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FROM FRAGILE TO CERTIFIED: WASSERSTEIN AUDITS
OF GROUP FAIRNESS UNDER DISTRIBUTION SHIFT

ABSTRACT

Group-fairness metrics (e.g., equalized odds) can vary sharply across resamples
and are especially brittle under distribution shift, undermining reliable audits. We
propose a Wasserstein distributionally robust framework that certifies worst-case
group fairness over a ball of plausible test distributions centered at the empirical law.
Our formulation unifies common group fairness notions via a generic conditional-
probability functional and defines ε-Wasserstein Distributional Fairness (ε-WDF)
as the audit target. Leveraging strong duality, we derive tractable reformulations and
an efficient estimator (DRUNE) for ε-WDF. We prove feasibility and consistency
and establish finite-sample certification guarantees for auditing fairness, along with
quantitative bounds under smoothness and margin conditions. Across standard
benchmarks and classifiers, ε-WDF delivers stable fairness assessments under
distribution shift, providing a principled basis for auditing and certifying group
fairness beyond observational data.

1 INTRODUCTION

Group–fairness metrics such as statistical parity and equalized odds are widely used to assess
algorithmic equity, yet they are highly sensitive to small perturbations in the training data Besse
et al. (2018); Barrainkua et al. (2023); Cooper et al. (2024) (Fig. 1). Even mild changes in dataset
composition or train–test splits can cause large swings in measured fairness Friedler et al. (2019);
Du & Wu (2021), eroding trust in reported guarantees Ji et al. (2020). Because distributions drift in
practice, fairness measured on a single empirical sample is unreliable.

To obtain trustworthy assessments, distributionally robust optimization (DRO) evaluates worst-case
fairness over a set of plausible distributions (e.g., a Wasserstein ball), rather than only the observed
data. This guards against distribution shift and promotes models whose fairness and accuracy remain
stable when test data diverge from the training set Rahimian & Mehrotra (2022); Lin et al. (2022);
Montesuma et al. (2025).

Demographic Parity Equal Opportunity Equalized Odds

0.0 0.2 0.4 0.6 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.4 0.5

ACS Income
Adult Census

Bank Marketing
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Law School

MEPS

Figure 1: Sensitivity of group fairness. Red (Sample–Train–Measure): repeatedly subsample 1,000 points
(10,000 reps), retrain, recompute fairness. Blue (Fixed-Model–Sample–Measure): train once per dataset, then
repeatedly resample 1,000 points to recompute fairness. Large variability across datasets reveals fragility to
sampling and measurement instability.

Given observational data tzi “ pxi,ai,yiquNi“1 with features xi P X , sensitive attribute ai P A, label
yi P t0,1u, and a parametric binary classifier hθ :X Ñ t0,1u, let PN denote the empirical distribution
and P the population distribution. A fairness–disparity functional FpP,θq measures deviation from
a chosen criterion (e.g., demographic parity, equalized odds) under P; for tolerance ε ě 0, we say
hθ is ε-fair on P if |FpP,θq| ď ε (If F is vector-valued, use } ¨ }8.). In finite samples, FpPN ,θq

can vary markedly with the particular observations included (Fig. 1), undermining the reliability of
fairness assessments. The challenge intensifies under a distribution shift, where fairness judged on
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PN may not reflect the population distribution, so we must certify fairness from the empirical law
alone. To mitigate this sample dependence, we seek classifiers whose fairness holds not only on PN

but uniformly over an ambiguity set of plausible test distributions.
When designing an ambiguity set for DRO, two choices are paramount: (i) the nominal distribution

and a realism-preserving uncertainty set around it; and (ii) computational tractability, i.e., whether
optimization over that set admits efficient reformulations and algorithms. A principled way to encode
nearby distributions is to use metric balls in probability space. While f -divergence balls are popular
for analytic convenience, they ignore the geometry of the sample space and can fail under support
mismatch. To respect geometry and remain meaningful with disjoint supports, we adopt optimal
transport and measure distributional proximity with the Wasserstein distance Villani et al. (2009) of
distributions P,Q on Z and q P r1,8q with ground cost c : Z ˆZ Ñ Rě0:

WqpP,Qq :“ inf
πPPpZˆZq: rπs1“P, rπs2“Q

´

Epz,z1q„π

“

cpz,z1qq
‰

¯1{q

,

where PpZ ˆZq is set of all probability distributions on Z ˆZ , rπs1, rπs2 are marginal distribution
on the first and second coordinate. In real applications, the data-generating distribution drifts in ways
that are hard to characterize. To guard against such shifts, we treat the nominal law P˚ (in case
distribution shift P˚ ‰ P) as any distribution within a Wasserstein distance δ of the population law P
and define the ambiguity set BδpPq :“ tQ : WqpP,Qq ď δu, and posit P˚ P BδpPq.

To handle distributional uncertainty in empirical fairness evaluation FpP˚,θq, we adopt a worst-case
quantity of ε-fairness (formalized as ε-Wasserstein Distributional Fairness or ε-WDF in §3):

sup
QPBδpPq

ˇ

ˇFpQ,θq
ˇ

ˇ ď ε, (1)

This certifies that the worst-case fairness disparity within a geometrically plausible neighborhood of
P does not exceed ε. Enforcing Eq. 1 during learning is challenging: the constraint quantifies over an
infinite-dimensional set of distributions, necessitating dual or surrogate reformulations for tractability.
Moreover, standard DRO analyses typically assume Lipschitz or smooth objectives, whereas common
group-fairness metrics are indicator-based and discontinuous, so off-the-shelf bounds do not apply.
A further difficulty is observability: we cannot access the population ball BδpPq and only have its
empirical proxy BδpPN q; thus, we must certify the fairness of the nominal law P˚ from samples, via
finite-sample guarantees that relate BδpPN q.

In the out-of-sample problem, we only observe the empirical law PN , so the computable certificate
is supQPBδpPN q

ˇ

ˇFpQ,θq
ˇ

ˇ. The central question is how to calibrate δ (as a function of N ) so that
this empirical worst-case upper-bounds the population’s worst-case FpP,θq (with high probability),
thereby certifying fairness for the population law.

In this work, we tackle these issues with a general framework not tied to a single fairness notion. It
covers disparities expressed as differences of conditional probabilities, P

`

hθpXq “ y | g1pA,Yq “

0; g2pA,Yq ě 0
˘

, under trusted labels and sensitive attributes. For this class, we characterize the
DRO worst-case, obtain an explicit regularizer with an efficient algorithm, and upper and lower
bounds. In the out-of-sample case, we establish finite-sample certification. Our main contributions
are:
• Definition and guarantees. Introduce ε-Wasserstein distributional fairness (Def. 1) and prove

feasibility (Prop. 1) and consistency (Prop. 2) of robust fair learning problem (Eq. 6).
• Tractable reformulation. Derive a computable formulation of ε-WDF and the associated DRO

regularizers (Thm. 1, Thm. 2), and present an efficient algorithm to compute ε-WDF (Alg. 1).
• Finite-sample certification. To mitigate out-of-sample problem, Provide finite-sample guarantees

for auditing fairness(Thm. 4, Prop. 5).
• Quantitative bounds. Under smoothness of the decision boundary and data density, establish

upper and lower bounds on ε-WDF (Prop. 6, Thm. 5, Thm. 6).
Additional theoretical results appear in the appendix.

1.1 RELATED WORK

Several recent works use DRO to enhance fairness beyond the training set, either by optimizing
fairness metrics over plausible distributions or by integrating optimal transport into fair learning.
DRO has been applied to classification with fairness constraints, such as in support-vector classifiers
and logistic regression using Wasserstein ambiguity sets and equal-opportunity constraints Wang
et al. (2024b; 2021); Taskesen et al. (2020). Recent approaches also enforce fairness across perturbed
datasets Ferry et al. (2023), extend worst-case group fairness Yang et al. (2023); Casas et al. (2024);
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Hu & Chen (2024); Miroshnikov et al. (2022), and explore alternative uncertainty sets Baharlouei &
Razaviyayn (2023); Zhang et al. (2024); Rezaei et al. (2021); Zhi et al. (2025). A complementary
line mitigates bias and noise via sample selection or reweighting, often with minimax optimization
over f -divergence sets Du & Wu (2021); Roh et al. (2021); Wang et al. (2024a); Abernethy et al.
(2020); Xiong et al. (2024); Hashimoto et al. (2018); Xiong et al. (2025); Jung et al. (2023). Other
methods promote fairness by minimizing the Wasserstein distance between outputs across sensitive
groups Jiang et al. (2020); Silvia et al. (2020); Chzhen et al. (2020), or by projecting to the closest
group-independent distribution under the Wasserstein metric Si et al. (2021); Taskesen et al. (2021);
Xue et al. (2020); Lin et al. (2024).

2 BACKGROUND AND FOUNDATIONS

Data Model. Let Z “ pX,A,Yq be a random vector on pX ,A,Yq with joint distribution P. We
assume feature space X Ă Rd, binary labels Y P t0,1u and discrete sensitive attribute A P t1, . . . ,ku.
The classifier hθ : X Ñ Y is deterministic, trained without using A, and has parameter θ P Θ Ă RK .
Fairness Notions. Many group-fairness metrics (e.g., equalized odds) are defined as the difference
between a classifier’s conditional expectations over specific, disjoint subsets of AˆY . Formally, let
␣

Si
0

(

iPI and
␣

Si
1

(

iPI be disjoint subsets of AˆY with positive measure, indexed by a finite set of I
of size m. A classifier hθ satisfies the ε-fairness if it meets all m constraints:
ˇ

ˇP
`

hθpXq | Si
0

˘

´P
`

hθpXq | Si
1

˘
ˇ

ˇ ď ε or

ˇ

ˇ

ˇ

ˇ

ˇ

E
z„P

«

hθpxq

˜

1Si
0
pa,yq

EPr1Si
0
s

´
1Si

1
pa,yq

EPr1Si
1
s

¸ff
ˇ

ˇ

ˇ

ˇ

ˇ

ď ε, @i P I,

where 1S denotes the indicator of set S, and ε is a tolerance for deviations from perfect fairness. To
compactly encode m fairness constraints, introduce the random vector UpA,Yq P t0,1u2m with:

Upa,yq “ p1S1
0
pa,yq, ...,1Sm

0
pa,yq,1S1

1
pa,yq, ...,1Sm

1
pa,yqq

We can then view the fairness constraints in terms of the value hθpXq, the vector U, and ErUs.
Specifically, define a function φ : R2m ˆR2m Ñ Rm by:

φipU,µq “
Ui

µi
´
Ui`m

µi`m
, whereµ“ ErU s, @i P rms. (2)

Then all constraints collapse into the generic notion of group fairness FpP,θq Si et al. (2021); Kim
et al. (2022):

FpP,θq :“ EP
“

hθpXqφpU,EPrUsq
‰

. (3)
So hθ is ε-fair if it meets all m constraints, }FpP,θq}8 ď ε where }x}8 “ max1ďiďm

ˇ

ˇxi
ˇ

ˇ.
Example 1 (Equalized Odds). Let us consider the sensitive attribute is binary (e.g., gender). A
classifier satisfies equalized odds if its true positive and false positive rates agree across A P t0,1u:

ˇ

ˇPphθpXq “ 1 | Y “ 1,A “ 0q ´PphθpXq “ 1 | Y “ 1,A “ 1q
ˇ

ˇ ď ε,
ˇ

ˇPphθpXq “ 1 | Y “ 0,A “ 0q ´PphθpXq “ 1 | Y “ 0,A “ 1q
ˇ

ˇ ď ε.

Define S1
a “ tz :Y “ 0,A “ au and S2

a “ tz :Y “ 1,A “ au for a P t0,1u. Then
ˇ

ˇEP
“

hθpXqp
1
S1
0

pa,yq

PpS1
0q

´
1
S1
1

pa,yq

PpS1
1q

q
‰
ˇ

ˇ ď ε and
ˇ

ˇEP
“

hθpXqp
1
S2
0

pa,yq

PpS2
0q

´
1
S2
1

pa,yq

PpS2
1q

q
‰
ˇ

ˇ ď ε.

Let Upa,yq “ p1S1
0
pa,yq,1S2

0
pa,yq,1S1

1
pa,yq,1S2

1
pa,yqq. By Eq. 2,

φpU,EPrUsq “

´

1
S1
0

pa,yq

EPr1
S1
0

s
´

1
S1
1

pa,yq

EPr1
S1
1

s
,
1
S2
0

pa,yq

EPr1
S2
0

s
´

1
S2
1

pa,yq

EPr1
S2
1

s

¯

.

Hence equalized odds is }EPrhθpXqφpU,EPrUsq s}8 ď ε (for another example, see Example 2).

Strong Duality Theorem. The DRO framework is particularly powerful when we can efficiently
characterize the worst-case scenario. Given a function ψ : Z Ñ R, its worst-case expectation over an
ambiguity set is defined as supQPBδpPqEx„Qrψpxqs, where this quantity depends on the ambiguity
radius δ and the reference probability distribution P. A central tool for evaluating worst-case is
the strong duality Theorem Gao et al. (2017); Mohajerin Esfahani & Kuhn (2018b); Blanchet &
Murthy (2019). This theorem transforms the original hard optimization problem into a tractable,
finite-dimensional one. Specifically, for any q P r1,8s, it states:

sup
QPBδpPq

Ez„Qrψpzqs “

#

infλě0 tλδq `Ez„Prψλpzqsu 1 ď q ă 8,

Ez„P

”

supz1:cpz,z1qďδψpz1q

ı

q “ 8,
(4)

where ψλpzq :“ supz1PZ tψpz1q ´λcqpz,z1qu.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Remark 1 (Robust Optimization). When we take q “ 8, the Wasserstein ball BδpPq enforces
that every outcome z can be perturbed by at most a distance δ. Consequently, the DRO objective
supQPBδpPqEQrψpzqs collapses to the classic robust-optimization form EP

”

supcpz,z1qďδψpz1q

ı

.

3 DISTRIBUTIONALLY ROBUST UNFAIRNESS QUANTIFICATION

In fairness-aware classifier learning, the training procedure is modified to promote equitable predic-
tions with respect to protected attributes by incorporating fairness constraints into the optimization
objective. The resulting training task is formulated as the following constrained optimization problem:

inf
θPΘ

EPN rℓphθpXq,Yqs s.t. }EPN rhθpXqφpU,EPN rUsqs}8 ď ε (5)

Here, ℓ : RˆY Ñ R is the loss function measuring prediction error. However, traditional fairness-
aware learning assumes the training distribution perfectly represents the test environment, which is
often violated due to sampling bias, covariate shift, or adversarial perturbations. To address this issue,
a distributionally robust fair optimization problem is formulated as:

inf
θPΘ

"

sup
QPBδpPN q

EQ rℓphθpXq,Yqs

*

s.t. sup
QPBδpPN q

"

∥EQ rhθpXqφpU,EQrUsqs∥
8

*

ď ε. (6)

This formulation guarantees that the model hθ minimizes the worst-case fairness violation over all
plausible distributions, thereby certifying fairness under shifts within a Wasserstein ball around PN .
Definition 1 (ε-Wasserstein Distributional Fairness). A classifier hθ is called ε-Wasserstein
distributionally fair (ε-WDF) with respect to some fairness notion that is quantified by Eq. 3 if

sup
QPBδpPN q

"

}EQ rhθpXqφpU,EQrUsqs}8

*

ď ε. (7)

Before presenting our main result, we begin by outlining the necessary assumptions.
Assumption.

(i) Classifier: The family thθuθPΘ is insensitive to A and given by smooth score function gθ:

hθpxq “ I
`

gθpxq ě 0
˘

, gθ P CpX q with neural network head, Θ “ tθ P RK : ∥θ∥ ďRu.

(ii) Gradient Lower Bound: Dδ0 ą 0 such that inf θPΘ
xPX :|gθpxq|ďδ0

}∇xgθpxq}q˚ ą 0.

(iii) Bounded Density: Let Lθ “ tx : gθpxq “ 0u and dpx,Lθq distance x to Lθ then:

limsup
δÓ0

sup
θ:Lθ‰H

P
`

0 ď dpX,Lθq ă δ
˘

δ
ă 8.

(iv) Cost Function: Let d be a metric on X ˆX . Then, the metric c on Z ˆZ is defined as:

c
`

px,a,yq,px1,a1,y1q
˘

“ dpx,x1q ` 8Ipa‰ a1q ` 8Ipy ‰ y1q.

Here q˚ are conjugate exponents (1{q˚ ` 1{q “ 1). These assumptions are standard and mild in
algorithmic fairness. (i) is standard and covers many classifier families, including linear/GLM, SVM,
kernel, and neural networks with continuous activations. (ii) The uniform gradient lower bound
ensures the decision boundary remains non-degenerate, aiding robustness and sensitivity analyses.
(iii) The bounded-density condition prevents the distribution from concentrating excessive mass in an
arbitrarily thin boundary layer. (iv) The cost metric assigns infinite cost to changes in the sensitive
attribute or label—reflecting absolute trust in their values, as in previous works Taskesen et al. (2020);
Wang et al. (2024b); Si et al. (2021).
Remark 2. Our method applies with or without the sensitive attribute in the classifier. Excluding A
is not fairness through unawareness; it reflects legal/policy limits (e.g., GDPR special-category data,
U.S. Title VII), so we analyze the A-excluded (A-blind) setting.

The applicability of problem 6 rests on two key properties: (i) Feasibility—for any tolerance level ε,
a non-trivial robust classifier exists; and (ii) Consistency—as the perturbation budget vanishes (δÑ 0),
the robust minimizer converges to the solution of the classical fairness problem. The following two
propositions formalize these properties.
Proposition 1 (Feasibility). By Assumption (i), for any ε P R`, there exists almost sure (with
probability 1) a non-trivial classifier (hθpxq ı constant) that is feasible for the problem 6.

4
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Proposition 2 (Consistency). Let ℓ be a loss satisfying, for every θ P Θ, the map x ÞÑ ℓ
`

hθpxq,y
˘

is
uniformly L-Lipschitz with respect to the cost d (e.g. Hinge loss). If there exists some θ0 P Θ such that
}FpPN ,θ0q}8 ă ε, then any optimal solution θ˚

δ of the robust problem 6 converges to the minimizer
θ˚ of the classical problem 5 as δ Ñ 0.

