

000 001 002 003 004 005 RELIABLE DETECTION OF AUTISM SPECTRUM DISOR- 006 DER IN CHILDREN USING CONFORMAL PREDICTION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028

ABSTRACT

029
030
031
032
033
034 Autism Spectrum Disorder (ASD) is a neurological condition affecting commun-
035 ication and daily functioning. Early intervention can reduce challenges in learning
036 and behavior, motivating the use of machine learning techniques for ASD detec-
037 tion. Although models with high accuracy and F1 scores may appear promis-
038 ing, they can be misleading in low-prevalence settings. By Bayes' theorem, low
039 prevalence substantially reduces the positive predictive value (PPV), meaning that
040 even models with strong traditional metrics may yield unreliable predictions in
041 practice. False-positive ASD detections can lead to unnecessary psychological
042 stress, including anxiety and depression, while false negatives may delay inter-
043 vention, making treatment more difficult later. In this paper, we integrated con-
044 formal prediction into the classification pipeline. Unlike standard classifiers, con-
045 formal methods provide prediction sets that include the true label with a speci-
046 fied confidence level ($1 - \alpha$), thereby reducing the risk of false predictions. Re-
047 sults show that conformal predictors occasionally left cases unpredicted, thereby
048 abstaining in situations where reliability could not be guaranteed. Among the
049 evaluated models, SVM achieved the best performance with 86% correct pre-
050 dictions and 14% abstentions, followed by Logistic Regression (84% correct, 16%
051 abstentions). These results demonstrate that conformal prediction offers a more
052 trustworthy approach for ASD screening.
053

1 INTRODUCTION

034 Autism Spectrum Disorder (ASD) is a developmental condition that arises from a combination of
035 genetic and environmental factors. It often leads to difficulties in communication and social inter-
036 action. ASD diagnosis depends on behavioral traits, such as the presence of restrictive, repetitive
037 behaviors (RRBs). Early diagnosis is critical, as timely intervention can significantly improve long-
038 term outcomes in learning and behavior. Neural measures have been used as complementary to
039 behavioral traits (Avlund et al., 2021). Technologies include structural approaches such as magnetic
040 resonance imaging (MRI) and diffusion tensor imaging (DTI), as well as functional techniques like
041 functional MRI (fMRI), electroencephalography (EEG), and functional near-infrared spectroscopy
042 (fNIRS). Although neuroimaging techniques have been applied to ASD detection, they are costly
043 and time-consuming, making them infeasible for ASD screening (Eslami et al., 2019). As a re-
044 sult, machine learning methods have increasingly been explored for ASD screening, since they offer
045 faster and less expensive alternatives. Vakadkar et al. (2021) applied machine learning algorithms,
046 while Raj & Masood (2020) used deep learning approaches such as convolutional neural networks
047 (CNNs) and achieved outstanding results. However, due to small sample sizes and the low preva-
048 lence of ASD (approximately 1% worldwide; (Zeidan et al., 2022)), these models suffer from a
049 reduced positive predictive value (PPV). This means that false positives and false negatives remain
050 a serious concern.

051 To address this limitation, we incorporate conformal prediction into the classification pipeline. Con-
052 formal prediction, originally introduced by Vovk et al. (2005), provides prediction sets that include
053 the true label with a user-specified confidence level, thereby reducing the risk of unreliable pre-
054 dictions. This framework has already shown promise in various medical applications (?), and here we
055 adapt it to ASD screening.

054 2 CONFORMAL PREDICTION

055
 056 A central challenge in modern machine learning is how to generate rigorous finite-sample con-
 057 fidence intervals that work for any model, on any dataset, while remaining computationally efficient.
 058 Conformal prediction is an uncertainty quantification method that combines statistical validity with
 059 machine learning models. It was first introduced by Vovk et al. (2005) and has since been applied to
 060 various machine learning problems, including regression.

061 In this method, considering the Type I error rate (α), the goal is to provide valid coverage guar-
 062 antees for each class while avoiding incorrect predictions for data that differ structurally from the
 063 training set. In fact, this approach aims to achieve classification with $1 - \alpha$ coverage for every class
 064 (Angelopoulos & Bates, 2021). In conformal prediction, given some input data, we feed it into a
 065 machine learning algorithm. Instead of obtaining only a point prediction, we also derive a prediction
 066 interval—a range that, with high probability, contains the true outcome.

