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ABSTRACT

Despite the remarkable success of the LLaVA architecture for vision-language tasks,
its design inherently struggles to effectively integrate visual features due to the
inherent mismatch between text and vision modalities. We tackle this issue from a
novel perspective in which the LLM not only serves as a language model but also a
powerful vision encoder. To this end, we present LLaViT–Large Language Models
as extended Vision Transformers—which enables the LLM to simultaneously
function as a vision encoder through three key modifications: (1) learning separate
QKV projections for vision modality, (2) enabling bidirectional attention on visual
tokens, and (3) incorporating both global and local visual representations. Through
extensive controlled experiments on a wide range of LLMs, we demonstrate that
LLaViT significantly outperforms the baseline LLaVA method on a multitude of
benchmarks, even surpassing models with double its parameter count, establishing
a more effective approach to vision-language modeling.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) Liu et al. (2023a; 2024); Dai et al. (2023); Tong
et al. (2024a); Deitke et al. (2024) have emerged as a pivotal advancement in artificial intelligence.
Leveraging the power and versatility of LLMs, these models enable us to tackle a wide range of tasks
with a single model; tasks that previously required specialized models, such as image captioning and
visual question answering, and even more traditional vision tasks such as object detection and image
classification.

Among these MLLMs, LLaVA Liu et al. (2023a; 2024) stands out as a widely adopted framework
with a simple architecture. It comprises of a pre-trained vision encoder Dosovitskiy et al. (2021);
Radford et al. (2021), a pre-trained LLM Chiang et al. (2023), and a connector that projects visual
features to the LLM’s input dimensions. More recently, many works Deitke et al. (2024); Ranzinger
et al. (2024); Chen et al. (2024a); Cha et al. (2024); Tong et al. (2024a); Chu et al. (2024); Chen
et al. (2024b); Wang et al. (2023a) have proposed various improvements to the LLaVA framework,
focusing on developing stronger vision encoders Ranzinger et al. (2024); Chen et al. (2024a); Wang
et al. (2024), designing sophisticated connector architectures Cha et al. (2024); Tong et al. (2024a);
Chu et al. (2024), or compiling higher quality training datasets Deitke et al. (2024); Chen et al.
(2024b); Wang et al. (2023a).

In our work, we explore the LLaVA framework from a novel perspective. A conventional of
understanding of LLaVA-like architectures suggests that, through its pre-training stage, the visual
features become aligned with the LLM’s input space, thereby allowing the LLM to process visual
tokens similarly to text tokens. From this point of view, there is a clear distinction between the roles
of the vision encoder and the LLM. However, our investigations show that the visual tokens at the
input layer of the LLM are not well aligned with the LLM’s input space; rather, the LLM itself
gradually translates visual representations to text representations, progressively aligning the two
modalities in its transformer layers. Moreover, we find that attention updates to the visual tokens
within the LLM have a profound impact on the LLM’s ability to process visual information. Based
on these insights, we propose a new perspective of MLLMs that has not been extensively explored
before. Instead of viewing the vision encoder and LLM as two separate components with distinct
roles, we consider the vision encoder as extending into the LLM itself. In other words, the LLM
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serves not only as a language processor that understands prompts and generates answers, but also as
an integral part of the visual feature processing pipeline.

This new perspective motivates LLaViT, Large Language Models as extended Vision Transformers,
which consists of three simple yet effective approaches to transform the LLM to additionally serve
as a powerful vision encoder: (i) learning separate QKV projections for visual tokens, (ii) enabling
bidirectional attention on visual tokens, and (iii) incorporating both local and global features from the
(original) vision encoder. When integrating LLaViT to the LLaVA framework with various LLMs,
we observe substantial performance gains across a wide range of MLLM benchmarks. Notably,
on several key vision-oriented benchmarks, our 3B LLaViT model not only outperforms the 7B
LLaVA-1.5 Liu et al. (2024) model but also achieves performance comparable to the 14B LLaVA-1.5
model. This demonstrates the effectiveness of our method and establishes a promising new direction
for MLLM architecture design.

2 BACKGROUND AND MOTIVATION

To set the stage, we first provide an overview of the LLaVA Liu et al. (2023a; 2024) model and
establish key notations. We then discuss two preliminary investigations that motivate our work.

2.1 REVIEW OF LLAVA

LLaVA tackles vision-language tasks by treating visual information as specialized input embeddings
for a pre-trained LLM. Consider an LLM hθ with L transformer Vaswani et al. (2017) layers,
parameterized by θ. We represent the general case of multimodal inputs to the LLM’s ℓ-th layer
as a combination of three distinct sequences: (1) m text tokens for the system prompt, tℓsys =

(tℓ1, t
ℓ
2, . . . , t

ℓ
m), (2) n visual tokens for the visual information, vℓ = (vℓ1, v

ℓ
2, . . . , v

ℓ
n), and (3) o text

tokens for the user prompt, tℓusr = (tℓm+1, t
ℓ
m+2, . . . , t

ℓ
m+o). At any given layer ℓ, tℓsys, v

ℓ, and tℓusr
are processed as a single N = m+ n+ o length sequence,

xℓ = (xℓ
1, x

ℓ
2, . . . , x

ℓ
N ) = (tℓsys,v

ℓ, tℓusr), (1)

where xℓ
i represents the i-th input token in the ℓ-th layer1, and the set of indices corresponding to the

visual tokens can be defined as

Iv = {m+ 1,m+ 2, . . . ,m+ n}. (2)

Given an input image I , we extract the visual patch features using a pre-trained vision encoder,
g, then project them to the LLM’s embedding space with an MLP projection, fϕ : RdV → RdL ,
parameterized by ϕ, where dV and dL represent the feature dimensions of the vision encoder and
LLM, respectively:

v1 = fϕ(g(I)) = (v11 , v
1
2 , . . . , v

1
n). (3)

To train the model, LLaVA employs a two-stage training pipeline. The first stage, referred to as
pre-training, aims to align the visual token embeddings v with the LLM’s input embedding space
using image-text pairs. Here, both the vision encoder g and the LLM hθ kept frozen, while the
parameters of the MLP projection ϕ are trained. The second stage, referred to as fine-tuning or
instruction tuning, uses image-question-answer triplets to fine-tune the parameters of both the MLP
projection and the LLM, {ϕ, θ}.

2.2 MLLMS TRANSLATE VISUAL TOKENS TO TEXT

The LLM hθ processes text data by first tokenizing the input text into a sequence of tokens, then
embedding the tokenizations with a set of word embeddings, W = {w1, w2, . . . , wM}. While the
LLM’s input is confined to the discrete space defined by W , the input layer’s visual tokens, v1, are
not constrained to a discrete space. However, given that the pre-training stage is dedicated to align
the visual embeddings with text, one may naturally expect v1 to be aligned with W .

1Without loss of generality, we omit the layer index ℓ when the specific layer is irrelevant.
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Figure 1: Visualizing how the LLM interprets visual tokens at the input and output layers of the LLM.
Input layer word representations are selected using Eq. (4). Output layer word representations are
selected based on the LLM’s final logits of the visual token. For better interpretability, we manually
select 2 of the top-3 word representations for each of the selected visual tokens.

To further investigate this, we first train a LLaVA model using a Qwen2.5-3B Yang et al. (2024) as
the LLM. Then, for an input layer visual token v1i , we can compute the cosine similarity between v1i
and a word embedding w ∈ W as:

Ωi(w) =
v1i · w

∥v1i ∥∥w∥
. (4)

By computing the Ωi(w) for all w ∈ W , we can extract the top-k similar words for each visual
token v1i . We visualize these word representations for select visual tokens in Figure 1 and observe
that the closest word representations are vastly unrelated to the corresponding image patch, often
matching to unnatural strings such as “_DM”, “_status” or “\t\t”. Furthermore, we notice that top
cosine similarities are low (Ωi(w) ≃ 0.1 for most patches2), indicating a significant modality gap
between visual and text embeddings in the input space.