To characterize the form of ε-WDF, we begin by examining how our assumptions define the
ambiguity set. The following proposition demonstrates the precise impact of these assumptions on its
structure.
Proposition 3 (Shape of Ambiguity Set). Let P P PpZq be a nominal distribution, and Assump-
tion (iv) holds. Then the Wasserstein ambiguity set can be written as:

BδpPq “

!

Q P PpZq :QA,Y “ PA,Y and
ÿ

pa,yqPAˆY

PA,Ypa,yqW q
q

`

Qa,y,Pa,y

˘

ď δq
)

,

where PA,Y and QA,Y are the marginals on AˆY under P and Q, respectively, Pa,y and Qa,y

denote the conditional laws of X given pA “ a,Y “ yq, and Wq

`

Qa,y,Pa,y

˘

is the q-Wasserstein
distance between these conditionals, measured with cost d.

Proposition 3 implies that for any Q satisfying WqpQ,Pq ď δ, the pA,Yq-marginal distribu-
tion matches P. Consequently, EQrUs “ EPrUs remains constant. This allows us to simplify
EQ

“

hθpXqφpU,EQrUsq
‰

into a function dependent solely on pX,Uq. Since U is fully determined
by pA,Yq, we can express the fairness notion as a score fairness function f : Z Ñ Rm, defined by:

fpzq :“ hθpxqφ
`

Upa,yq,EPrUs
˘

. (8)

To derive the ε-WDF constraint Eq. 7, we introduce for each i P rms two upward and downward
Wasserstein regularizers:

Si
δ,qpP,θq :“ sup

QPBδpPq

EQ rfipZqs ´EP rfipZqs , Ii
δ,qpP,θq :“ EP rfipZqs ´ inf

QPBδpPq
EQ rfipZqs .

These quantify, respectively, the maximum upward and downward deviations of the fairness score
relative to the nominal distribution over all Q in the Wasserstein ball. Let us define Sδ,qpP,θq “

pSi
δ,qpP,θqqmi“1 and, similarly, Iδ,qpP,θq, and denote the non-robust fairness measure by FpP,θq “

EPrfpZqs. Under the assumptions of the following proposition, the classifier hθ satisfies ε-WDF.
Proposition 4 (ε-WDF Condition). Let ĺ denote component-wise comparison. The classifier hθ
satisfies the ε-WDF condition if and only if

Sδ,qpP,θq `FpP,θq ĺ ε and Iδ,qpP,θq ´FpP,θq ĺ ε (9)

Proposition 4 states that for each i, we need to have Si
δ,qpP,θq ` FipP,θq ď ε and Ii

δ,qpP,θq ´

FipP,θq ď ε. Henceforth, for simplicity, we assume that the number of fairness constraints in Eq. 2
is equal to 1, and we have only two disjoint sets, S0 and S1, and the score fairness function:

fpzq “ hθpxq

´

1
p0
1S0pa,yq ´ 1

p1
1S1pa,yq

¯

(10)

where p0 “ PpS0q and p1 “ PpS1q. Before presenting the next results, we need to establish notation.
The classifier hθpxq divides the feature space X into two subspaces: X - :“ tx P X : hθpxq “ 0u and
X + :“ tx P X : hθpxq “ 1u (denoted by ˘ to avoid confusion with S0 and S1). The distance from a
point x P X to these subspaces is defined as d-pxq :“ infx1PX - dpx1,xq and d+pxq :“ infx1PX+ dpx1,xq.
Let P0p.q :“ Pp. | S0q and P1p.q :“ Pp. | S1q represent the conditional distributions given S0 and S1.
For s P p0,8q and i P t0,1u, the conditional probability distribution of the distance to the decision
boundary for each level of sensitive attributes is given by:

G-
ipsq “ Pipd-pxq ď s | d-pxq ą 0q; G+

ipsq “ Pipd+pxq ď s | d+pxq ą 0q, i P t0,1u.

The following theorem presents the first result on the fairness regularizer in the ε-WDF setting.
Theorem 1 (ε-WDF Regularizer: q “ 8). Given that Assumptions (i), (iii), and (iv) hold, and the
fairness score function is defined as in Eq. 10, the corresponding regularizer for q “ 8 is given by:

Sδ,8pP,θq “ P0pX -qG+
0pδq `P1pX +qG-

1pδq; Iδ,8pP,θq “ P0pX +qG-
0pδq `P1pX -qG+

1pδq (11)

By Thm. 1, when q “ 8 worst-case perturbations move any point by at most δ, so violations are
governed by the probability mass within a δ-neighborhood of the decision boundary. We thus simplify
(11) by upper-bounding these probabilities with the measure of this δ-margin band in the following.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Corollary 1 (Simplified ε-WDF Condition). Let distpx,Sq “ infx1PS dpx,x1q (distance d from
Assumption (iv)). Under Assumptions of Thm. 1, hθ satisfies ε-WDF if:

1

minpPpS0q,PpS1qq
PpdistpX,Lθq ă δq ` |FpP,θq| ď ε. (12)

Corollary 1 demonstrates that when the minority constitutes a small percentage of the population,
achieving ε-WDF becomes significantly more challenging. To conclude this section, we present the
regularizers for q ‰ 8.
Theorem 2 (ε-WDF Regularizer: q ‰ 8). With Theorem 1 assumptions, for q P r1,8q we have:

Sδ,q “ inf
λě0

"

λδq `P0pX -q

ż s0

0

p1´ p0λs
qq dG+

0psq `P1pX +q

ż s1

0

p1´ p1λs
qq dG-

1psq

*

(13)

Iδ,q “ sup
λě0

"

´λδq `P0pX +q

ż s0

0

p1´ p0λs
qq dG-

0psq `P1pX -q

ż s1

0

p1´ p1λs
qq dG+

1psq

*

(14)

where s0 “ pp0λq´1{q,s1 “ pp1λq´1{q .

4 FINITE-SAMPLE ESTIMATION OF FAIRNESS REGULARIZER

In this section, our goal is to estimate the upward/downward regularizers Sδ,qpPN ,θq and Iδ,qpPN ,θq

using N observations. We begin by presenting an efficient algorithm for estimating the fairness
regularizer.
Theorem 3 (Fairness Regularizer Linear Programs). Let the assumptions of Theorem 1 hold,
p̂0 “ PN pS0q, p̂1 “ PN pS1q and the coefficients pωi,diq and pG+, pG- be defined as:

pωi,diq “

$

&

%

pp̂´1
0 ,d+pxiqq if zi P X - ˆS0,

pp̂´1
1 ,d-pxiqq if zi P X + ˆS1,

p0,`8q otherwise

$

’

&

’

%

pG+pδq “ p̂´1
0

1

N
#tzi P X - ˆS0 : d+pxiq ď δu

pG-pδq “ p̂´1
1

1

N
#tzi P X + ˆS1 : d-pxiq ď δu

Then, the unfairness score is given by the following linear program:

Sδ,qpPN ,θq “

$

’

’

&

’

’

%

maxξPr0,1sN

$

&

%

1

N

ÿ

iPrNs

ωiξi :
1

N

ÿ

iPrNs

dqi ξi ď δq

,

.

-

q P r1,8q

pG+pδq ` pG-pδq q “ 8.

(15)

To derive Iδ,qpPN ,θq, swap the indices 0 and 1 in the coefficients and expressions given above.

Theorem 3 indicates that evaluating the quantity Sδ,qpPN ,θq is equivalent to solving a continuous
knapsack problem Papadimitriou & Steiglitz (1998) inN variables. This optimization problem admits
a greedy solution that runs in OpN logNq time. The main challenge, however, lies in computing
the distance from a point to the classifier’s decision boundary under the ℓq norm. To compute the
projection x˚ of an arbitrary point x onto the boundary Lθ, one must solve the system of equations:
"

gθpyq “ 0,

Gqpx´ yq ˆ∇gθpyq “ 0
ðñ F py,λq “

ˆ

Gqpx´ yq `λ∇gθpyq

gθpyq

˙

“ 0, py,λq P Rd ˆR

where Gqpvq :“ p|v1|q´2v1, . . . , |vn|q´2vnqJ. For a small number of closest-point queries, Newton-
like projection methods Saye (2014) are effective. When N is large, the Fast Sweeping method Wong
& Leung (2016), which has linear complexity in the grid size (OpNgridq), becomes more efficient.
Alternatively, one may solve the static Eikonal PDE }∇ψpxq}q˚ “ 1, ψ|ϕ“0 “ 0.

The Newton-KKT scheme thus scales linearly with the number of points, has the same Opd3q

per-point algebraic cost as the Euclidean solver, and retains rapid quadratic convergence-making it
attractive for scenarios requiring only a handful of closest-point computations. By integrating the
Newton-KKT method for distance computation with the greedy knapsack algorithm for worst-case
selection, we achieve an efficient Algorithm 1 for computing the fairness regularizer. An alternative
version of the DRUNE algorithm that incorporates the Fast Sweeping method appears in Algorithm 2.

In practice, fairness audits and training rely on finite samples. We must therefore ensure that the
empirical Wasserstein-robust fairness we compute is not a sampling artifact but a valid certificate for
the unknown deployment distribution. Building on universal generalization results for ε-WDF (e.g.,

6
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Algorithm 1 Distributionally Robust Unfairness Estimator (DRUNE)

Require: tpxi,ai,yiquNi“1, gθ, δ ą 0, tolerances εy,εg , Kmax, tωiu, q ą 1, init. pyp0q,λp0qq

Ensure: tξiu Ă r0,1s solving max 1
N

ř

ωiξi s.t.
1
N

ř

dqi ξi ď δq

1: Stage 1: Compute di “ distqpxi,Lθq via Newton–KKT
2: for i“ 1, . . . ,N do
3: Initialize k Ð 0, pyi,λiq Ð py

p0q

i ,λ
p0q

i q

4: while k ăKmax and p}δy} ě εy _ |rg| ě εgq do
5: v Ð xi ´ yi, ry ÐGqpvq `λi∇gθpyiq, rg Ð gθpyiq

6: Wq Ð diagppq´ 1q|vj |q´2q, J Ð

„

´Wq `λi∇2gθ ∇gθ
∇gJ

θ 0

ȷ

7: Solve Jrδy;δλs “ ´rry;rgs

8: Update yi `“ δy, λi `“ δλ, k `“ 1
9: end while

10: Set di Ð }xi ´ yi}q
11: end for
12: Stage 2: Greedy fractional knapsack on items with cost ci “ dqi , value ωi

13: C ÐNδq, ξi Ð 0, ri Ð ωi{ci, tpkqu Ð sort desc. r
14: for k “ 1, . . . ,N while C ą 0 do
15: if cpkq ď C then
16: ξpkq Ð 1, C Ð C ´ cpkq

17: else
18: ξpkq Ð C{cpkq, C Ð 0
19: end if
20: end for
21: return tξiu, 1

N

ř

iωiξi

Le & Malick (2024)), the next theorem provides a finite-sample guarantee: with high probability
over the draw of the data, the worst-case fairness estimated from the sample upper-bounds the
true worst-case disparity under shifts within an ε-Wasserstein ball. Before stating it, we define the
distance-to-boundary expectations constant ρ0 under the true probability as follows:

ρ0 :“ inf
θPΘ

tEx„P0
rdq+pxqs `Ex„P1

rdq- pxqsu (16)

Theorem 4 (Finite Sample Guarantee for ε-WDF under Distribution Shift). Given that Assump-
tions (i)- (iv) hold, and the fairness score function is defined as in Eq. 10. Suppose ρ0 ą 0. Then
there exists a constants α and β depending on accuracy level σ, the dimension K and diameter D of
the parameter space, such that whenever N ą maxp

16pα`βq
2

ρ2
0

, α
2

δ2 q, we have, with probability at least
1´σ, the uniform lower bound:

sup
QPBδpPN q

Ez„Q rfpzqs ě Ez„P rfpzqs for all θ P Θ.

Before using ε-WDF in audits, generalization alone (Thm.4) is not enough, so we must also calibrate
how conservative the empirical worst-case estimate is. The next proposition quantifies the excess
fairness of ε-WDF—how much larger the empirical worst-case disparity can be than its population
counterpart—and links this gap to sample size and the Wasserstein radius, yielding a practical
calibration rule.
Proposition 5 (Excess Fairness for ε-WDF). Under the assumptions of Theorem 4, let α be as

defined there, and let ρ0 ą 0 and δ ă ρ0{4. If N ą max

ˆ

16α2

ρ2
0
,

α2

pρ0{4´ δq2

˙

, then with probability

at least 1´σ,

sup
QPBδpPN q

Ez„Q rfpzqs ď sup
QPBδ`α{

?
N pPq

Ez„Q rfpzqs for all θ P Θ.

Equivalently, take δN “ δ`α{
?
N to upper-bound the population worst-case by the empirical one.

7
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5 FIRST-ORDER ESTIMATION OF FAIRNESS REGULARIZER

In Section 3, we observed that the effectiveness of the fairness regularizer hinges critically on the
function G˘

i . In this section, we ask: if we impose assumptions on the support and derivatives of G˘

i ,
can we derive sharper bounds? Before proceeding, we introduce the necessary definitions.
The worst-case behavior depends on the distance between supppPq XX ˘ and the boundary of Lθ.

More precisely, we define the margin. s˘

i “ infts ą 0 : G˘

i psq ą 0u, i P t0,1u, which represents
the minimal distance between supppPq XX ˘ and the boundary of Lθ. Under Assumption (iii), the
derivative of G˘

i is well-defined for s0 P p0,8q:

g˘

i ps0q :“
1

PipX ˘q
lim
sÓs0

Pips0 ď d¯pXq ď sq

s´ s0
, i P t0,1u

Since Theorem 1 gives a closed-form for the fairness regularizer at q “ 8, we focus on q P r1,8q.
The following proposition shows that, under a positive margin, the regularizer scales as Opδqq.
Proposition 6 (Positive Margin). Let λ˚ be the solution of the optimization problem 13. With
Assumptions (i)- (iv) and for q P r1,8q, if there exists s+

0,s
-
1 ą 0 then we have:

λ˚δq ď Sδ,qpP,θq ď
δq

minpp0s+
0
q,p1s-

1
qq
, λ˚δq ď Iδ,qpP,θq ď

δq

minpp1s-
0
q,p0s+

1
qq
,

The lower bound in Proposition 6 depends on λ˚, so estimating λ˚ requires additional assumptions.

Assumption. There exists a constant υ ą 0 such that for each i P t0,1u, the functions G˘
i are

differentiable on s P r0,υs withG˘
i psq ą 0 and their derivatives g˘

i satisfy the Li-Lipschitz condition:
ˇ

ˇg˘
i ps1q ´ g˘

i ps2q
ˇ

ˇ ď Li |s1 ´ s2| ,@s1,s2 P r0,υs (v)

Any probability distribution P whose density lies in C0,1pRdq that has both continuity and a global
Lipschitz-like property like a Gaussian distribution satisfies Assumption v. Under this assumption,
we derive a lower bound for the fairness regularizer. The analogous expression for Iδ,qpP,θq follows
by swapping the index i and is therefore omitted.
Theorem 5 (Positive Margin and Lipschitz). With assumptions of proposition 6 and (v), there exists
a positive constant δ0 that dependent on pP, qq such that for any δ ă δ0:

Sδ,qpP,θq ě
δq

minpp0s+
0
q,p1s-

1
qq

´
2qδ2q

minpp0s+
0
2q`1g-

0ps+
0qP0pX -q,p1ps-

1q2q`1g+
1ps-

1qP1pX +qq
.

With positive margins, the boundary is buffered, so small Wasserstein shifts can only touch a
thin shell near it—making the worst-case unfairness grow like δq with only a tiny δ2q correction
from boundary-density slopes. By contrast, when margins vanish, the buffer disappears and even
infinitesimal shifts move mass across the boundary, yielding a slower δ

q
q`1 growth; Theorem 6

formalizes this with a two-term lower bound.
Theorem 6 (Zero Margin and Lipschitz). Let q P r1,8q. Suppose s+

0,s
-
1 “ 0, and Assumptions

(i)-(v) hold. There exists constants δ0,C depending on pP, qq such that for any δ ă δ0,

Sδ,qpP,θq ě pq` 1q
1

q`1

ˆ

P0pX -qg+
0p0qp0

´ 1
q `P1pX +qg-

1p0qp1
´ 1

q

˙

q
q`1

δ
q

q`1 ´Cδ
2q
q`1

where C “ ζ
´

P1pX +qL0p0
´ 2

q `P0pX -qL1p1
´ 2

q

¯´

P0pX -qg+
0p0qp0

´ 1
q `P1pX +qg-

1p0qp1
´ 1

q

¯

´2
q`1

and ζ “ 2
2´q
q q

pq`2q
pq` 1q

2
q`1 .

6 NUMERICAL STUDIES

We empirically evaluate our framework on eight real-world datasets and four classifier families (details
in Appx. C, Tables 1-2). Our primary objective is to assess the out-of-sample sensitivity of fairness
metrics to distributional shifts and model choices. To demonstrate the widespread fragility of common
fairness notions, we use the following benchmarks: Adult (U.S. Census income prediction) Asuncion
& Newman (1996), ACS Income (American Community Survey) U.S. Census Bureau (2023), Bank
Marketing Moro et al. (2014), Heritage Health (insurance claims) Prize (2014), MEPS (Medical
Expenditure Panel Survey) Agency for Healthcare Research and Quality (AHRQ) (2024), HELOC
(home equity line of credit applications) Mae (2023), CelebA (celebrity face attributes) Liu et al.
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Figure 2: (a) Density plot comparing empirical and worst-case fairness estimates ( pfδ) against true fairness values
across 10,000 SVM models (δ “ 0.01, q “ 2). (b) Fairness regularizer Sδ,q approaching zero as uncertainty
parameter δ decreases. (c) Direct visualization of the gap between worst-case fairness and true fairness values.

(2015), and Law School Admissions Law School Admission Council (2002). Binary sensitive-
attribute and label definitions for each dataset appear in Appx. C (Table 1).

We encode each dataset with a binary sensitive attribute (e.g., gender, race, age group) and a binary
target, train diverse classifiers (logistic regression; linear/nonlinear SVM; MLP), and assess group
fairness via Demographic Parity, Equal Opportunity, and Equalized Odds (hyperparameters and
settings in Appx. C, Tables 2–3).