067 In standard machine learning algorithms, we usually aim to find a predictor \hat{F} such that the output
 068 for each class is a single label. However, in conformal prediction, we aim to find a predictor that
 069 outputs a set of labels $C(X)$, such that for each test sample (X, Y) , the true label Y will belong to
 070 the set $C(X)$ with a probability of at least $1 - \alpha$. In other words, we want to construct a prediction
 071 set with guaranteed coverage.

072 Suppose we are dealing with a classification problem where the feature space is \mathcal{X} and the label
 073 space is $\mathcal{Y} = \{1, \dots, k\}$. Also assume we have training data

$$074 (X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n).$$

075 The goal is to find a predictor

$$076 \hat{F} : \mathcal{X} \rightarrow \mathcal{Y}. \quad (1)$$

077 A common objective is to minimize the misclassification error. For a new observation (X, Y) , this
 078 corresponds to minimizing

$$079 P(Y \neq \hat{F}(X)). \quad (2)$$

080 In conformal prediction, we aim to find a set-valued predictor $C : \mathcal{X} \rightarrow 2^{\mathcal{Y}}$ such that for every ob-
 081 servation, the subset $C(X)$ contains the true label Y with high probability. Formally, the following
 082 condition should hold:

$$083 C(X_{\text{test}}) = \{y : s(X_{\text{test}}, y) \leq \hat{q}\}. \quad (3)$$

084 This construction ensures that the prediction set contains all labels whose nonconformity scores are
 085 below the threshold \hat{q} .

$$086 P(Y \in C(X_{\text{test}})) \geq 1 - \alpha. \quad (4)$$

087 Here, $1 - \alpha$ represents the confidence level, where α is pre-specified by the user. For example, in a
 088 training dataset, if we set $\alpha = 0.1$, then the prediction set $C(x)$ for a new point x should contain the
 089 true label y with probability at least 0.9. This serves as a finite-sample guarantee.

090 A simple approach to achieve $1 - \alpha$ validity is to construct \hat{C} as follows:

$$091 \hat{C} = \begin{cases} \mathcal{Y}, & \text{with probability } 1 - \alpha, \\ 092 \emptyset, & \text{with probability } \alpha. \end{cases}$$

093 With this method, validity at level $1 - \alpha$ is always guaranteed, since with probability $1 - \alpha$ the
 094 prediction set includes all possible labels. However, this predictor is not practically useful, as it fails
 095 to provide meaningful predictions. The goal is to construct informative prediction sets that are valid
 096 while being as small as possible.

108

3 METHODOLOGY

109

3.1 DATASET

110 The dataset used in this study is based on the Q-CHAT-10 screening method for toddlers and is
 111 publicly available on Kaggle (Abdelja, 2020). The dataset captures behavioral traits and includes
 112 17 features assessing early social communication, joint attention, symbolic play, and demographic
 113 features, along with a class variable (autistic vs. non-autistic). The items consist of Likert-type
 114 questions with possible responses: Always, Usually, Sometimes, Rarely, and Never. For scoring, a
 115 value of “1” is assigned if the response is Sometimes, Rarely, or Never.
 116

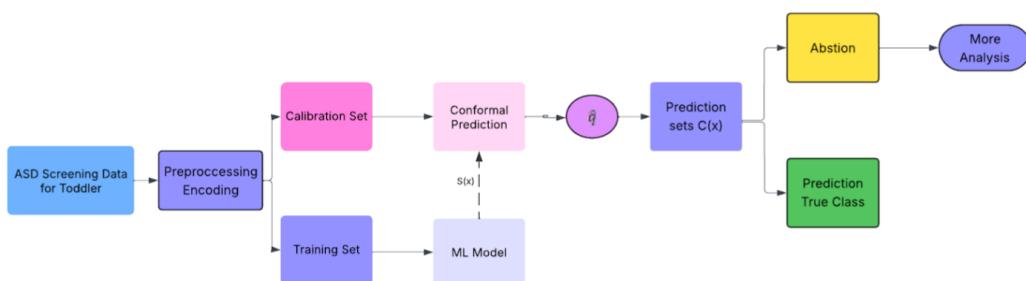
117
118 **Table 1: Feature Mapping with Q-CHAT-10 Screening Method**

