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ABSTRACT

Autism Spectrum Disorder (ASD) is a neurological condition affecting communi-
cation and daily functioning. Early intervention can reduce challenges in learning
and behavior, motivating the use of machine learning techniques for ASD detec-
tion. Although models with high accuracy and F1 scores may appear promis-
ing, they can be misleading in low-prevalence settings. By Bayes’ theorem, low
prevalence substantially reduces the positive predictive value (PPV), meaning that
even models with strong traditional metrics may yield unreliable predictions in
practice. False-positive ASD detections can lead to unnecessary psychological
stress, including anxiety and depression, while false negatives may delay inter-
vention, making treatment more difficult later. In this paper, we integrated con-
formal prediction into the classification pipeline. Unlike standard classifiers, con-
formal methods provide prediction sets that include the true label with a speci-
fied confidence level (1 − α), thereby reducing the risk of false predictions. Re-
sults show that conformal predictors occasionally left cases unpredicted, thereby
abstaining in situations where reliability could not be guaranteed. Among the
evaluated models, SVM achieved the best performance with 86% correct predic-
tions and 14% abstentions, followed by Logistic Regression (84% correct, 16%
abstentions). These results demonstrate that conformal prediction offers a more
trustworthy approach for ASD screening.

1 INTRODUCTION

Autism Spectrum Disorder (ASD) is a developmental condition that arises from a combination of
genetic and environmental factors. It often leads to difficulties in communication and social inter-
action. ASD diagnosis depends on behavioral traits, such as the presence of restrictive, repetitive
behaviors (RRBs). Early diagnosis is critical, as timely intervention can significantly improve long-
term outcomes in learning and behavior. Neural measures have been used as complementary to
behavioral traits (Avlund et al., 2021). Technologies include structural approaches such as magnetic
resonance imaging (MRI) and diffusion tensor imaging (DTI), as well as functional techniques like
functional MRI (fMRI), electroencephalography (EEG), and functional near-infrared spectroscopy
(fNIRS). Although neuroimaging techniques have been applied to ASD detection, they are costly
and time-consuming, making them infeasible for ASD screening (Eslami et al., 2019). As a re-
sult, machine learning methods have increasingly been explored for ASD screening, since they offer
faster and less expensive alternatives. Vakadkar et al. (2021) applied machine learning algorithms,
while Raj & Masood (2020) used deep learning approaches such as convolutional neural networks
(CNNs) and achieved outstanding results. However, due to small sample sizes and the low preva-
lence of ASD (approximately 1% worldwide; (Zeidan et al., 2022)), these models suffer from a
reduced positive predictive value (PPV). This means that false positives and false negatives remain
a serious concern.

To address this limitation, we incorporate conformal prediction into the classification pipeline. Con-
formal prediction, originally introduced by Vovk et al. (2005), provides prediction sets that include
the true label with a user-specified confidence level, thereby reducing the risk of unreliable predic-
tions. This framework has already shown promise in various medical applications (?), and here we
adapt it to ASD screening.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2 CONFORMAL PREDICTION

A central challenge in modern machine learning is how to generate rigorous finite-sample confi-
dence intervals that work for any model, on any dataset, while remaining computationally efficient.
Conformal prediction is an uncertainty quantification method that combines statistical validity with
machine learning models. It was first introduced by Vovk et al. (2005) and has since been applied to
various machine learning problems, including regression.

In this method, considering the Type I error rate (α), the goal is to provide valid coverage guar-
antees for each class while avoiding incorrect predictions for data that differ structurally from the
training set. In fact, this approach aims to achieve classification with 1− α coverage for every class
(Angelopoulos & Bates, 2021). In conformal prediction, given some input data, we feed it into a
machine learning algorithm. Instead of obtaining only a point prediction, we also derive a prediction
interval—a range that, with high probability, contains the true outcome.

In standard machine learning algorithms, we usually aim to find a predictor F̂ such that the output
for each class is a single label. However, in conformal prediction, we aim to find a predictor that
outputs a set of labels C(X), such that for each test sample (X,Y ), the true label Y will belong to
the set C(X) with a probability of at least 1− α. In other words, we want to construct a prediction
set with guaranteed coverage.

Suppose we are dealing with a classification problem where the feature space is X and the label
space is Y = {1, . . . , k}. Also assume we have training data

(X1, Y1), (X2, Y2), . . . , (Xn, Yn).

The goal is to find a predictor

F̂ : X → Y. (1)

A common objective is to minimize the misclassification error. For a new observation (X,Y ), this
corresponds to minimizing

P (Y ̸= F̂ (X)). (2)

In conformal prediction, we aim to find a set-valued predictor C : X → 2Y such that for every ob-
servation, the subset C(X) contains the true label Y with high probability. Formally, the following
condition should hold:

C(Xtest) = {y : s(Xtest, y) ≤ q̂}. (3)

This construction ensures that the prediction set contains all labels whose nonconformity scores are
below the threshold q̂.