Experiment 1: sampling fragility. Each trial uses subsamples of size 1,000 and is repeated 10,000
times. Scenario 1: we draw 1,000-point subsamples, fit a classifier on each, and compute fairness
metrics (red band in Fig. 1). Scenario 2: we train a single classifier once, then repeatedly sample
1,000 points and recompute the metrics (blue band in Fig. 1). Fairness measures are highly sensitive
to the input sample, with large variability on datasets such as HELOC. Complete results are in Fig. 4
(Scenario 1) and Fig. 5 (Scenario 2); numeric summaries appear in Appx. C.

Experiment 2: empirical vs. worst-case vs. true. On HELOC, we repeat the following 10,000
times: draw 1,000 samples, train an SVM, set δ “ 0.01 and q “ 2, then compute (i) empirical
fairness EPN rfpZqs, (ii) true fairness EPrfpZqs (operationalized by evaluating under P on the full
dataset), and (iii) worst-case fairness supQPBδpPN qEQrfpZqs via the DRUNE Algorithm 1. Fig. 2(a)
plots true fairness (x-axis) against empirical and worst-case estimates (y-axis); consistent with our
theoretical guarantees, worst-case fairness typically exceeds true fairness with high probability.
Fig. 2(c) visualizes the gap as worst-case ´ true. Fig. 2(b) shows Sδ,qpPN ,θq Ñ 0 as δ Ñ 0.

7 DISCUSSION

We introduced ε-WDF, which certifies worst-case group fairness over a Wasserstein ball centered at
the empirical distribution PN . When a classifier satisfies the ε-WDF constraint on PN , our theory
shows that certificate transfers to the true distribution P up to a small radius inflation δ ÞÑ δ`α{

?
N

(Thm. 4; Prop. 5), and the worst-case bound dominates the non-robust fairness measured at P.
Our goal was not to design a new fair-learning algorithm, but to quantify a robust fairness constraint

that can be plugged into existing pipelines. In practice, our DRUNE estimator (Alg. 1) computes the
ε-WDF regularizer efficiently and can be used for audits or as a constraint during training.
Although our theoretical framework is presented for binary classifiers, it is flexible and can be

extended to multi-class settings. While some research addresses the challenge of non-continuity in
fairness notions using relaxation techniques such as softmax, we avoid these approaches because they
alter the original definition of fairness. Finally, the theoretical estimation in Section 5 suggests that
improving the finite-sample rate is possible, which we leave as a direction for future work.
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A THEORETICAL SUPPLEMENT

This section provides supplementary results, illustrative examples, and extended explanations that
could not be incorporated into the main text due to space limitations.

A.1 GENERIC NOTION OF FAIRNESS

The general group fairness formulation in Eq. 3 encompasses a wide range of fairness metrics by
appropriately specifying the sets Si

0,S
i
1 and the corresponding transformation φp¨, ¨q. To illustrate the

flexibility and generality of this framework, we present two concrete examples—demographic parity
and equalized odds—and show how each can be expressed as a special case of Eq. 3 with suitable
choices of sets and mappings.
Example 2 (Demographic Parity). A classifier satisfies demographic parity if its positive prediction
rate is equal across all sensitive groups A P t1, . . . ,ku:

ˇ

ˇPphθpXq “ 1 | A “ aq ´PphθpXq “ 1 | A “ bq
ˇ

ˇ ď ε for all a,b P t1, . . . ,ku.

Define
Sa “ tz P Z :A “ au, a“ 1, . . . ,k.

Then, each pairwise constraint can be written as
›

›

›
Ez„P

”

hθpxq

´

1Sa pa,yq

PpSaq
´

1Sb
pa,yq

PpSbq

¯ı
›

›

›

8
ď ε, a,b P t1, . . . ,ku.

Let
Upa,yq “ p1S1pa,yq,1S2pa,yq, . . . ,1Sk

pa,yqq P Rk.

By Eq. 2, choose the kpk´ 1q{2-dimensional vector

φpU,EPrUsq “

´

1Si
pa,yq

EPr1Si
s

´
1Sj

pa,yq

EPr1Sj
s

¯

i,jPrks: iăj
.

Hence, demographic parity is equivalent
›

›EP
“

hθpXqφpU,EPrUsq
‰
›

›

8
ď ε.

A.2 DUAL FORMULATION OF WASSERSTEIN DISTRIBUTIONAL FAIRNESS.
To obtain a tractable formulation of ε-WDF, it is necessary to adapt the strong duality theorem to the
specific cost function described in Assumption (iv). The following proposition provides the explicit
formulation of strong duality tailored to our setting.
Proposition 7 (Strong Duality Theorem). Let ψ be upper semi-continuous ψ : Z Ñ R and assump-
tion (iv) satisfies, then

sup
QPBδpPq

"

E
z„Q

rψpzqs

*

“

$

’

’

&

’

’

%

infλě0

!

λδq ` E
z„P

rsupx1PX ψpx1,a,yq ´λdqpx,x1qs

)

q P r1,8q,

E
z„P

«

sup
x1:dpx,x1qďδ

fpx1,a,yq

ff

q “ 8.

In DRO, the notion of the worst-case distribution is fundamental, as it identifies the most adverse
distribution within a prescribed ambiguity set—often defined by a divergence or Wasserstein dis-
tance—from the empirical data. Optimizing over this worst-case distribution ensures that the solution
is robust to distributional uncertainty and potential data shifts. Importantly, the structure of the
worst-case distribution often admits a closed-form or tractable representation, which facilitates both
theoretical analysis and efficient computation. The following proposition characterizes the explicit
form of the worst-case distribution in our setting.
Proposition 8 (Worst-Case Distribution). Suppose the assumption (iv) satisfies and ψ is upper
semi-continuous on Z and satisfies:

inf

"

λě 0 : E
z„P

„

sup
x1PX

tψpx1,a,yq ´λdqpx1,xqu

ȷ

ă 8

*

ă 8. (17)

If λ˚ is the minimum solution of proposition 7 then, a worst-case distribution P˚ exists, given by:
i. For q “ 8, there is a P-measurable map T˚ : Z Ñ Z such that

T˚px,a,yq P

"

px̃,a,yq : x̃ P argmax
x1PX

tψpx1,a,yq : dpx1,xq ď δu

*

P-a.e.

Then the worst-case distribution is obtained by P˚ “ T˚
#P.
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ii. For q P r1,8q and λ˚ “ 0, there is a P-measurable map T˚ satisfying

T˚px,a,yq P

"

px̃,a,yq : x̃ P argmin
x1PX

"

dpx,x1q : x1 P argmax
x̃PX

ψpx̃,a,yq

**

, P-a.e.

In this case worst-case distribution is P˚ “ T˚
#P.

iii. For q P r1,8q and λ˚ ą 0, there are P-measurable maps T˚ and T - such that

T˚px,a,yq P

"

px̃,a,yq : x̃ P argmax
x1PX

"

dpx,x1q : x1 P argmax
x̃PX

ψpx̃,a,yq ´λ˚dqpx̃,xq

**

,

T -px,a,yq P

"

px̃,a,yq : x̃ P argmin
x1PX

"

dpx,x1q : x1 P argmax
x̃PX

ψpx̃,a,yq ´λ˚dqpx̃,xq

**

.

Define t˚ as the largest number in r0,1s such that:
δq “ t˚ E

z„P
rdqpT˚pxq,xqs ` p1´ t˚q E

z„P
rdqpT -pxq,xqs .

Then, P˚ “ t˚T˚
#P` p1´ t˚qT -

#P is a worst-case distribution.

Now we are ready to apply the proposition 8 to the formulation of fairness 3. Let λ˚ be the solution
of optimization problems in Theorem 2. To describe the worst-case distribution, let us define the
boundary and region sets for each i P t0,1u (see Fig. 3 for geometric intuition):

R+
i :“

#

x P X + : 0 ă d-pxq ď ppiλ
˚q

´1
q q P r1,8q,

x P X + : 0 ă d-pxq ď δ q “ 8.

R-
i :“

#

x P X - : 0 ă d+pxq ď ppiλ
˚q

´1
q q P r1,8q,

x P X - : 0 ă d+pxq ď δ q “ 8.

B+
i :“

#

x P X + : d-pxq “ ppiλ
˚q

´1
q , q P r1,8q,

H, q “ 8.

B-
i :“

#

x P X - : d+pxq “ ppiλ
˚q

´1
q , q P r1,8q,

H, q “ 8.

In the cases λ˚ “ 0, we can set ppiλ
˚q

´1
q “ 8 in above formulation. Let us define two set-valued

maps T ˚,T - : Z Ñ Z as:

T ˚px,a,yq “

"

pT ˚
0 pxq,a,yq pa,yq P S0

pT ˚
1 pxq,a,yq pa,yq P S1

; T -px,a,yq “

"

pT -
0 pxq,a,yq pa,yq P S0

pT -
1 pxq,a,yq pa,yq P S1

where:

T ˚
0 pxq “

$

’

’

&

’

’

%

x, x P X zR-
0,

arg min
x1PX+

dpx,x1q, x P R-
0zB-

0,

xY arg min
x1PX+

dpx,x1q, x P B-
0,

,

T ˚
1 pxq “

$

’

’

&

’

’

%

x, x P X zR+
1,

arg min
x1PX - dpx,x1q, x P R+

1zB+
1,

xY arg min
x1PX - dpx,x1q, x P B+

1,

T -
0 pxq “

#

x, x P X zR-
0 Y B-

0,

arg min
x1PX+

dpx,x1q, x P R-
0zB-

0.
,

T -
1 pxq “

#

x, x P X zR+
1 Y B+

1,

arg min
x1PX - dpx,x1q, x P R+

1zB+
1.

Then it follows from Proposition 8, there exist P-measurable transport maps T˚,T - : Z Ñ Z that are
measurable selections of T ˚ and T -, respectively.
Theorem 7 (Worst-Case Distribution). Given that Assumptions (i) and (iv) hold, and the fairness
score function is defined as in Eq. 10, then:
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Figure 3: Illustration of the boundary and region sets R+
i and R-

i defined in Eq. 3, corresponding to the worst-
case distribution described in Proposition 8. The shaded regions indicate the sets of points within the distance
threshold, while the boundaries B

+
i and B

-
i (for q P r1,8s) are shown as level sets of the distance functions.

(i) When q “ 8 and when q P r1,8q with a dual optimizer λ˚ “ 0, let T˚ be a measurable selection
of T ˚. Then P˚ :“ T˚

#P is a worst-case distribution with probability

P˚pX - | S0q “ PpX -zR-
0 | S0q; P˚pX + | S1q “ PpX +zR+

1 | S1q

(ii) When q P r1,8q and all dual optimizers λ˚ ą 0, any worst-case transport plan π˚ P PpZ ˆZq

satisfies:
δq “ E

pz,z1q„π˚

“

dqpz,z1q
‰

and if Z˚ “ R+
0 ˆS0

Ť

R-
1 ˆS1 then:

tpz,T -pzqq : z P Z˚u Ď supppπ˚q Ď tpz,T ˚pzqq : z P Z˚u.

Moreover, there exist t˚ P r0,1s and measurable selections T˚ of T ˚ and T - of T - such that

P˚ :“ t˚T˚
#P` p1´ t˚qT -

#P
is a worst-case distribution with probability

P˚pX - | S0q “ PpX -zR-
0 | S0q ` p1´ t˚qPpB-

0 | S0q

P˚pX + | S1q “ PpX +zR+
1 | S1q ` p1´ t˚qPpB+

1 | S1q

By applying the Theorem 7 we can calculate the fairness regularizers Si
δ,qpP,θq and Ii

δ,qpP,θq.

Proposition 9. With assumption of Theorem 7, there exists t˚ P r0,1s such that:

Sδ,qpP,θq “P0pR-
0zB-

0q ` p1´ t˚qP0pB-
0q `P1pR+

1zB+
1q ` p1´ t˚qP1pB+

1q

Iδ,qpP,θq “P1pR-
1zB-

1q ` p1´ t˚qP1pB-
1q `P0pR+

0zB+
0q ` p1´ t˚qP0pB+

0q

Proposition 9 is more general than Theorem 1. In this proposition, we do not require Assumption (iii);
therefore, the probability distribution P may be concentrated on the margins.

To build intuition for the definitions above and to illustrate how distances to the decision boundary,
as well as their conditional distributions, can be computed in practice, we present two representa-
tive examples. These examples—one for a linear classifier and one for a nonlinear kernel classi-
fier—demonstrate how the relevant quantities, such as d-pxq, d+pxq, and the conditional CDFs G-

ipsq
and G+

ipsq, can be explicitly derived or efficiently approximated in common settings.
Example 3 (Linear Classifier). In the ℓq feature-space cost, consider the linear SVM, hθpxq “

IpwJx` bě 0q, where }w}q˚ ą 0 and q,q˚ are conjugate exponents (1{q˚ `1{q“ 1). The distances
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to the decision boundary are

d-pxq “
1

∥w∥q˚

I
`

wJx` bą 0
˘
ˇ

ˇwJx` b
ˇ

ˇ , d+pxq “
1

∥w∥q˚

I
`

wJx` bă 0
˘
ˇ

ˇwJx` b
ˇ

ˇ

If we have explicit formulation fo conditional distribution, P0 „ N pµ0,Σ0q, then

G-
0psq “ P

˜

0 ă
wJX` b

∥w∥q˚

ă s

¸

“ φ

¨

˚

˚

˝

s´
wJµ0`b
∥w∥q˚

c

wJΣ0w
∥w∥2

q˚

˛

‹

‹

‚

´φ

¨

˚

˚

˝

´

wJµ0`b
∥w∥q˚

c

wJΣ0w
∥w∥2

q˚

˛

‹

‹

‚

where φp¨q is the CDF of the standard normal distribution. Similarly, we can calculate another
G˘

i psq by the same derivation.
Example 4 (RBF Kernel Classifier). In the ℓ2 feature-space cost, consider an RBF-kernel SVM
with decision function

gθpxq “

N
ÿ

i“1

αi yi exp
`

´γ}x´xi}
2
2

˘

` b, hθpxq “ I
`

gθpxq ě 0
˘

.

The exact distance from x to the nonlinear boundary Lθ “ tx : gθpxq “ 0u is intractable, but a
first-order approximation follows from a local linearisation of gθ:

d-pxq «
Ipgθpxq ą 0q |gθpxq|

}∇xgθpxq}2
, d+pxq «

Ipgθpxq ă 0q |gθpxq|

}∇xgθpxq}2
,

where the gradient has the closed form

∇xgθpxq “ ´2γ
N
ÿ

i“1

αi yi exp
`

´γ}x´xi}
2
2

˘

px´xiq.

Because both gθpxq and ∇xgθpxq are explicit, the distance estimate is available in closed form.

A central issue in the dual formulation is to determine whether the optimal dual variable λ˚ vanishes.
The next proposition pinpoints the conditions under which λ˚ is strictly positive.
Proposition 10 (Optimal Dual Solution Behavior). Let δS and δI be the constants:

δS : “
`

p0EP0

“

p1´hθpxqqdq+pxq
‰

` p1EP1

“

hθpxqdq- pxq
‰˘

1
q ,

δI : “
`

p0EP0

“

hθpxqdq- pxq
‰

` p1EP1

“

p1´hθpxqqdq+pxq
‰˘

1
q .

Consider the optimization problem equation 13 with associated dual variable λ, then
• If δ ě δS , the optimal dual solution is λ˚ “ 0.
• If δ ă δS , the optimal dual solution satisfies λ˚ ą 0.
An entirely analogous statement holds for δI in problem equation 14.

A.3 REFORMULATION OF WASSERSTEIN DISTRIBUTIONAL FAIRNESS

The ε-WDF objective admits equivalent formulations via various conjugate representations. The next
proposition gives its characterization through the concave conjugate.
Theorem 8 (ε-WDF as Concave Conjugate). Let ΨS and ΨI denote the functions defined below:

ΨSptq :“ E
x„P

“

1X -pxqminpdq+pxq,p´1
0 tq `1X+ pxqminpdq- pxq,p´1

1 tq
‰

ΨIptq :“ E
x„P

“

p´1
0 1X -pxqminpp0d

q
- pxq, tq ` p´1

1 1X+ pxqminpp1d
q
+pxq, tq

‰

For any function Ψptq, define its concave conjugate by Ψ˚psq :“ inftą0tts´Ψptqu. Then hθ satisfies
ε-WDF if and only if:

Ψ˚
Sp1´ εq ě δq and Ψ˚

Ip1´ εq ě δq (18)

A.4 FINITE SAMPLE GUARANTEE FOR WASSERSTEIN DISTRIBUTIONAL FAIRNESS.
The concentration theorem in DRO provides probabilistic guarantees that the true data-generating
distribution lies within a Wasserstein ambiguity set constructed from empirical data. The Proposition
highlights the trade-off between robustness (via δ) and sample complexity, particularly in high-
dimensional settings.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Proposition 11 (Concentration of Empirical Measures). Let P P PpZq be compactly supported
and satisfy Assumption (iv), and define the product measure Pb “ PbPb . . . on ZN . Then for any
N ě 1 and confidence level 1´ ε with ε P p0,1q, there exists δ “ δpN,εq such that if:

δpN,εq ≲
`

N ln
`

Cε´1
˘˘´ 1

maxtd,2qu ùñ Pb
`

P P BppPN , δq
˘

ě 1´ ε, (19)
where C is a constant depending only on P and the metric dimension d.

Algorithm 2 DRUNE Algorithm with Sweeping Method

Require: tpxi,ai,yiquNi“1, gθ, δ ą 0, tolerances εϕ, Kmax, tωiu, q ě 1

Ensure: tξiu Ă r0,1s solving max
ξPr0,1sN

1

N

N
ÿ

i“1

ωiξis.t.
1

N

N
ÿ

i“1

dqi ξi ď δq

1: Stage 1: Fast Sweeping distance to the constraint set Lθ :“ tx | gθpxq “ 0u

2: Solve |∇ϕpxq| “ 1 with boundary ϕpxq “ 0 on Lθ

3: Construct a Cartesian grid G Ă Rd with spacing h
4: Initialize ϕpxq Ð 0 for x P Lθ (gθpxq “ 0); otherwise ϕpxq Ð 8

5: for k “ 1, . . . ,Kmax do
6: Eight sweeping orders in 2-D (or 2d in d-D)
7: for each sweep direction s“ 1, . . . ,2d do
8: for grid point x P G in order s do
9: Compute tentative value ϕ̃pxq by the upwind discretizations of |∇ϕ| “ 1

10: ϕpxq Ð min
`

ϕpxq, ϕ̃pxq
˘

11: end for
12: end for
13: if max

xPG

ˇ

ˇϕpkqpxq ´ϕpk´1qpxq
ˇ

ˇ ă εϕ then
14: break
15: end if
16: end for
17: for i“ 1, . . . ,N do
18: di Ð

ˇ

ˇϕ
`

xi
˘
ˇ

ˇ // (for general q one may apply }xi ´ y}q post-correction)
19: end for
20: Stage 2: Greedy fractional knapsack on items with cost ci “ dqi , value ωi

21: C ÐNδq , ξi Ð 0, ri Ð ωi{ci, tpkqu Ð sort desc. r
22: for k “ 1, . . . ,N while C ą 0 do
23: if cpkq ď C then
24: ξpkq Ð 1, C Ð C ´ cpkq

25: else
26: ξpkq Ð C{cpkq, C Ð 0
27: end if
28: end for
29: return tξiu, 1

N

řN
i“1ωiξi

To establish finite-sample guarantees for ε-WDF, we adopt two key theorems from Le et al. Le &
Malick (2024). Below, we present their assumptions and main results exactly as stated, as these form
the foundation for the proof of our Theorem 4. For clarity, we also briefly summarize the assumptions
underlying these theorems.
Assumption 1.
1. pX ,}.}qq is compact.
2. d is jointly continuous with respect to }.}q , non-negative, and

dpx,ζq “ 0 if and only if x“ ζ.

