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FROM FRAGILE TO CERTIFIED: WASSERSTEIN AUDITS
OF GROUP FAIRNESS UNDER DISTRIBUTION SHIFT

ABSTRACT

Group-fairness metrics (e.g., equalized odds) can vary sharply across resamples
and are especially brittle under distribution shift, undermining reliable audits. We
propose a Wasserstein distributionally robust framework that certifies worst-case
group fairness over a ball of plausible test distributions centered at the empirical law.
Our formulation unifies common group fairness notions via a generic conditional-
probability functional and defines e-Wasserstein Distributional Fairness (e-WDF)
as the audit target. Leveraging strong duality, we derive tractable reformulations and
an efficient estimator (DRUNE) for e-WDF. We prove feasibility and consistency
and establish finite-sample certification guarantees for auditing fairness, along with
quantitative bounds under smoothness and margin conditions. Across standard
benchmarks and classifiers, e-WDF delivers stable fairness assessments under
distribution shift, providing a principled basis for auditing and certifying group
fairness beyond observational data.

1 INTRODUCTION

Group—fairness metrics such as statistical parity and equalized odds are widely used to assess
algorithmic equity, yet they are highly sensitive to small perturbations in the training data Besse
et al.| (2018); Barrainkua et al.| (2023)); \Cooper et al.|(2024) (Fig. E]) Even mild changes in dataset
composition or train—test splits can cause large swings in measured fairness |Friedler et al.|(2019);
Du & Wu(2021)), eroding trust in reported guarantees |Ji et al.[(2020). Because distributions drift in
practice, fairness measured on a single empirical sample is unreliable.

To obtain trustworthy assessments, distributionally robust optimization (DRO) evaluates worst-case
fairness over a set of plausible distributions (e.g., a Wasserstein ball), rather than only the observed
data. This guards against distribution shift and promotes models whose fairness and accuracy remain
stable when test data diverge from the training setRahimian & Mehrotral(2022); Lin et al.| (2022);
Montesuma et al.[(2025).
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Figure 1: Sensitivity of group fairness. Red (Sample-Train—Measure): repeatedly subsample 1,000 points
(10,000 reps), retrain, recompute fairness. Blue (Fixed-Model-Sample—Measure): train once per dataset, then
repeatedly resample 1,000 points to recompute fairness. Large variability across datasets reveals fragility to
sampling and measurement instability.

Given observational data {z; = (x;,a;,y;)}., with features z; € X, sensitive attribute a; € A, label
y; € {0,1}, and a parametric binary classifier hy : X — {0,1}, let PV denote the empirical distribution
and P the population distribution. A fairness—disparity functional F (P, 6) measures deviation from
a chosen criterion (e.g., demographic parity, equalized odds) under PP; for tolerance € > 0, we say
hg is e-fair on P if |F(P,0)| < e (If F is vector-valued, use | - |.). In finite samples, F (P 0)
can vary markedly with the particular observations included (Fig. [I), undermining the reliability of
fairness assessments. The challenge intensifies under a distribution shift, where fairness judged on
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PY may not reflect the population distribution, so we must certify fairness from the empirical law
alone. To mitigate this sample dependence, we seek classifiers whose fairness holds not only on PV
but uniformly over an ambiguity set of plausible test distributions.

When designing an ambiguity set for DRO, two choices are paramount: (i) the nominal distribution
and a realism-preserving uncertainty set around it; and (ii) computational tractability, i.e., whether
optimization over that set admits efficient reformulations and algorithms. A principled way to encode
nearby distributions is to use metric balls in probability space. While f-divergence balls are popular
for analytic convenience, they ignore the geometry of the sample space and can fail under support
mismatch. To respect geometry and remain meaningful with disjoint supports, we adopt optimal
transport and measure distributional proximity with the Wasserstein distance |Villani et al.|(2009)) of
distributions P,Q on Z and q € [1,00) with ground cost ¢: Z x Z — Rxq:

o . e 1/q

Wa(P.Q): weP(ZxZ):l[I;]flﬂP, [7]2=Q (E(z’z/)w’r [e(=) ]) ’
where P(Z x Z) is set of all probability distributions on Z x Z, [7]1, ]2 are marginal distribution
on the first and second coordinate. In real applications, the data-generating distribution drifts in ways
that are hard to characterize. To guard against such shifts, we treat the nominal law P* (in case
distribution shift P* s P) as any distribution within a Wasserstein distance J of the population law P
and define the ambiguity set B5(PP) := {Q : W, (P,Q) < §}, and posit P* € Bs(PP).

To handle distributional uncertainty in empirical fairness evaluation F (IP*, 0), we adopt a worst-case
quantity of e-fairness (formalized as e-Wasserstein Distributional Fairness or e-WDF in §3)):

sup_ [F(Q.0)] <, )

QGB 5 (]P’)

This certifies that the worst-case fairness disparity within a geometrically plausible neighborhood of
P does not exceed <. Enforcing Eq. [1|during learning is challenging: the constraint quantifies over an
infinite-dimensional set of distributions, necessitating dual or surrogate reformulations for tractability.
Moreover, standard DRO analyses typically assume Lipschitz or smooth objectives, whereas common
group-fairness metrics are indicator-based and discontinuous, so off-the-shelf bounds do not apply.
A further difficulty is observability: we cannot access the population ball Bs(P) and only have its
empirical proxy B;(PY); thus, we must certify the fairness of the nominal law P* from samples, via
finite-sample guarantees that relate Bs(P).