119 Variable	120 Description
121 A1	122 Whether the child responds by looking when called by name
122 A2	123 How easy it is to establish eye contact with the child
123 A3	124 Whether the child points to request something (e.g., an out-of-reach toy)
124 A4	125 Whether the child points to share interest (e.g., at an interesting sight)
125 A5	126 Whether the child engages in pretend play (e.g., doll care, toy phone talk)
126 A6	127 Whether the child follows another person’s gaze or pointing direction
127 A7	128 Whether the child shows comfort toward an upset person (e.g., hugging, stroking hair)
128 A8	129 How the child’s first words are described
129 A9	130 Whether the child uses simple gestures (e.g., waving goodbye)
130 A10	131 Whether the child stares into space or daydreams without apparent purpose

132

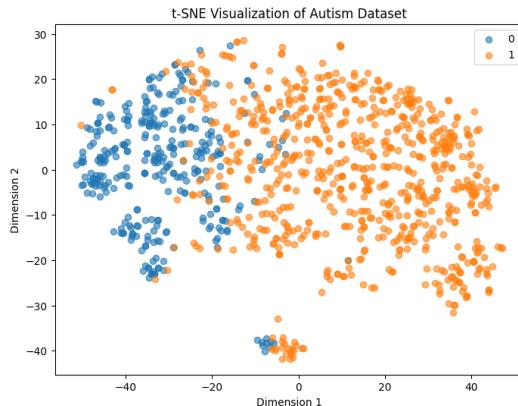
3.2 EXPERIMENTAL DESIGN

133 Figure 1 demonstrates the general process of our work. We begin with preprocessing the dataset by
 134 encoding categorical variables. To avoid overfitting, we split the dataset into two groups: 70% training
 135 set and 30% calibration set. Then, we fitted models such as Logistic Regression, Naive Bayes,
 136 Support Vector Machine, K-Nearest Neighbors, and Random Forest Classifier. The calibration set
 137 is employed to calibrate the prediction scores. From the trained machine learning model, we obtain
 138 a nonconformity score function $s(x)$, which measures how unusual an observation is compared to
 139 the patterns learned by the model. Conformal prediction then uses the calibration data together with
 140 these scores to compute a threshold \hat{q} that determines the prediction sets.
 141

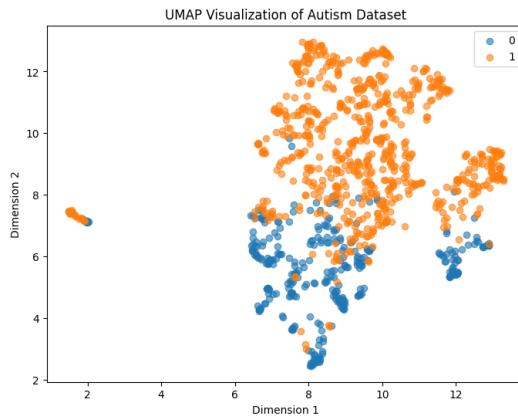
155 **Figure 1: Conformal prediction framework.**

156 The exploratory visualizations of the dataset using PCA, t-SNE, and UMAP reveal that the two
 157 classes (autism and non-autism) overlap. The t-SNE and UMAP (Figures 2 and 3) demonstrate that
 158 several cases are in regions where class membership is highly uncertain. These observations indicate
 159 that any standard classifier that outputs a single label is at risk of overconfident misclassification
 160 in the overlapping regions. To mitigate this problem, conformal prediction provides a principled
 161 framework by returning a set of plausible labels at a specified confidence level, thereby explicitly

162 quantifying uncertainty and ensuring valid coverage. Such an approach is particularly valuable
 163 in sensitive domains such as autism screening, where conveying uncertainty is as critical as the
 164 classification itself.
 165



180 Figure 2: t-SNE visualization of the dataset.
 181



197 Figure 3: UMAP visualization of the dataset.
 198

200 4 RESULTS

202 The evaluation of abstention (Pred3) across classifiers (Figures 5, 8, 4, 6, and 7) reveals important
 203 differences in their ability to handle uncertainty. The SVM model (Figure 5) achieved the best balance,
 204 with an accuracy of 86% and the lowest abstention rate of 14%. Logistic regression (Figure 4)
 205 performed similarly well, with 84% accuracy and 16% abstentions, followed by random forest (Fig-
 206 ure 7) and naïve Bayes (Figure 6), which reached accuracies of 81% and 80% and abstention rates
 207 of 19% and 20%, respectively. In contrast, k-nearest neighbors (KNN) (Figure 8) showed the weak-
 208 est performance, with only 65% accuracy and the highest abstention rate of 36%. These findings
 209 indicate that while certain models, such as SVM, can provide reliable predictions with limited ab-
 210 stention, all classifiers encounter a considerable proportion of ambiguous cases. This observation
 211 further underscores the importance of adopting uncertainty-aware methods such as conformal pre-
 212 diction, which allow the system to communicate when cases are inherently uncertain rather than
 213 forcing a potentially misleading single-label decision.
 214
 215