3. Every f P F is continuous and pF ,} ¨ }8q is compact. Furthermore, if N
`

t,X ,} ¨ }8

˘

denotes the
t-packing number of F , then Dudley’s entropy of F is defined by

IF :“

ż 8

0

a

logN pt,X ,} ¨ }8qdt,

is finite.
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The following constant, referred to as the critical radius ρcrit, is also introduced.

ρcrit :“ inf
fPF

Eξ„P

”

min
␣

cpξ,ζq : ζ P argmax
ζPZ

fpζq
(

ı

.

Theorem 9 (Generalization Guarantee for Wasserstein Robust Models Le & Malick (2024)). If
Assumption 1 holds and ρ0 ą 0, then there exists λlow ą 0 such that when N ą

16pα`βq
2

ρ2
crit

and δ ą α?
n

,
We have with probability at least 1´σ:

Rδ,PN pfq ě Ex„P
“

fpxq
‰

for all f P F ,
where α and β are the two constants

α “ 48
´

1` }F}8 ` 1
λlow

¯´

IF `
2}F}8

λlow

b

2log 4
σ

¯

, β “ 96IF
λlow

` 48 }F}8

λlow

b

2log 4
σ .

Proposition 12 (Excess Risk for Wasserstein Robust Models Le & Malick (2024)). Let α be given
by Theorem 9 Under Assumption 1, if ρcrit ą 0,

N ą
16α2

ρ2crit
and δ ď

ρcrit
4

´
α

?
n
,

then with probability at least 1´ δ,

Rδ,PN pfq ďRδ`α{
?
N,Ppfq for all f P F .

In particular, if c“ dp¨, ¨qp with p P r1,8q and every f P F is LipF–Lipschitz, then

Rδ,PN pfq ď Ez„P
“

fpzq
‰

`LipF

ˆ

δ`
α

?
N

˙1{p

.

We conclude this section with Algorithm 2, which blends a Fast-Sweeping level-set solver with a
fractional knapsack routine to produce the optimal fractional activation vector ξ P r0,1sN under an ℓq
budget constraint.

B PROOF

Proof of Proposition 1. First, we need to prove the following lemma:
Lemma 1 (Compact Approximation of Support). Let txiu

N
i“1 be a set of observations in a Polish

space X with proper metric, and consider the ambiguity set BδpPN q centered at the empirical
distribution PN with radius δ ą 0. Then, for any εą 0, there exists a compact set Kϵ Ď X , such that
for all measures Q P BδpPN q, we have QpX PKϵq ą 1´ ε.

Proof of Lemma 1. The empirical distribution PN assigns probability mass 1
N to each observation

xi. Let S “ tx1,x2, . . . ,xNu denote the support of PN , which is a finite set and thus compact due
to its finiteness in the metric space X . Let r ą 0 be a radius to be determined later, and define the
closed r-neighborhood of S as

Kr “

N
ď

i“1

Bpxi, rq,

where Bpxi, rq “ tx P X : dpx,xiq ď ru is the closed ball of radius r centered at xi. Since S is
finite and each Bpxi, rq is closed, their finite union Kr is closed. Additionally, each ball is bounded
(diameter at most 2r), and the finite union of bounded sets is bounded, so in a Polish space with a
proper metric, where closed and bounded subsets are compact, Kr is compact.

Our goal is to choose r ą 0 such that, for all Q P BδpPN q, QpX PK2rq ą 1´ ε. Since for BδpPN q

we have simple below equation:

BδpPN q “
␣

Q :Wq,dpQ,PN q ď δ
(

“
␣

Q :W1,dq pQ,PN q ď δq
(

,

where Wq,d means Wasserstein distance with power q and distance d. It result to find the properties
of Q we only need to check problem for q “ 1 and d1px1,x2q “ dqpx1,x2q, So for simplicity, we can
take q “ 1, which is standard for applying Kantorovich–Rubinstein duality Villani et al. (2009) which
states: The Kantorovich–Rubinstein duality states that this distance can equivalently be expressed as

W1pP,Qq “ sup
}f}Lď1

"
ż

X

fpxq dPpxq ´

ż

X

fpxq dQpxq

*

,
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where the supremum is taken over all functions f :X Ñ R with Lipschitz constant not exceeding 1.
Therefore, for any Q P BδpPN q and any non-negative, Lipschitz continuous function f : X Ñ R with
Lipschitz constant Lf , the Kantorovich–Rubinstein duality implies

ˇ

ˇ

ˇ

ˇ

ż

f dQ´

ż

f dPN

ˇ

ˇ

ˇ

ˇ

ď Lfδ
q.

Let us define the function fr : X Ñ r0,1s as

frpxq “

$

’

&

’

%

1, if x PKr,

1´
1

r
distqpx,Krq, if x RKr and distpx,Krq ď r,

0, if distpx,Krq ą r,

where distpx,Krq “ infyPKr
dpx,yq. The function fr is Lipschitz continuous with Lipschitz constant

Lfr “ 1
r , and serves as a non-negative, bounded approximation to the indicator of Kr.

Compute the expectation of fr under PN :
ż

frdPN “
1

N

N
ÿ

i“1

frpxiq “ 1,

since each xi P S Ď Kr by construction, so frpxiq “ 1 for all i. Using the inequality from Kan-
torovich–Rubinstein duality, we have

ż

frdQ ě

ż

frdPN ´Lfrδ
q “ 1´

δq

r
.

Since frpxq ď IK2r
pxq for all x, where IK2r

is the indicator function of K2r, it follows that

QpX PK2rq “

ż

IK2rdQ ě

ż

frdQ ě 1´
δq

r
.

To ensure that QpX PK2rq ą 1´ ε, choose r such that
δq

r
ă ε ùñ r ą

δq

ε
.

Then set Kϵ “ K2r depends on δ , and we have QpX P Kϵq ą 1 ´ ε. Since Kϵ is compact, this
establishes the existence of a compact set satisfying the required condition, completing the proof.

For each εą 0, by Lemma 1, there exists a compact set Kϵ such that for all Q P BδpPN q, we have
QpX P Kϵq ą 1´ ε. We show that there exists θ such that for it we have gθpxq ą 0,@x P Kϵ. By
assumption, gθ has a neural network header, so we can write the

gθpxq “ ρ
`

θJ
1 ϕθ2pxq ` θ0

˘

, θ “ pθ0,θ1,θ2q,

Where ρ is a continuous link function with domain in R, and ϕθ2 is a feature extractor, such as a kernel
map, or a neural network with parameters θ2. By assumption, ρ is a continuous function with respect to
x and θ. Then the inverse image ρ´1pp0,8qq is an open set (suppose ρ has positive in its domain). So
there exists an open interval pα,βq Ă ρ´1pp0,8qq Ă R`. Fix some θ2 such that ϕθ2pKϵq Ă ϕθ2pX q.
Since ϕθ2 is continuous function then ϕθ2pKϵq is compact, and bounded; therefore, we can find
parameters θ0 and θ1 such that θ1ϕθ2pKϵq ` θ0 Ă pα,βq and θ1ϕθ2pX q ` θ0 Ć pα,βq. It means for
all x PKϵ, there exist non-trivial parameters θ such that for all x„ Q P BδpPN q, we have hθpxq “ 1
with high probability 1´ ε and there exists x P X zKϵ such that hθpxq “ 0. By the definition of the
generic notion of fairness, it satisfies the group fairness. Since for each ϵ the equation has a solution,
the equation has a solution almost surely.

Proof of Proposition 2. To prove the proposition, it is sufficient to show that, as the Wasserstein
radius δ Ó 0, the distributionally–robust fair-learning problem

pDROqδ :“ min
θPΘ

Fδpθq s.t. Gδpθq ď ε,

where
Fδpθq :“ sup

QPBδpPN q

EQ rℓphθpXq,Yqs , Gδpθq :“ sup
QPBδpPN q

∥EQ rhθpXqφpU,EQ rUsqs∥
8
,

converges (value and minimizers) to the nominal fair-constrained problem pNRq “ pDROq0. We
need to prove the two lemmas below before discussing assertions.
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Lemma 2. By assumption (i), we have:

lim
δÑ0

Gδpθq “G0pθq

Proof. By assumption the classifier hθ for each θ P Θ, is upper-semicontinuous so the function
hθp¨qφpU,EQ rUsq also upper-semicontinuous and that for q ă 8 the following growth condition
holds:

Dx0 P X such that sup
θPΘ

limsup
dpx,x0qÑ8

phθpxqφpU,EQ rUsq ´hθpx0qφpU,EQ rUsqq
+

dpx,x0qq
ă 8,

Then by applying the proposition 1 of Gao et al. (2024) we can write
lim
δÑ0

sup
QPBδpPN q

EQ rhθpXqφpU,EQ rUsqs ´EPN rhθpXqφpU,EPN rUsqs “ 0

ùñ lim
δÑ0

Gδpθq “G0pθq (A)

Lemma 3. By assumptions (i) and (iii), the function G0pθq is continuous.

Proof. Since the G0pθq “ Ex„P0
rhθpxqs ´Ex„P1

rhθpxqs, then if we prove for arbitrary P By the
assumption, it suffices to show F pθq “ Ex„P rhθpxqs is continuous then the assertion is satisfied. Fix
θ P Θ and let tθnunPN Ă Θ with θn Ñ θ. Smoothness of g implies gθnpxq Ñ gθpxq for every x P Rd.
Define

∆npxq “ 1tgθn pxqě0u ´1tgθpxqě0u.

If gθpxq ‰ 0, the sign of gθnpxq eventually matches the sign of gθpxq, hence ∆npxq Ñ 0. The
exceptional set Aθ :“ tx : gθpxq “ 0u has probability 0 by Assumption (iii).

Because |∆npxq| ď 1 for all px,nq and p is integrable, The dominated convergence theorem yields
ˇ

ˇF pθnq ´F pθq
ˇ

ˇ “

ˇ

ˇ

ˇ

ż

Rd

∆npxqppxqdx
ˇ

ˇ

ˇ
ÝÑ 0.

Thus F pθnq Ñ F pθq, proving continuity of F on Θ.

By assumption, we know that the loss px,yq ÞÑ ℓphθpxq,yq is L Lipschitz in z and θ. For example,
we have score-based loss ℓpgθpXq,Y q, such as Hinge loss, which is Lipschitz. Since the Lipschitz
property is preserved by the average, the Fδpθq has Lipschitz and continuous too. By Kantorovich–
Rubinstein duality Villani et al. (2009) yields, for every θ P Θ,

|Fδpθq ´F0pθq| ď LW1pQ,PN q ď LWqpQ,PN q ď Lδ. (B)

By assumption, the bounds equation B are uniform in θ. The mapping δ ÞÑGδpθq is non-decreasing,
whence the feasible sets satisfy Spδq ĚSpδ1q for δă δ1 and the optimal values vpδq :“ infθPSpδqFδpθq

form a non-increasing sequence.
By assumption there exist strictly feasible θ0 P Θ with G0pθ0q ă ε. Let ρ “ ε´G0pθ0q ą 0. By

Lemma 2, there exist δ0 such that for δ ă δ0, we have Gδpθ0q ´G0pθ0q ă ρ, therefore we have
Gδpθ0q satisfies the fairness constraints and therefore Spδq is non-empty.

we show vpδq Ó vp0q as δ Ó 0. By proof by contradiction suppose there exist sequence tδku8
k“1 such

that δk Ñ 0 and for it there exist τ ą 0 such that for it vpδkq ě vp0q ` τ for all k. Let θ˚ be the
solution of vp0q. We assert without loss of generality that we can suppose for every small enough
ρ ą 0, there exists θ̂ P Bρpθ˚q such that for it we have G0pθ̂q ă ε. If G0pθ˚q ă ε, by continuity of
G0 by Lemma 3, there exist ρ0 such that for ρă ρ0 for all θ̂ PBρpθ˚q, we have G0pθ̂q ă ε.

So suppose that G0pθ˚q “ ε. Since P has a bounded density and gθ is smooth with non-degenerate
zeros, the classifier mapping θ ÞÑ hθ cannot be locally constant: whenever θ1 ‰ θ2, one has }hθ1 ´

hθ2}8 ą 0. It follows that G0 itself is not locally constant at θ˚. By the preceding argument, it
suffices to show that θ˚ cannot be a local maximum of G0. Since G0 is nowhere locally constant and
is differentiable except at a countable set of points, we can perturb ε by an arbitrarily small amount
to ensure that no local extremum of G0 lies exactly on the level set G0pθq “ ε. In practice, such an
infinitesimal adjustment of ε is always permitted.

Therefore for small enough ρ, there exists θ̂ such that G0pθ̂q ă ε. By continuity of F0, we can select
ρ such that for it we have

ˇ

ˇ

ˇ
F0pθ̂q ´F0pθ˚q

ˇ

ˇ

ˇ
ă τ{2.
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Such as θ0, there exist δ0 that if δk ă δ0, we have Gδpθ̂q ă ε, so we can write:

Fδkpθ̂q ě F0pθ˚q ` τ ą F0pθ̂q ` τ{2 ùñ

ˇ

ˇ

ˇ
Fδkpθ̂q ´F0pθ̂q

ˇ

ˇ

ˇ
ą τ{2 ùñ Lδk ą τ{2

So the last inequality is not valid for small δk; consequently, by contradiction, we show vpδq Ó vp0q.
Let θδ P argminpDROqδ and pick any sequence δk Ó 0 for which θδk Ñ θ˚ (compactness of Θ).

by continuity of Gδ at 0, together with Gδkpθδkq ď ε, gives G0pθ˚q ď ε, i.e. θ˚ is feasible for pNRq.
Using equation B and the value convergence,

F0pθ˚q “ lim
kÑ8

Fδkpθδkq “ lim
kÑ8

vpδkq “ vp0q,

so θ˚ is optimal for pNRq. Hence, every accumulation point of DRO minimizers lies in argminpNRq,
proving set convergence.

Proof of Proposition 3. By assumption (iv) the cost function c is defined as:
c
`

px,a,yq, px1,a1,y1q
˘

“ dpx,x1q ` 8 ¨ Ipa‰ a1q ` 8 ¨ Ipy ‰ y1q,

The cost function imposes a constraint that if the actions a and a1 are not equal or y and y1 are
not, the cost becomes infinite. This implies that in the Wasserstein distance computation between
distributions Q and P, the marginal distributions over actions A and labelsY must match exactly, i.e.,
QA,Y “ PA,Y.
Let P be a nominal probability distribution and consider the Wasserstein ambiguity set:

BδpPq “ tQ P PpX ˆAˆYq |WqpP,Qq ď δu .

By the Kantorovich–Rubinstein duality Villani et al., 2009, Theorem 1.14, the q-Wasserstein distance
between two probability distributions P and Q is given by:

W q
q pP,Qq “ sup

}f}Lipď1

ˆ
ż

XˆAˆY
fpx,a,yq dP´

ż

XˆAˆY
fpx,a,yq dQ

˙

,

where f is a 1-Lipschitz function respect to the cost function dq .
Now, applying this dual form of the Wasserstein distance to the distributions Qa,y and Pa,y, we

have:

sup
}f}Lipď1

ˆ
ż

XˆAˆY
fpx,a,yq dP´

ż

XˆAˆY
fpx,a,yq dQ

˙

“

sup
}f}Lipď1

ˆ
ż

AˆY

ż

X
fpx,a,yq dPa,ypxq dPA,Ypa,yq ´

ż

AˆY

ż

X
fpx,a,yq dQa,ypxq dQA,Ypa,yq

˙

“

sup
}f}Lipď1

ˆ

ÿ

pa,yqPAˆY

PA,Ypa,yq

ˆ
ż

X
fpx,a,yq dPa,ypxq ´

ż

X
fpx,a,yq dQa,ypxq

˙˙

“

ÿ

pa,yqPAˆY

PA,Ypa,yq

ˆ

sup
}fa,y}Lipď1

ˆ
ż

X
fa,ypxq dPa,ypxq ´

ż

X
fa,ypxq dQa,ypxq

˙˙

“

ÿ

pa,yqPAˆY

PA,Ypa,yqW q
q pQa,y,Pa,yq

where fa,ypxq “ fpx,a,yq. Since the total Wasserstein distance is bounded by δ, summing over all
pa,yq P AˆY , the ambiguity set BδpPq restricts the Wasserstein distances as:

ÿ

pa,yqPAˆY

PA,Ypa,yqW q
q pQa,y,Pa,yq ď δq

whereWq

`

Qa,y,Pa,y

˘

is the q-Wasserstein distance between these conditional distributions computed
with the cost d.

Proof of Proposition 4. By the definition 1, hθ satisfies the ε-WDF property, if

sup
QPBδpPN q

"

}EQ rhθpXqφpU,EQrUsqs}8

*

ď ε ðñ sup
QPBδpPN q

|EQ rhθpXqφipA,Yqs | ď ε,@i

ðñ sup
QPBδpPN q

EQ rhθpXqφipA,Yqs ď ε ^ inf
QPBδpPN q

EQ rhθpXqφipA,Yqs ě ´ε, @i

ðñ Si
δ,qpP,θq `FpP,θq ď ε ^ Ii

δ,qpP,θq ´FpP,θq ď ε, @i

ðñ maxpSδ,qpP,θqq `FpP,θq ă ε ^ maxpIδ,qpP,θqq ´FpP,θq ă ε
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The last equation completes the proof.