P
(
Y ∈ C(Xtest)

)
≥ 1− α. (4)

Here, 1− α represents the confidence level, where α is pre-specified by the user. For example, in a
training dataset, if we set α = 0.1, then the prediction set C(x) for a new point x should contain the
true label y with probability at least 0.9. This serves as a finite-sample guarantee.

A simple approach to achieve 1− α validity is to construct Ĉ as follows:

Ĉ =

{
Y, with probability 1− α,

∅, with probability α.

With this method, validity at level 1 − α is always guaranteed, since with probability 1 − α the
prediction set includes all possible labels. However, this predictor is not practically useful, as it fails
to provide meaningful predictions. The goal is to construct informative prediction sets that are valid
while being as small as possible.
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3 METHODOLOGY

3.1 DATASET

The dataset used in this study is based on the Q-CHAT-10 screening method for toddlers and is
publicly available on Kaggle (Abdelja, 2020). The dataset captures behavioral traits and includes
17 features assessing early social communication, joint attention, symbolic play, and demographic
features, along with a class variable (autistic vs. non-autistic). The items consist of Likert-type
questions with possible responses: Always, Usually, Sometimes, Rarely, and Never. For scoring, a
value of “1” is assigned if the response is Sometimes, Rarely, or Never.

Table 1: Feature Mapping with Q-CHAT-10 Screening Method
Variable Description

A1 Whether the child responds by looking when called by name
A2 How easy it is to establish eye contact with the child
A3 Whether the child points to request something (e.g., an out-of-reach toy)
A4 Whether the child points to share interest (e.g., at an interesting sight)
A5 Whether the child engages in pretend play (e.g., doll care, toy phone talk)
A6 Whether the child follows another person’s gaze or pointing direction
A7 Whether the child shows comfort toward an upset person (e.g., hugging,

stroking hair)
A8 How the child’s first words are described
A9 Whether the child uses simple gestures (e.g., waving goodbye)
A10 Whether the child stares into space or daydreams without apparent purpose

3.2 EXPERIMENTAL DESIGN

Figure 1 demonstrates the general process of our work. We begin with preprocessing the dataset by
encoding categorical variables. To avoid overfitting, we split the dataset into two groups: 70% train-
ing set and 30% calibration set. Then, we fitted models such as Logistic Regression, Naı̈ve Bayes,
Support Vector Machine, K-Nearest Neighbors, and Random Forest Classifier. The calibration set
is employed to calibrate the prediction scores. From the trained machine learning model, we obtain
a nonconformity score function s(x), which measures how unusual an observation is compared to
the patterns learned by the model. Conformal prediction then uses the calibration data together with
these scores to compute a threshold q̂ that determines the prediction sets.

Figure 1: Conformal prediction framework.

The exploratory visualizations of the dataset using PCA, t-SNE, and UMAP reveal that the two
classes (autism and non-autism) overlap. The t-SNE and UMAP (Figures 2 and 3) demonstrate that
several cases are in regions where class membership is highly uncertain. These observations indicate
that any standard classifier that outputs a single label is at risk of overconfident misclassification
in the overlapping regions. To mitigate this problem, conformal prediction provides a principled
framework by returning a set of plausible labels at a specified confidence level, thereby explicitly
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quantifying uncertainty and ensuring valid coverage. Such an approach is particularly valuable
in sensitive domains such as autism screening, where conveying uncertainty is as critical as the
classification itself.

Figure 2: t-SNE visualization of the dataset.

Figure 3: UMAP visualization of the dataset.

4 RESULTS

The evaluation of abstention (Pred3) across classifiers (Figures 5, 8, 4, 6, and 7) reveals important
differences in their ability to handle uncertainty. The SVM model (Figure 5) achieved the best bal-
ance, with an accuracy of 86% and the lowest abstention rate of 14%. Logistic regression (Figure 4)
performed similarly well, with 84% accuracy and 16% abstentions, followed by random forest (Fig-
ure 7) and naı̈ve Bayes (Figure 6), which reached accuracies of 81% and 80% and abstention rates
of 19% and 20%, respectively. In contrast, k-nearest neighbors (KNN) (Figure 8) showed the weak-
est performance, with only 65% accuracy and the highest abstention rate of 36%. These findings
indicate that while certain models, such as SVM, can provide reliable predictions with limited ab-
stention, all classifiers encounter a considerable proportion of ambiguous cases. This observation
further underscores the importance of adopting uncertainty-aware methods such as conformal pre-
diction, which allow the system to communicate when cases are inherently uncertain rather than
forcing a potentially misleading single-label decision.
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Figure 4: Logistic regression

Figure 5: Support vector machine

Figure 6: Naı̈ve Bayes
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Figure 7: Random forest

Figure 8: K-Nearest Neighbors

Figure 9: Model Comparison.
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5 DISCUSSION

Because records are randomly assigned to the training and test sets, and the dataset is relatively
small, each run produces slightly different results. To mitigate this issue, we fixed the random seed
to ensure reproducibility.

Moreover, the Autism Screening for Toddlers dataset is not a clinical dataset; rather, it is only
suitable for screening purposes and provides value primarily for early detection.
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