In the out-of-sample problem, we only observe the empirical law PV, so the computable certificate
IS SUPQeg; (V) |]-" (Q, 9)} The central question is how to calibrate ¢ (as a function of V) so that
this empirical worst-case upper-bounds the population’s worst-case F (P, ) (with high probability),
thereby certifying fairness for the population law.

In this work, we tackle these issues with a general framework not tied to a single fairness notion. It
covers disparities expressed as differences of conditional probabilities, P(hg(X) =y | g1(A,Y) =

0;92(AY) = O), under trusted labels and sensitive attributes. For this class, we characterize the

DRO worst-case, obtain an explicit regularizer with an efficient algorithm, and upper and lower

bounds. In the out-of-sample case, we establish finite-sample certification. Our main contributions

are:

* Definition and guarantees. Introduce c-Wasserstein distributional fairness (Def.[I)) and prove
feasibility (Prop.[I)) and consistency (Prop. [2) of robust fair learning problem (Eq. [6).

* Tractable reformulation. Derive a computable formulation of e-WDF and the associated DRO
regularizers (Thm. [T} Thm. [2), and present an efficient algorithm to compute e-WDF (Alg.[T).

* Finite-sample certification. To mitigate out-of-sample problem, Provide finite-sample guarantees
for auditing fairness(Thm. {] Prop. [3).

* Quantitative bounds. Under smoothness of the decision boundary and data density, establish
upper and lower bounds on e-WDF (Prop. [e| Thm. [5} Thm. [6)).

Additional theoretical results appear in the appendix.

1.1 RELATED WORK

Several recent works use DRO to enhance fairness beyond the training set, either by optimizing
fairness metrics over plausible distributions or by integrating optimal transport into fair learning.
DRO has been applied to classification with fairness constraints, such as in support-vector classifiers
and logistic regression using Wasserstein ambiguity sets and equal-opportunity constraints Wang
et al.[(2024b; 2021)); |Taskesen et al.|(2020). Recent approaches also enforce fairness across perturbed
datasets [Ferry et al.| (2023)), extend worst-case group fairness Yang et al.|(2023)); |Casas et al.| (2024));
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Hu & Chen)| (2024); Miroshnikov et al.| (2022)), and explore alternative uncertainty sets [Baharlouei &
Razaviyayn|(2023)); [Zhang et al.| (2024); Rezaei et al.|(2021);|Zh1 et al.| (2025). A complementary
line mitigates bias and noise via sample selection or reweighting, often with minimax optimization
over f-divergence sets Du & Wu|(2021); [Roh et al.| (2021); [Wang et al.| (2024a); |Abernethy et al.
(2020); | Xiong et al.[(2024); Hashimoto et al.|(2018)); Xiong et al.| (2025)); Jung et al.|(2023). Other
methods promote fairness by minimizing the Wasserstein distance between outputs across sensitive
groups Jiang et al.| (2020); Silvia et al.|(2020); |Chzhen et al.|(2020)), or by projecting to the closest
group-independent distribution under the Wasserstein metric |S1 et al.[(2021); [Taskesen et al.| (2021);
Xue et al.| (2020); Lin et al.[(2024)).

2 BACKGROUND AND FOUNDATIONS

Data Model. Let Z = (X,A,Y) be a random vector on (X',.4,)) with joint distribution P. We
assume feature space X' = R?, binary labels ) € {0,1} and discrete sensitive attribute A € {1,...,k}.
The classifier hg : X — ) is deterministic, trained without using A, and has parameter € © RE,
Fairness Notions. Many group-fairness metrics (e.g., equalized odds) are defined as the difference
between a classifier’s conditional expectations over specific, disjoint subsets of .4 x ). Formally, let
{S6},., and {Si}. _ be disjoint subsets of A x ) with positive measure, indexed by a finite set of Z
of size m. A classifier hg satisfies the e-fairness if it meets all m constraints:

1g:i(a,y 1g:i(a,y
o P G )
z~P Ep[]].sé] Ep[ﬂ.s{]
where 15 denotes the indicator of set .S, and ¢ is a tolerance for deviations from perfect fairness. To
compactly encode m fairness constraints, introduce the random vector U(A,Y) € {0,1}*>™ with:

U(avy) = (]]'Sé (aay)a ey I]-S{)” (aay)a I]-S% (aay)7 x3) ]]-S{” (aay))
We can then view the fairness constraints in terms of the value hy(X), the vector U, and E[U].
Specifically, define a function ¢ : R?™ x R?™ — R™ by:

i(U,p) = — — = wherep = E[U], Vie[m]. @)
122 Mitm
Then all constraints collapse into the generic notion of group fairness F(P,8)|Si et al.|(2021); Kim
et al.[(2022):