Proof of Theorem 1. Based on Proposition 7, we need to compute the mapping worst-case
fairness criteria that depends on computing ψ˚pzq “ supdpx1,xqďδψpx1,a,yq for the function ψpzq “

hθpxq
`

p´1
0 1S0

pa,yq ´ p´1
1 1S1

pa,yq
˘

. First, we need to compute the value of ψ under different
conditions. It is simply obtained by:

ψpzq “

$

’

’

&

’

’

%

0, px,a,yq P X - ˆS0,

0, px,a,yq P X - ˆS1,

p´1
0 , px,a,yq P X + ˆS0,

´p´1
1 , px,a,yq P X + ˆS1.

ùñ ψ˚pzq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

0, px,a,yq P X - ˆS0 ^ d+pxq ě δ,

p´1
0 , px,a,yq P X - ˆS0 ^ d+pxq ă δ,

0, px,a,yq P X - ˆS1,

p´1
0 , px,a,yq P X + ˆS0,

´p´1
1 , px,a,yq P X + ˆS1 ^ d-pxq ě δ,

0, px,a,yq P X + ˆS1 ^ d-pxq ă δ.

Therefore by subtracting ψ˚ by ψ we have:

pψ˚ ´ψqpzq “

$

&

%

p´1
0 , px,a,yq P X - ˆS0 ^ d+pxq ă δ,

p´1
1 , px,a,yq P X + ˆS1 ^ d-pxq ă δ,

0 otherwise.

Therefore, we have:

Sδ,8pP,θq “ sup
QPBδpPq

"

E
z„Q

rψpzqs

*

´ E
z„P

rψpzqs “ E
z„P

rpψ˚ ´ψqpzqs

“ p´1
0 Ppz : X - ˆS0 ^ d+pxq ă δq ` p´1

1 Ppz : X + ˆS1 ^ d-pxq ă δq

“ P0pX -qp´1
0 PpS0 ^ d+pxq ă δ | d+pxq ą 0q ` p´1

1 P1pX +qPpS1 ^ d-pxq ă δ | d-pxq ą 0q

“ P0pX -qG+
0pδq `P1pX +qG-

1pδq

If we define ψ˚pzq “ supdpx1,xqďδψpx1,a,yq, then we have:

pψ´ψ˚qpzq “

$

&

%

p´1
0 , px,a,yq P X + ˆS0 ^ d-pxq ă δ,

p´1
1 , px,a,yq P X - ˆS1 ^ d+pxq ă δ,

0 otherwise.

Then we have:
Iδ,8pP,θq “ E

z„P
rpψ˚ ´ψqpzqs “ P0pX +qG-

0pδq `P1pX -qG+
1pδq

The last completes the proof.

Proof of Corollary 1. The proof is obtained by applying Theorem 1. When we have:
P
`

x :distpx,Lθ

˘

ď δq

“ Ppd+pxq ď δ | d+pxq ą 0qPpd+pxq ą 0q `Ppd-pxq ď δ | d-pxq ą 0qPpd-pxq ą 0q

“p0P0pX -qG+
0pδq ` p1P1pX +qG-

1pδq ě minpp0,p1qSδ,8pP,θq

ùñ Sδ,8pP,θq ď
1

minpp0,p1q
P
`

x : distpx,Lθ

˘

ď δq

Similarly, it can be shown that:

Iδ,8pP,θq ď
1

minpp0,p1q
P
`

x : distpx,Lθq
˘

ď δq

By combining the two results, it is concluded that:
1

minpp0,p1q
P
`

x : distpx,Lθq
˘

ď δq ě maxpSδ,8pP,θq,Iδ,8pP,θqq

Now by applying the proposition 4, we can say hθ satisfies the ε-WDF property if:

|FpP,θq| `
1

minpp0,p1q
P
`

x : distpx,Lθq
˘

ď δq ď ε

The last equation completes the proof.
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Proof of Theorem 2. We want to compute the worst-case loss quantity. By strong duality formula
which has explained in Proposition 7, we have:

sup
QPBδpPq

"

E
z„Q

rψpzqs

*

“ inf
λě0

!

λδq ` E
z„P

rψλpx,a,yqs

)

where ψλpx,a,yq “ supx1PX ψpx1,a,yq ´λdqpx1,xq. We can write

ψλpzq “ sup
x1PX

hθpxq
`

p´1
0 1S0pa,yq ´ p´1

1 1S1pa,yq
˘

´λdqpx1,xq ùñ

ψλpzq “ sup
x1PX

$

&

%

p´1
0 1X+ px1q ´λdqpx,x1q px,a,yq P X + ˆS0

´p´1
1 1X+ px1q ´λdqpx,x1q px,a,yq P X + ˆS1

0 otherwise

Since we have
Sδ,qpP,θq “ inf

λě0

!

λδq ` E
z„P

rpψλ ´ψqpzqs

)

(A)

We want to calculate the function ψλ ´ψ. We split it into two cases: Case pa,yq P S0:

ψλpzq “ sup
x1PX

␣

p´1
0 1X+px1q ´λdqpx,x1q

(

“

$

&

%

p´1
0 x P X +

p´1
0 ´λdq+pxq x R X +,x1 P X +

0 x R X +,x1 R X +
ùñ

"

p´1
0 x P X +

maxp0,p´1
0 ´λdq+pxqq x R X +

Therefore for pa,yq P S0 we have pψλ ´ψqpzq “ maxp0,p´1
0 ´λdq+pxqq1X -pxq. Case pa,yq P S1:

sup
x1PX

␣

´p´1
1 1X+px1q ´λdqpx,x1q

(

“

$

&

%

´p´1
1 x P X +,x1 P X +

´λdq- pxq x P X +,x1 R X +

0 x P X -
ùñ

"

maxp´p´1
1 ,´λdq- pxqq x P X +

0 x R X +

So it results for for pa,yq P S1 we have pψλ ´ψqpzq “ maxp0,p´1
1 ´λdq- pxqq1X+ pxq. By collecting

both results, we have:

pψλ ´ψqpzq “

$

&

%

maxp0,p´1
0 ´λdq+pxqq, z P X - ˆS0,

maxp0,p´1
1 ´λdq- pxqq, z P X + ˆS1,

0, otherwise.

So we can calculate:

ψλpzq “

$

’

’

&

’

’

%

p´1
0 , z P X + ˆS0,

´p´1
1 `maxp0,p´1

1 ´λdq- pxqq, z P X + ˆS1,

maxp0,p´1
0 ´λdq+pxqq, z P X - ˆS0,

0, z P X - ˆS1.

(B)

By strong duality, the worst-case loss equals:

Sδ,qpP,θq “ inf
λě0

!

λδq ` E
z„P

rpψλ ´ψqpzqs

)

“

inf
λě0

!

λδq ` E
z„P

“

maxp0,p´1
0 ´λdq+pxqq1X -ˆS0

pzq `maxp0,p´1
1 ´λdq- pxqq1X+ˆS1

pzq
‰

)

“

inf
λě0

"

λδq ` E
x„P0

r1X -pxqp1´ p0λd
q
+pxqq

+
s ` E

x„P1

r1X+pxqp1´ p1λd
q
- pxqq

+
s

*

“

inf
λě0

#

λδq `P0pX -q

ż pp0λq
´1{q

0

p1´ p0λs
qq dG-

0psq `P1pX +q

ż pp1λq
´1{q

0

p1´ p1λs
qq dG+

1psq

+
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For Computing Iδ,qpP,θq the infimum we have:

Iδ,8pP,θq “ E
z„P

rψpzqs ´ inf
QPBδpPq

"

E
z„Q

rψpzqs

*

“ E
z„P

rψpzqs ` sup
QPBδpPq

"

E
z„Q

r´ψpzqs

*

“

E
z„P

rψpzqs ` inf
λě0

!

λδq ` E
z„P

rψ-
λpzqs

)

where ψ-
λpzq is dual conjugate of ´hθpxqrp´1

1 1X+ˆS1
pzq ´ p´1

0 1X -ˆS0pzqs. With similar reasoning
as in part one, we have the following:

pψ`ψ-
λqpzq “

$

&

%

maxp0,p´1
0 ´λdq- pxqq, z P X + ˆS0,

maxp0,p´1
1 ´λdq+pxqq, z P X - ˆS1,

0, otherwise.

By substituting the above function in the strong duality formula, we have

Iδ,qpP,θq “ inf
λě0

!

λδq ` E
z„P

rpψ`ψ-
λqpzqs

)

“

inf
λě0

"

λδq ` E
x„P0

r1X+ pxqp1´ p0λd
q
- pxqq

+
s ` E

x„P1

r1X -pxqp1´ p1λd
q
+pxqq

+
s

*

“

inf
λě0

#

λδq `P0pX +q

ż pp0λq
´1{q

0

p1´ p0λs
qq dG+

0psq `P1pX -q

ż pp1λq
´1{q

0

p1´ p1λs
qq dG-

1psq

+

The last equation completes the proof.

Proof of Theorem 3. To begin, we establish the case q P r1,8q. Central to our analysis is a
robust semi-infinite duality theorem, which forms the cornerstone of the subsequent proofs. To
this end, assume that ϕ : X ˆ A ˆ Y Ñ R is a Borel measurable loss function, and recall that
pay “ PN pA “ a,Y “ yq for all a P A and y P Y . So we have:

Strong Duality Theorem. If pay P p0,1q for all a P A and y P Y , and if δ ą 0, then the following
strong semi-infinite duality holds:

sup
QPBδpPN q

EQrϕpX,A,Y qs “ inf λδq `
ÿ

aPA

ÿ

yPY
payµay `

1

N

N
ÿ

i“1

νi

s.t. λ P R`, µ P R2ˆ2, ν P Rd

λdq
`

px1
i,a

1
i,y

1
iq,pxi,ai,yiq

˘

`µaiyi
` νi ě ϕpx1

i,a
1
i,y

1
iq

@px1
i,a

1
i,y

1
iq P X ˆAˆY,@i P rN s. (A)

The proof of the above theorem can be found in the references Blanchet & Murthy (2019); Gao et al.
(2017); Mohajerin Esfahani & Kuhn (2018a), so we omit it. By applying our cost assumption, the
formulation A converts to:

sup
QPBδpPN q

EQrϕpX,A,Y qs “ inf λδq `
1

N

N
ÿ

i“1

νi

s.t. λ P R`, ν P Rd

λdqpx1
i,xiq ` νi ě ϕpx1

i,ai,yiq

@x1
i P X ,@i P rN s. (B)

To compute Sδ,qpPN ,θq, we define the equation ϕ as follows:

ϕpx,a,yq “ hθpxq

ˆ

1S0
pa,yq

EPr1S0s
´
1S1

pa,yq

EPr1S1s

˙

“
1

p0
1X+ˆS0

px,a,yq ´
1

p1
1X+ˆS1

px,a,yq

To further simplify Eq. B, we reformulate the constraints on νi using Proposition 2 as follows:

νi ě sup
x1
iPX

␣

ϕpx1
i,ai,yiq ´λdqpx1

i,xiq
(

“

$

’

’

&

’

’

%

p´1
0 , z P X + ˆS0,

´p´1
1 `maxp0,p´1

1 ´λdq- pxiqq, z P X + ˆS1,

maxp0,p´1
0 ´λdq+pxiqq, z P X - ˆS0,

0, z P X - ˆS1.
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After putting these constraints in Eq. B, we have:

min λδq `
1

N

N
ÿ

i“1

νi

s.t. λ P R`, ν P Rd

νi ě p´1
0 if z P X + ˆS0

νi ě ´p´1
1 if z P X + ˆS1

νi `λdq- pxiq ě 0 if z P X + ˆS1

νi ě 0 if z P X - ˆS0

νi `λdq- pxiq ě p´1
0 if z P X - ˆS0

νi ě 0 if z P X - ˆS1

,

/

/

/

/

/

.

/

/

/

/

/

-

@i P rN s.

(C)

By defining the sets I+
1 “ ti P rN s : zi P X + ˆS1u and I-

0 “ ti P rN s : zi P X - ˆS0u, and subtracting
the FpPN ,θq from both side we simplified the equation as

Sδ,qpPN ,θq “ min λδq ` 1
N

ř

iPI+
1YI-

0

νi

s.t. λ P R`, ν P Rd

νi `λdq- pxiq ě p´1
1

νi ě 0

*

@i P I+
1

νi ě 0
νi `λdq- pxiq ě p´1

0

*

@i P I-
0.

Rewrite every inequality in the form “functionď 0” and attach a multiplier. For each i P I+
1:

g1ipλ,νq :“ p´1
1 ´ νi ´λdq- pxiq ď 0 ÐÑ γ1i ě 0,

g2ipνq :“ ´ νi ď 0 ÐÑ γ2i ě 0;

g3ipνq :“ ´ νi ď 0 ÐÑ γ3i ě 0,

g4ipλ,νq :“ p´1
0 ´ νi ´λdq- pxiq ď 0 ÐÑ γ4i ě 0.

Define d1i :“ d-pxiq,@i P I+
1 and d0i :“ d+pxiq,@i P I-

0 the Lagrangian is

Lpλ,ν,γq “λδq `
1

N

ÿ

i

νi `
ÿ

iPI+
1

γ1i
`

p´1
1 ´ νi ´λdq0i

˘

`
ÿ

iPI+
1

γ2ip´νiq

`
ÿ

iPI-
0

γ3ip´νiq `
ÿ

iPI-
0

γ4i
`

p´1
0 ´ νi ´λdq1i

˘

,

where γ “ pγ1, . . . ,γ4q ě 0. Because ν is unconstrained after dualisation, the finiteness of infν L
requires the νi-coefficients to vanish, giving

1

N
´ γ1i ´ γ2i “ 0 pi P I+

1q,
1

N
´ γ3i ´ γ4i “ 0 pi P I-

0q.

Hence 0 ď γ1i,γ4i ď 1{N . So we can write:

max p´1
1

ÿ

iPI+
1

γ1i ` p´1
0

ÿ

iPI-
0

γ4i

s.t. γ1 P R|I+
1 |

` , γ4 P R|I-
0|

` ,

δq ´
ÿ

iPI+
1

γ1i d
q
1i ´

ÿ

iPI-
0

γ4i d
q
0i ě 0,

γ1i ď 1
N @ i P I+

1,

γ4i ď 1
N @ i P I-

0.

Set the rescaled variables.
ξi :“Nγ1i P r0,1spi P I+

1q, ξi :“Nγ4i P r0,1spi P I-
0q.

Taking the infimum over λě 0 yields the additional feasibility condition

δq ´
ÿ

iPI+
1

γ1id
q
i ´

ÿ

iPI-
0

γ4id
q
i ě 0 ðñ

1

N

ÿ

i

ξid
q
i ď δq.
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So the problem can be simplified as

maxz
1

Np1

ř

iPI+
1
ξi `

1

Np0

ř

iPI-
0
ξi

s.t. 0 ď ξi ď 1 @i P I+
1 Y I-

0,
1

N

ř

iPI+
1YI-

0
ξi d

q
i pxiq ď δq.

Case q “ 8: In this case by Theorem 1, we can write:
Sδ,8pP,θq “ P0pX -qG+

0pδq `P1pX +qG-
1pδq

If instead of P we use the PN , so we have
$

’

&

’

%

pG+pδq :“ PN
0 pX -qĜ+

0pδq “ p´1
0

1

N
#tzi P X - ˆS0 : d+pxiq ď δu

pG-pδq :“ PN
1 pX +qĜ-

1pδq “ p´1
1

1

N
#tzi P X + ˆS1 : d-pxiq ď δu

So Sδ,8pPN ,θq “ pG+pδq ` pG-pδq. Therefore, the last equation completes the proof.

Proof of Theorem 4. The complete version of Theorem 4 is presented in the following:

Theorem. Given that Assumptions (i)- (iv) hold, and the fairness score function is defined as in
Eq. 10. Suppose ρ0 ą 0. Then there exists a constant λ0 ą 0 such that whenever N ą

16pα`βq
2

ρ2
0

and
δ ą α?

N
, We have, with probability at least 1´σ, the uniform lower bound

sup
QPBδpPN q

Ez„Q rfpzqs ě Ez„P rfpzqs for all θ P Θ,

Here the constants α and β depend on the dimension K and diameter D of the parameter space, and
are defined by

α :“ 48
´

2` 1
λ0

¯´L

δ
` 2

λ0

b

2log 4
σ

¯

, β :“ 96L
δλ0

` 48 1
λ0

b

2log 4
σ , M :“ sup

θPΘ,xPX

›

›∇θ gθpxq
›

›

q˚ ,

c :“ inf
θPΘ,xPX |gθpxq|ďδ0

›

›∇xgθpxq
›

›

q˚ , L :“
2

?
πDqM

c
max

´

1
p0
, 1
p1

¯

q`1
q ?

K.

Hence, δN decays at the dimension-independent rate OpN´ 1
4 q.

Let f be the fairness score function 10. The generic notion of fairness is not continuous with respect
to x, so by adding the function f ϵpzq:

gϵθpzq “

$

&

%

p´1
0

`

1´ 1
ϵq d

q
+pxq

˘

z P X - ˆS0 ^ d+pxq ď ϵ,

p´1
1

`

1´ 1
ϵq d

q
- pxq

˘

z P X + ˆS1 ^ d-pxq ď ϵ,

0 otherwise.
(A)

So the function f ϵθpzq “ fpzq ` gϵθpzq is continuous.
For family of functions F , and for λě 0, we recall the expression of the maximal radius:

ρmaxpλq “ inf
fPF

Ez„P
“

´B
`
λ fλpzq

‰

.

where B
`
λ the right-sided derivative (i.e. B

`
λ fpzq “ limhÓ0

fpz`hλq´fpzq

h ) with respect to λ P R and
transport conjugate fλpzq “ supz1PZ fpz1q ´ λcqpz1,zq. Let f ϵθ,λ be the cost-conjugate of f ϵθ . We
need to explore the behavior of the family F “ tf ϵθ : θ P Θu and the function f ϵθ . Before proving the
main result, we need some lemmas.
Lemma 4. If λă minp 1

p0
, 1
p1

q 2
ϵq , then f ϵθ,λ “ fλ.