We extend our investigation to the LLM’s output of the visual tokens, z = (z1, z2, . . . , zn) =
hθ(v

1), where zi denotes the output logit vector for vi. Following a similar approach to the logit
lens nostalgebraist (2020), we employ zi to extract the top-k word representations from vi and
visualize the results in Figure 1. Surprisingly, at the LLM’s output, we observe that the word
representations for visual embeddings are often relevant to the corresponding image patch, i.e., the
LLM can translate visual tokens into text to some extent. For example, the LLM correctly predicts
the “tail” and “belly” of the cat (Figure 1 left), as well as the “helmets”, “guitar”, and “uniform”
(Figure 1 right).

What’s particularly intriguing is that such translation of visual tokens is never explicitly supervised;
rather, it emerges from supervision on text tokens. Moreover, as shown in Figure 1, the visual
tokens are not well aligned with the text tokens in the input layer, suggesting that the LLM actively
translates/aligns visual representations to text representations because it is necessary to interpret
visual information. Thus, we posit that the quality of visual token transformations within the LLM
will have a profound effect on the MLLM’s overall capabilities.

2.3 IMPORTANCE OF VISUAL ATTENTION IN MLLMS

We continue our investigation by examining the importance of attention between visual tokens within
the LLM. While the cross-attention between vision and text modalities is essential for information to
flow from vision to text, it remains unclear whether visual tokens need to attend to each other within
the LLM, especially considering that they have already undergone attention updates in the vision
encoder. To facilitate our investigation, we conduct an ablation study by training a LLaVA model
without visual attention in all layers of the LLM. More specifically, we modify the attention layer of

2We provide a detailed version of Figure 1 with the cosine similarities in the Appendix.
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Table 1: Comparison of LLaVA-1.5 (baseline) with and without visual attention, as described in
Eq. (5). Experiments are conducted with Qwen2.5-3B Yang et al. (2024) and 7B. A breakdown of
the benchmarks in each category can be found in Section 4.1, and the full table is provided in the
Appendix.

Method Vision Centric OCR & Chart Knowledge General

Qwen2.5-3B

Baseline 39.3 27.4 67.5 65.9
No Visual Attention 24.9 (-14.4) 10.7 (-16.7) 64.6 (-2.9) 50.2 (-15.7)

Qwen2.5-7B

Baseline 45.0 31.8 71.7 68.5
No Visual Attention 40.8 (-4.2) 27.6 (-4.2) 69.8 (-1.9) 67.0 (-1.5)

the LLM such that:

x′
i =

{
xi if i ∈ Iv
CausalAttn(xi) + xi otherwise,

(5)

where xi and x′
i each represent an input and output token of the attention layer respectively, and

CausalAttn(xi) represents the causal attention layer in which xi serves as the query vector. Note that
Eq. (5) only disables attention updates when xi is a visual token, meaning that a text token, xj where
j > i and j /∈ Iv , can still attend to visual tokens. In addition, despite removing the attention updates
from visual tokens, we do not restrict the forward pass to the MLP of each transformer layer.

We evaluate these models on 17 benchmarks (grouped into 4 distinct categories; refer to Section 4.1
for more details) and compare with the baseline LLaVA model in Table 1. Overall, the model without
visual attention exhibits significantly degraded performance across all categories on both Qwen2.5-3B
and Qwen2.5-7B. This degradation is particularly pronounced in the Vision Centric and OCR &
Chart categories, which rely more heavily on visual information than the Knowledge and General
categories. Thus, our investigation demonstrates that attention between visual tokens within the LLM
do indeed play a critical role in the MLLM, further corroborating the argument that higher quality of
visual token transformations within the LLM are crucial for strong performance.

3 LLAVIT: EXTENDING THE VISION TRANSFORMER TO THE LLM

We now present LLaViT, which consists of three key enhancements that allow the LLM to serve
as an extended Vision Transformer. Motivated by our investigations from Sections 2.2 and 2.3, in
Sections 3.1 and 3.2 we detail the enhancements that focus on improving the visual information
processing within the LLM—a direction that has not been extensively explored in previous works. In
Section 3.3, we present a simple yet effective method to enhance the quality of input visual tokens
without sacrificing efficiency.

3.1 LEARNING SEPARATE QKV PROJECTIONS FOR VISUAL TOKENS

As discussed in Section 2.2, there is a clear misalignment between input text and visual tokens.
This misalignment can lead substantial challenges, especially in the LLM’s attention layers, where
visual tokens undergo attention updates based on parameters that were trained specifically for the
text modality. To facilitate better visual representation learning in the LLM, we propose a modality-
specific attention mechanism by separating the Query, Key, and Value (QKV) projection parameters
for text and visual tokens.

Let {W text
Q ,W text

K ,W text
V } represent the attention layer’s QKV projection parameters, trained exten-

sively on text data. We copy these parameters into new visual QKV parameters {W vis
Q ,W vis

K ,W vis
V },

which are used exclusively to project visual tokens. Formally, given an arbitrary token xi, the
corresponding query vector qi is computed as:

qi =

{
W vis

Q xi if i ∈ Iv
W text

Q xi otherwise,
(6)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Text Token

(a) Learn Separate QKV Projections for Visual Tokens

<latexit sha1_base64="e2R8c3lXSPLMsXSpzRFrw7sWSGE=">AAAB+nicbVDLTsMwEHTKq5RXCkcuERUSpypBFXCs4MKxSPQhtSFyXKe16jiRvQGqkE/hwgGEuPIl3PgbnDYHaBlpV6OZXXk9fsyZAtv+Nkorq2vrG+XNytb2zu6eWd3vqCiRhLZJxCPZ87GinAnaBgac9mJJcehz2vUnV7nfvadSsUjcwjSmbohHggWMYNCSZ1a7XucuHQB9hDRvWeaZNbtuz2AtE6cgNVSg5Zlfg2FEkpAKIBwr1XfsGNwUS2CE06wySBSNMZngEe1rKnBIlZvOTs+sY60MrSCSugRYM/X3RopDpaahrydDDGO16OXif14/geDCTZmIE6CCzB8KEm5BZOU5WEMmKQE+1QQTyfStFhljiQnotCo6BGfxy8ukc1p3zuqNm0ateVnEUUaH6AidIAedoya6Ri3URgQ9oGf0it6MJ+PFeDc+5qMlo9g5QH9gfP4ALveUng==</latexit>

W text
V

<latexit sha1_base64="ta5n9uV77KBBEssSfVOqPAuh3Dg=">AAAB+nicbVDLTsMwEHTKq5RXCkcuERUSpypBCDhWcOHYSvQhtSFyXKe16jiRvQGqkE/hwgGEuPIl3PgbnDYHaBlpV6OZXXk9fsyZAtv+Nkorq2vrG+XNytb2zu6eWd3vqCiRhLZJxCPZ87GinAnaBgac9mJJcehz2vUn17nfvadSsUjcwjSmbohHggWMYNCSZ1a7XusuHQB9hDRvWeaZNbtuz2AtE6cgNVSg6Zlfg2FEkpAKIBwr1XfsGNwUS2CE06wySBSNMZngEe1rKnBIlZvOTs+sY60MrSCSugRYM/X3RopDpaahrydDDGO16OXif14/geDSTZmIE6CCzB8KEm5BZOU5WEMmKQE+1QQTyfStFhljiQnotCo6BGfxy8ukc1p3zutnrbNa46qIo4wO0RE6QQ66QA10g5qojQh6QM/oFb0ZT8aL8W58zEdLRrFzgP7A+PwBJx2UmQ==</latexit>

