATED WORKS

Offline and Offline-to-Online RL. The offline RL is the problem of policy optimization with a fixed
dataset. It is well known for suffering from the value overestimation problem for out-of-distribution
states and actions from the dataset. Existing methods for solving this issue fall into categories of (1)
explicitly constraining the learning policy with offline data using batch constraining, behavior cloning
(BC) or divergence constraints (e.g., Kullback-Leibler, maximum mean discrepancy), including
algorithms Batch-Constrained deep Q-learning (BCQ) (Fujimoto et al., 2019), TD3+BC (Fujimoto
& Gu, 2021), Onestep RL (Brandfonbrener et al., 2021), Advantage Weighted Actor-Critic
(AWAC) (Nair et al., 2020), Bootstrapping Error Accumulation Reduction (BEAR) (Kumar et al.,
2019), BRAC (Wu et al., 2019), Diffusion Q-learning (Diffusion QL) (Wang et al., 2022), Extreme
Q-learning (X -QL) (Garg et al., 2023) and Actor-Restricted Q-learning (ARQ) (Goo & Niekum,
2022), or (2) implicit regularization with pessimistic value estimation, like Conservative Q-learning
(CQL) (Kumar et al., 2020), Random Ensemble Mixture (REM) (Agarwal et al., 2020), Implicit
Q-learning (IQL) (Kostrikov et al., 2021), Implicit Diffusion Q-learning (IDQL) Hansen-Estruch et al.
(2023), Model-based Offline Policy Optimization (MOPO) (Yu et al., 2020), etc. MoRel (Kidambi
et al., 2020) is a model-based offline RL algorithm constructing pessimistic MDP for learning
conservative policies, which does not clearly fall into above two categories. Offline-to-online RL
usually suffers from a catastrophic degraded performance at initial online training stage, due to the
distribution shift of training samples. Previous research has studied online fine-tuning with offline
data or pre-trained policies, including Hybrid Q learning (Song et al., 2022), RLPD (Ball et al.,
2023), Cal-QL (Nakamoto et al., 2023), Action-free Guide (Zhu et al., 2023), Actor-Critic Alignment
(ACA) (Yu & Zhang, 2023) and Lee et al. (2022).

Score-based Generative Model for RL. For policy representation in RL, recent work also uses
Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020; Song et al., 2020), which we
loosely refer to as the diffusion model (original diffusion model traces back to Sohl-Dickstein et al.
(2015)) in this paper, to capture the multi-modal distributions in offline dataset. Diffusion QL (Wang
et al., 2022) uses diffusion model for policy representation in the Q-learning+BC approach. Implicit
Diffusion Q-learning (IDQL) (Hansen-Estruch et al., 2023) is a variant of IQL using diffusion policy.
Diffusion policies (Chi et al., 2023) applies diffusion models for policy representation under imitation
learning settings in robotics domain. Diffuser (Janner et al., 2022) and Decision Diffuser (Ajay
et al., 2022) combines decision transformer architecture with diffusion models for model-based
reinforcement learning from offline dataset. Diffusion policies are also used for goal-conditioned
imitation learning (Reuss et al., 2023) and human behavior imitation (Pearce et al., 2023). Q-guided
Policy Optimization (QGPO) (Lu et al., 2023) proposes a new formulation for intermediate guidance
in diffusion sampling process. Latent Diffusion-Constrained Q-Learning (LDCQ) (Venkatraman et al.,
2023) proposes to apply latent diffusion model with a batch-constrained Q value to handle the stitching
issue and the extrapolation errors for offline dataset.

1https://github.com/quantumiracle/Consistency Model For Reinforcement Learning
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3 PRELIMINARIES

3.1 OFFLINE AND ONLINE RL
For RL, we define a Markov decision process (S,A,R,T ,ρ0,γ), where S is the state space,A is the
action space, R(s,a) :S×A→R is the reward function, T (s′|s,a) :S×A→Pr(S) is the stochastic
transition function, ρ0(s0) :S→Pr(S) is the initial state distribution, and γ∈ [0,1] is the discount factor
for value estimation. A stochastic policy π(a|s) :S→Pr(A) determines the action a∈A for the agent
to take given its current state s∈S , and the optimization objective for the policy is its discounted cumula-
tive reward: Eπ[

∑∞
t=0γ

tr(st,at)]. For offline RL, there exist a datasetD={(s,a,r,s′,done)} collected
with some behavior policiesπb, and the current policyπ is set to be optimized withD. For online RL, the
agent is allowed collect samples through interacting with the environment to compose an online training
dataset D̃ for optimizing its policy. We consider parameterized policy representation as πθ.

3.2 CONSISTENCY MODEL

The diffusion model (Ho et al., 2020; Song et al., 2020) solves the multi-modal distribution matching
problem with a stochastic differential equation (SDE), while the consistency model (Song et al., 2023)
solves an equivalent probability flow ordinary differential equation (ODE): dxτ

dτ =−τ∇logpτ (x) with
pτ (x) = pdata(x)⊗N (0,τ2I) for time period τ ∈ [0,T ], where pdata(x) is the data distribution. The
reverse process along the solution trajectory {x̂τ}τ∈[ϵ,T ] of this ODE is the data generation process from
initial random samples x̂T ∼N (0,T 2I), with ϵ as a small constant close to 0 for handling numerical
problem at the boundary. For speeding up the sampling process from a diffusion model, consistency
model shrinks the required number of sampling steps to a much smaller value than the diffusion model,
without hurting the model generation performance much. Specifically, it approximates a parameterized
consistency function fθ : (xτ ,τ)→xϵ, which is defined as a map from the noisy sample xτ at step τ
back to the original sample xϵ, instead of applying a step-by-step denoising function pθ(xτ−1|xτ ) as
the reverse diffusion process in diffusion model. The training and inference details of consistency model
refer to Appendix B. For modeling the conditional distribution with condition variable c, the consistency
function is changed to be fθ(c,xτ ,τ), which is sightly different from original consistency model.

4 CONSISTENCY MODEL AS RL POLICY

The consistency model as policy representation in RL can be formulated in the following way. To
map the consistency model to a policy in MDP, we set:

c≜s, x≜a, pdata(x)≜pD(a|s), πθ(s)≜Consistency Inference(s;fθ) (1)

where pD(a|s) is the action-state conditional distribution from offline datasetD.

Consistency Action Inference. By setting the condition variable c as state s and generated variable
x as action a, the consistency function fθ can be used for generating actions from states following
the conditional distribution of the dataset, i.e., a behavior RL policy. The parameterized policy πθ

is defined implicitly in terms of fθ, with which an action a conditioned on state s can be generated
following the Consistency Inference as Alg. 1 with predetermined {τn|n∈ [N ]} sequence.
During the inference process, a trained consistency model fθ(s,âτn ,τn) iteratively predicts denoised
samples from the noisy inputs âτn = a+

√
τ2n−ϵ2z along the probability flow ODE trajectory at

step n∈ [N ], with Gaussian noise z∼N (0,I). {τn|n∈ [N ]} is a sub-sequence of time points on a
certain time period [ϵ,T ] with τ1= ϵ,τN =T . For inference, the sub-sequence is a linspace of [ϵ,T ]
with (N−1) sub-intervals. A single-step version of Consistency Inference can be achieved
by just set {τn|n=0,1}={ϵ,T}. Notice that T here is the time horizon for denoising process in the
consistency model instead of the episode length of the sample trajectory.