P (ho(X) | S§) — P (ho(X)| Si)| <¢ or <e, Viel,

F(P,0) := Ep[ho(X)(U, E[U])]. 3)
F(P.0)l
Example 1 (Equalized Odds). Let us consider the sensitive attribute is binary (e.g., gender). A
classifier satisfies equalized odds if its true positive and false positive rates agree across A € {0,1}:

P(he(X)=1]Y=1,A=0)-P(he(X)=1|Y =1A=1)|<¢,
[P(ho(X)=1]Y =0,A=0)—P(hy(X)=1|Y =0,A=1)|<e.
Define St ={2:Y=0,A=a}and S? ={z:Y =1,A =a} forac {0,1}. Then

So hyg is e-fair if it meets all m constraints,

< e where |z]|,, = maxi<i<m |-

]lsl(uvy) Lg1 (a,y) ]152(“)!4) 152(‘173!)
[Ee [ho(X) (—ptgry — )]l <e and  [Ee[ho(X) (Fgz — —tem )] <&
Let U(a,y) = (1s3(a,y), Lsz(a,y), Lsi (a,y), Lsz(a,y)). By Eq. ]2}
]lsl(avy) ls%(a)y) ]15‘2(0'7:‘/) ls%(aay)
L)O(IJJEIP’[[I]) = (]EPO[]lsé] - ]Ew[ls%] ) EPU[]lsg] - ]Ew[ls%] )
Hence equalized odds is |Ep[ ho(X) ¢(U,Ep[U])]

Strong Duality Theorem. The DRO framework is particularly powerful when we can efficiently
characterize the worst-case scenario. Given a function v : Z — R, its worst-case expectation over an
ambiguity set is defined as supge, (p) Ez~q[t(2)], where this quantity depends on the ambiguity
radius § and the reference probability distribution P. A central tool for evaluating worst-case is
the strong duality Theorem |Gao et al|(2017); Mohajerin Esfahani & Kuhn| (2018b); [Blanchet &
Murthy| (2019). This theorem transforms the original hard optimization problem into a tractable,
finite-dimensional one. Specifically, for any g € [1, 0], it states:

= [w( )] inf)\>0 {)\(W + Ez~]P’[’¢J)\(Z)]} 1<g<oo,
su o~ 2)] = ,
QEBE]P’) ° Ez~]P’ I:Supz’:c(z,z’)StS w(z )] q = 0,
whete ¥ (2) 1= sup.ez {$(') — Al (2, )}

|, < € (for another example, see Example E])

“
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Remark 1 (Robust Optimization). When we take q = oo, the Wasserstein ball B5(IP) enforces
that every outcome z can be perturbed by at most a distance §. Consequently, the DRO objective

Supges;, p) Eo [¥(2)] collapses to the classic robust-optimization form Ep [supc(z’z,)@ P( z’)]

3  DISTRIBUTIONALLY ROBUST UNFAIRNESS QUANTIFICATION

In fairness-aware classifier learning, the training procedure is modified to promote equitable predic-
tions with respect to protected attributes by incorporating fairness constraints into the optimization
objective. The resulting training task is formulated as the following constrained optimization problem:

inf  Epx [£(h(X),Y)] st [Epn [ho(X)p(U,Epn [U])]], <€ ©)

oo

Here, ¢ : R x ) — R is the loss function measuring prediction error. However, traditional fairness-
aware learning assumes the training distribution perfectly represents the test environment, which is
often violated due to sampling bias, covariate shift, or adversarial perturbations. To address this issue,
a distributionally robust fair optimization problem is formulated as:

pt{ sw Bolo0 YN st s LBl (0HUEUNL f <2 ©
06 | Qes(pY) QeB; (PN)

This formulation guarantees that the model hy minimizes the worst-case fairness violation over all
plausible distributions, thereby certifying fairness under shifts within a Wasserstein ball around P .

Definition 1 (¢-Wasserstein Distributional Fairness). A classifier hy is called e-Wasserstein
distributionally fair (¢-WDF) with respect to some fairness notion that is quantified by Eq. 3| if

sup {UEQ [ho(X)p(U. Eg[U])] u} <. @
QeBs(PN)

Before presenting our main result, we begin by outlining the necessary assumptions.

Assumption.
(i) Classifier: The family {hg}gco is insensitive to A and given by smooth score function gy:

ho(z) =1(go(x) = 0), gg € C(X) with neural network head, © = {# e R¥ : ||0|| < R}.

(ii) Gradient Lower Bound: 30y > 0 such that inf 0cO [Vage(z)]g > 0.
z€X:|go (z)|<do

(iii) Bounded Density: Let Ly = {x : gg(x) = 0} and d(x,Ly) distance x to Ly then:

. IE”(O <d(X,Ly) < 6)
limsup sup < o0
510 0: Lot D 0
(iv) Cost Function: Let d be a metric on X x X. Then, the metric c on Z X Z is defined as:
c((z,a,),(¢',a’,y)) = d(z,2") + ol(a # a) + 0l(y #y').