Proof of Lemma 4. For the binary classifier hθ, the transport conjugate fλpzq “ supz1PZ fpz1q ´

λcqpz1,zq. It can be written:
argmax

Z
tfp.q ´λcqp.,zqu “

$

’

&

’

%

tpx1,a,yq P X + ˆS0 : dpx1,xq “ d+pxqu , z P X - ˆS0 ^ d+pxq ď pp0λq
´ 1

q ,

tpx1,a,yq P X - ˆS1 : dpx1,xq “ d-pxqu , z P X + ˆS1 ^ d-pxq ď pp1λq
´ 1

q ,

tzu, Otherwise.
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Since our goal is to explore the behavior of f ϵθ for sufficiently small ϵ and λ, it suffices to consider
the family Fϵ for the case where λ ă minp 1

p0
, 1
p1

q 2
ϵq . Specifically, the set of maximizers can be

explicitly characterized as follows:
argmax

Z
tf ϵθp¨q ´λdqp¨,zqu “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

tzu, z P X + ˆS0,

tpx1,a,yq P X + ˆS0 : dpx1,xq “ d+pxqu , z P X - ˆS0 ^ d+pxq ď ϵ,

tpx1,a,yq P X + ˆS0 : dpx1,xq “ d+pxqu , z P X - ˆS0 ^ ϵă d+pxq ď pp0λq
´ 1

q ,

tzu, z P X - ˆS0 ^ d+pxq ą pp0λq
´ 1

q ,

tzu, z P X - ˆS1,

tpx1,a,yq P X - ˆS1 : dpx1,xq “ d-pxqu , z P X + ˆS1 ^ d-pxq ď ϵ,

tpx1,a,yq P X - ˆS1 : dpx1,xq “ d-pxqu , z P X + ˆS1 ^ ϵă d-pxq ď pp1λq
´ 1

q ,

tzu, z P X + ˆS1 ^ d-pxq ą pp1λq
´ 1

q ,

(B)

Therefore in the case λă minp 1
p0
, 1
p1

q 2
ϵq , we have f ϵθ,λpzq “ fλpzq and completes the proof.

Lemma 5. let λ˚ be the solution of problem infλě0

␣

λδq ` Ez„P rfλpzqs
(

, then λ˚ ď

maxp 1
p0
, 1
p1

q 2
δq .

Proof of Lemma 5. By applying part (iii) of Proposition 7 for fairness score f , we can write that

δq “ Ex„P0

”

d+
q
pxqI

´

0 ă d+pxq ď pp0λ
˚q

´ 1
q

¯ı

`Ex„P1

”

d-
q
pxqI

´

0 ă d-pxq ď pp1λ
˚q

´ 1
q

¯ı

ď
1

p0λ˚
Ex„P0

”

I
´

0 ă d+pxq ď pp0λ
˚q

´ 1
q

¯ı

`
1

p1λ˚
Ex„P1

”

I
´

0 ă d-pxq ď pp1λ
˚q

´ 1
q

¯ı

ď maxp
1

p0
,
1

p1
q
1

λ˚
ùñ λ˚ ď maxp

1

p0
,
1

p1
q
2

δq
.

Where I is the indicator function. The last equation completes the proof.
Lemma 6. Let Fϵ :“ tf ϵθ : θ PΘu be the family of functions defined in Eq. A, constructed from the orig-
inal classifier family F . Then we have ρϵmaxpλq is right continuous at zero and limλÑ0` ρϵmaxpλq “ ρ0.
Moreover, there exists a constant λ0 ą 0 such that

ρϵmaxpλq ě
ρ0
4
, for all λ P r0,2λ0s.

Importantly, if ϵă 1
δq , both λ0 and ρ0 are independent of the value of ϵ.

Proof of Lemma 6. To prove the lemma, we have adopted the same strategy as in the proof
of Lemma D1 from Le & Malick (2024). Observing the definition of hf ϵθ , we clearly see that
f ϵθpzq ą fpzq. Since for any x P X , the function f ϵθp¨q ´λcqp¨,zq is continuous, we can invoke the
envelope theorem (Corollary 1, section 2.8 in Clarke (1990)). Consequently, the right-sided derivative
of the function f ϵθ,λ with respect to λ, is given by:

B
`
λ f

ϵ
θ,λpzq “ ´min

!

dqpz1,zq : z1 P argmax
Z

tf ϵθp¨q ´λcqp¨,zqu

)

.

Let define for any compact set S Ď Z , the distance to set c˚pz,Sq :“ mintcpz,sq : s P Su. By
integrating and subsequently taking the infimum over Fϵ, we have:

ρϵmaxpλq “ inf
θPΘ

Ez„P

”

cq˚

´

z,argmax
Z

tf ϵθp¨q ´λcqp¨,zqu

¯ı

. (C)

we define ρϵ0 as below:

ρϵ0 “ inf
θPΘ

Ex„P

”

mintdqpz,z1q : z1 P argmax
Z

f ϵθp¨qu

ı

“ inf
θPΘ

Ex„P

”

mintdqpz,z1q : z1 P argmax
Z

fp¨qu

ı

“ inf
θPΘ

tEx„P0
rdq+pxqs `Ex„P1

rdq- pxqsu .

Thus, by the very construction of f ϵθ , the critical constant ρϵ0 does not depend on the choice of ϵ,
remaining invariant for all ϵ. So we use ρ0 notation from now on.

To establish the result, it suffices to demonstrate that for any positive sequence pλkqkPN approaching
0 as kÑ 8, the following holds liminfkÑ8 ρ

ϵ
maxpλkq ě ρ0. The functions Ez„Prf ϵθ,λpzqs are convex
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with respect to λ, so their right-hand derivatives Ez„Pr´B
`
λ f

ϵ
θ,λpzqs are nondecreasing. As a result,

ρϵmax, defined as the infimum over these nondecreasing functions, is also nondecreasing. Hence,
for any sequence λk Ñ 0, we have limsupkÑ8 ρmaxpλkq ď ρmaxp0q. Now, suppose for the sake of
contradiction that there exists an τ ą 0 and a sequence pλkqkPN in R` with λk Ñ 0 as k Ñ 8, such
that ρϵmaxpλkq ď ρ0 ´ τ for all k P N. From the definition of ρϵmax in Eq. C, this implies that for
each k, there exists an f ϵθk such that:

Ex„P

”

cq˚

´

z,argmax
Z

␣

f ϵθkp¨q ´λdp¨,zq
(

¯ı

ď ρ0 ´
τ

2
.

Given the compactness of Fϵ under the } ¨ }8 norm, we can assume the sequence pf ϵθkqkPN converges
to some f ϵθ P Fϵ. Specifically, for z P Z , the expression f ϵθk ´λkd

qp¨,zq converges to f ϵθ as k Ñ 8.
Consider an arbitrary z P Z . The mapping pλ,f ϵθq ÞÑ argmaxZtf ϵθ ´λcqp¨,zqu is outer semicontinu-
ous with compact values (By Lemma A.2 Le & Malick (2024)), and d is jointly continuous. Thus, the
mapping pλ,f ϵθq ÞÑ c˚pz,argmaxZtf ϵθ ´λcqp¨,zquq Is lower semicontinuous, according to Lemma
A.1 Le & Malick (2024). Consequently:

liminf
kÑ8

c˚pz,argmax
Z

tf ϵθk ´λkd
qp¨,zquq ě c˚pz,argmax

Z
f ϵθp¨qq.

Taking the expectation over z „ P, we obtain:
Ez„Prcq˚pz,argmax

Z
f ϵθp¨qs ď Ez„Prliminf

kÑ8
cq˚pz,argmax

Z
tf ϵθk ´λkd

qp¨,zquqs

ď liminf
kÑ8

Ez„Prcq˚pz,argmax
Z

tf ϵθk ´λkd
qp¨,zquqs

ď ρ0 ´
ϵ

2
.

However, since: ρ0 ď Ez„Prcq˚pz,argmaxZ f
ϵ
θqs, this creates a contradiction; therefore, there exist

λϵ0 such that we have ρϵmaxpλq ě
ρ0

4 , for all λ P r0,2λϵ0s.
To complete the proof, we know from Lemma 4, if λă minp 1

p0
, 1
p1

q 2
ϵq , then f ϵθ,λ “ fλ As clearly

evident, the definition of argmaxZtf ϵθp¨q ´λcqp¨,zqu is independent of ϵ. Thus, the quantity λϵ0 also
does not depend on ϵ and remains valid for the entire family Fϵ.
Lemma 7 (Estimation of Distance). The approximation of distance to the decision boundary is
expressed as:

dθpxq “
|gθpxq|

}∇xgθpxq}q˚

`Opdθpxq2q,

Proof. Let x˚ be the projection of x on the decision boundary Lθ. Expanding gθpx˚q around
projection of x using a Taylor series:

gθpx˚q “ gθpxq `∇xgθpxq ¨ px˚ ´xq `
1

2
px˚ ´xqT∇2gθpξqpx˚ ´xq,

for some ξ P Rd. Since gθpx˚q “ 0 and dθpxq “ }x˚ ´ x}q, Thus the quadratic term is Op}x˚ ´

x}2qq “Opdθpxq2q. Therefore:

0 “ gθpxq `∇xgθpxq ¨ px˚ ´xq `Opdθpxq2q.

Using Hölder’s inequality again:
|gθpxq| “ }∇xgθpxq}q˚ ¨ dθpxq `Opdθpxq2q.

Solving for dθpxq:

dθpxq “
|gθpxq|

}∇xgθpxq}q˚

`Opdθpxq2q.

Lemma 8 (Lipschitz Coefficient). Let gθpxq be C1 in both x PX ĂRn and θ PΘĂRd are compact
and bounded set. Assume the quantitative regularity bounds

M :“ sup
θPΘ,xPX

›

›∇θgθpxq
›

›

q˚ ă 8, c :“ inf
θPΘ,xPX |fθpxq|ďε

›

›∇xgθpxq
›

›

q˚ ą 0. (D)

Then For all θ,θ1 P Θ and Lipschitz coefficient L“ maxp 1
p0
, 1
p1

q
qM
cε , we have:

}fεθ ´ fεθ1 }8 ď L}θ´ θ1}q.
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Proof of Lemma 8. By Eq. A, We can write the function

fεθ pzq “ p´1
0

ˆ

1´
1

ϵq
dq+pxq

˙+

1S0pa,yq ´ p´1
1

ˆ

1´
1

ϵq
dq- pxq

˙+

1S1pa,yq. (E)

Since the we just measure the distance in ϵ-distance from boundary Lθ, by using Lemma 7, we can
write:

d+θpxq :“
gθpxq

}∇xgθpxq}q˚

`Opϵ2q
`

d+θpxq “ 0 ðñ gθpxq “ 0
˘

.

where q˚ is dual conjugate of q, i.e., 1
q ` 1

q˚ “ 1. Since the mapping ϑ ÞÑ gϑpxq is differentiable,

gθ1pxq ´ gθ2pxq “ ∇ϑgθ̄pxq ¨ pθ1 ´ θ2q for some θ̄ P rθ1,θ2s.

Therefore |gθ1pxq ´ gθ2pxq| ďM ∥θ´ θ1∥q. If the x˚
2 is projection point of x on decision boundary

Lθ2 , the we have:
|gθ1px˚

2 q ´ gθ2px˚
2 q| “ |gθ1px˚

2 q| ďM
∥∥θ´ θ1

∥∥
q

Hence, we can calculate the distance x˚
2 to the new boundary Lθ1 with an extra motion of length at

most M
c }θ1 ´ θ2}. Thus, by the triangle inequality, we have:

dθ1pxq ď dθ2pxq `
M

c
}θ1 ´ θ2}q.

Interchanging θ1 and θ2 yields the reverse inequality, so

|dθ1pxq ´ dθ2pxq| ď
M

c
}θ1 ´ θ2}q @x, θ1,θ2.

Inside the smoothing part, ρεptq :“ r1 ´ ε´qtq`s` has slope ρ1
εptq “ ´qε´qtq´1, so |ρ1

ε| ď q{ε.
Because ρε is pq{εq-Lipschitz and (˚) holds,

|ρεpd+θ1pxqq ´ ρεpd+θ2pxqq| ď
qM

cε
}θ1 ´ θ2}q.

So by combining this result in Eq. E, we can write

|fεθ1pzq ´ fεθ2pzq| ď
qM

p0cε
}θ1 ´ θ2}q `

qM

p1cε
}θ1 ´ θ2}q.

So, the function fεθ is Lipschitz with L“ maxp 1
p0
, 1
p1

q
2qM

cε
It completes the proof.

Lemma 9 (Entropy Integral for Lipschitz Classes). Let F “
␣

fθ : θ P Θ
(

,Θ Ă Rd compact,
D :“ diampΘq. Assume that the parameter map is L–Lipschitz in the sup–norm, i.e.

}fθ ´ fθ1 }8 ď L}θ´ θ1}2 @θ,θ1 P Θ.

Denote by IF :“

ż 1

0

a

logNpF ,} ¨ }8, δqdδ Dudley’s entropy integral. Then

IF ď
?
πDL

?
d.

Proof of Lemma 9. First, we bound the covering numbers of the class F . Since the map θ ÞÑ fθ is
L–Lipschitz in the supremum norm, for any θ,θ1 P Θ,

}fθ ´ fθ1 }8 ď L}θ´ θ1}2.

Hence an ε{L–cover of Θ in } ¨ }2 induces an ε–cover of F in } ¨ }8. Thus
N
`

F ,} ¨ }8,ε
˘

ďN
`

Θ,} ¨ }2,ε{L
˘

.

Since Θ Ă Rd is compact of diameter D, the standard volumetric estimate gives, for 0 ă εďDL,

N
`

Θ,} ¨ }2,ε{L
˘

ď

´2DL

ε

¯d

,

and therefore
logN

`

F ,} ¨ }8,ε
˘

ď d log
´

2DL
ε

¯

.

Dudley’s entropy integral is

IF “

ż 1

0

b

logN
`

F ,} ¨ }8, δ
˘

dδ.
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Substituting the bound on the covering numbers,

IF ď
?
d

ż 1

0

c

log
´

2DL
δ

¯

dδ.

Set a :“ 2DL and make the change of variables t“ logpa{δq, so that δ “ ae´t and dδ “ ´ae´tdt.
The integral becomes

ż 1

0

c

log
´

a
δ

¯

dδ “ a

ż 8

t“loga

?
te´t dtď a

ż 8

0

?
te´t dt“ aΓ

`

3
2

˘

“ a

?
π

2
.

Hence

IF ď
?
d

?
π

2
p2DLq “

?
πDL

?
d.

This completes the proof.

First of all it is easy to check that Assumption 1 is valid for family of Fϵ, so By applying Theorem 9
(Theorem 3.1 Le & Malick (2024)) on the family of functions Fϵ, and using Lemma 6, Lemma 9,
Lemma 8, we can find ρ0, λ0, α, and β such that we have with probability at least 1´σ:

Rδ,PN pf ϵθq ě Ez„P
“

f ϵθpzq
‰

for all θ P Θ, (F)
Here Rδ,Ppfq :“ supQPBδpPqEz„Q rfpzqs. By replacing f ϵθ “ f ` gϵθ we can write Ez„P rf ϵθpzqs “

Ez„P rgϵθpzqs ` Ez„P rfpxqs. By Lemma 5, we know λ˚ ď maxp 1
p0
, 1
p1

q 2
δq , so if we set ϵ ď

δmaxp 1
p0
, 1
p1

q
´1
q , so by Lemma 4, we can write f ϵθ,λ “ fλ. By replacing it in the equation

Rδ,PN pfq ě Ez„P rfpzqs `Ez„P rgϵθpzqs ùñ Rδ,PN pfq ě Ez„P rfpzqs for all θ P Θ,

By the Theorem 9, we have:

α “ 48
´

1` }Fϵ}8 ` 1
λ0

¯´

IFϵ `
2}Fϵ

}8

λ0

b

2log 4
σ

¯

, β “
96IFϵ

λ0
` 48 }Fϵ

}8

λ0

b

2log 4
σ .

Now by applying Lemma 9 and Lemma 8, we can write IFϵ ď
?
πDmaxp 1

p0
, 1
p1

q
2qM
cε

?
K. It is

easy to check that }Fϵ}8 “ 1. So by setting ϵď δmaxp 1
p0
, 1
p1

q
´1
q , we can write

α “ 48
´

2` 1
λ0

¯´

IFϵ ` 2
λ0

b

2log 4
σ

¯

, β “
96IFϵ

λ0
` 48 1

λ0

b

2log 4
σ .

So by the Theorem 9 Le & Malick (2024), for N ą
16pα`βq

2

ρ2
0

and δ ą α?
N

we can write

Rδ,PN pfq ě Ex„P
“

fpxq
‰

for all θ P Θ,

But we need to tie up conditions, so we re-derive the relation between the radius parameter δ and the
sample size N from the five hypotheses.

A :“ 48

ˆ

2`
1

λ0

˙

, B :“
2

λ0

c

2ln
4

σ
, C :“

96

λ0
, S :“

48

λ0

c

2ln
4

σ
, M :“AB`S,

κ :“
2

?
πDqM

c
max

´

1
p0
, 1
p1

¯?
K, η :“ max

´

1
p0
, 1
p1

¯´1{q

, E :“ κ{η, L :“ pA`CqE.

Thus α“AIFε `AB, and β “CIFε `S . The complexity term satisfies IFε ď κ
ε and for the value

of ϵ gives ϵ ď δη. Choosing ε “ δη (the worst admissible value) yields IFε ď E
δ . So by choosing

these coefficients, we have below upper bound for α and β

α ď
AE

δ
`AB, β ď

CE

δ
`S ùñ α`β ď

L

δ
`M.

Proof of Proposition 5 The result follows by a direct application of Proposition 12 (from Proposi-
tion Le & Malick (2024)) to the function f ϵθ . Indeed, Proposition 12 guarantees that, whenever

ną
16α2

ρ2crit
and ρď

ρcrit
4

´
α

?
n
,

Then, with probability at least 1´σ, we have
Rδ,PN pf ϵθq ďRρ`α{

?
n,Ppf ϵθq for all f ϵθ P Fϵ.
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Moreover, from the proof of Theorem 4, we know that by setting

ϵď δmax
´

1
p0
, 1
p1

¯´1{q

,

and invoking Lemma 4, one obtains f ϵθ,λ “ fλ. Hence, under the same sample-size and margin-
parameter conditions,

Rδ,PN pfq ďRρ`α{
?
n,Ppfq for all θ P Θ.

which completes the proof.