W text
Q

<latexit sha1_base64="/zvXUxn8wOwLkrchAkuXlf910hE=">AAAB+nicbVDLSsNAFJ3UV62vVJdugkVwVRIRdVl0I7ipYB/QxjCZTtqhk0mYuVFLzKe4caGIW7/EnX/jpM1CWw/cy+Gce5k7x485U2Db30ZpaXllda28XtnY3NreMau7bRUlktAWiXgkuz5WlDNBW8CA024sKQ59Tjv++DL3O/dUKhaJW5jE1A3xULCAEQxa8sxqx7u+S/tAHyHNW5Z5Zs2u21NYi8QpSA0VaHrmV38QkSSkAgjHSvUcOwY3xRIY4TSr9BNFY0zGeEh7mgocUuWm09Mz61ArAyuIpC4B1lT9vZHiUKlJ6OvJEMNIzXu5+J/XSyA4d1Mm4gSoILOHgoRbEFl5DtaASUqATzTBRDJ9q0VGWGICOq2KDsGZ//IiaR/XndP6yc1JrXFRxFFG++gAHSEHnaEGukJN1EIEPaBn9IrejCfjxXg3PmajJaPY2UN/YHz+AB2xlJM=</latexit>

W text
K

Text QKV Parameters
Copy

Visual QKV Parameters

<latexit sha1_base64="CPWfso380aX02ZqMqSjMN71QV/o=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0lE1GPRi8cW7Ae0MWy2m3bpZhN2J8US8k+8eFDEq//Em//GbZuDtj4YeLw3w8y8IBFcg+N8W6W19Y3NrfJ2ZWd3b//APjxq6zhVlLVoLGLVDYhmgkvWAg6CdRPFSBQI1gnGdzO/M2FK81g+wDRhXkSGkoecEjCSb9sdv/mY9YE9QTbhOs99u+rUnDnwKnELUkUFGr791R/ENI2YBCqI1j3XScDLiAJOBcsr/VSzhNAxGbKeoZJETHvZ/PIcnxllgMNYmZKA5+rviYxEWk+jwHRGBEZ62ZuJ/3m9FMIbL+MySYFJulgUpgJDjGcx4AFXjIKYGkKo4uZWTEdEEQomrIoJwV1+eZW0L2ruVe2yeVmt3xZxlNEJOkXnyEXXqI7uUQO1EEUT9Ixe0ZuVWS/Wu/WxaC1Zxcwx+gPr8wdM9pQc</latexit>

W vis
Q

<latexit sha1_base64="ckEd+F+uG1RjfOFyccYqd3ErWfg=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0lE1GPRi+Clgv2ANobNdtMu3WzC7qRYQv6JFw+KePWfePPfuG1z0NYHA4/3ZpiZFySCa3Ccb6u0srq2vlHerGxt7+zu2fsHLR2nirImjUWsOgHRTHDJmsBBsE6iGIkCwdrB6Gbqt8dMaR7LB5gkzIvIQPKQUwJG8m277d89Zj1gT5CNuc5z3646NWcGvEzcglRRgYZvf/X6MU0jJoEKonXXdRLwMqKAU8HySi/VLCF0RAasa6gkEdNeNrs8xydG6eMwVqYk4Jn6eyIjkdaTKDCdEYGhXvSm4n9eN4Xwysu4TFJgks4XhanAEONpDLjPFaMgJoYQqri5FdMhUYSCCatiQnAXX14mrbOae1E7vz+v1q+LOMroCB2jU+SiS1RHt6iBmoiiMXpGr+jNyqwX6936mLeWrGLmEP2B9fkDQ5CUFg==</latexit>

W vis
K

<latexit sha1_base64="FFI9wqgoszAs5NgaKvSCSMo6kzg=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0mkqMeiF48V7Ae0MWy2m3bpZhN2J8US8k+8eFDEq//Em//GbZuDtj4YeLw3w8y8IBFcg+N8W6W19Y3NrfJ2ZWd3b//APjxq6zhVlLVoLGLVDYhmgkvWAg6CdRPFSBQI1gnGtzO/M2FK81g+wDRhXkSGkoecEjCSb9sdv/2Y9YE9QTbhOs99u+rUnDnwKnELUkUFmr791R/ENI2YBCqI1j3XScDLiAJOBcsr/VSzhNAxGbKeoZJETHvZ/PIcnxllgMNYmZKA5+rviYxEWk+jwHRGBEZ62ZuJ/3m9FMJrL+MySYFJulgUpgJDjGcx4AFXjIKYGkKo4uZWTEdEEQomrIoJwV1+eZW0L2ruZa1+X682boo4yugEnaJz5KIr1EB3qIlaiKIJekav6M3KrBfr3fpYtJasYuYY/YH1+QNUy5Qh</latexit>

W vis
V

Visual Token

<latexit sha1_base64="IZTywYQOmLMf5Bsd/7S0Vt6TEzQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7Ow6M2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJb3ZpygH9GB5CFn1Fip/tgrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AN6LjP4=</latexit>q
<latexit sha1_base64="22ayNhSfxXcShAAyfExNzJXubLY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5rhfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6LqXVZrzVqlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f1XOM+A==</latexit>

k <latexit sha1_base64="nQsX9L/lq/3dlYfgFTiVm5DZ8sE=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZpaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj+7nfGqPSPJaPZpKgH9GB5CFn1FipPu4VS27ZXYCsEy8jJchQ6xW/uv2YpRFKwwTVuuO5ifGnVBnOBM4K3VRjQtmIDrBjqaQRan+6OHRGLqzSJ2GsbElDFurviSmNtJ5Ege2MqBnqVW8u/ud1UhPe+lMuk9SgZMtFYSqIicn8a9LnCpkRE0soU9zeStiQKsqMzaZgQ/BWX14nzauyd12u1Cul6l0WRx7O4BwuwYMbqMID1KABDBCe4RXenCfnxXl3PpatOSebOYU/cD5/AOYfjQM=</latexit>v
<latexit sha1_base64="IZTywYQOmLMf5Bsd/7S0Vt6TEzQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7Ow6M2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJb3ZpygH9GB5CFn1Fip/tgrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AN6LjP4=</latexit>q

<latexit sha1_base64="22ayNhSfxXcShAAyfExNzJXubLY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5rhfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6LqXVZrzVqlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f1XOM+A==</latexit>

k <latexit sha1_base64="nQsX9L/lq/3dlYfgFTiVm5DZ8sE=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZpaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj+7nfGqPSPJaPZpKgH9GB5CFn1FipPu4VS27ZXYCsEy8jJchQ6xW/uv2YpRFKwwTVuuO5ifGnVBnOBM4K3VRjQtmIDrBjqaQRan+6OHRGLqzSJ2GsbElDFurviSmNtJ5Ege2MqBnqVW8u/ud1UhPe+lMuk9SgZMtFYSqIicn8a9LnCpkRE0soU9zeStiQKsqMzaZgQ/BWX14nzauyd12u1Cul6l0WRx7O4BwuwYMbqMID1KABDBCe4RXenCfnxXl3PpatOSebOYU/cD5/AOYfjQM=</latexit>v

(b) Bidirectional Attention on Visual Tokens

Attention Mask

Visual

Visual

Visual

Visual

Text

Text

Text

Text

Text

1

2

3

4

1

2

3

4

1

2

3

4

Local Global

CLIP ViT

(c) Local and Global Visual Features

Concat

1

2

3

4

1

2

3

4

1

2

3

4

<latexit sha1_base64="C2ITg7V4t+m/OJsjNoG8ljLlHUQ=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9kVUY9FLx4r2A9ol5JNs21okg1JVihLf4QXD4p49fd489+YbfegrQ8GHu/NMDMvUpwZ6/vfXmltfWNzq7xd2dnd2z+oHh61TZJqQlsk4YnuRthQziRtWWY57SpNsYg47USTu9zvPFFtWCIf7VTRUOCRZDEj2DqpEw/6aswqg2rNr/tzoFUSFKQGBZqD6ld/mJBUUGkJx8b0Al/ZMMPaMsLprNJPDVWYTPCI9hyVWFATZvNzZ+jMKUMUJ9qVtGiu/p7IsDBmKiLXKbAdm2UvF//zeqmNb8KMSZVaKsliUZxyZBOU/46GTFNi+dQRTDRztyIyxhoT6xLKQwiWX14l7Yt6cFW/fLisNW6LOMpwAqdwDgFcQwPuoQktIDCBZ3iFN095L96797FoLXnFzDH8gff5A8ThjzU=</latexit>

f�

MLP

1

2

3

4

Local & Global
Visual Tokens

1

2

3

4

Figure 2: Overview of LLaViT, which transforms the LLM to act as an extended vision encoder.
(a) We learn separate QKV projection parameters for visual tokens, initialized with the weights of
the LLM’s QKV parameters. (b) While the LLM employs causal attention on all tokens, we enable
bidirectional attention on the visual tokens. (c) We incorporate both local and global features in the
visual tokens by extracting patch features from multiple layers of the CLIP ViT model.