Consistency Behavior Cloning. With the offline datasetD, the conditional consistency model as
policy can be trained with loss by adapting the original (Song et al., 2023):

Lc(θ)=En∼U(1,N−1),(s,a)∼D,z∼N (0,I)

[
λ(τn)d

(
fθ(s,aτn+1

,τn+1),fθ⊺(s,aτn ,τn)
)]

(2)

where λ(·) is a step-dependent weight function, aτn =a+τnz and d(·,·) is the distance metric. fθ⊺

is exponential moving average of fθ for stabilizing the target estimation in training. In classical
actor-critic algorithm, there exists the same delayed update of the policy network πθ⊺ (i.e., fθ⊺) for
estimating target Q-values, which is set to coincide with the target in estimating the consistency loss.
The setting for τn is detailed in Appendix B. Pseudo-code of Consistency BC refers to Alg. 2.
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Algorithm 1 Consistency Action Inference
Input s,fθ,N,{τn}n∈[N ]

Initial a←fθ(s,âT ,T ),âT ∼N (0,T 2I)
for n=N−1 to 2 do

âτn←a+
√
τ2n−ϵ2z, z∼N (0,I)

a←fθ(s,âτn ,τn)
end for
return a

Algorithm 2 Consistency Behavior Cloning
Input offline datasetD
Initialize consistency policy πθ, target θ⊺←θ
for iterations k=1,...,K do

Update policyπθ (with model fθ) using loss
Lc(θ) as Eq. 2;

Update target: θ⊺←αθ⊺+(1−α)θ
end for

Algorithm 3 Offline Consistency Actor-Critic
Input offline datasetD
Initialize consistency policy network πθ, critic
networks Qϕ1 ,Qϕ2

Initialize target network parameters: θ⊺ ← θ,
ϕ⊺
1←ϕ1,ϕ

⊺
2←ϕ2

for policy training iterations k=1,...,K do
Sample minibatch B={(s,a,r,s′)}⊆D;
% Q-value Update
Update Qϕ1

,Qϕ2
with Eq. 3;

% Policy Update
Update policy πθ (with model fθ) via Eq. 4;
% Target Update
Update target: θ⊺←αθ⊺+(1−α)θ,ϕ⊺

i ←
αϕ⊺

i +(1−α)ϕi,i∈{1,2};
end for
return πθ,Qϕ1

,Qϕ2

Consistency Actor-Critic. As as estimation of the state-action value of current policy, the
parameterized Qϕ(s,a) function can be learned with the double Q-learning loss (Fujimoto et al., 2018)
with batched data B⊆D:

L(ϕ)=E(s,a,s′)∼B,a′∼πθ⊺ (·|s′)

[((
r(s,a)+γ min

i∈{1,2}
Qϕ⊺

i
(s′,a′)

)
−Qϕi

(s,a)
)2

]
(3)

with Qϕ⊺
i

as a delayed update of Qϕi
,i∈{1,2} for stabilizing training.

The regularized policy πθ on offline dataset is learned with a combination of policy gradient through
maximizing the expected Qϕ(s,a) function and a behavior cloning regularization with consistency
lossLc(θ):

L(θ)=Lc(θ)+ηLq(θ) (4)

whereLq(θ)=−Es∼B,a∼πθ(s)

[
Qϕ(s,a)

]
(5)

where a∼πθ(s) is action inference from the consistency policy as Alg.1. It can be noticed that the
actions generated with N denoising steps will produce the policy gradients through the Qϕ(s,a) in
above equation, thus it also backpropagates through fθ for N times in the gradient descent procedure,
which can lead to additional time consumption apart from the multi-step model inference. Therefore,
reducing the denoising steps N can be critical for the speed of this type of models as RL policies. The
consistency actor-critic (Consistency-AC) algorithm is provided in pseudo-code Alg. 3.

Loss Scaling. The consistency loss as Eq. 2 matches the denoised predictions from two consecutive
timesteps τn and τn+1. Due to the usage of N(k) schedule (detailed in Appendix B), their difference
|τn+1−τn| decreases as the training iteration k increases (thus N(k) also increases), which allows
the consistency model to have a coarse-to-fine matching process across different time scales. This
also leads to a decreasing loss value L(θ;k) as k increases from 1 to K since the predictions from
smaller time intervals are easier to match. Actually, the lossLc(θ) changes drastically across several
magnitudes within an epoch, which leads to severe imbalance with the second loss termLq(θ) in Eq. 4.
The coefficient η is a constant hyperparameter independent of k, so it cannot help to alleviate this issue.
Although original consistency model applies λ(τn)≡1 for image generation, we empirically find that
in offline RL this imbalance of two loss terms can hurt the effect of policy regularization in some tasks,
as evidenced by ablation studies in Sec. 5.2. To solve this issue, we propose a k-dependent weighting
mechanism to balance the values of two loss terms. This is found to improve the performances of
this policy regularization method with consistency model on offline RL. Specifically, λ(·) in Eq. 2
is chosen to be: λ(τn,τn+1;k)=

ξ
|τn+1(k)−τn(k)| where ξ is set according to tasks (or absorbed in η).

The denominator captures the loss scale at iteration k conveniently.

5 EXPERIMENTAL EVALUATION

To evaluate the expressiveness and computational efficiency of the proposed consistency policy and cor-
responding algorithms, we conduct experiments on four task suites (Gym, AntMaze, Adroit, Kitchen) in
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D4RL benchmarks under three canonical RL settings: offline (Sec. 5.1, Sec. 5.2), offline-to-online and
online (Sec. 5.3). It is known that the D4RL offline dataset can exhibit multi-modality since the samples
may be collected with a mixture of polices or along various sub-optimal trajectories, which makes the
expressiveness of policy representation critical (Fu et al., 2020; Wang et al., 2022). For offline RL, the
generative models as policies are evaluated with both behavior cloning (Consistency-BC, Diffusion-BC)
and actor-critic type (Consistency-AC, Diffusion-QL) algorithms, in terms of both performances and
computational time. The Diffusion-QL is also an actor-critic algorithm though with name QL. Variants
of Consistency-AC are compared as ablation studies and the best performances are reported. For offline-
to-online and online RL settings, the learning curves and final results are compared for different methods.
For evaluation, each model is evaluated over 10 episodes for Gym tasks and 100 episodes for other tasks,
following the settings in previous work (Wang et al., 2022). By default, the consistency policy applies the
number of denoising stepsN=2with a saturated performances on most of D4RL tasks, while diffusion
policy usesN=5 (Wang et al., 2022). Effects of different choices ofN are discussed in Sec. 5.2.

5.1 OFFLINE RL: BEHAVIOR CLONING WITH EXPRESSIVE POLICY REPRESENTATION

Empirical finding 1: By behavior cloning alone (without any RL component), using an expressive
policy representation with multi-modality like the consistency or diffusion model achieves performances
comparable to many existing popular offline RL methods. Learning consistency policy requires much
less computation than learning diffusion policy.