Proof of Proposition 6. By proposition 10 if δ ă δS then λ˚ ą 0. We assert that if λ˚ ą 0,
then it implies that pp0λ

˚q´1{q ě s+
0 or pp1λ

˚q´1{q ě s-
1. Assume contrary if the pp0λ

˚q´1{q ă

s+
0 and pp1λ

˚q´1{q ă s-
1 then it implies that P0pR+

0q “ 0 and P1pR-
1q “ 0 then by part (ii) of Theo-

rem 7 for optimal coupling π˚ we have
δq “ E

pz,z1q„π˚

“

dqpz,z1q
‰

but pp0λ
˚q´1{q ă s+

0 and pp1λ
˚q

´1{q
ă s-

1 implies that E
pz,z1q„π˚

rdqpz,z1qs “ 0, therefore by contra-

diction we have λ˚´1{q
ą minps+

0 p
´1{q
0 ,s-

1 p
´1{q
1 q.

By assumption (iii) we have PpLθq “ 0 then it implies P0pB-
0q “ P1pB+

1q “ 0. Then by Theorem 7
we have:

δq “P0pX -q

ż pp0λ
˚

q
´1{q

0

p0s
q dG-

0psq `P1pX +q

ż pp1λ
˚

q
´1{q

0

p1s
q dG+

1psq “

P0pX -q

ż pp0λ
˚

q
´1{q

s+
0

p0s
q dG-

0psq `P1pX +q

ż pp1λ
˚

q
´1{q

s-
1

p1s
q dG+

1psq,

(A)

By Theorem 2 it can be written:

Sδ,qpP,θq “P0pX -q

ż pp0λ
˚

q
´1{q

0

1 dG-
0psq `P1pX +q

ż pp1λ
˚

q
´1{q

0

1 dG+
1psq “

P0pX -q

ż pp0λ
˚

q
´1{q

s+
0

1 dG-
0psq `P1pX +q

ż pp1λ
˚

q
´1{q

s-
1

1 dG+
1psq “

P0pX -qpG-
0pp0λ

˚q ´G-
0ps+

0qq `P1pX +qpG+
1ppp1λ

˚q´1{qq ´G+
1ps-

1qq

(B)

With combining (A) and (B), it follows that:

minpp0s
+
0
q,p1s

-
1
qq

´

P0pX -qpG-
0pp0λ

˚q ´G-
0ps+

0qq `P1pX +qpG+
1ppp1λ

˚q´1{qq ´G+
1ps-

1qq

¯

ď δq “

P0pX -q

ż pp0λ
˚

q
´1{q

s+
0

p0s
q dG-

0psq `P1pX +q

ż pp1λ
˚

q
´1{q

s-
1

p1s
q dG+

1psq ď

λ˚´1
´

P0pX -qpG-
0pp0λ

˚q ´G-
0ps+

0qq `P1pX +qpG+
1ppp1λ

˚q´1{qq ´G+
1ps-

1qq

¯

,

which implies that

λ˚δq ď Sδ,qpP,θq ď
δq

minpp0s+
0
q,p1s-

1
qq

The last equation completes the proof.
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Proof of Theorem 5. By Theorem 7 and Assumption v we can write:

δq “P0pX -q

ż pp0λ
˚

q
´1{q

s+
0

p0s
q dG-

0psq `P1pX +q

ż pp1λ
˚

q
´1{q

s-
1

p1s
q dG+

1psq ě (A)

p0P0pX -q

ż pp0λ
˚

q
´1{q

s+
0

s+
0
qg-

0psq ds“ p0P0pX -qs+
0
q

ż η0

0

g-
0ps+

0 ` sq dsď

p0P0pX -qs+
0
q

ż η0

s+
0

pg-
0ps+

0q ´L0sq ds“ p0P0pX -qs+
0
q

„

pg-
0ps+

0qη0 ´
1

2
L0η

2
0q

ȷ

ùñ (B)

1

2
p0P0pX -qL0η

2
0 ´ g-

0ps+
0qp0P0pX -qη0 ` δqs+

0
´q

ě 0 (C)

The Eq. A is obtained by Lipschitz property of g-
0. Similarly by considering the second term in Eq. B

we have below inequality such as Eq. C:
1

2
p1P1pX +qL1η

2
1 ´ g+

1ps-
1qp1P1pX +qη1 ` δqs-

1
´q ě 0

where η0 “ pp0λ
˚q´1{q ´ s+

0 and η1 “ pp1λ
˚q´1{q ´ s+

1. When

δ ď

ˆ

1

2L0
g-
0ps+

0q2p0P0pX -qs+
0

˙
1
q

(D)

The inequality of is equivalent to either

η0 ě
g-
0ps+

0qp0P0pX -q `
a

pg-
0ps+

0qp0P0pX -qq2 ´ 2L0p0P0pX -qs+
0

´qδq

L0p0P0pX -q
, (E)

η0 ď
g-
0ps+

0qp0P0pX -q ´
a

pg-
0ps+

0qp0P0pX -qq2 ´ 2L0p0P0pX -qs+
0

´qδq

L0p0P0pX -q
. (F)

If the condition E satisfies then η0 ě g-
0ps+

0qL´1
0 , So we have:

δq ě p0P0pX -q

ż s+
0`η0

s+
0

sq dG-
0psq

ě p0P0pX -q

ż s+
0`g-

0ps+
0qL´1

0

s+
0

s+
0
q dG-

0psq ě p0P0pX -qs+
0
qG-

0

`

s+
0 ` g-

0ps+
0qL´1

0

˘

.

Now by setting

δ ď
`

p0P0pX -qs+
0
qG-

0

`

s+
0 ` g-

0ps+
0qL´1

0

˘˘
1
q , (G)

the inequality E does not satisfy. Therefore for estimation λ˚ we consider the inequality F:

η0 ď
g-
0ps+

0qp0P0pX -q ´

b

pg-
0ps+

0qp0P0pX -qq
2

´ 2L0p0P0pX -qs+
0

´qδq

L0p0P0pX -q
“

2s+
0

´qδq

g-
0ps+

0qp0P0pX -q `

b

pg-
0ps+

0qp0P0pX -qq
2

´ 2L0p0P0pX -qs+
0

´qδq
ď

2s+
0

´qδq

g-
0ps+

0qp0P0pX -q
,

By proposition 6 we have Sδ,qpP,θq ě λ˚δq “
1

p0
ps+

0 ` η0q´qδq . By using inequality

p1`xq´q ě 1´ qx

for xě 0 and pě 1, it follows that

ps+
0 ` η0q´qδq ě δq

ˆ

s+
0 `

2s+
0

´qδq

g-
0ps+

0qp0P0pX -q

˙´q

“ δqs+
0

´q

ˆ

1`
2s+

0
´p´1δq

g-
0ps+

0qp0P0pX -q

˙´q

ě δqs+
0

´q

ˆ

1´ p
2s+

0
´p´1δq

g-
0ps+

0qp0P0pX -q

˙

“ δqs+
0

´q
´ 2q pg-

0ps+
0qp0P0pX -qq

´1
s+
0

´2q´1δ2q

The last equality has a simple form:

Sδ,qpP,θq ě
1

p0

´

δqs+
0

´q
´ 2q pg-

0ps+
0qp0P0pX -qq

´1
s+
0

´2q´1δ2q
¯

(H)

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

By similar reasoning for δq ą P1pX +q
şpp1λ

˚
q

´1{q

s-
1

p1s
q dG+

1psq we have:

Sδ,qpP,θq ě
1

p1

´

δqps-
1q´q ´ 2q pg+

1ps-
1qp1P1pX +qq

´1
ps-

1q´2q´1δ2q
¯

(I)

By combining the both equations H and I we have:

Sδ,qpP,θq ě
δq

minpp0s+
0
q,p1s-

1
qq

´
2qδ2q

minpp0s+
0
2q`1g-

0ps+
0qP0pX -q,p1ps-

1q2q`1g+
1ps-

1qP1pX +qq
.

By setting K “ 2q min
`

p0s
+
0
2q`1g-

0ps+
0qPpX -q,p1ps-

1q2q`1g+
1ps-

1qPpX +q
˘´1

we have

Sδ,qpP,θq ě
δq

minpp0s+
0
q,p1s-

1
qq

´Kδ2q

Where K depend only to the P and q. By combining the bounds in the equations D and G, to ensure
that the above inequality is correct, we need that δ should be less than

δ0 “ min

ˆˆ

1

2
L´1
0 g-

0ps+
0q2p0P0pX -qs+

0

˙
1
q

,

ˆ

1

2
L´1
1 g+

1ps-
1q2p1P1pX +qs-

1

˙
1
q

,

`

p0P0pX -qs+
0
qG-

0

`

s+
0 ` g-

0ps+
0qL´1

0

˘˘
1
q ,
`

p1P1pX +qs+
1
pG+

1

`

s-
1 ` g+

1ps-
1qL´1

1

˘˘
1
q

˙

.

The value of δ0 only depends on the P and q, and it completes the proof.

Proof of Theorem 6. Since the most interesting part of claim of Theorem 5 happens when g+
0p0q “

g-
1p0q ‰ 0, without loss of generality to have sharper upper bound, we suppose g+

0p0q,g-
1p0q ą 0,

under Assumption v, there exist constants 0 ă δ1 ă δ and 0 ă C1 ď C2 ă 8 such that
0 ă C1 ď g+

0psq,g-
1psq ď C2 ă 8, @s P r0, δ1s

Hence, g+
0psq ě C1 on r0, δ1s. Let δ ď

´

C1

q`1 minpp0P0pX -q,p1P0pX +qq

¯
1
q

δ
q`1
q

1 . We claim that

λ
´1{q
˚ ď minpp0,p1q

1
q δ1. Suppose on the contrary that λ´1{q

˚ ą minpp0,p1q
1
q δ1. Then without loss

generality if p0 “ minpp0,p1q, then we have pp0λ
˚q´1{q ă δ1, so we can write

δq “ P0pX -q

ż pp0λ
˚

q
´1{q

0

p0s
q dG-

0psq `P1pX +q

ż pp1λ
˚

q
´1{q

0

p1s
q dG+

1psq

ą P0pX -q

ż pp0λ
˚

q
´1{q

0

p0s
q dG-

0psq ą p0P0pX -q

ż δ1

0

sq dG-
0psq ą p0P0pX -qC1

ż δ1

0

sq ds

“
C1

q` 1
pp0P0pX -qqδq`1

1 ùñ δ ą

ˆ

C1

q` 1
pp0P0pX -qq

˙
1
q

δ
q`1
q

1

The last equation contradicts by assumption about δ, therefore λ´1{q
˚ ď minpp0,p1q

1
q δ1. Let us define

two functions.

F pλq :“ P0pX -q

ż pp0λq
´1{q

0

p0s
q dG-

0psq `P1pX +q

ż pp1λq
´1{q

0

p1s
q dG+

1psq

Gpλq :“ p0P0pX -q

ż pp0λq
´1{q

0

sqpg-
0p0q ´L0sq ds` p1P1pX +q

ż pp1λq
´1{q

0

sqpg+
1p0q ´L1sq ds

“
1

q` 1

ˆ

p
´ 1

q

0 P0pX -qg-
0p0q ` p

´ 1
q

1 P1pX +qg+
1p0q

˙

λ´
q`1
q

´
1

q` 2

ˆ

p
´ 2

q

0 P0pX -qL0 ` p
´ 2

q

1 P1pX +qL1

˙

λ´
q`2
q

Both function F pλq and Gpλq are strictly decreasing in the interval pδ´q
1 ,`8q and we have F pλq ą

Gpλq by assumption v. Therefore we have F pλ˚q ąGpλ˚q. Define λ̃ such that:

λ̃“
1

2

ˆ

p
´ 1

q

0 P0pX -qg-
0p0q ` p

´ 1
q

1 P1pX +qg+
1p0q

˙

q
q`1

pq` 1q
´

q
q`1 δ´

p2

q`1
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We want to ensure that λ̃ą δ´q
1 . To do that, it is sufficient to have the following condition:

δ ă 2
´

q`1

p2

ˆ

p
´ 1

q

0 P0pX -qg-
0p0q ` p

´ 1
q

1 P1pX +qg+
1p0q

˙
1
q

pq` 1q
´ 1

q δ
q`1
q

1 (A)

We put λ̃ in the function G so we have:

Gpλ̃q “ 2
q`1
q δq ´

1

q` 2

ˆ

p
´ 2

q

0 P0pX -qL0 ` p
´ 2

q

1 P1pX +qL1

˙

ˆ

˜

1

2

ˆ

p
´ 1

q

0 P0pX -qg-
0p0q ` p

´ 1
q

1 P1pX +qg+
1p0q

˙

q
q`1

pq` 1q
´

q
q`1 δ´

p2

q`1

¸´
q`2
q

“ 2
q`1
q δq ´

2
q`2
q pq` 1q

q`2
q

q` 2

ˆ

p
´ 2

q

0 P0pX -qL0 ` p
´ 2

q

1 P1pX +qL1

˙

ˆ

ˆ

p
´ 1

q

0 P0pX -qg-
0p0q ` p

´ 1
q

1 P1pX +qg+
1p0q

˙´
q`2
q`1

δ
ppq`2q

q`1

If we restrict the value of δ to:

δ ă p2
pq`1qpq`2q

p2 ´ 2´
q`2
q q

q`1
q

pq` 1q
´

pq`1qpq`2q

p2

pq` 2q
´

q`1
q

ˆ

p
´ 2

q

0 P0pX -qL0 ` p
´ 2

q

1 P1pX +qL1

˙´
q`1
q

(B)

ˆ

ˆ

p
´ 1

q

0 P0pX -qg-
0p0q ` p

´ 1
q

1 P1pX +qg+
1p0q

˙

q`2
q

It results that Gpλ̃q ą δq . Since F pλq is strictly decreasing on pδ´q
1 ,`8q, it results λ˚ ą λ̃. By this

fact, we can write

Sδ,qpP,θq “ inf
µą0

"

µ´qδq `P0pX -q

ż p0
´ 1

q µ

0

p1´ p0µ
´qsqq dG+

0psq

`P1pX +q

ż p1
´ 1

q µ

0

p1´ p1µ
´qsqq dG-

1psq

*

“ inf
0ăµăλ̃

´ 1
q

"

µ´qδq `P0pX -q

ż p0
´ 1

q µ

0

p1´ p0µ
´qsqq dG+

0psq

`P1pX +q

ż p1
´ 1

q µ

0

p1´ p1µ
´qsqq dG-

1psq

*

ą inf
0ăµăλ̃

´ 1
q

"

µ´qδq `P0pX -q

ż p0
´ 1

q µ

0

p1´ p0µ
´qsqqrg+

0p0q ´L0ss ds

`P1pX +q

ż p1
´ 1

q µ

0

p1´ p1µ
´qsqqrg-

1p0q ´L1ss ds

*

“ inf
0ăµăλ̃

´ 1
q

"

µ´qδq `
q

q` 1

ˆ

g+
0p0qP0pX -qp

´ 1
q

0 ` g-
1p0qP1pX +qp

´ 1
q

1

˙

µ

´
q

2pq` 2q

ˆ

L0P0pX -qp
´ 2

q

0 `L0P1pX +qp
´ 2

q

1

˙

µ2

*
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ě inf
0ăµăλ̃

´ 1
q

"

µ´qδq `
q

q` 1

ˆ

g+
0p0qP0pX -qp

´ 1
q

0 ` g-
1p0qP1pX +qp

´ 1
q

1

˙

µ

*

´
q

2pq` 2q

ˆ

L0P0pX -qp
´ 2

q

0 `L0P1pX +qp
´ 2

q

1

˙

λ̃2

“ pq` 1q
1

q`1

´

P0pX -qg+
0p0qp0

´ 1
q `P1pX +qg-

1p0qp1
´ 1

q

¯

q
q`1

δ
q

q`1 ´

2
2´p
q p

pq` 2q
pq` 1q

2
q`1

´

P1pX +qL0p0
´ 2

q `P0pX -qL1p1
´ 2

q

¯

ˆ

´

P0pX -qg+
0p0qp0

´ 1
q `P1pX +qg-

1p0qp1
´ 1

q

¯

´2
q`1

δ
2q

q`1 (C)

The result is valid when δ satisfies in two inequalities, A and B. By result of equations C we can write

Sδ,qpP,θq ě pq` 1q
1

q`1

ˆ

P0pX -qg+
0p0qp0

´ 1
q `P1pX +qg-

1p0qp1
´ 1

q

˙

q
q`1

δ
q

q`1 ´Cδ
2q
q`1

where C “ ζ
´

P1pX +qL0p0
´ 2

q `P0pX -qL1p1
´ 2

q

¯´

P0pX -qg+
0p0qp0

´ 1
q `P1pX +qg-

1p0qp1
´ 1

q

¯

´2
q`1

and ζ “ 2
2´q
q q

pq`2q
pq` 1q

2
q`1 . The above inequality is satisfied when

δ ă δ0 “ minpp0,p1q
´

q`1

p2 ρ
q`1
q pq` 1q

1
q

´

P0pX -qg+
0p0qp0

´ 1
q `P1pX +qg-

1p0qp1
´ 1

q

¯

´1
q

and it completes the proof.

Proof of Proposition 7. To find the maximum of the expectation of ψpx,a,yq over the ambiguity
set BδpPq, we use strong duality Mohajerin Esfahani & Kuhn (2018b); Blanchet & Murthy (2019),
which was explained before in Eq. 4.

With assumption (iv), we have
c
`

px,a,yq, px1,a1,y1q
˘

“ dpx,x1q ` 8 ¨ Ipa‰ a1q ` 8 ¨ Ipy ‰ y1q,

so in the case q P r1,8q the conjugate function is obtained by
ψλpx,a,yq “ sup

x1PX

␣

ψpx1,a,yq ´λdqpx,x1q
(

Therefore, by the strong duality theorem, we can write

sup
QPBδpPq

EQrψpx,a,yqs “ inf
λě0

"

λδq `EP

„

sup
x1PX

`

ψpx1,a,yq ´λdqpx,x1q
˘

ȷ*

.

similarly for q “ 8 we can have:
sup

z1:cpz,z1qďδ

fpx1,a1,y1q “ sup
x1:dpx,x1qďδ

fpx1,a,yq

By substituting the above equation into the strong duality theorem, the proof is completed.

Proof of proposition 8. The proposition is a straightforward consequence of Lemma EC.6 Yang &
Gao, 2022 once we impose the cost-function restriction set out in Assumption (iv) and use the strong
duality theorem that is described in Proposition 7.