and similarly for the key and value vectors, ki and vi. We apply these separate QKV projections on
all layers of the LLM, and unlike the original QKV parameters, we tune the visual QKV parameters
{W vis

Q ,W vis
K ,W vis

V } during the pre-training stage. This enables the LLM to leverage image-caption
data to not only learn stronger visual representations, but also to better align visual representations to
the text representations.

This separation also addresses another crucial challenge from an optimization perspective. In the
fine-tuning stage, the LLM must simultaneously adapt to visual tokens while maintaining language
understanding capabilities, creating conflicts in model optimization. This relates to the stability-
plasticity dilemma Kim & Han (2023): On one hand, the LLM may prioritize stability, making only
minor adaptations (e.g. following instructions or formatting responses), thereby failing to process
visual information effectively. On the other hand, prioritizing plasticity to enhance visual information
risks degrading the LLM’s fundamental language capabilities. Our approach mitigates this issue
by compartmentalizing the visual adaptation process, allowing a dedicated optimization of visual
representations whilst preserving the LLM’s core knowledge.

3.2 BIDIRECTIONAL ATTENTION

In Section 2.3, we identified that attention updates to visual tokens within the LLM play a crucial
role in the performance of the MLLM. However, LLMs employ causal attention, which artificially
restricts attention among visual tokens, only allowing “later” visual tokens to attend to “earlier” ones
but not vice versa. While such causality is valid for text generation, it leads to a severe imbalance of
attention updates on visual tokens that have no inherent temporal ordering. To mitigate this issue, we
enable bidirectional attention on the visual tokens.

Given a query vector qi = Wqxi and a key vector kj = Wkxj , the softmax attention score pij in
causal attention can be formulated as:

pij =
exp(sij)∑N
k=1 exp(sik)

, sij =

{
(qi · kj)/

√
dL if j ≤ i

−∞ otherwise,
(7)
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where the −∞ ensures that attention is masked when j > i. To enable bidirectional attention on the
visual tokens, we modify the case function of Eq. (7) such that sij is now defined as:

sij =

{
(qi · kj)/

√
dL if j ≤ i or i, j ∈ Iv

−∞ otherwise,
(8)

where now the masking does not apply to visual tokens, i.e., when i, j ∈ Iv. We illustrate the
attention mask defined by Eq. (8) in Figure 2(b).

3.3 LOCAL AND GLOBAL FEATURES

The visual tokens of Eq. (3) are extracted from the penultimate transformer layer of the CLIP Radford
et al. (2021) image encoder, which has been trained to prioritize global semantic alignment between
images and text Monsefi et al. (2024) and often struggles to capture fine-grained details Ghiasi et al.
(2022). To compensate for this information loss, we extract visual features from 3 different depths of
the CLIP vision encoder, creating a representation that combines both high-level semantic information
and lower-level details. Then, we concatenate the visual features along the feature dimension and
project them to the LLM’s input dimensions with the MLP projection fϕ : R3dV → RdL . We
illustrate this process in Figure 2(c).

Our approach increases the visual information density per token, providing the LLM with a spectrum
of visual information ranging from local details to global semantic context. Despite this, we still
maintain the same computational efficiency as before since we extract multiple features from the
same vision encoder within a single forward pass. Furthermore, by concatenating features along the
feature dimension rather than the token dimension, we avoid increasing the number of visual tokens
input to the LLM, which would otherwise substantially increase computational costs.

4 EXPERIMENTS

To evaluate the effectiveness of LLaViT, we trained multiple models using various base LLMs and
conducted evaluations on a wide variety of MLLM benchmarks.

4.1 EXPERIMENTAL SETTING

Models. For the vision encoder, we follow LLaVA-1.5 and use OpenAI CLIP ViT-L/14 Rad-
ford et al. (2021) with 336px resolution. To demonstrate the effectiveness of LLaViT on a wide range
of LLMs, we mainly experiment with the instruction tuned versions of Qwen2.5 Yang et al. (2024),
using various-sized LLMs including 1.5B, 3B, 7B, and 14B parameter models. We also experiment
using Phi-3.5-mini-instruct Abdin et al. (2024) and present the results in the Appendix.

Training data. For the pre-training data, we use the PixMo-Cap Deitke et al. (2024) dataset.
While the PixMo-Cap originally contains 712k distinct images, we train on a 622k subset after
filtering broken URLs and faulty image files. Compared to the original LLaVA pre-training dataset,
PixMo-Cap provides higher-quality human annotated image-caption pairs with fine-grained and
dense captions. For instruction tuning, we use the LLaVA-1.5 instruction tuning dataset Liu et al.
(2024) with 665k samples. To ensure fair comparison across the board, both the baseline and LLaViT
models are pre-trained on PixMo-Cap and fine-tuned on the LLaVA-1.5.

Evaluation benchmarks. We evaluate on a large suite of 17 MLLM benchmarks using the
lmms-eval library Zhang et al. (2024). For better interpretability of our experimental results,
we group the 17 benchmarks based on the categorizations defined in Tong et al. (2024a):

Vision Centric (2): RealWorldQA xAI (2024), MMVP Tong et al. (2024b).
OCR & Chart (5): ChartQA Masry et al. (2022), DocVQA Mathew et al. (2021), In-
foVQA Mathew et al. (2022), OCRBench Liu et al. (2023d), TextVQA Singh et al. (2019).
Knowledge (2): Science-QA Lu et al. (2022), AI2D Hiippala et al. (2021).
General (8): GQA Hudson & Manning (2019), MMBench-EN Liu et al. (2023c), MMBench-
CN Liu et al. (2023c), MME (perception) Fu et al. (2023), POPE Li et al. (2023), VizWiz Gurari
et al. (2018), MMStar Chen et al. (2024c), VQAv2 Goyal et al. (2017).
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Table 2: Evaluation results on 17 MLLM benchmarks using Qwen2.5-1.5B, 3B, 7B and 14B
as the base LLM. “Baseline” refers to LLaVA-1.5 Liu et al. (2024) trained with the respective LLMs,
and the Any-Res setting is denoted by the -HD suffix. We present evaluation results on individual
benchmarks, as well as the averages of each category, colored in blue.
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Qwen2.5-1.5B

Baseline 52.4 21.3 36.9 16.8 22.1 19.9 31.8 41.2 26.3 70.6 58.5 64.6 60.2 65.7 60.7 1395.3 85.9 48.5 39.4 74.4 63.1
LLaViT 53.7 29.3 41.5 22.2 26.6 21.6 34.4 46.2 30.2 70.9 61.5 66.2 61.2 67.5 61.3 1421.5 85.8 50.5 41.8 76.1 64.4

Qwen2.5-3B

Baseline 54.5 24.0 39.3 17.6 22.8 22.0 32.3 42.4 27.4 73.4 61.6 67.5 61.3 71.0 66.6 1451.7 85.8 49.7 44.0 75.9 65.9
LLaViT 56.5 38.7 47.6 23.1 28.7 23.9 37.1 48.5 32.2 72.8 63.8 68.3 62.5 72.2 68.0 1453.3 86.2 52.0 46.4 77.6 67.2