The proposed method Consistency-BC follows Alg. 2 with consistency policy for behavior cloning,
and Diffusion-BC is by replacing the policy representation with a diffusion model and replace the
policy loss with the diffusion model training loss Ld(θ) as specified in paper (Wang et al., 2022).
Results for classic BC with Gaussian policies and previous offline RL baselines, including AWAC (Nair
et al., 2020), Diffuser (Janner et al., 2022), MoRel (Kidambi et al., 2020), Onestep RL (Brandfonbrener
et al., 2021), TD3+BC (Fujimoto & Gu, 2021), Decision Transformer (DT) (Chen et al., 2021),
BCQ (Fujimoto et al., 2019), BEAR (Kumar et al., 2019), BRAC (Wu et al., 2019) and REM (Agarwal
et al., 2020), are adopted from previous paper (Wang et al., 2022). SAC (Haarnoja et al., 2018) is the

Table 1: The average scores of vanilla BC (with Gaussian), Consistency-BC, Diffusion-BC and several
offline RL baselines on D4RL Gym, AntMaze, Adroit, and Kitchen tasks are shown. For Consistency-
BC and Diffusion-BC, each cell has two values: one for offline model selection and another (in brackets)
for online model selection. Each result is averaged over five random seeds with standard deviations
reported. The bold values are the highest among each row.

Gym Tasks BC Consistency-BC Diffusion-BC AWAC Diffuser MoRel Onestep RL TD3+BC DT
halfcheetah-m 42.6 31.0±0.4 (46.2±0.4) 45.4±1.8 (46.3±0.2) 43.5 44.2 42.1 48.4 48.3 42.6
hopper-m 52.9 71.7±8.0 (78.3±2.6) 65.3±5.8 (71.1±5.5) 57.0 58.5 95.4 59.6 59.3 67.6
walker2d-m 75.3 83.1±0.3 (84.1±0.3) 81.2±1.7 (84.3±0.5) 72.4 79.7 77.8 81.8 83.7 74.0
halfcheetah-mr 36.6 34.4±5.3 (45.4±0.7) 41.7±0.4 (44.1±0.3) 40.5 42.2 40.2 38.1 44.6 36.6
hopper-mr 18.1 99.7±0.5 (100.4±0.6) 67.9±28.1 (99.1±2.3) 37.2 96.8 93.6 97.5 60.9 82.7
walker2d-mr 26.0 73.3±5.7 (80.8±2.4) 77.5±4.7 (80.8±4.5) 27.0 61.2 49.8 49.5 81.8 66.6
halfcheetah-me 55.2 32.7±1.2 (39.6±3.4) 90.8±1.1 (93.5±0.4) 42.8 79.8 53.3 93.4 90.7 86.8
hopper-me 52.5 90.6±9.3 (96.8±4.6) 107.6±4.3 (111.7±0.3) 55.8 107.2 108.7 103.3 98.0 107.6
walker2d-me 107.5 110.4±0.7 (111.6±0.7) 108.9±0.6 (110.5±0.5) 74.5 108.4 95.6 113.0 110.1 108.1

Average 51.9 69.7 (75.9) 76.3 (82.4) 50.1 75.3 72.9 76.1 75.3 74.7

AntMaze Tasks BC Consistency-BC Diffusion-BC AWAC BCQ BEAR Onestep RL TD3+BC DT
antmaze-u 54.6 75.8±4.0 (87.0±4.5) 71.8±8.2 (76.8±3.9) 56.7 78.9 73.0 64.3 78.6 59.2
antmaze-ud 45.6 77.6±6.3 (82.4±3.4) 61.2±9.4 (78.8±7.0) 49.3 55.0 61.0 60.7 71.4 53.0
antmaze-mp 0.0 56.8±30.1 (71.6±14.5) 43.4±37.8 (56.8±34.5) 0.0 0.0 0.0 0.3 10.6 0.0
antmaze-md 0.0 31.6±22.4 (66.0±6.5) 29.8±36.3 (69.4±12.3) 0.7 0.0 8.0 0.0 3.0 0.0
antmaze-lp 0.0 10.2±4.6 (15.0±3.8) 14.6±11.2 (22.4±5.8) 0.0 6.7 0.0 0.0 0.2 0.0
antmaze-ld 0.0 12.8±8.2 (19.8±4.0) 26.6±10.7 (33.0±8.2) 1.0 2.2 0.0 0.0 0.0 0.0

Average 16.7 44.1 (57.0) 41.2 (53.3) 18.0 23.8 23.7 20.9 27.3 18.7

Adroit Tasks BC Consistency-BC Diffusion-BC SAC BCQ BEAR BRAC-p BRAC-v REM
pen-human-v1 25.8 52.4±13.7 (63.7±7.4) 61.1±5.9 (66.7±4.9) 4.3 68.9 -1.0 8.1 0.6 5.4
pen-cloned-v1 38.3 33.4±6.0 (51.9±6.6) 57.6±9.5 (62.7±6.1) -0.8 44.0 26.5 1.6 -2.5 -1.0

Average 32.1 42.9 (57.8) 59.4 (64.7) 1.8 56.5 12.8 4.9 -1.0 2.2

Kitchen Tasks BC Consistency-BC Diffusion-BC SAC BCQ BEAR BRAC-p BRAC-v AWR
kitchen-c 33.8 45.2±5.0 (50.9±3.6) 76.5±8.9 (87.3±6.8) 15.0 8.1 0.0 0.0 0.0 0.0
kitchen-p 33.8 22.6±3.8 (23.8±2.8) 50.3±3.0 (52.9±1.6) 0.0 18.9 13.1 0.0 0.0 15.4
kitchen-m 47.5 23.5±1.8 (24.3±1.3) 56.5±6.6 (64.7±4.6) 2.5 8.1 47.2 0.0 0.0 10.6

Average 38.4 30.4 (33.0) 61.1 5.8 11.7 20.1 0.0 0.0 8.7
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algorithm used for collecting data in D4RL Gym tasks. Detailed hyperparameters for Consistency-BC
and Diffusion-BC refer to Appendix C.1.

Figure 1: Average training time (seconds per epoch)
for Consistency-BC and Diffusion-BC across tasks.

Results from Tab. 1 show the advantage of us-
ing multi-modal policy representation for of-
fline RL even only with the BC method. For
reference purpose, the values in the brackets
allow for online evaluation to achieve the best
model selection from the set of trained models,
which serve as the maximal possible values for
the standard offline selection without leverag-
ing online evaluation. Compared with vanilla
BC using the Gaussian distribution for policies,
Consistency-BC with multi-modality outper-
forms it on 14/20 tasks, and Diffusion-BC has better or equivalent performance as BC for 20/20
tasks. Through leveraging multi-modal representation in BC, the improvement of normalized scores
averaged over tasks is significant, and this is mainly caused by the multi-modality within the offline
dataset by mixing over policies. Moreover, compared with previous offline RL baselines, which
do not just apply BC, the Consistency-BC and Diffusion-BC show comparable performances, and
even superior performances for tasks like walker2d-medium-v2, hopper-medium-replay-v2, walker2d-
medium-replay-v2, walker2d-medium-expert-v2 in Gym tasks, most of AntMaze, Adroit and Kitchen
tasks. The consistency policy is slightly less expressive than the diffusion policy, which is within our
expectation due to its heavy reduction on the sampling steps. However, the consistency policy shows
higher computational efficiency than diffusion policy as compared in Fig. 1, with an average reduction
of 42.97% computational time across 20 tasks. Detailed computational time for each task is provided
in Appendix C.2 Tab. 6.