Proof of Theorem 7. To prove we use the Proposition 8. The formula of ψ function is
ψpzq “ hθpxq

`

p´1
0 1S0

pa,yq ´ p´1
1 1S1

pa,yq
˘

.

(i)
By Proposition 8, for q “ 8, there is a P-measurable map T˚ : Z Ñ Z such that :

T˚pzq P

"

px̃,a,yq : x̃ P argmax
x1PX

tψpx1,a,yq : dpx1,xq ď δu

*

, P´ a.e.

as in the proof of Theorem 2, by replacing the argument of ψpzq, T˚ is obtained by solving for each
pa,yq:

T˚
1 pzq P argmax

x1PX
thθpxq

`

p´1
0 1S0

pa,yq ´ p´1
1 1S1

pa,yq
˘

: dpx1,xq ď δu ùñ

T˚
1 pzq P

"

X + px,a,yq P X - ˆS0 ^ d+pxq ă δ,

X - px,a,yq P X + ˆS1 ^ d-pxq ă δ
ùñ

"

P˚pX - | S0q “ PpX -zR-
0 | S0q;

P˚pX + | S1q “ PpX +zR+
1 | S1q
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where T˚
1 pzq is the value of first coordinate of x. For q P r1,8q and λ˚ “ 0, there is a P-measurable

map T˚ satisfying:

T˚pzq P argmin
z1PZ

"

cpz,z1q : z1 P argmax
zPZ

ψpz1q

*

, P-a.e. ùñ T˚
1 pzq P

"

X + z P X - ˆS0,

X - z P X + ˆS1

By the definition of R+
a, when λ˚ “ 0 then R-

0 “ X - and similarly R+
1 “ X + so we have:

"

P˚pX - | S0q “ PpX -zR-
0 | S0q “ 0;

P˚pX + | S1q “ PpX +zR+
1 | S1q “ 0

(ii) For q P r1,8q and λ˚ ą 0, there are P-measurable maps T˚ and T - such that

T˚pzq P argmax
z1PZ

"

cpz,z1q : z1 P argmax
z̃PZ

ψpz̃q ´λ˚cpz, z̃qq
*

ùñ (A)

T˚
1 pzq P

#

x z P X zR-
0 ˆS0,

arg min
x1PX+

dpx,x1q, z P R-
0 ˆS0

, T˚
1 pzq P

#

x z P X zR+
1 ˆS1,

arg min
x1PX+

dpx,x1q, z P R-
1 ˆS1

T -pzq P argmin
z1PZ

"

cpz,z1q : z1 P argmax
z̃PZ

ψpz̃q ´λ˚cpz, z̃qq
*

ùñ (B)

T -
1pzq P

$

’

&

’

%

x z P X zR-
0 ˆS0,

arg min
x1PX+

dpx,x1q, z P R-
0zB-

0 ˆS0,

x, x P B-
0 ˆS0

, T -
1pzq P

$

’

&

’

%

x z P X zR+
1 ˆS1,

arg min
x1PX+

dpx,x1q, z P R+
1zB+

1 ˆS1,

x, z P B+
1 ˆS1

Define t˚ as the largest number in r0,1s such that:
δq “ t˚ E

z„P
rdqpT˚pzq,zqs ` p1´ t˚q E

z„P
rdqpT -pzq,zqs .

Then, P˚ :“ t˚T˚
#P ` p1 ´ t˚qT -

#P is a worst-case distribution. Moreover if define Z˚ “ R+
0 ˆ

S0

Ť

R-
1 ˆS1, then it can be easily to check for optimal coupling π˚ we have:

tpz,T -pzqq : z P Z˚u Ď supppπ˚q Ď tpz,T ˚pzqq : z P Z˚u.

By using equations A and B it is easily to find that:
P˚pX - | S0q “ PpX -zR-

0 | S0q ` p1´ t˚qPpB-
0 | S0q

P˚pX + | S1q “ PpX +zR+
1 | S1q ` p1´ t˚qPpB+

1 | S1q

The last equation completes the proof.

Proof of Proposition 9. Let P˚ is the worst-case distribution for finding the Sδ,qpP,θq. By applying
it on the formulation of fairness score 10, and Theorem 7 we have:

Sδ,qpP,θq “ EP˚ rfpzqs “ P˚pX - | S0q `P˚pX + | S1q

“ PpX -zR-
0 | S0q ` p1´ t˚qPpB-

0 | S0q `PpX +zR+
1 | S1q ` p1´ t˚qPpB+

1 | S1q

Similarly, by swapping the indices of 0 to 1, we can obtain
Iδ,qpP,θq “ P1pR-

1zB-
1q ` p1´ t˚qP1pB-

1q `P0pR+
0zB+

0q ` p1´ t˚qP0pB+
0q

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Proof of Proposition 10. Let P˚ be a worst-case distribution. If δ ě δS ,
Sδ,qpP,θq (A)

“ inf
λě0

"

λδq ` E
x„P0

r1X -pxqp1´ p0λd
q
+pxqq

+
s ` E

x„P1

r1X+ pxqp1´ p1λd
q
- pxqq

+
s

*

“ inf
λě0

"

λδq ` E
x„P0

rp1´hθpxqqp1´ p0λd
q
+pxqq

+
s ` E

x„P1

rhθpxqp1´ p1λd
q
- pxqq

+
s

*

“ inf
λě0

"

λδq ` E
x„P0

rp1´hθpxqqp1´minp1,p0λd
q
+pxqqqs

` E
x„P1

rhθpxqp1´minp1,p1λd
q
- pxqqqs

*

“ inf
λě0

"

λδq ´ E
x„P0

rp1´hθpxqqminp1,p0λd
q
+pxqqs ´ E

x„P1

rhθpxqminp1,p1λd
q
- pxqqs

*

`EP
“

p´1
0 p1´hθpxqq ` p´1

1 hθpxq
‰

By definition of δS :
E

x„P0

rp1´hθpxqqminp1,p0λd
q
+pxqqs ` E

x„P1

rhθpxqminp1,p1λd
q
- pxqqs

ď E
x„P0

rp1´hθpxqqp0λd
q
+pxqs ` E

x„P1

rhθpxqp1λd
q
- pxqs “ λδqS (B)

Let δ ě δS . By applying Eq. B in Eq. A, we have:
λδq ´ E

x„P0

rp1´hθpxqqminp1,p0λd
q
+pxqqs ´ E

x„P1

rhθpxqminp1,p1λd
q
- pxqqs ě λpδq ´ δqSq ě 0

so the infimum happens when λ˚ “ 0.
Now consider the case δ ă δS . By proof by contradiction, suppose λ˚ “ 0, so by previous part, we

have:

inf
λě0

"

λδq ´ E
x„P0

rp1´hθpxqqminp1,p0λd
q
+pxqqs ´ E

x„P1

rhθpxqminp1,p1λd
q
- pxqqs

*

“ 0 (C)

Let ϵ :“ δqS ´ δq , so by assumption we have ϵą 0. By the definition of δS ,

δS “
`

p0EP0

“

p1´hθpxqqdq+pxq
‰

` p1EP1

“

hθpxqdq- pxq
‰˘

1
q ă 8,

By Billingsley (2013) Applying Dominated Convergence Theorem, we can find the constant M , such
that

p0EP0

“

p1´hθpxqqdq+pxqIpdq+pxq ąMq
‰

` p1EP1

“

hθpxqdq- pxqIpdq- pxq ąMq
‰

ă
ϵ

2
So if we put λă 1{M , so for λ we have:

λδq ´ E
x„P0

rp1´hθpxqqminp1,p0λd
q
+pxqqs ´ E

x„P1

rhθpxqminp1,p1λd
q
- pxqqs

“ λδq ´λδqS ` E
x„P0

rp1´hθpxqqmaxp1,p0λd
q
+pxqqs ` E

x„P1

rhθpxqmaxp1,p1λd
q
- pxqqs

ď ´λϵ`λ
`

p0EP0

“

p1´hθpxqqdq+pxqIpdq+pxq ąMq
‰

` p1EP1

“

hθpxqdq- pxqIpdq- pxq ąMq
‰˘

ă ´λ
ϵ

2
.

Therefore, we can find λ such that the inf of Eq. C is less than zero, so by contradiction, we can
prove that λ˚ ą 0.

Proof of Theorem 8. First of all, it is easy to check that:

FpP,θq “ E
z„P

„

hθpxq

ˆ

1S0pa,yq

EPr1S0
s

´
1S1pa,yq

EPr1S1
s

˙ȷ

“ E
x„P0

rhθpxqs ´ E
x„P1

rhθpxqs

“ 1´ E
x„P0

rp1´hθqpxqs ´ E
x„P1

rhθpxqs

So by substituting the above equation beside equations from the proof of Theorem 2, We can write:
sup

QPBδpPq

EQrψpzqs “ Sδ,qpP,θq `FpP,θq ď εðñ 1´ E
x„P0

rp1´hθqpxqs ´ E
x„P1

rhθpxqs`

inf
λě0

"

λδq ` E
z„P

”

1X -ˆS0
pzq

`

p´1
0 ´λdq+pxq

˘+
`1X+ˆS1

pzq
`

p´1
1 ´λdq- pxq

˘+
ı

*

ď ε
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First, we show the direct implication. For each ε1 ą ε there exist λą 0 such that
1´ E

x„P0

rp1´hθqpxqs ´ E
x„P1

rhθpxqs`

λδq ` E
z„P

”

1X -ˆS0pzq
`

p´1
0 ´λdq+pxq

˘+
`1X+ˆS1

pzq
`

p´1
1 ´λdq- pxq

˘+
ı

ď ε1 ùñ

1´ E
x„P0

rp1´hθqpxqs ´ E
x„P1

rhθpxqs`

λδq ` E
x„P0

rp1´hθqpxqp1´λp0d
q
+pxqq

+
s ` E

x„P1

rhθpxqp1´λp1d
q
- pxqq

+
s ď ε1 ùñ

λδq ´ E
x„P0

rp1´hθqpxqminpλp0d
q
+pxq,1qs ´ E

x„P1

rhθpxqminpλp1d
q
- pxq,1qs ď ε1 ´ 1 ùñ

λδq ď E
x„P0

rp1´hθqpxqminpλp0d
q
+pxq,1qs ` E

x„P1

rhθpxqminpλp1d
q
- pxq,1qs ´ p1´ ε1q ùñ

δq ď E
x„P0

rp1´hθqpxqminpp0d
q
+pxq, tqs ` E

x„P1

rhθpxqminpp1d
q
- pxq, tqs ´ tp1´ ε1q ùñ

δq ď sup
tPR`

"

E
x„P0

rp1´hθqpxqminpp0d
q
+pxq, tqs ` E

x„P1

rhθpxqminpp1d
q
- pxq, tqs ´ tp1´ ε1q

*

ùñ

δq ď inf
tPR`

"

tp1´ ε1q ´ E
x„P0

rp1´hθqpxqminpp0d
q
+pxq, tqs ´ E

x„P1

rhθpxqminpp1d
q
- pxq, tqs

*

ùñ δq ď inf
tPR`

␣

p1´ ε1qt´ΨSptq
(

In the above, dividing both sides by λ and replacing t“ 1
λ and by definition of ΨSptq, the last equation

is obtained. The concave conjugate of a function ΨSptq is defined as Ψ˚
Spsq “ inft tts´ϕptqu. By a

similar reasoning, of theorem implies:
sup

QPBδpPq

EQrψpzqs ď ε ùñ Ψ˚
Sp1´ εq ě δq

Now we prove the reverse by contradiction assumption that supQPBδpPqEQrψpzqs ą ε, then it implies
there exist ε1 ą ε such that supQPBδpPqEQrψpzqs ě ε1. We set κ “ ε1 ´ ε ą 0. By strong duality
theorem, for all λą 0 we have:
λδq ą E

x„P0

rp1´hθqpxqminpλp0d
q
+pxq,1qs ` E

x„P1

rhθpxqminpλp1d
q
- pxq,1qs ´ p1´ ε1q ùñ

λδq ´κą E
x„P0

rp1´hθqpxqminpλp0d
q
+pxq,1qs ` E

x„P1

rhθpxqminpλp1d
q
- pxq,1qs ´ p1´ εq ùñ

δq ´κtě E
x„P0

rp1´hθqpxqminpp0d
q
+pxq, tqs ` E

x„P1

rhθpxqminpp1d
q
- pxq, tqs ´ p1´ εqt ùñ

δq ´κtě ΨSptq ´ p1´ εq t ùñ sup
t

tΨSptq ´ p1´ εq tu ă δq ùñ Ψ˚
Sp1´ εq ă δq.

The last equation happens because the λ˚ ą 0, so t˚ the solution of optimization problem
supt tp1´ εq t´ΨSptqu is greater than zero. By the above contradiction, the reverse proof is
complete. The proof of the second part is totally similar to the first one.

Proof of Proposition 11. Let Z “ X ˆAˆY and recall that the cost c
`

px,a,yq,px1,a1,y1q
˘

“

dpx,x1q ` 8Ipa‰ a1q ` 8Ipy ‰ y1q. Because a transport plan with finite cost must match the labels
pa,yq exactly, the q-Wasserstein metric induced by d factorizes over the finitely many label pairs by
proposition 3:

Wq

`

P,PN
˘q

“
ÿ

pa,yqPAˆY

PA,Ypa,yqWq

`

Pa,y,PN
a,y

˘q
,

where Pa,y is the conditional law of X given pA,Yq “ pa,yq and PN
a,y its empirical counterpart.

Assumption (iv) gives a finite q-moment on X and compact support, so each Pa,y lives in a d-
dimensional compact metric space. The sharp non-asymptotic bound of Fournier–Guillin (Theorem 2
in Fournier & Guillin (2015)) implies that for some constants Ca,y, ca,y ą 0

Pb
␣

Wq

`

Pa,y,PN
a,y

˘

ą t
(

ď Ca,y exp
”

´ca,yNt
maxtd,2qu

ı

, tą 0.

Let K :“ |AˆY| ă 8. By a union bound and WqpP,PN q ďK1{qmaxa,yWppPa,y,PN
a,yq,

Pb
!

WqpP,PN q ą δ
)

ďKCmax exp
”

´cminNpδ{K1{qqmaxtd,2qu
ı

,
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where Cmax :“ maxa,yCa,y and cmin :“ mina,y ca,y . Choose

δpN,εq “

´ K1{q

cminN
ln
`

CmaxKε
´1

˘

¯1{maxtd,2qu

.

Then the exponential tail above is at most ε, yielding Pb
`

P P BqpPN , δpN,εqq
˘

ě 1´ ε. Absorbing
the (fixed) label and constant factors into a single C “ CpP,dq gives exactly the upper-bound scale
δ ≲

`

N lnpCε´1q
˘´1{maxtd,2qu

, proving Proposition 11.

C NUMERICAL STUDIES SUPPLEMENTARY

A. DATASETS

To demonstrate the fragility of group-fairness notions, we apply Scenarios 1 and 2 across a wide range
of models—including Gradient Boosting and AdaBoost. However, when evaluating our DRUNE
algorithm, we restrict our experiments to logistic regression, linear and non-linear SVMs, and MLPs.
We evaluate our distributionally robust fairness approach on several real-world datasets. Table 1
provides a comprehensive overview of the datasets used in our study.

Table 1: Overview of datasets used in the study

Dataset Protected Attribute Label
Adult Census Gender (Male=1, Female=0) Income ą50K (1) vs ď50K (0)
ACS Income SEX (Male=1, Female=0) PINCP ą median (1) else (0)
HELOC Age (above median=1, below=0) RiskPerformance (Good=0, Bad=1)
Bank Marketing Age (ě25=1, ă25=0) Term deposit (yes=1, no=0)
CelebA Male (1) vs Female (0) Smiling (1) vs Not Smiling (0)
Heritage Health Sex (M=1, F=0) DaysInHospital Y2 ą median (1) else (0)
Law School Race (white=1, non-white=0) Pass bar exam (1=passed, 0=failed)
MEPS SEX (1=male, 2=female) TOTEXP16 ą median (1) else (0)

B. MODEL SPECIFICATIONS

We evaluate four classification models:
Table 2: Model specifications and parameters

Model Parameters
Logistic Regression max iter=1000, L2 regularization
Linear SVM max iter=1000, linear kernel
Non-linear SVM kernel=’rbf’, gamma=0.5
Gradient Boosting n estimators=100, learning rate=0.1, max depth=3
AdaBoost n estimators=100, learning rate=1.0

MLP max iter=1000, solver=’lbfgs’,
tol=1e-4, hidden layers (10,10)

C. EXPERIMENTAL SETUP

Table 3: Experimental parameters and settings

Parameter Value/Description
Data Splitting 80/20 train/test split (random state=42)
Sample Size 1000 instances per experiment
Sampling Strategy Balanced between privileged/unprivileged groups
Robustness Parameter (δ) 0.001
Distance Norm (q) 2 (Euclidean)
Convergence Parameters ϵy “ 10´6, ϵg “ 10´6

Maximum Iterations (Kmax) 100
Number of Experiments 1000 independent runs

Performance Metrics Accuracy, demographic parity, equalized odds,
DRUNE regularizer

Statistical Analysis Mean and standard deviation of metrics,
confidence intervals, comparative analysis
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Figure 4: Variability of fairness metrics under Scenario 1. The green shaded bands depict the range of
Demographic Parity, Equal Opportunity, and Equalized Odds across 10,000 trials, each of which trains a fresh
classifier on a new random subsample of 1000 points. The substantial width of these bands illustrates the
pronounced fragility of group-fairness measures to sampling variation.
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Figure 5: Variability of fairness metrics when recomputing on repeated subsamples. A single classifier is trained
once on 1000 randomly drawn data points, and then Demographic Parity, Equal Opportunity, and Equalized
Odds are recalculated over 10,000 different subsamples of size 1000. The shaded green bands reveal the extent
to which fairness assessments fluctuate purely due to sampling variation.

42


	Introduction
	Related Work

	Background and Foundations
	Distributionally Robust Unfairness Quantification
	Finite-Sample Estimation of Fairness Regularizer
	First-Order Estimation of Fairness Regularizer
	Numerical Studies
	Discussion
	Theoretical Supplement
	Generic Notion of Fairness
	Dual Formulation of Wasserstein Distributional Fairness.
	Reformulation of Wasserstein Distributional Fairness
	Finite Sample Guarantee for Wasserstein Distributional Fairness.

	Proof
	Numerical Studies Supplementary