Qwen2.5-7B

Baseline 58.7 31.3 45.0 23.0 27.0 24.4 36.3 48.1 31.8 75.7 67.6 71.7 63.2 71.1 68.0 1506.6 87.1 58.7 46.2 78.4 68.5
LLaViT 59.7 41.7 50.7 27.1 31.9 27.1 40.4 52.0 35.7 76.7 68.7 72.7 63.9 74.7 73.2 1591.5 86.3 62.6 49.4 79.6 71.2

Qwen2.5-14B

Baseline 59.9 32.7 46.3 23.4 27.3 27.1 35.0 49.1 32.4 77.7 71.0 74.4 64.3 76.7 75.0 1594.8 86.5 64.4 46.4 79.2 71.5
LLaViT 61.6 40.7 51.2 31.7 34.3 30.6 39.9 54.0 38.1 80.0 73.9 77.0 65.1 77.2 76.2 1670.6 87.0 66.8 51.1 80.5 73.4

Qwen2.5-3B-HD

Baseline 57.0 33.0 45.0 25.4 53.1 32.5 43.1 60.0 42.8 73.1 62.4 67.8 63.1 70.2 65.7 1445.9 87.0 51.4 46.4 78.7 66.8
LLaViT 57.9 40.0 49.0 31.4 59.4 35.4 48.8 65.4 48.1 73.0 64.4 68.7 64.1 71.9 69.5 1488.7 87.6 54.4 48.0 80.0 68.7

Qwen2.5-7B-HD

Baseline 63.9 30.7 47.3 30.9 57.6 35.8 49.4 64.4 47.6 75.9 67.4 71.7 64.4 75.1 70.8 1575.4 87.9 57.7 47.8 80.9 70.4
LLaViT 64.6 41.3 53.0 40.3 63.9 39.4 54.1 67.8 53.1 77.1 69.6 73.4 65.5 76.3 73.5 1625.0 87.9 55.2 48.6 81.7 71.2

Qwen2.5-14B-HD

Baseline 65.8 37.3 51.5 39.0 55.8 37.3 45.7 64.5 48.5 78.5 71.3 74.9 66.2 78.0 76.1 1638.9 87.5 62.8 49.0 81.6 72.9
LLaViT 66.4 45.3 55.9 46.5 67.6 44.4 56.5 70.0 57.0 79.5 74.7 77.1 66.3 79.4 78.7 1683.0 87.3 64.8 52.5 82.7 74.5

Implementation details. For the visual QKV parameters, we use a learning rate of 2e-4 with a
cosine decay schedule Loshchilov & Hutter (2017), and for local/global visual features, we extract
patch features from the 5th, 15th, and 23rd layer of CLIP ViT-L/14. We follow LLaVA-1.5
for other hyperparameters such as pre-train/fine-tune learning rate, optimizer choice, number of
epochs, and train all models with a fixed global batch size of 256 and 128 for pre-training and
fine-tuning, respectively. Furthermore, we utilize DeepSpeed Rajbhandari et al. (2020) ZeRO-2 for
pre-training and ZeRO-3 for fine-tuning, and use FlashAttention2 Dao et al. (2022); Dao (2024) as
the attention implementation. We train and evaluate our models on two input resolution settings: (i)
the Standard-Res setting, resizing all images to a single 336 × 336px image, and (ii) the Any-Res
(HD) setting, where we additionally split images into smaller, non-overlapping 336× 336px images
that are processed individually by the vision encoder. Compared to the Standard-Res setting, which
uses 576 visual tokens, the Any-Res setting uses upto 2880 visual tokens.

4.2 RESULTS ON STANDARD-RES

The upper section of Table 2 presents and compares the evaluation results of LLaViT against LLaVA-
1.5 (baseline) the standard-res setting.

Vision Centric and OCR&Chart. LLaViT excels in Vision Centric and OCR & Chart tasks. In the
Vision Centric category, LLaViT improves over the baseline by 4.6pp, 8.3pp, 5.7pp, and 4.9pp for the
1.5B, 3B, 7B, and 14B LLMs, respectively. Similarly in the OCR & Chart category, LLaViT out-
performs the baseline by 3.9pp, 4.8pp, 3.9pp, and 5.7pp. LLaViT also consistently outperforms
all individual benchmarks of these two categories. Of particular interest is the MMVP Tong et al.
(2024b) benchmark, which is known to be challenging even for production-grade MLLMs such as
GPT-4V OpenAI (2023) and Gemini Google (2023), which are reported to have accuracy of 38.7%
and 40.7%, respectively. Both our 7B and 14B models match or outperform these two production
models, and across the board we observe improvements between 8.0pp and 14.7pp over the baseline.
Another remarkable observations is that our approach, even when using a smaller LLM, outperforms
baseline models that use LLMs with double the size. For example, our 7B model outperforms the
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Table 3: Results of ablation experiments with Qwen2.5-3B and 7B as the base LLM. “Sep. QKV”,
“BiAttn”, and “Local/Global” refer to the three components to LLaViT discussed in Sections 3.1, 3.2,
and 3.3, respectively.

Vision Centric OCR & Chart Knowledge General
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Qwen2.5-3B

1 Baseline 54.5 24.0 39.3 17.6 22.8 22.0 32.3 42.4 27.4 73.4 61.6 67.5 61.3 71.0 66.6 1451.7 85.8 49.7 44.0 75.9 65.9
2 1 + Sep. QKV 55.3 34.0 44.7 20.2 26.8 23.5 35.6 45.9 30.4 74.5 61.9 68.2 62.2 70.3 68.4 1441.2 87.1 49.6 44.8 76.8 66.4
3 2 + BiAttn 54.1 36.6 45.4 22.8 27.7 23.9 37.3 47.5 31.8 72.9 63.8 68.4 62.1 70.8 68.1 1455.1 86.0 50.7 46.4 77.2 66.8
4 2 + Local/Global 55.0 40.0 47.5 23.3 27.5 23.5 37.1 47.5 31.8 74.1 62.9 68.5 62.5 71.4 69.2 1462.8 86.4 50.7 46.1 77.3 67.1
5 LLaViT 56.5 38.7 47.6 23.1 28.7 23.9 37.1 48.5 32.2 72.8 63.8 68.3 62.5 72.2 68.0 1453.3 86.2 52.0 46.4 77.6 67.2

Qwen2.5-7B

1 Baseline 58.7 31.3 45.0 23.0 27.0 24.4 36.3 48.1 31.8 75.7 67.6 71.7 63.2 71.1 68.0 1506.6 87.1 58.7 46.2 78.4 68.5
2 1 + Sep. QKV 59.7 34.7 47.2 23.5 28.5 25.5 37.7 49.4 32.9 77.6 67.7 72.6 63.2 71.7 69.6 1559.7 86.6 60.0 46.8 78.8 69.3
3 2 + BiAttn 60.9 34.7 47.8 24.8 30.7 26.7 38.9 50.6 34.3 78.2 68.0 73.1 63.4 73.3 70.6 1606.3 86.8 59.9 46.7 79.1 70.0
4 2 + Local/Global 60.9 36.7 48.8 26.1 30.1 26.3 40.1 50.7 34.7 78.5 69.0 73.8 64.0 73.0 71.1 1567.9 87.1 58.9 48.7 79.3 70.0
5 LLaViT 59.7 41.7 50.7 27.1 31.9 27.1 40.4 52.0 35.7 76.7 68.7 72.7 63.9 74.7 73.2 1591.5 86.3 62.6 49.4 79.6 71.2

14B baseline by 4.4pp on Vision Centric (50.7% vs. 46.3%), and 3.3pp on OCR & Chart (35.7% vs.
32.4%). In addition, our 3B model (47.6% for Vision Centric and 32.2% for OCR & Chart) performs
on par with the 14B baseline (46.3% for Vision Centric and 32.4% for OCR & Chart) despite having
less than a quarter of the parameters3. This clearly demonstrates the effectiveness of LLaViT and
highlights the importance of enhancing visual information processing within the LLM.
Knowledge and General. LLaViT also improves over the baseline on the Knowledge and General
categories, showing gains of 1.6pp, 0.8pp, 1.0pp, and 2.6pp on Knowledge and gains of 1.3pp, 1.3pp,
2.7pp, and 1.9pp on the General category for the 1.5B, 3B, 7B, and 14B LLMs. While these
improvements remain consistent across different model sizes and individual benchmarks, the gains
in the Knowledge category are relatively modest compared to other areas. In fact, this aligns with
our expectations since the Knowledge benchmarks are highly dependent on the LLM’s inherent
knowledge, whereas as our approach primarily focuses on enhancing the LLM’s ability to understand
visual information.