Here ¢* are conjugate exponents (1/¢* + 1/q = 1). These assumptions are standard and mild in
algorithmic fairness. (i) is standard and covers many classifier families, including linear/GLM, SVM,
kernel, and neural networks with continuous activations. (ii) The uniform gradient lower bound
ensures the decision boundary remains non-degenerate, aiding robustness and sensitivity analyses.
(iii) The bounded-density condition prevents the distribution from concentrating excessive mass in an
arbitrarily thin boundary layer. (iv) The cost metric assigns infinite cost to changes in the sensitive
attribute or label—reflecting absolute trust in their values, as in previous works [Taskesen et al.| (2020);
‘Wang et al.| (2024b)); Si1 et al.[(2021)).

Remark 2. Our method applies with or without the sensitive attribute in the classifier. Excluding A
is not fairness through unawareness;, it reflects legal/policy limits (e.g., GDPR special-category data,
U.S. Title VII), so we analyze the A-excluded (A-blind) setting.

The applicability of problem [6]rests on two key properties: (i) Feasibility—for any tolerance level ¢,
a non-trivial robust classifier exists; and (ii) Consistency—as the perturbation budget vanishes (6 — 0),
the robust minimizer converges to the solution of the classical fairness problem. The following two
propositions formalize these properties.

Proposition 1 (Feasibility). By Assumption for any € € R, there exists almost sure (with
probability 1) a non-trivial classifier (hg(x) # constant) that is feasible for the problem@
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Proposition 2 (Consistency). Let ¢ be a loss satisfying, for every 0 € ©, the map x — (hg(x),y) is
uniformly L-Lipschitz with respect to the cost d (e.g. Hinge loss). If there exists some 0y € © such that
|F(®N,60)| 0 < &, then any optimal solution 0% of the robust problem@converges to the minimizer
0* of the classical problem[5as § — 0.

To characterize the form of e-WDF, we begin by examining how our assumptions define the
ambiguity set. The following proposition demonstrates the precise impact of these assumptions on its
structure.

Proposition 3 (Shape of Ambiguity Set). Let P € P(Z) be a nominal distribution, and Assump-
tion holds. Then the Wasserstein ambiguity set can be written as:

Bs(P) = {Q €P(Z2):Qay=Pay and Z Pay(a,9))W(Qay,Pay) < 5‘1},
(a,y)eAXY
where Pa v and Qa y are the marginals on A x Y under P and Q, respectively, P, ,, and Q

denote the conditional laws of X given (A = a,Y =vy), and Wy (Qq,y,Pa ) is the q-Wasserstein
distance between these conditionals, measured with cost d.

Proposition [3| implies that for any Q satisfying W,(Q,P) <, the (A,Y)-marginal distribu-
tion matches P. Consequently, Eg[U] = Ep[U] remains constant. This allows us to simplify

Eg[ho(X) (U, Eg[U])] into a function dependent solely on (X, U). Since U is fully determined
by (A,Y), we can express the fairness notion as a score fairness function f : Z — R™, defined by:

f(Z) = h9<m)(p(U(a7y)7ElP[U]>' ®

To derive the e-WDF constraint Eq. |7, we introduce for each i € [m] two upward and downward
Wasserstein regularizers:

S5,q(B:0) := sup Eq[fi(Z)] —Ep[fi(Z)], 5 ,(P,0) := Ep[fi(Z)] = inf Eq[fi(Z)].
QeB;(P) QeBs (P)
These quantify, respectively, the maximum upward and downward deviations of the fairness score
relative to the nominal distribution over all Q in the Wasserstein ball. Let us define S; ,(P,6) =
(83.,(P,6))7, and, similarly, Z; 4 (P, ), and denote the non-robust fairness measure by (P, ) =
Ep[f(Z)]. Under the assumptions of the following proposition, the classifier /g satisfies e-WDF.

Proposition 4 (¢-WDF Condition). Let < denote component-wise comparison. The classifier hg
satisfies the e-WDF condition if and only if

S5.q(P0) + F(P,0) <e and Ts,(P,0) — F(P,0) <e 9)

Proposition 4| states that for each 7, we need to have S} (P,6) + Fi(P,0) < ¢ and Z;  (P,0) —
Fi(P,0) < . Henceforth, for simplicity, we assume that the number of fairness constraints in Eq.
is equal to 1, and we have only two disjoint sets, Sy and .57, and the score fairness function:

7(2) = ho(@) (1, (a,9) = -1, (a.9)) (10)

where py = P(Sp) and p; = IP(S). Before presenting the next results, we need to establish notation.