5.2 OFFLINE RL: CONSISTENCY ACTOR-CRITIC

Table 2: The performance of Consistency-AC and SOTA baselines on D4RL Gym, AntMaze, Adroit
and Kitchen tasks for offline RL setting. For Consistency-AC and Diffusion-QL, each cell has two
values: one for offline model selection and another (in brackets) for online model selection. The bold
values are the highest among each row.

Tasks CQL IQL X -QL ARQ IDQL-A Diffusion-QL Consistency-AC
halfcheetah-m 44.0 47.4 48.3 45 ± 0.3 51.0 51.1 ± 0.5 (51.5 ± 0.3) 69.1 ± 0.7 (71.9 ± 0.8)
hopper-m 58.5 66.3 74.2 61 ± 0.4 65.4 90.5 ± 4.6 (96.6 ± 3.4) 80.7 ±10.5 (99.7 ±2.3)
walker2d-m 72.5 78.3 84.2 81 ± 0.7 82.5 87.0 ± 0.9 (87.3 ± 0.5) 83.1 ±0.3 (84.1 ±0.3)
halfcheetah-mr 45.5 44.2 45.2 42 ± 0.3 45.9 47.8 ± 0.3 (48.3 ± 0.2) 58.7 ±3.9 (62.7 ±0.6)
hopper-mr 95.0 94.7 100.7 81 ± 24.2 92.1 101.3 ± 0.6 (102.0 ± 0.4) 99.7 ± 0.5 (100.4 ± 0.6)
walker2d-mr 77.2 73.9 82.2 66 ± 7.0 85.1 95.5 ± 1.5 (98.0 ± 0.5) 79.5 ± 3.6 (83.0 ± 1.5)
halfcheetah-me 91.6 86.7 94.2 91 ± 0.7 95.9 96.8 ± 0.3 (97.2 ± 0.4) 84.3 ± 4.1 (89.2 ± 3.3)
hopper-me 105.4 91.5 111.2 110 ± 0.9 108.6 111.1 ± 1.3 (112.3 ± 0.8) 100.4 ± 3.5 (106.0 ± 1.3)
walker2d-me 108.8 109.6 112.7 109 ± 0.5 112.7 110.1 ± 0.3 (111.2 ± 0.9) 110.4 ± 0.7 (111.6 ± 0.7)

Average 77.6 77.0 83.7 76.2 82.1 87.9 (89.3) 85.1 (89.8)

antmaze-u 74.0 87.5 93.8 97 ± 0.8 94.0 93.4 ± 3.4 (96.0 ± 3.3) 75.8 ± 1.6 (85.6 ± 3.9)
antmaze-ud 84.0 62.2 82.0 62 ± 12.1 80.2 66.2 ± 8.6 (84.0 ± 10.1) 77.6 ± 6.3 (82.4 ± 3.4)
antmaze-mp 61.2 71.2 76.0 80 ± 8.3 84.5 76.6 ± 10.8 (79.8 ± 8.7) 56.8 ± 30.1 (71.6 ± 14.5)

Average 73.1 73.6 83.9 79.7 86.2 78.7 (86.6) 70.1 (79.9)

pen-human-v1 35.2 71.5 - 45 ± 5.2 (v0) - 72.8 ± 9.6 (75.7 ± 9.0) 63.4 ± 7.7 (67.9 ± 5.3)
pen-cloned-v1 27.2 37.3 - 50 ± 7.1 (v0) - 57.3 ± 11.9 (60.8 ± 11.8) 50.1 ± 2.2 (53.7 ± 3.4)

Average 31.2 54.4 - 47.5 - 65.1 (68.3) 56.8 (60.8)

kitchen-c 43.8 62.5 82.4 37 ± 14.2 - 84.0 ± 7.4 (84.5 ± 6.1) 51.9 ± 6.0 (67.6 ± 2.7)
kitchen-p 49.8 46.3 73.7 50 ± 5.0 - 60.5 ± 6.9 (63.7 ± 5.2) 38.2 ± 1.8 (39.8 ± 1.6)
kitchen-m 51.0 51.0 62.5 39 ± 9.4 - 62.6 ± 5.1 (66.6 ± 3.3) 45.8 ± 1.5 (46.7 ± 0.9)

Average 48.2 53.3 72.9 42.0 - 69.0 (71.6) 45.3 (51.4)

Total Average 66.2 69.6 - 67.4 - 80.3 (83.2) 72.1 (77.9)
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Empirical finding 2: Replacing diffusion model with consistency model in TD3-BC type algorithm
for offline RL will lead to speed up of model training and inference, with slightly worse performances
while still outperforming some other baselines.

For offline RL, the proposed method Consistency-AC follows Alg. 3 with consistency model for
policy representation, and the consistency policy is embedded in an actor-critic algorithm with BC
policy regularization to avoid generating out-of-distribution actions. Results for previous baselines,
including CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2021),X -QL (Garg et al., 2023), ARQ (Goo
& Niekum, 2022), IDQL-A (Hansen-Estruch et al., 2023) and Diffusion-QL (Wang et al., 2022) are
adopted from results reported in corresponding papers. Detailed hyperparameters for Consistency-AC
and Diffusion-QL refer to Appendix C.1.

Results from Tab. 2 show the average normalized scores of different methods across five random seeds,
with standard deviations reported for Diffusion-QL and Consistency-AC. The results in Tab. 2 are
directly comparable with the results in Tab. 1 since they follow the same offline RL setting.

Tab. 2 shows that although Consistency-AC achieves a slightly lower average score (72.1) than
Diffusion-QL (80.3), it outperforms the other baselines in most of the tasks, like Gym and Adroit.
The AntMaze tasks are found to be hard for the Consistency-AC method, we conjecture that this
is potentially caused by the sparse reward signals (as evidenced by Appendix A Fig. 5) in dataset,
which makes the difficulty of Q-learning become more of a bottleneck than modeling the multi-modal
distributions with behavior cloning. The conservativeness of theQ-value estimation might be important
but orthogonal to the proposed consistency policy. Considering the reduction of denoising steps in
the training and inference stages of Consistency-AC, it can be regarded as a trade-off between the
computational efficiency and the approximation accuracy of multi-modal distribution, which will be
discussed as following.

Method N Training Time (s per epoch) Inference Time (ms per sample) Avg. Norm Score

Diffusion-QL

50 206.44±16.70 30.65±2.10 -
20 108.65±2.85 13.04±0.90 109.2±1.1 (111.1±1.9)
10 76.54±10.74 6.87±0.55 108.6±0.6 (112.5±0.2)
5 57.06±19.16 3.76±0.29 108.2±5.6 (112.3±0.2)
2 31.59±10.32 1.96±0.10 53.6±16.6 (103.5±10.0)
1 30.23±8.75 1.37±0.09 2.8±1.5 (13.1±12.5)

Consistency-AC

50 150.84±31.02 26.50±1.92 -
20 76.22±9.92 11.12±0.77 101.3±6.3 (107.3±0.2)
10 54.04±4.43 5.95±0.44 98.4±4.3 (107.1±4.0)
5 40.79±2.79 3.39±0.29 101.4±4.7 (110.1±1.6)
2 31.94±1.55 1.84±0.21 102.4±3.0 (106.2±1.6)
1 28.51±1.78 1.23±0.11 6.2±5.4 (19.1±9.3)

Table 3: Comparison of computational time for two methods with different denoising steps N on the
task hopper-medium-expert-v2. The gray lines apply default N values for two models.