4.3 RESULTS ON ANY-RES

We present evaluation results of models trained under the Any-Res setting in the bottom section
of Table 2, denoted by the -HD suffix. Compared to the Standard-Res setting, we observe that the
baseline performance is particularly affected in the Vision Centric and OCR & Chart categories,
while the Knowledge and General categories show less significant changes. This aligns with our
expectations, as Vision-Centric and OCR & Chart categories heavily depend on visual information,
making increased input granularity especially beneficial for performance in these areas.

When comparing between the baseline and LLaViT, we observe similar trends to those of the standard-
res setting. LLaViT exhibits significant gains of 4.0pp, 5.7pp, and 4.4pp on Vision Centric for the
3B, 7B, and 14B Qwen2.5 LLMs. Moreover, on OCR & Chart LLaViT improves over the baseline
by 5.3pp, 5.5pp, and 8.5pp. Finally, much like the standard-res models, the smaller variant of
LLaViT outperforms the larger baseline models on these two categories, i.e. the 3B-HD and 7B-HD
LLaViT outperform the 7B-HD and 14B-HD baselines, respectively.

4.4 ABLATIONS

We conducted ablation experiments on the three components to highlight their contributions. To
demonstrate consistent trends across different sizes of LLMs, we conducted these experiments using
both Qwen2.5-3B and 7B as the base LLM, and present these results in Table 3. We notice
progressive performance improvements as each method is applied to the baseline. First, we observe
significant improvements in both models across all benchmark categories just by adding separate

3Despite learning separate QKV projections for visual tokens, the parameter increase is limited to 5%∼12%.
We provide a thorough analysis of the memory and computational overhead of LLaViT in Appendix A.
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Figure 3: Output logit visualizations for (a) Qwen2.5-3B and (b) -7B models, comparing
LLaViT with the baseline. For each visual token, we extract the top-3 words and display the two
most sensible words, filtering irrelevant symbols such as ‘\n’ or punctuations. Words are shown in
bold if they are relevant to the corresponding image patch.

QKV parameters. These results validate that learning modality-specific QKV projections does indeed
improve the visual representations within the LLM and their alignment to text representations. Then,
adding bidirectional attention or local and global visual features further improves the performance
on all benchmark categories. For example, incorporating bidirectional attention with separate QKV
projections (row 3) improves separate QKV only (row 2) by 1.4pp on the OCR & Chart category for
both the 3B and 7B models. Also, leveraging local and global visual (row 4) also has a profound
effect, improving the performance of OCR & Chart by 1.4pp and 1.8pp for the 3B and 7B models.
Finally, combining all three methods in LLaViT exhibits the strongest performance in all benchmark
categories except Knowledge.

4.5 QUALITATIVE RESULTS

We find that improving the LLM’s ability to process visual information also leads to better translation
of visual tokens, as discussed in Section 2.2. Figure 3 visualizes the translations of two images, one
comparing LLaViT with the baseline on Qwen2.5-3B (left) and another on Qwen2.5-7B (right).
Note that we applied some post-processing to the visualizations in Figure 3 for the sake of better
readability, but present more detailed visualizations in the Appendix.

On both images, we first note that the baseline model is able to correctly capture high-level concepts,
such as “scooter” and “dog” for Figure 3(a), and “car”, “tire”, “gir(affe)”, “roof” in Figure 3(b).
However, LLaViT is able to go beyond high-level concepts to capture more diverse and fine-grained
details, such as “fruits”, “leash”, “rear”, “eyes” in Figure 3(a), and “bike”, “rear”, “legs”, “long”, and
“rack” in Figure 3(b). These examples clearly show that, when applying our method, the LLM is
able to better understand and translate visual concepts, which is likely correlated to the significant
performance gains we observe in evaluation benchmarks.

5 CONCLUSION

We presented LLaViT, a novel architecture that enhances multimodal large language models by
improving the LLM’s ability to process visual information. We proposed three simple yet effective
techniques: (i) learning separate QKV projection parameters for attention layers within the LLM,
(ii) enabling bidirectional attention on visual tokens, and (iii) using local and global visual features.
Our experiments and evaluations on a wide range of LLMs and benchmarks clearly demonstrate the
versatility and effectiveness of our approach. We believe our work has provided a new perspective on
MLLM design, and hope that others can build upon our findings to further improve MLLMs.
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A MEMORY AND COMPUTE EFFICIENCY OF LLAVIT

Table 4: Number of parameters (in Billion) of the entire model (i.e., vision encoder g, projector fϕ,
and LLM hθ), comparing LLaViT with the baseline on various base LLMs.

Base LLM Method Num. Params (B) ∆%

Qwen2.5-1.5B
Baseline 1.85 + 4.9Ours 1.94

Qwen2.5-3B
Baseline 3.40 + 5.7Ours 3.59

Qwen2.5-7B
Baseline 7.93 + 5.9Ours 8.40

Qwen2.5-14B
Baseline 15.10 + 11.7Ours 16.87

A.1 MEMORY

A core component of LLaViT is learning separate QKV projections in all layers of the LLM. We
provide details of the parameter counts when comparing the baseline and LLaViT in Table 4. Although
learning separate QKV projections increases the model’s total number of parameters, the additional
parameters only account for a 5%∼12% of the entire parameter count. Despite the relatively small
increase in number of parameters, we observed a much more significant increase in performance,
where the 3B LLaViT outperformed 7B baseline (≥ 2× parameters) and was even competitive
with the 14B baseline (≥ 4× parameters) on Vision Centric and OCR&Chart benchmarks. From a
different perspective, we could argue that applying LLaViT allows practitioners to maintain (or even
improve) the performance of the MLLM while reducing the parameter count by more than half. Thus,
the small increase in parameters is a great tradeoff for significantly improved performance.

Table 5: Analysis of floating-point operations (FLOPs), comparing the baseline and LLaViT using
Qwen2.5-3B as the base LLM.

Module FLOPs (GFLOPs)
Causal Attention (per attention layer) 38.7
Causal + Bidirectional Attention (per attention layer) 40.8
MLP Block (identical for both baseline and LLaViT) 92.4
LM Head (identical for both baseline and LLaViT) 632.7

Entire LLM for Baseline (36 layers of Attention & MLP + LM Head) 5348.7
Entire LLM for LLaViT (36 layers of Attention & MLP + LM Head) 5426.1

A.2 COMPUTE

Learning separate QKV projections does not increase the total FLOPS of the model, because the
LLM simply routes a subset of the tokens (i.e. visual tokens) to {W vis

Q ,W vis
K ,W vis

V } instead of
{W text

Q ,W text
K ,W text

V }. This is similar to the Mixture-of-Experts Shazeer et al. (2017) mechanism,
where inputs are gated to a specific expert. In our case, we use the token’s modality to determine
which QKV projection to use instead of a separate routing network.