The classifier hy(x) divides the feature space X into two subspaces: X~ := {z € X : hg(x) =0} and
X*:={xe X :hg(x) =1} (denoted by =+ to avoid confusion with Sy and S1). The distance from a
point z € X to these subspaces is defined as d.(x) := inf e x- d(2',2) and d, () := inf e x+ d(2, x).
Let Po(.) :=P(.| So) and Py (.) :=P(. | S1) represent the conditional distributions given Sy and 5.
For s € (0,00) and ¢ € {0,1}, the conditional probability distribution of the distance to the decision
boundary for each level of sensitive attributes is given by:

Gi(s) =P;(d-(x) < s|d-(x) >0); Gi(s)=P;(d,(z) <s|d,(x)>0), i€{0,1}.

The following theorem presents the first result on the fairness regularizer in the e-WDF setting.
Theorem 1 (s-WDF Regularizer: ¢ = o). Given that Assumptions [(i)] and|(iv)| hold, and the
fairness score function is defined as in Eq. the corresponding regularizer for g = o0 is given by:

S5,00(P,0) = Po(X7)G5(6) + PL(X*)G1(6); Lseo(P,0) = Po(X*)G5(0) +Pr(X7)G1(d) (11)
By Thm. [I] when ¢ = o0 worst-case perturbations move any point by at most 9, so violations are

governed by the probability mass within a §-neighborhood of the decision boundary. We thus simplify
by upper-bounding these probabilities with the measure of this §-margin band in the following.
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Corollary 1 (Simplified e-WDF Condition). Let dist(z,S) = inf,csd(z,2’) (distance d from
Assumption|(iv)). Under Assumptions of Thm.[I| hg satisfies e-WDF if:
1
min (P(Sg),P(S1))
Corollary [T demonstrates that when the minority constitutes a small percentage of the population,

achieving e-WDF becomes significantly more challenging. To conclude this section, we present the
regularizers for g # 0.

P (dist(X, Lo) < 8) + | F(P,0)| <e. (12)

Theorem 2 (s-WDF Regularizer: g # o). With Theoremassumptions, for g€ [1,00) we have:

Ss,q = /'{n%{)\éq —&-IP’O(X')J (1 —p1As?) dG'l(s)} (13)
= 0

S0 S1

=

(1— pors?) G (s) + Pr (%) L

Isq = sup{ — A0+ ]P’O(X+)J (1 —poAs?) dGy(s) + Py (X)J
A0 0 0

(1— pis) dG;<5>} (14)
where sg = (po)\)_l/q,sl = (pl)\)_l/q.
4  FINITE-SAMPLE ESTIMATION OF FAIRNESS REGULARIZER

In this section, our goal is to estimate the upward/downward regularizers S; , (P ,6) and Zs ,(P",6)
using N observations. We begin by presenting an efficient algorithm for estimating the fairness
regularizer.

Theorem 3 (Fairness Regularizer Linear Programs). Let the assumptions of Theorem[I| hold,

po = PN (Sy), pr = PN (Sy) and the coefficients (w;,d;) and G*, G be defined as:
~A—1 . - ~ ].
(lzgl,d+(l‘i)) l‘fZiE.)C‘ XSo, G+(5):p0—1ﬁ <5}

(wirdi) = § (P> d-(23))  ifzi € X x 51, 4 1

(0,4m) otherwise G (6) =y N#{Zz € X" x 8y :d.(x;) < 6}

Then, the unfairness score is given by the following linear program:

#{z; € X" x Sp:d.(x;)

1 1

N 2 wibiiy 2 diG<dTy qe[l,o0)
€[N 1€[N]

G*(6) + G(9) q = 0.

To derive 157Q(PN ,0), swap the indices 0 and 1 in the coefficients and expressions given above.

maer[O’l] N

S5.q(PN,0) = (15)

Theorem indicates that evaluating the quantity S; ,(P”,6) is equivalent to solving a continuous
knapsack problem |Papadimitriou & Steiglitz (1998) in IV variables. This optimization problem admits
a greedy solution that runs in O(N log N) time. The main challenge, however, lies in computing
the distance from a point to the classifier’s decision boundary under the £, norm. To compute the
projection x* of an arbitrary point x onto the boundary Ly, one must solve the system of equations:

90(y) =0, Golz—y) + Wge(@/)) a
= F(y,\) = 4 =0, A eR xR
{Gq(w —y) x Vgo(y) =0 ®:2) < 90(y) @)
where G, (v) := (Jv1]72vq,..., |v,|97%v,,) T For a small number of closest-point queries, Newton-

like projection methods Saye|(2014) are effective. When [V is large, the Fast Sweeping method |Wong
& Leung|(2016), which has linear complexity in the grid size (O(N, grid)), becomes more efficient.
Alternatively, one may solve the static Eikonal PDE |V (x)|g+ =1, [g—=0 = 0.