Saturates with smaller N (=2)

Larger time gap

Figure 2: The average normalized scores and
training time versus N for two models on hopper-
medium-expert.

Computational Time. To evaluate the computa-
tional efficiency of Consistency-AC and Diffusion-
QL with different denoising steps N , we conduct
experiments for evaluating the training and infer-
ence time for N ∈{1,2,5,10,20,50} on the hopper-
medium-expert-v2 environment. As generative
models based on probability flow, both the con-
sistency model and the diffusion model require
the computational time directly dependent on the
number of denoising steps N , and consistency
model (Song et al., 2023) by design requires a
smaller number of steps for achieving similar gen-
erative performances as the diffusion model. The
results are summarized in Tab. 3 for both the train-
ing time (seconds per epoch) and the inference time
(milliseconds per sample) with the model training using different denoising steps N , as well as the
average normalized scores for models trained after 2000 epochs with each N . Each cell contains the
mean and standard deviation over five random seeds. Consistency-AC saturates its performance with
only N=2 while Diffusion-QL saturates at N=5, which consumes about 1.786×more training time
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while yielding a slightly better performance (1.057×). The “-” in the table with N =50 indicates a
missing value of the average score due to exceeding the limited time (72 hours) for the job. Moreover,
as shown in Fig. 2, Consistency-AC has better scaling laws than Diffusion-QL for both training and
inference in time consumption with increasing N , which is further testified by the linear fitting results
in Appendix. C.2 Fig. 6.

Ablation Studies. Hansen-Estruch et al. (2023) proposes to use residual networks with layer nor-
malization for network parameterization in diffusion policy, namely LN-Resnet, which is also tested
for consistency policy in our experiments. As an ablation study, we compare different variants of
Consistency-AC for offline RL setting, including (1) Consistency-BC by setting η=0 and without using
loss scaling (λ(τn)≡1 in Eq. 2); (2) only without loss scaling; (3) the standard setting with multi-layer
perceptrons (MLP) networks for the parameterization of fθ; (4) the LN-Resnet parameterization of
fθ. These variants can be regarded as various hyperparameters or training settings for the proposed
Consistency-AC algorithm, and the reported results in Tab. 2 are the best choices among these variants.
The comparison results for four variants across four task domains are summarized in Fig. 3. Detailed
results for this ablation study are shown in Appendix C.3. We find that LN-Resnet does not consistently
improve over MLP across tasks for the consistency model but benefits mainly for the Adroit tasks.
Without loss scaling, the performance degrades significantly (by 37.8% on average) for most tasks,
although for some specific tasks (e.g., AntMaze) it may improve the performance a bit without loss
scaling. For most tasks except for AntMaze, Consistency-BC cannot achieve the best performances
and the Q-learning lossLq(θ) (as Eq. 5) with proper scaling helps to further improve the scores.

Figure 3: Comparison of variants of Consistency-AC across tasks in offline RL setting.

5.3 OFFLINE-TO-ONLINE AND ONLINE RL
Empirical finding 3: Consistency policy has a close but slightly worse performance than diffusion
policy for offline-to-online RL, but a significant improvement of computational efficiency.

For online RL, we consider both online learning from scratch and the offline-to-online setting with the
model trained on offline dataset as an initialization for online fine-tuning. As discussed in previous
Sec. 5.2, the offline model can be selected in either an online or offline manner, respectively by model
evaluation with or without online experience. Both types of models are used for initializing the policy
and value models at the beginning of online fine-tuning. For online fine-tuning, it follows the standard
actor-critic algorithm, that theQ value is updated with Eq. 3 using online data, and the policy is updated
with the Q-learning loss Lq(θ) only as Eq. 5. The algorithms use ϵ-greedy for exploration with a
decaying schedule. Pseudo-codes for offline-to-online and online Consistency-AC are provided in
Appendix D.1. Hyperparameters for training refer to Appendix D.2.

Table 4: Comparison of normalized scores (last epoch) for methods in offline-to-online and online RL.
Offline-to-Online Online

Gym Tasks SAC AWAC ACA Diffusion-QL Consistency-AC Diffusion-QL Consistency-AC
halfcheetah-m 75.2 50.5 66.6 99.6±2.3 (99.8±1.6) 98.7±1.8 (97.3±2.9) 47.3±2.9 55.1±7.0

hopper-m 73.4 97.5 96.5 77.2±25.6 (60.0±11.8) 60.5±8.6 (61.8±26.6) 82.8±30.6 86.3±28.4
walker2d-m 79.6 1.9 74.7 118.3±5.8 (117.5±5.9) 108.9±3.0 (107.9±10.5) 77.0±25.7 69.4±38.9

halfcheetah-mr 68.9 46.8 59.0 96.3±3.9 (97.6±1.2) 80.7±10.5 (82.3±9.4) 43.5±5.7 56.5±8.0
hopper-mr 74.0 96.0 85.5 68.4±20.3 (90.6±24.0) 74.6±25.1 (63.4±16.7) 94.0±12.2 75.8±26.8

walker2d-mr 85.4 80.8 85.2 95.7±18.8 (105.5±13.7) 102.0±11.6 (96.5±17.9) 87.8±29.0 69.0±42.3
halfcheetah-me 82.2 68.8 93.7 103.9±2.2 (102.9±1.8) 99.6±4.1 (95.1±9.7) 39.7±3.6 56.7±5.8

hopper-me 65.4 73.1 98.0 71.7±31.1 (67.9±18.6) 65.4±5.7 (54.7±28.4) 62.5±22.2 78.6±14.6
walker2d-me 87.2 45.2 110.5 117.0±6.3 (111.2±10.6) 101.8±13.3 (89.2±16.2) 74.6±39.0 86.2±27.8

Average 76.8 62.3 85.5 94.2 88.0 67.7 70.4

Tab. 4 summarizes the quantitative results for average scores achieved with Consistency-AC and
Diffusion-QL across five random seeds for two settings over 9 Gym tasks, as well as offline-to-online
baseline methods SAC, AWAC and ACA (Yu & Zhang, 2023). Both the Consistency-AC and Diffusion-
QL are pre-trained on the offline dataset for 2000 epochs. Each model is trained for one million steps
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for online fine-tuning or learning from scratch. The results for SAC, AWAC and ACA are adopted
from the paper (Yu & Zhang, 2023) with each model fine-tuned for 100k online steps. Each cell has
two values: one for offline model selection as initialization and another (in brackets) for online model
selection as initialization. The normalized scores are slightly lower for Consistency-AC compared with
Diffusion-QL in offline-to-online settings, but higher in online RL from scratch. On average, the two
methods achieve lower values in online setting than the offline-to-online setting, which testifies the
improvement of learning efficiency by initializing with pre-trained generative policy models. However,
since the training is set to have a fixed overall timesteps and using the same learning rate 1×10−5,
the purely online models do not converge to its optimal performances yet. The learning rate is chosen
for the fine-tuning setting, and the purpose is not to show online RL can achieve scores higher than
100 with sufficient training but to compare with the offline-to-online setting, for demonstrating the
effectiveness of initialized models with offline pre-training.

Empirical finding 4: Consistency policy could outperform diffusion policy for online RL setting mostly
in computational efficiency and sometimes in sample efficiency, especially for hard tasks.