For local-global features, there is a trivial increase in computation. This is because we concatenate
the visual features in the feature dimension, so the only difference is that a single MLP projection has
a larger input dimension. Furthermore, we extract visual features from different layers of the same
CLIP vision encoder, which means that the local and global features can be extracted from a single
forward pass of the vision encoder.
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Table 6: Evaluation results on 17 MLLM benchmarks using Phi-3.5-mini Abdin et al. (2024)
as the base LLM. “Baseline” refers to LLaVA-1.5 trained with the respective LLMs. We present
evaluation results on individual benchmarks, as well as the averages of each category, colored in blue.
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Phi-3.5-mini

Baseline 56.2 30.7 43.5 21.5 25.2 23.9 33.9 45.1 29.9 73.5 65.0 69.3 61.5 71.7 63.5 1449.4 86.0 40.2 40.0 76.3 64.0
LLaViT 57.3 41.3 49.3 23.2 28.8 25.7 38.0 48.5 32.9 74.4 67.8 71.1 63.2 70.4 65.0 1483.3 85.9 43.7 42.8 77.8 65.4
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Qwen2.5-3B

Baseline 54.5 24.0 39.3 17.6 22.8 22.0 32.3 42.4 27.4 73.4 61.6 67.5 61.3 71.0 66.6 1451.7 85.8 49.7 44.0 75.9 65.9
No Vis. Attn. 41.7 8.0 24.9 10.6 9.1 18.8 3.7 11.6 10.7 71.0 58.2 64.6 49.0 46.0 43.6 1059.7 78.6 38.3 34.9 58.0 50.2

Qwen2.5-7B

Baseline 58.7 31.3 45.0 23.0 27.0 24.4 36.3 48.1 31.8 75.7 67.6 71.7 63.2 71.1 68.0 1506.6 87.1 58.7 46.2 78.4 68.5
No Vis. Attn. 56.3 25.3 40.8 17.2 21.3 22.0 32.1 45.2 27.6 75.6 64.0 69.8 62.8 71.0 67.9 1489.4 86.6 54.3 41.8 77.3 67.0

Table 7: Comparison of LLaVA-1.5 with and without visual attention. This table shows all the
individual benchmark scores and corresponds to Table 1 in the main paper.

Finally, we analyze the computation cost of bidirectional attention for visual tokens. The key
difference to consider here is a purely causal mask versus the causal + bidirectional attention mask,
as shown in Figure 2(b). Since the exact FLOPS depends on the number of input tokens, we consider
the case where the total sequence length is 1024, 576 of which are visual tokens (448 text tokens).
We present an analysis of FLOPTS using Qwen2.5-3B as the base LLM in Table 5.

B ADDITIONAL RESULTS AND FULL TABLES

Results on Phi-3.5 To demonstrate the effectiveness of LLaViT on diverse LLM architectures, we
also experiment with Phi-3.5-mini Abdin et al. (2024) as the base LLM and present the results in
Table 6. The trends on Phi-3.5-mini are consistent with the trends seen on the Qwen2.5 family
of LLMs: we observe significant gains in all benchmark categories, especially in Vision Centric and
OCR & Chart, where LLaViT improves the baseline by 5.8pp and 3.0pp, respectively. Also, on the
Knowledge and General categories, we see improvements of 1.8pp and 1.4pp, respectively.

Full Table for Table 1 In Table 1 of our main paper, we presented a condensed table to demonstrate
the effect of removing visual attention from the LLM. We present the full version with all individual
benchmarks in Table 7.
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C ADDITIONAL QUALITATIVE RESULTS

We present some additional qualitative results below.

C.1 DETAILED VERSION OF FIGURE 1

Figure 4 is a detailed visualization corresponding to Figure 1 in the main paper. This Figure visualizes
how the LLM interprets visual tokens at the input and output layers of the LLM. We visualize select
tokens and display the Top-3 words alongside their cosine similarities or output probabilities.

1

2

4

3

1 2

3 4

5

6

7

8

Input (cosine sim)
Top1: \u6309\u94ae (0.082)
Top2: _status (0.079)
Top3:  Status (0.079)

Output (probability)
Top1: collar (87.6%)
Top2: and (1.6%)
Top3: \n (1.4%)

Input (cosine sim)
Top1: \u6309\u94ae (0.089)
Top2: _DM (0.088)
Top3:  \t\t (0.088)

Output (probability)
Top1: tail (43.7%)
Top2: \n (14.2%)
Top3: , (10.1%)

Input (cosine sim)
Top1: \u2019, (0.092)
Top2: _DM (0.002)
Top3:  “,\n (0.085)

Output (probability)
Top1: \n (61.6%)
Top2: belly (23.0%)
Top3: cat (5.3%)

Input (cosine sim)
Top1: _DM (0.096)
Top2: ibernate (0.095)
Top3:  \u79df\u91d1 (0.089)

Output (probability)
Top1: \n (97.2%)
Top2: claws (1.7%)
Top3: p (0.2%)

5 6

7 8

Input (cosine sim)
Top1: \u1ed9c (0.105)
Top2: DrawerToggle (0.101)
Top3: sisters (0.097)

Output (probability)
Top1: \n (65.3%)
Top2: helmets (26.4%)
Top3: , (2.0%)

Input (cosine sim)
Top1: Status (0.094)
Top2: _status (0.091)
Top3: Wrapped (0.086)

Output (probability)
Top1: \n (96.7%)
Top2: helmet (1.6%)
Top3: hat (0.5%)

Input (cosine sim)
Top1: Tiffany (0.103)
Top2: regulated (0.091)
Top3:  xfff (0.090)

Output (probability)
Top1: shirts (57.0%)
Top2: shirt (14.6%)
Top3: uniforms (10.2%)

Input (cosine sim)
Top1: Turkish (0.087)
Top2: colm (0.085)
Top3:  \u79df\u91d1 (0.082)

Output (probability)
Top1: \n (81.4%)
Top2: guitar (3.6%)
Top3: guitars (2.8%)

Figure 4: Detailed version of Figure 1, showing the raw Top-3 input and output words, alongside their
cosine similarity or output probabilities. Non-alphabetic characters are displayed in their unicode
representations, and we highlight semantically relevant words in yellow.

C.2 ADDITIONAL OUTPUT LOGIT VISUALIZATIONS

Figures 5 and 6 illustrate the translation of visual tokens at the output of the LLM when using
Qwen-2.5-3B and -7B as the base LLM, respectively. For both figures, we display the top-3
words and their probabilities for both LLaViT and the baseline, and highlight semantically relevant
words in yellow.

We notice some striking differences when comparing LLaViT with the baseline on both the 3B and
7B LLMs. First, the baseline model often predicts the newline token (‘\n’) with high probability,
which is an artifact of the training data where the newline token always follows the last image token.
This effect seems to be largely mitigated in LLaViT. Second, while the baseline model is correctly
translate visual tokens to semantically related words (e.g., “seat”, “scooter”, “railing”, “post” in
Figure 5 and “pens”, “logo”, “tag”, “car”, “tire” in Figure 6), LLaViT exhibits a higher level of
fine-grained detail. Some examples of are:

• The specific type of object: “oranges”, “tank”, “lamp”, “metal” (Figure 5) and “label”,
“rack”, “roof” (Figure 6).
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• Relative position of objects: “side” and “rear” in both Figures.
• Text within the image: “pay” (Figure 5) and “Guiness” (Figure 6).
• Objects not identified by the baseline model: “fruits”, “leash” (Figure 5) and “string”,

“rack” (Figure 6).

This demonstrates a stronger alignment of vision and text when the LLM can simultaneously serve as
an extended vision encoder, as in LLaViT.