The Newton-KKT scheme thus scales linearly with the number of points, has the same O(d®)
per-point algebraic cost as the Euclidean solver, and retains rapid quadratic convergence-making it
attractive for scenarios requiring only a handful of closest-point computations. By integrating the
Newton-KKT method for distance computation with the greedy knapsack algorithm for worst-case
selection, we achieve an efficient Algorithm [I]for computing the fairness regularizer. An alternative
version of the DRUNE algorithm that incorporates the Fast Sweeping method appears in Algorithm 2]

In practice, fairness audits and training rely on finite samples. We must therefore ensure that the
empirical Wasserstein-robust fairness we compute is not a sampling artifact but a valid certificate for
the unknown deployment distribution. Building on universal generalization results for e-WDF (e.g.,
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Algorithm 1 Distributionally Robust Unfairness Estimator (DRUNE)

Require: {(z;,a;,y:)}N . go, 6 > 0, tolerances &, 4, Kpmax, {wi}, ¢ > 1, init. (3@ \(©)
Ensure: {¢;} < [0,1] solving max + > w;&; s.t. & 2di¢&; < 64

1: Stage 1: Compute d; = disty(x;,Le) via Newton—KKT

2: fori=1,...,N do

3:  Initialize k < 0, (y;,\;) < (yfo),Ago))

4:  while k < Kpax and ([0y]| >, v |rg] >¢,) do

5 V=@ = Yi, 1y < Gq(v) + AiVgo (i), rg < g0(y:)

2
o Wy ding((q - Dyl | T AT Vo
7 Solve J[0y; 0] = —[ry;74]
8: Update y; +=dy, \; +=0\, k+=1
9: end while
10: Set dz <« Hfﬂlfyqu
11: end for

12: Stage 2: Greedy fractional knapsack on items with cost ¢; = d7, value w;
13: C«— N1, & —0, r; —w;/ei, {(k)} < sortdesc. r

14: for k=1,...,N while C > 0 do

15.  if Clk) S C then

16: f(k) — 1, C<—C—C(k.)
17:  else

18: f(k)HC/C(k), C <0
19:  endif

20: end for

21: return {&;}, & >, wi&;

Le & Malick| (2024)), the next theorem provides a finite-sample guarantee: with high probability
over the draw of the data, the worst-case fairness estimated from the sample upper-bounds the
true worst-case disparity under shifts within an e-Wasserstein ball. Before stating it, we define the
distance-to-boundary expectations constant py under the true probability as follows:

po = Inf {Epp, [d2(2)] + Eonr, [d? ()]} (16)

Theorem 4 (Finite Sample Guarantee for e-WDF under Distribution Shift). Given that Assump-
tions [()} [(iv)] hold, and the fairness score function is defined as in Eq. Suppose pg > 0. Then
there exists a constants o and 3 depending on accuracy level o, the dimension K and diameter D of

2 2
the parameter space, such that whenever N > max(m((j‘.%m, %2), we have, with probability at least
0

1 — o, the uniform lower bound:

wp Eovolf(5)] > Euor[f(2)] Jorallc @,
QeBs (PN)

Before using e-WDF in audits, generalization alone (Thm ) is not enough, so we must also calibrate
how conservative the empirical worst-case estimate is. The next proposition quantifies the excess
fairness of e-WDF—how much larger the empirical worst-case disparity can be than its population
counterpart—and links this gap to sample size and the Wasserstein radius, yielding a practical
calibration rule.

Proposition 5 (Excess Fairness for ¢-WDF). Under the assumptions of Theorem{d} let o be as
2

defined there, and let po > 0 and 0 < po/4. If N > max %7 _* , then with probability
% (po/A—0)

at least 1 — o,

sup E, g[f(2)] < sup E.<wolf(2)] forall 6 e ©.
QeBs (PN) QeBs, o /vw(P)

Equivalently, take 6 = 0 + a/v/ N to upper-bound the population worst-case by the empirical one.
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5 FIRST-ORDER ESTIMATION OF FAIRNESS REGULARIZER

In Section 3] we observed that the effectiveness of the fairness regularizer hinges critically on the
function G; . In this section, we ask: if we impose assumptions on the support and derivatives of G,
can we derive sharper bounds? Before proceeding, we introduce the necessary definitions.

The worst-case behavior depends on the distance between supp(P) n X'* and the boundary of L.
More precisely, we define the margin. s; = inf{s > 0: G (s) > 0}, i € {0,1}, which represents
the minimal distance between supp(P) n X* and the boundary of £y. Under Assumption the
derivative of G is well-defined for s € (0, 00):

1 . ]Pi(SO < d— (X) § S)
+ = 1 i ,
Ji <SO) PZ(Xi) sllrsno S— 80
Since Theorem gives a closed-form for the fairness regularizer at ¢ = 0o, we focus on ¢ € [1,00).
The following proposition shows that, under a positive margin, the regularizer scales as O(d9).

Proposition 6 (Positive Margin). Let A\* be the solution of the optimization problem With
Assumptions andfor q € [1,00), if there exists s}y, s7 > 0 then we have:

04 54
MN01 < T5 (P, 0) < )
min(posg?,p1579)’ sa(P:0) min(p1 559, pos;?)