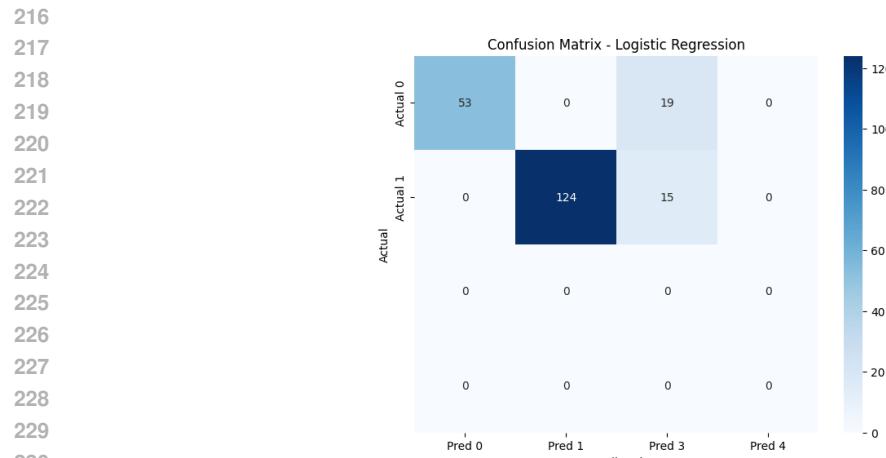


Figure 4: Logistic regression

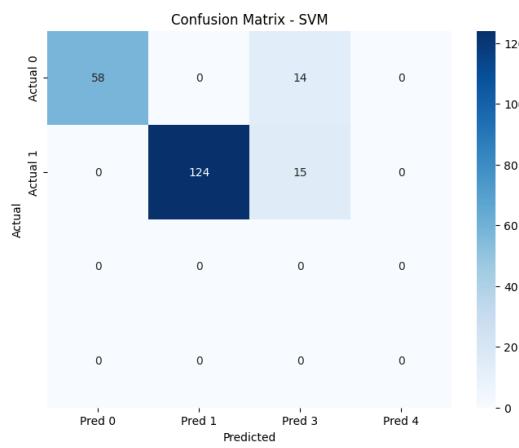


Figure 5: Support vector machine

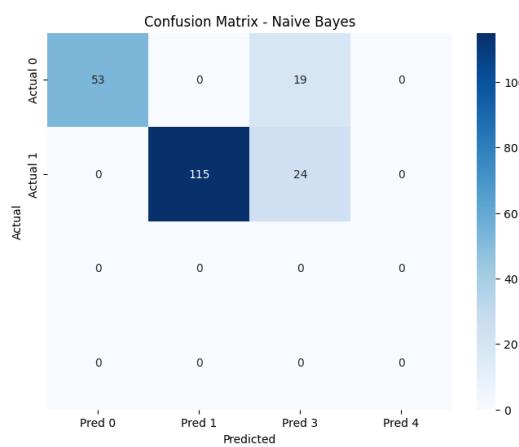


Figure 6: Naïve Bayes

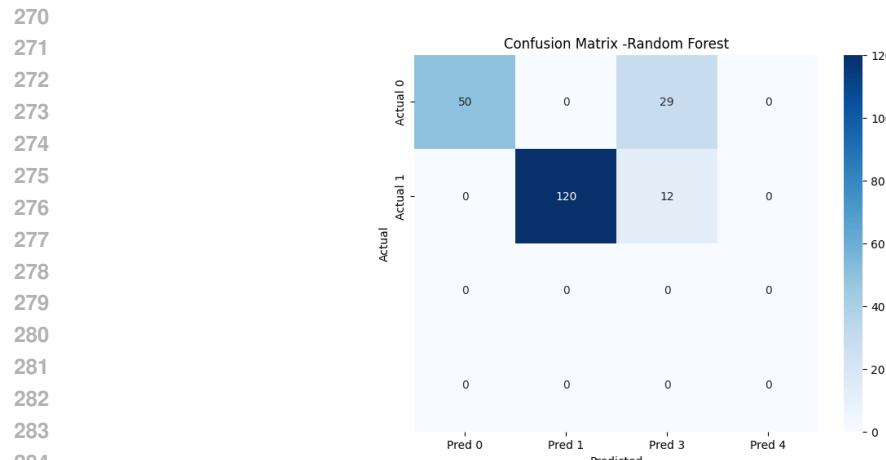


Figure 7: Random forest

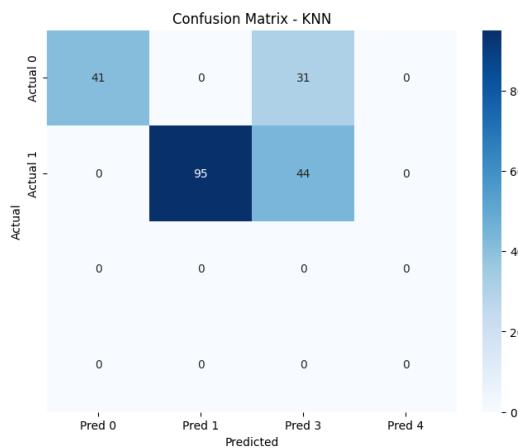


Figure 8: K-Nearest Neighbors

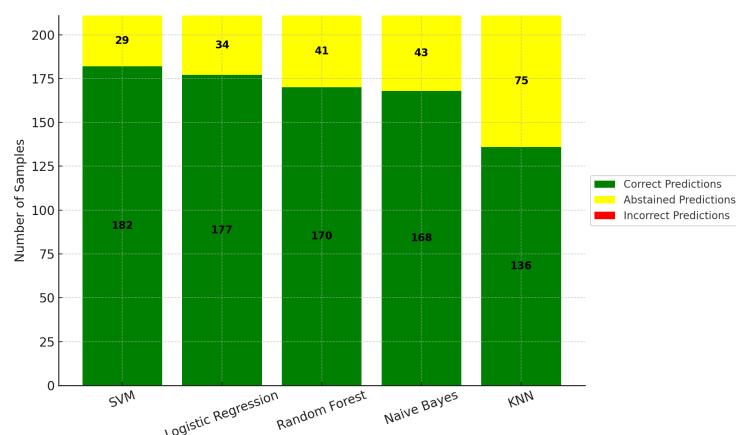


Figure 9: Model Comparison.

324

5 DISCUSSION

325
326 Because records are randomly assigned to the training and test sets, and the dataset is relatively
327 small, each run produces slightly different results. To mitigate this issue, we fixed the random seed
328 to ensure reproducibility.329 Moreover, the Autism Screening for Toddlers dataset is not a clinical dataset; rather, it is only
330 suitable for screening purposes and provides value primarily for early detection.
331332

REFERENCES

333
334 F. Abdelja. Autism screening dataset. [https://www.kaggle.com/fabdelja/](https://www.kaggle.com/fabdelja/autism-screening-for)
335 autism-screening-for, 2020. Accessed: 2025-09-24.
336337 Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and
338 distribution-free uncertainty quantification. *arXiv preprint arXiv:2107.07511*, 2021.339 Sara Højslev Avlund, Per Hove Thomsen, Diana Schendel, Meta Jørgensen, Anders Helles Carlsen,