Figure 4: Learning curves of Diffusion-QL and Consistency-AC for online RL and offline-to-online RL
with offline model selection in time axis (all trained with one million environment steps). Each curve is
smoothed and averaged over five random seeds, and shaded regions show the 95% confidence interval.

Fig. 4 shows the learning curves of Consistency-AC and Diffusion-QL for both offline-to-online
and online RL settings with one million online training steps on three example tasks (full results in
Appendix D.3 Fig. 8). Different methods consume different time to finish the entire training. The
diagrams are plotted with x-axis being the wall-clock time, therefore the curves exhibit different
lengths. The diagrams with x-axis being the training steps are shown in Appendix D.4 Fig. 9. The
results for offline-to-online setting with online model selection from the offline pre-trained models
are provided in Appendix D.4 but with similar performances. For most tasks, the consistency policy
has comparable performances with the diffusion policy and a significantly shorter time to finish the
entire online training. The offline-to-online methods are usually more sample efficient than the online
methods except for three hopper tasks, which are relatively easy to learn a good policy. For the online
setting, the consistency policies demonstrate significantly more efficient learning than the diffusion
policies, especially for more complex tasks like halfcheetah. Consistency policies show a sharper
score-increasing slope for 8/9 tasks than the diffusion policies. Our conjecture is that the expressiveness
of a model is more essential in offline setting than online setting. For a deterministic optimal policy
in MDP, overly expressive policy models like diffusion may hinder the convergence in online setting
by being too explorative. For offline-to-online setting, this advantage is less obvious presumably due
to the lower initial performances of consistency policies from the offline pre-training. We refer to
Appendix D.3 Tab. 9 and Fig. 7 for more analysis of the training time for two methods.

6 CONCLUSION

The consistency model as a RL policy strikes a balance between the computational efficiency and
the modeling accuracy of multi-modal distribution on offline RL dataset, and achieves comparable
performances with the diffusion policies but significant speedup in three typical RL settings. The
proposed Consistency-AC algorithm leverages a novel policy representation with policy regularization
for offline RL, orthogonal to other offline RL techniques. Future directions include combining the
consistency policy with other techniques like conservative Q-value estimation for offline RL, better
alignment and initialization from offline to online fine-tuning, advanced exploration methods for
online RL, etc. Scaling up the task complexity, where more sampling steps are required for the
generative models, will reveal a greater potential for consistency policy to show its benefits in retaining
expressiveness while reducing the computational cost.
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A D4RL DATASET VISUALIZATION

T-SNE Plot

Figure 5: Visualization of t-SNE plots for 10000 (3000 for pen-human-v1 and kitchen-complete-v0)
randomly selected (s,a) samples in D4RL dataset, colored by normalized reward (range [−1,1]).
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B CONSISTENCY MODEL TRAINING AND INFERENCE DETAILS

Training. The consistency model fθ for modeling data distribution pdata(x) has the loss func-
tion (Song et al., 2023):

Lc(θ)=En∼U(1,N−1),x∼pdata(x),z∼N (0,I)

[
λ(τn)d

(
fθ(x+τn+1z,τn+1),fθ⊺(x+τnz,τn)

)]
(6)

where d(·, ·) is the distance metric and we use l2 distance d(x, y) = ∥x − y∥22. For training,
the sub-sequence {τn|n ∈ [N ]} is different from inference, and it follows the Karras bound-
ary (Karras et al., 2022) schedule: τn =

(
ϵ1/ρ + n−1

N−1 (τ
1/ρ
N − ϵ1/ρ)

)ρ
. The schedule function

N(k) = ⌈
√

k
K ((s1+1)2−s20)+s20 − 1⌉ + 1 with k as the current training iteration of a total K

iterations within one epoch2.

Inference. After training, the consistency model fθ can be used for generating samples given initial
noisy input x̂T ∼ N (0,T 2I), following either single-step sampling x = fθ(x̂T ,T ), or multistep
sampling by iteratively calculating x = fθ(x̂τn ,τn) with x̂τn = x+

√
τ2n−ϵ2z following a given

time sequence {τn|n ∈ [N ]}. For inference, the time sequence is a linspace of [ϵ,T ] with (N − 1)
sub-intervals as: τn= n−1

N−1 (T−ϵ)+ϵ,n∈ [N ].

C OFFLINE RL EXPERIMENT DETAILS

C.1 HYPERPARAMETERS

The offline training of Consistency-BC and Consistency-AC uses a batch size of 256 for training
1000 epochs (500 for pen-cloned-v1, 1500 for Kitchen tasks, 2000 for Gym tasks) on D4RL tasks,
cosine annealing decaying schedule for learning rates, with other hyperparameters listed in Tab. 5.
ξ = 100.0 (in λ(·)) in our experiments for loss scaling in Consistency-AC. Max Q backup (Kumar
et al., 2020) is optional. Q norm indicates the normalization of subtracting the mean and dividing the
standard deviation for the target Q values in stabilized training. Gradient norm is to clip the l2-norm of
the gradients. The Diffusion-BC and Diffusion-QL training follows the hyperparameters of original
paper (Wang et al., 2022).

Table 5: The hyperparameters for Consistency-AC in offline (including BC) training on D4RL Gym,
AntMaze, Adroit and Kitchen tasks.

Hyperparameters
Tasks learning rate η Q norm max Q backup gradient norm

halfcheetah-medium-v2 3×10−4 1.0 False False 9.0
hopper-medium-v2 3×10−4 0.1 False False 9.0

walker2d-medium-v2 3×10−4 1.0 True False 1.0
halfcheetah-medium-replay-v2 3×10−4 1.0 False False 2.0

hopper-medium-replay-v2 3×10−4 0.1 False False 4.0
walker2d-medium-replay-v2 3×10−4 0.1 False False 4.0

halfcheetah-medium-expert-v2 3×10−4 1.0 False False 7.0
hopper-medium-expert-v2 3×10−4 1.0 False False 5.0

walker2d-medium-expert-v2 3×10−4 1.0 True False 5.0
antmaze-umaze-v0 3×10−4 0.01 True False 2.0

antmaze-umaze-diverse-v0 3×10−4 0.01 True True 3.0
antmaze-medium-play-v0 1×10−3 0.01 False True 2.0

pen-human-v1 3×10−5 0.01 True False 7.0
pen-cloned-v1 3×10−5 0.01 True False 8.0

kitchen-complete-v0 3×10−4 0.5 True False 2.0
kitchen-partial-v0 3×10−4 0.5 True False 2.0
kitchen-mixed-v0 3×10−4 0.5 True False 2.0

2Our experiments use constants ϵ=0.002,T =80;ρ=7;s0=2,s1=150 following Song et al. (2023)
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C.2 COMPUTATIONAL TIME

Overall Training Time. Tab. 6 shows the comparison of Diffusion-BC and Consistency-BC in
terms of the computational time during training for D4RL Gym, AntMaze, Adroit and Kitchen tasks.
Each result is averaged over five random seeds with standard deviations reported. Since different
environments are trained for various numbers of total epochs, the comparison is based on per-epoch
time consumption. The two methods use the same batch size and number of iterations within each
epoch, as well as the same network architecture.

Table 6: The training time (seconds per epoch) for two BC methods on D4RL Gym, AntMaze, Adroit
and Kitchen tasks.