1
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1 2

3 4

3B Baseline
Top1: and (44.2%)
Top2: \n (37.8%)
Top3: , (7.2%)

3B LLaViT
Top1: fruits (23.2%)
Top2: fruit (11.9%)
Top3: oranges (10.3%)

3B Baseline
Top1: \n (47.9%)
Top2: scooter (24.9%)
Top3: and (8.5%)

3B LLaViT
Top1: side (18.7%)
Top2: rear (8.4%)
Top3: tank (6.3%)

3B Baseline
Top1: seat (24.8%)
Top2: \n (20.9%)
Top3: and (9.5%)

3B LLaViT
Top1: leash (9.5%)
Top2: chain (6.3%)
Top3: bell (4.5%)

3B Baseline
Top1: \n (78.4%)
Top2: , (17.0%)
Top3: with (1.6%)

3B LLaViT
Top1: eyes (33.8%)
Top2: white (12.8%)
Top3: , (9.0%)

5 6

7 8

3B Baseline
Top1: \n (77.1%)
Top2: here (2.8%)
Top3: to (2.8%)

3B LLaViT
Top1: pay (49.0%)
Top2: Pay (14.7%)
Top3:  (7.0%)

3B Baseline
Top1: \n (94.9%)
Top2: and (1.2%)
Top3: post (0.7%)

3B LLaViT
Top1: lamp (20.6%)
Top2: street (13.9%)
Top3: statue (10.7%)

3B Baseline
Top1: \n (98.6%)
Top2: and (0.2%)
Top3: railing (0.1%)

3B LLaViT
Top1: metal (44.4%)
Top2: bars (16.1%)
Top3: hand (6.9%)

3B Baseline
Top1: \n (99.6%)
Top2: .\n (0.1%)
Top3: on (0.0%)

3B LLaViT
Top1: gr (29.1%)
Top2: drain (7.1%)
Top3: pattern (5.7%)

Figure 5: Visualizing the output of visual tokens, comparing the baseline and LLaViT using
Qwen2.5-3B as the base LLM. We visualize the top-3 outputs for each model alongside the output
probabilities, and highlight semantically relevant words in yellow.
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1
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3 4

7B Baseline
Top1: , (63.7%)
Top2: and (11.0%)
Top3: pens (4.9%)

7B LLaViT
Top1: pen (12.7%)
Top2: container (8.2%)
Top3: squeeze (6.9%)

7B Baseline
Top1: \n (67.6%)
Top2: on (5.3%)
Top3: logo (2.5%)

7B LLaViT
Top1: Guinness (11.6%)
Top2: Beer (6.4%)
Top3: Stout (3.9%)

7B Baseline
Top1: \n (58.3%)
Top2: , (17.5%)
Top3: and (0.4%)

7B LLaViT
Top1: string (27.8%)
Top2: strings (22.9%)
Top3: cord (7.0%)

7B Baseline
Top1: tag (32.5%)
Top2: \n (32.0%)
Top3: and (16.4%)

7B LLaViT
Top1: tag (27.6%)
Top2: label (11.8%)
Top3: sticker (6.5%)

5 6

7 8

7B Baseline
Top1: \n (87.2%)
Top2: , (7.7%)
Top3: car (0.4%)

7B LLaViT
Top1: motorcycle (20.4%)
Top2: bike (9.2%)
Top3: rear (7.5%)

7B Baseline
Top1: \n (40.1%)
Top2: and (23.2%)
Top3: , (8.7%)

7B LLaViT
Top1: legs (44.7%)
Top2: gir (4.8%)
Top3: long (3.0%)

7B Baseline
Top1: , (62.6%)
Top2: and (10.2%)
Top3: tire (6.7%)

7B LLaViT
Top1: and (18.7%)
Top2: rear (18.3%)
Top3: tires (8.2%)

7B Baseline
Top1: \n (60.3%)
Top2: on (13.9%)
Top3: , (11.8%)

7B LLaViT
Top1: rack (31.0%)
Top2: roof (26.3%)
Top3: luggage (5.2%)

3

Figure 6: Visualizing the output of visual tokens, comparing the baseline and LLaViT using
Qwen2.5-7B as the base LLM. We visualize the top-3 outputs for each model alongside the output
probabilities, and highlight semantically relevant words in yellow.
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D RELATED WORKS

Vision Language Models. Vision language models (VLMs) have evolved rapidly, enabling a wide
range of tasks such as zero-shot image classification Radford et al. (2021); Zhai et al. (2023), image
captioning Li et al. (2022); Xu et al. (2016); Karpathy & Fei-Fei (2015), open-world detection Liu
et al. (2023b); Minderer et al. (2022), and even multimodal search Vo et al. (2019); Chen & Bazzani
(2020); Lee et al. (2021); Zhu et al. (2024). More recently, multimodal large language models
(MLLMs) architectures Dai et al. (2023); Liu et al. (2023a; 2024) have emerged as a prominent type
of VLMs, leveraging the power and versatility of LLMs.

Improving LLaVA. Following the success of LLaVA Liu et al. (2023a; 2024), many works have
aimed to improve the LLaVA architecture from various perspectives. Firstly, many previous works
train more capable and versatile vision encoders Chen et al. (2024a); Ranzinger et al. (2024); Wang
et al. (2024) that improve performance by enhancing the visual features fed into the LLM. For
example, AM-RADIO Ranzinger et al. (2024) leverage multi-teacher distillation to create a single
vision foundation model that inherits the capabilities of all teacher models, and Qwen2.5-VL proposes
a new vision transformer that can process images efficiently at native and dynamic resolutions, which
allows the MLLM to better process images of high-resolution and irregular aspect ratios. Other
works focus on improving the vision-language projector design. For example, Honeybee Cha et al.
(2024) proposes the D-Abstractor which leverages deformable attention Zhu et al. (2020) to reduce
the number of visual tokens while preserving locality, and Cambrian-1 Tong et al. (2024a) proposes
a spatial vision aggregator that aggregates features from multiple vision encoders. Another line of
work focuses on improving the quality of multimodal instruction data. PixMo Deitke et al. (2024)
introduces a collection of datasets that include high-quality human annotated captions, pointing
and counting datasets, as well as some synthetic datasets that can be used to train more capable
MLLMs. In addition, ShareGPT4V Chen et al. (2024b) and LVIS-INSTRUCT4V Wang et al. (2023a)
collect high-quality vision-language datasets by carefully prompting and curating responses from
GPT-4V OpenAI (2023).

Compared to the previous works to improve LLaVA-like MLLMs, we introduce a new paradigm
for MLLM architecture design where the LLM itself serves as an extension of the vision encoder,
rather than just a language model. The three key modifications we introduced are a carefully selected
combination designed to validate this new paradigm. While these components may have appeared
in isolation in other contexts with different goals Yao et al. (2024); Wang et al. (2023b), their
combination and integration within our framework serves a novel purpose: to progressively enrich
visual representations inside the LLM. The strong and consistent improvements across 17 benchmarks,
as well as the qualitative improvements shown in Figures 3, 5, and 6, demonstrate the effectiveness of
this new architectural design. We believe that this paradigm of "the LLM as a visual encoder" opens
up a promising avenue for future research. By extending the visual processing into the LLM, we can
leverage the powerful architectural innovations from both vision and language model research, and
hope that our work will inspire the community to explore this direction further.

E LIMITATIONS

A limitation of LLaViT is that it incurs a slight increase in model parameters by learning separate
QKV projections for visual tokens. However, as discussed in Section A, the benefits outweigh the
cost, since adding these parameters provides enough performance gain to even outperform models
with double the size. From a different perspective, this approach means a smaller base LLM can be
utilized to achieve the same level of performance, making the modest parameter increase a worthwhile
investment.

19


	Introduction
	Background and Motivation
	Review of LLaVA
	MLLMs Translate Visual Tokens to Text
	Importance of Visual Attention in MLLMs

	LLaViT: Extending the Vision Transformer to the LLM
	Learning Separate QKV Projections for Visual Tokens
	Bidirectional Attention
	Local and Global Features

	Experiments
	Experimental setting
	Results on Standard-Res
	Results on Any-Res
	Ablations
	Qualitative Results

	Conclusion
	Memory and Compute Efficiency of LLaViT
	Memory
	Compute

	Additional Results and Full Tables
	Additional Qualitative Results
	Detailed Version of Figure 1
	Additional Output Logit Visualizations

	Related Works
	Limitations