340 and Loa Clausen. Factors associated with a delayed autism spectrum disorder diagnosis in chil-
341 dren previously assessed on suspicion of autism. *Journal of Autism and Developmental Disorders*,
342 51(11):3843–3856, 2021.343
344 Taban Eslami, Vahid Mirjalili, Alvis Fong, Angela R Laird, and Fahad Saeed. Asd-diagnet: a
345 hybrid learning approach for detection of autism spectrum disorder using fmri data. *Frontiers in*
346 *neuroinformatics*, 13:70, 2019.347 Suman Raj and Sarfaraz Masood. Analysis and detection of autism spectrum disorder using machine
348 learning techniques. *Procedia Computer Science*, 167:994–1004, 2020.349 Kaushik Vakadkar, Diya Purkayastha, and Deepa Krishnan. Detection of autism spectrum disorder
350 in children using machine learning techniques. *SN computer science*, 2(5):386, 2021.
351352 Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*.
353 Springer, 2005.
354355 J. Zeidan, E. Fombonne, J. Scorah, A. Ibrahim, M. S. Durkin, S. Saxena, A. Yusuf, K. Jamil, I. Ka-
356 mara, S. M. Robertson, et al. Global prevalence of autism: A systematic review update. *Autism*
357 *Research*, 15(11):1961–1974, 2022. doi: 10.1002/aur.2746. “Approximately 1/100 children are
358 diagnosed with ASD around the world”.359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377