Tasks Diffusion-BC Consistency-BC
halfcheetah-m 67.93±2.00 43.07±0.61

hopper-m 61.00±1.58 38.00±0.49

walker2d-m 68.17±1.51 43.58±0.90

halfcheetah-mr 67.07±2.07 42.75±0.83

hopper-mr 64.89±3.29 38.03±0.47

walker2d-mr 66.11±1.69 42.70±0.54

halfcheetah-me 67.73±1.78 43.60±0.86

hopper-me 63.04±4.25 38.56±0.56

walker2d-me 69.10±2.83 43.88±0.72

Average 66.12±2.33 41.57±0.66

antmaze-u 97.13±4.21 47.88±2.59

antmaze-ud 104.83±4.50 47.20±2.23

antmaze-mp 109.66±3.82 57.92±4.46

antmaze-md 112.25±2.41 51.80±2.59

antmaze-lp 113.15±1.01 56.52±3.17

antmaze-ld 118.62±3.42 53.89±2.74

Average 109.27±3.44 52.54±3.05

pen-human-v1 92.20±3.17 46.94±2.92

pen-cloned-v1 94.64±6.16 50.33±2.23

Average 93.42±4.67 48.64±2.58

kitchen-c 96.77±2.74 66.71±4.64

kitchen-p 94.25±2.27 61.85±2.74

kitchen-m 93.02±3.49 66.60±2.59

Average 94.68±2.83 65.05±3.32

Total Average 86.08±3.16 49.09±2.34

Scaling Law. Fig. 6 further shows the scaling laws of training time and inference time with increasing
N for Diffusion-QL and Consistency-AC in offline RL setting, based on results in Tab. 3 for environment
hopper-medium-expert-v2. Notice that the coefficients of Consistency-AC are smaller than Diffusion-
QL in both training (2.47 vs. 3.54) and inference (0.515 vs. 0.598), which indicates smaller time
consumption with increasing N .

C.3 ABLATION STUDIES

Four variants of Consistency-AC are compared for offline RL setting, including (1) Consistency-BC by
setting η=0 and without using loss scaling (λ(τn)≡1 in Eq. 2); (2) only without loss scaling; (3) the
standard setting with MLP networks for the parameterization of fθ; (4) the LN-Resnet parameterization
of fθ. These variants can be regarded as various hyperparameters or training settings for the proposed
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Figure 6: The training time (left) and inference time (right) versus denoising steps N for Diffusion-QL
and Consistency-AC in offline RL, evaluated on hopper-medium-expert-v2 environment.

Consistency-AC algorithm. The average scores for five random seeds over D4RL Gym, AntMaze,
Adroit and Kitchen are shown in Tab. 7.

Table 7: The performance of Consistency-AC variants on D4RL Gym, AntMaze, Adroit and Kitchen
tasks for offline RL setting. Each cell has two values: one for offline model selection and another (in
brackets) for online model selection. Each result is averaged over five random seeds with standard
deviations reported.

Gym Tasks Consistency-BC (η=0) Consistency-AC (no loss scale) Consistency-AC (MLP) Consistency-AC (LN-Resnet)
halfcheetah-m 31.0±0.4 (46.2±0.4) 69.1±0.7 (71.9±0.8) 50.1±0.4 (50.4±0.2) 50.6±0.3 (50.9±0.2)
hopper-m 71.7±8.0 (78.3±2.6) 80.7±10.5 (99.7±2.3) 78.0±3.9 (86.4±4.0) 74.1±6.7 (83.7±8.5)
walker2d-m 83.1±0.3 (84.1±0.3) 5.5±1.7 (21.2±1.6) 63.0±5.2 (75.0±1.8) 66.2±5.2 (75.4±1.9)
halfcheetah-mr 34.4±5.3 (45.4±0.7) 58.7±3.9 (62.7±0.6) 47.3±0.2 (47.8±0.3) 47.8±0.3 (48.4±0.1)
hopper-mr 99.7±0.5 (100.4±0.6) 80.2±9.0 (103.4±1.2) 94.5±6.4 (100.9±0.2) 98.7±2.9 (100.6±0.3)
walker2d-mr 73.3±5.7 (80.8±2.4) 72.3±15.4 (105.1±1.6) 76.8±5.5 (86.1±1.2) 79.5±3.6 (83.0±1.5)
halfcheetah-me 32.7±1.2 (39.6±3.4) 22.6±10.4 (55.2±11.6) 84.3±4.1 (89.2±3.3) 61.7±13.6 (68.4±6.7)
hopper-me 90.6±9.3 (96.8±4.6) 10.1±16.2 (10.8±15.6) 100.4±3.5 (106.0±1.3) 43.1±5.7 (54.5±11.2)
walker2d-me 110.4±0.7 (111.6±0.7) 2.7±4.3 (14.9±6.9) 91.1±3.4 (97.7±3.2) 84.1±5.1 (97.5±1.6)

Average 69.7 (75.9) 44.7 (60.5) 76.7 (82.2) 67.3 (73.6)

AntMaze Tasks Consistency-BC (η=0) Consistency-AC (no loss scale) Consistency-AC (MLP) Consistency-AC (LN-Resnet)
antmaze-u 75.8±4.0 (87.0±4.5) 75.4±5.8 (82.6±3.8) 68.8±2.3 (82.2±4.7) 75.8±1.6 (85.6±3.9)
antmaze-ud 77.6±6.3 (82.4±3.4) 75.2±6.6 (80.2±2.8) 68.6±4.4 (78.4±1.1) 72.4±3.5 (81.2±1.9)
antmaze-mp 56.8±30.1 (71.6±14.5) 45.2±26.9 (73.2±8.4) 52.2±29.8 (70.4±7.1) 10.0±22.4 (59.4±12.8)

Average 70.1 (80.3) 65.3 (78.7) 63.2 (77.0) 52.7 (75.4)

Adroit Tasks Consistency-BC (η=0) Consistency-AC (no loss scale) Consistency-AC (MLP) Consistency-AC (LN-Resnet)
pen-human-v1 52.4±13.7 (63.7±7.4) 8.4±24.0 (22.1±20.5) 60.6±10.2 (66.6±7.5) 63.4±7.7 (67.9±5.3)
pen-cloned-v1 33.4±6.0 (51.9±6.6) 48.2±10.8 (58.2±12.6) 35.8±3.9 (40.5±2.6) 50.1±2.2 (53.7±3.4)

Average 42.9 (57.8) 28.3 (40.2) 48.2 (53.6) 56.8 (60.8)

Kitchen Tasks Consistency-BC (η=0) Consistency-AC (no loss scale) Consistency-AC (MLP) Consistency-AC (LN-Resnet)
kitchen-c 45.2±5.0 (50.9±3.6) 10.0±20.1 (25.5±24.6) 51.9±6.0 (67.6±2.7) 36.9±3.2 (38.0±2.5)
kitchen-p 22.6±3.8 (23.8±2.8) 7.7±16.9 (17.0±14.5) 38.2±1.8 (39.8±1.6) 25.8±5.5 (28.6±2.7)
kitchen-m 23.5±1.8 (24.3±1.3) 9.7±21.3 (15.8±20.2) 45.8±1.5 (46.7±0.9) 26.0±3.0 (28.8±2.1)

Average 30.4 (33.0) 9.1 (19.4) 45.3 (51.4) 29.6 (31.8)