The lower bound in Proposition [6]depends on A*, so estimating A\* requires additional assumptions.

i€{0,1}

A1 < Ss.4(P,0) <

Assumption. There exists a constant v > 0 such that for each i € {0,1}, the functions Gii are
differentiable on s € [0,v] with G5 (s) > 0 and their derivatives g;* satisfy the L;-Lipschitz condition:

|95 (s1) — g7 (s2)| < Li|s1 — 52|, Vs1,52 € [0,0] )

Any probability distribution P whose density lies in C%! (R?) that has both continuity and a global
Lipschitz-like property like a Gaussian distribution satisfies Assumption i} Under this assumption,
we derive a lower bound for the fairness regularizer. The analogous expression for Zs , (P, 6) follows
by swapping the index ¢ and is therefore omitted.

Theorem 5 (Positive Margin and Lipschitz). With assumptions of proposition[6land (), there exists
a positive constant & that dependent on (P, q) such that for any 6 < dy:

04 2q0%4
min(posy?,prsi?)  min(posy> gy (s5)Po (A7), pr(s7)%F g7 (57)Pa (A7)
With positive margins, the boundary is buffered, so small Wasserstein shifts can only touch a

thin shell near it—making the worst-case unfairness grow like 69 with only a tiny 627 correction
from boundary-density slopes. By contrast, when margins vanish, the buffer disappears and even

infinitesimal shifts move mass across the boundary, yielding a slower § Tt growth; Theorem |§I
formalizes this with a two-term lower bound.

857(1 (P, 9) =

Theorem 6 (Zero Margin and Lipschitz). Let g € [1,00). Suppose s}, s7 = 0, and Assumptions
hold. There exists constants 6o, C' depending on (P, q) such that for any § < do,
1 2q

1 1 q+1 _4d 29
Ss.q(P,0) = (¢ +1) 7T (Po(X')gé(O)poq +P1(X+)gi(0)p1q> datl —Coatl

2

where C = ¢ (P1(X*) Lopo™# +Po(X7) Lipr 7 ) (Po(AX7)g(0)po ™ + P2 (X*)gi (0)pr~+ )

2—gq 2
(Ji’ldCZQ a ﬁ(qﬁ'l)‘ﬁ'l

6 NUMERICAL STUDIES

We empirically evaluate our framework on eight real-world datasets and four classifier families (details
in Appx.[C] Tables[T}2). Our primary objective is to assess the out-of-sample sensitivity of fairness
metrics to distributional shifts and model choices. To demonstrate the widespread fragility of common
fairness notions, we use the following benchmarks: Adult (U.S. Census income prediction) |/Asuncion
& Newman| (1996)), ACS Income (American Community Survey) U.S. Census Bureau| (2023), Bank
Marketing [Moro et al.| (2014), Heritage Health (insurance claims) [Prize| (2014), MEPS (Medical
Expenditure Panel Survey) Agency for Healthcare Research and Quality (AHRQ)|(2024), HELOC
(home equity line of credit applications) |Mae| (2023)), CelebA (celebrity face attributes) |Liu et al.
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Figure 2: (a) Density plot comparing empirical and worst-case fairness estimates ( fs) against true fairness values
across 10,000 SVM models (6 = 0.01, ¢ = 2). (b) Fairness regularizer S5, approaching zero as uncertainty
parameter § decreases. (c) Direct visualization of the gap between worst-case fairness and true fairness values.

(2013), and Law School Admissions [Law School Admission Council| (2002). Binary sensitive-
attribute and label definitions for each dataset appear in Appx. |C|(Table|[I).

We encode each dataset with a binary sensitive attribute (e.g., gender, race, age group) and a binary
target, train diverse classifiers (logistic regression; linear/nonlinear SVM; MLP), and assess group
fairness via Demographic Parity, Equal Opportunity, and Equalized Odds (hyperparameters and
settings in Appx.[C] Tables 2H3).

Experiment 1: sampling fragility. Each trial uses subsamples of size 1,000 and is repeated 10,000
times. Scenario 1: we draw 1,000-point subsamples, fit a classifier on each, and compute fairness
metrics (red band in Fig.[T)). Scenario 2: we train a single classifier once, then repeatedly sample
1,000 points and recompute the metrics (blue band in Fig. [[). Fairness measures are highly sensitive
to the input sample, with large variability on datasets such as HELOC. Complete results are in Fig. 4]
(Scenario 1) and Fig. [5| (Scenario 2); numeric summaries appear in Appx.[C]

Experiment 2: empirical vs. worst-case vs. true. On HELOC, we repeat the following 10,000
times: draw 1,000 samples, train an SVM, set § = 0.01 and ¢ = 2, then compute (i) empirical
fairness Ep~ [ f(Z)], (ii) true fairness Ep[f(Z)] (operationalized by evaluating under P on the full
dataset), and (iii) worst-case fairness supgez, (pvy Eq[f(Z)] via the DRUNE Algorithm Fig. a)
plots true fairness (x-axis) against empirical and worst-case estimates (y-axis); consistent with our
theoretical guarantees, worst-case fairness typically exceeds true fairness with high probability.
Fig. c) visualizes the gap as worst-case — true. Fig. b) shows Ss ,(PY,0) — 0 as § — 0.