Total Average 59.7 (67.0) 40.1 (54.1) 64.5 (72.5) 56.8 (65.0)
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D OFFLINE-TO-ONLINE AND ONLINE RL DETAILS

D.1 ALGORITHMS

Algorithm 4 Offline-to-Online Consistency Actor-
Critic

Input offline pretrained policy πθ and critic net-
works Qϕ1

,Qϕ2

Initialize online dataset D̃= ∅, target network
parameters: θ⊺←θ, ϕ⊺

1←ϕ1,ϕ
⊺
2←ϕ2

for episode j=1,...,M do
Reset the environment and observe s1.
for t=1,...,H do

% Collect Samples
Infer action at based on st with consis-

tency policy πθ by Alg. 1.
Execute actions at, observe reward rt,

next state st+1.
Store data sample (st,at,rt,st+1) into

D̃.
Sample minibatch B = {(s,a,r,s′)} ⊆

D̃;
% Q-value Update
Update Qϕ1

,Qϕ2
with Eq. 3;

% Policy Update
Update policy πθ (with model fθ) via

lossLq(θ) as Eq. 5;
% Target Update
Update target: θ⊺ ← αθ⊺ + (1 −

α)θ,ϕ⊺
i ←αϕ⊺

i +(1−α)ϕi,i∈{1,2};
end for

end for

Algorithm 5 Online Consistency Actor-Critic
Initialize policy πθ and critic networks
Qϕ1

,Qϕ2

Initialize online dataset D̃= ∅, target network
parameters: θ⊺←θ, ϕ⊺

1←ϕ1,ϕ
⊺
2←ϕ2

for episode j=1,...,M do
Reset the environment and observe s1.
for t=1,...,H do

% Collect Samples
Infer action at based on st with consis-

tency policy πθ by Alg. 1.
Execute actions at, observe reward rt,

next state st+1.
Store data sample (st,at,rt,st+1) into

D̃.
Sample minibatch B = {(s,a,r,s′)} ⊆

D̃;
% Q-value Update
Update Qϕ1

,Qϕ2
with Eq. 3;

% Policy Update
Update policy πθ (with model fθ) via

lossLq(θ) as Eq. 5;
% Target Update
Update target: θ⊺ ← αθ⊺ + (1 −

α)θ,ϕ⊺
i ←αϕ⊺

i +(1−α)ϕi,i∈{1,2};
end for

end for

D.2 HYPERPARAMETERS

Table 8: The hyperparameters for Consistency-AC offline-to-online and online training on Gym tasks.
Hyperparameter Value

learning rate 1×10−5

batch size 256
ϵ-greedy schedule linear

ϵ0 1.0
ϵ∞ 0.01

exploration fraction 0.1
discount γ 0.99
buffer size 1×105

D.3 COMPUTATIONAL TIME

The overall training time for one million environment steps using Diffusion-QL and Consistency-AC
in offline-to-online and online RL settings is shown in Tab. 9, with the average training time for each
setting summarized in Fig. 7. The reduction of computational time in online setting is less significant
than the offline setting (as Fig. 1) because there is a large portion of time consumed by the environment
simulation steps following the agent’s action inference. The improvement of model inference and
update will not affect the environment simulation time.
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Table 9: The overall training time (hours) for offline-to-online and online settings on Gym tasks.
Offline-to-Online Online

Gym Tasks Diffusion-QL Consistency-AC Diffusion-QL Consistency-AC
halfcheetah-m 11.55±4.08 9.60±2.33 9.09±0.88 8.77±0.96

hopper-m 8.97±1.48 6.90±0.79 8.06±0.88 6.99±0.95
walker2d-m 9.17±0.29 8.19±1.91 8.23±1.04 6.98±0.89

halfcheetah-mr 9.18±0.22 7.72±0.89 8.72±0.88 7.76±1.02
hopper-mr 8.22±0.20 7.26±1.69 8.12±0.81 6.92±0.78

walker2d-mr 8.85±0.22 7.32±0.88 8.07±1.01 7.05±1.05
halfcheetah-me 9.24±0.21 8.46±1.96 8.54±0.74 7.65±1.02

hopper-me 8.28±0.20 7.47±0.57 8.02±1.07 7.01±0.99
walker2d-me 9.93±1.27 9.41±2.26 8.35±0.73 8.29±0.86

Average 9.27±0.91 8.04±1.48 8.36±0.89 7.49±0.95

Figure 7: The average training time (hours) for offline-to-online and online training with Diffusion-QL
and Consistency-AC on 9 Gym tasks.

D.4 MORE RESULTS

Table 10: Comparison of scores (unnormalized, maximum over epochs) for methods in offline-to-online
and online RL settings.

Offline2Online Online
Task Diffusion-QL Consistency-AC Diffusion-QL Consistency-AC

halfcheetah-m 12445.9±315.8 (12428.4±222.9) 12280.3±124.1 (12273.4±206.3) 5745.9±388.5 6725.2±944.4
hopper-m 3626.1±50.9 (3465.9±236.4) 3595.8±153.6 (3448.1±243.6) 3673.5±47.7 3589.7±163.4

walker2d-m 5774.8±217.3 (5561.4±260.2) 5536.1±360.3 (5662.0±114.3) 4316.2±612.1 3790.9±1677.5
halfcheetah-mr 12060.1±265.7 (12198.6±168.9) 9941.1±1343.2 (10274.1±1312.7) 5218.5±726.2 6890.3±963.1

hopper-mr 3657.0±263.3 (3855.4±84.7) 3262.4±708.1 (3652.2±390.0) 3663.9±29.7 3418.9±613.2
walker2d-mr 5240.6±682.8 (5584.5±347.0) 5092.3±408.5 (5394.4±708.3) 4675.4±214.5 3918.7±1673.3

halfcheetah-me 12916.7±202.5 (12676.7±178.1) 12480.7±359.3 (11916.9±1156.7) 4725.6±407.9 6889.6±657.5
hopper-me 3503.5±490.8 (3527.2±297.2) 3536.9±147.5 (5561.4±260.2) 3668.8±37.5 3701.0±49.2

walker2d-me 5630.5±209.0 (5720.7±377.9) 5447.0±307.9 (5568.1±553.6) 3887.1±1701.5 5040.0±166.0
Average 7206.1 6797.0 4397.2 4884.9
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Figure 8: Learning curves of Diffusion-QL and Consistency-AC for online RL and offline-to-online RL
with offline model selection in time axis (all trained with one million environment steps). Each curve
is smoothed and averaged over five random seeds, and the shaded regions show the 95% confidence
interval.

Figure 9: Learning curves of Diffusion-QL and Consistency-AC for online RL and offline-to-online
RL with offline model selection in step axis. Each curve is smoothed and averaged over five random
seeds, and the shaded regions show the 95% confidence interval.
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Figure 10: Learning curves of Diffusion-QL and Consistency-AC for online RL and offline-to-online
RL with online model selection in time axis (all trained with one million environment steps). Each curve
is smoothed and averaged over five random seeds, and the shaded regions show the 95% confidence
interval.

Figure 11: Learning curves of Diffusion-QL and Consistency-AC for online RL and offline-to-online
RL with online model selection in step axis. Each curve is smoothed and averaged over five random
seeds, and the shaded regions show the 95% confidence interval.
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