7 DISCUSSION

We introduced -WDF, which certifies worst-case group fairness over a Wasserstein ball centered at
the empirical distribution P, When a classifier satisfies the e-WDF constraint on PV, our theory
shows that certificate transfers to the true distribution P up to a small radius inflation § — 6 + «/ VN
(Thm. 4; Prop. 5), and the worst-case bound dominates the non-robust fairness measured at PP.

Our goal was not to design a new fair-learning algorithm, but to quantify a robust fairness constraint
that can be plugged into existing pipelines. In practice, our DRUNE estimator (Alg. 1) computes the
e-WDF regularizer efficiently and can be used for audits or as a constraint during training.

Although our theoretical framework is presented for binary classifiers, it is flexible and can be
extended to multi-class settings. While some research addresses the challenge of non-continuity in
fairness notions using relaxation techniques such as softmax, we avoid these approaches because they
alter the original definition of fairness. Finally, the theoretical estimation in Section [5]suggests that
improving the finite-sample rate is possible, which we leave as a direction for future work.
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A THEORETICAL SUPPLEMENT

This section provides supplementary results, illustrative examples, and extended explanations that
could not be incorporated into the main text due to space limitations.

A.1 GENERIC NOTION OF FAIRNESS

The general group fairness formulation in Eq. |3|encompasses a wide range of fairness metrics by
appropriately specifying the sets S§, .57 and the corresponding transformation ¢ (-, ). To illustrate the
flexibility and generality of this framework, we present two concrete examples—demographic parity
and equalized odds—and show how each can be expressed as a special case of Eq. 3| with suitable
choices of sets and mappings.
Example 2 (Demographic Parity). A classifier satisfies demographic parity if its positive prediction
rate is equal across all sensitive groups A € {1,... k}:

|P(ho(X)=1|A=0a)—P(hg(X)=1|A=0b)|<e forallabe{l,... .k}
Define

Se={z€Z:A=a}, a=1,... k.

Then, each pairwise constraint can be written as

1s, (a, 1s,(a,y)
H]Ez~P[h9(x)( fp(éf:)y) — ;,b(sb)y )]Hwéa, a,be{l,...,k}.

Let

U(a,y) = (1s,(a,9),1s,(a,y),..., s, (a,y)) € R*.
By Eq.|2| choose the k(k — 1)/2-dimensional vector

[ 1s,(ay) 1s,(a,y)
(U, Ee[U]) = (Ew[lsi] B ]E“”J[]lsj] )iJE[k]: i<j

Hence, demographic parity is equivalent
|2 [h(X) (U, Ee[U)]], <.

A.2 DUAL FORMULATION OF WASSERSTEIN DISTRIBUTIONAL FAIRNESS.

To obtain a tractable formulation of e-WDF, it is necessary to adapt the strong duality theorem to the
specific cost function described in Assumption The following proposition provides the explicit
formulation of strong duality tailored to our setting.

Proposition 7 (Strong Duality Theorem). Let 1) be upper semi-continuous v : Z — R and assump-

tion[(iv)| satisfies, then
infy>q {Aéq + ]EP [supyex ¥(2',a,y) — )\dq(%x’)]} q€e[1,00),

su E z =
@erzP){”QM ) E [ sup f(x’,cuy)] q=o0.
z~P z/:d(x,x’)<é

In DRO, the notion of the worst-case distribution is fundamental, as it identifies the most adverse
distribution within a prescribed ambiguity set—often defined by a divergence or Wasserstein dis-
tance—from the empirical data. Optimizing over this worst-case distribution ensures that the solution
is robust to distributional uncertainty and potential data shifts. Importantly, the structure of the
worst-case distribution often admits a closed-form or tractable representation, which facilitates both
theoretical analysis and efficient computation. The following proposition characterizes the explicit
form of the worst-case distribution in our setting.

Proposition 8 (Worst-Case Distribution). Suppose the assumption satisfies and 1) is upper
semi-continuous on Z and satisfies:

inf{/\ 20: E [sup {2 a,y) — )\dq(:v’,x)}] < oo} < . (17
At la’eX

If Xy is the minimum solution of proposition[7|then, a worst-case distribution P* exists, given by:
i. For q = oo, there is a P-measurable map T* : Z — Z such that

T*(x,a,y) € {(:%,a,y) T € argma;(({w(a:’,my) cd(2 1) < 5}} P-a.e.
z'€e

Then the worst-case distribution is obtained by P* =T %‘Z]P’.
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ii. For q€[1,00) and \* =0, there is a P-measurable map T* satisfying
T*(x,a,y) € {(i,a,y) T € arg mi& {d(aj,x’) 11’ e argma)gcw(i,a,y)}} , P-ae.
r’'e TE

In this case worst-case distribution is P* = TP
iii. For g€ [1,00) and \* > 0, there are P-measurable maps T* and T~ such that

T*(x,a,y) € {(i‘,a,y) (Te argmai({d(x,m’) ca' e argma%z/)(i:,a,y) - /\*dq(i',x)}} :
z'e TE

T (z,a,y) € {(:ﬁ,a,y) & € arg min {d(%x') 12’ e argmaﬁﬁcw(;%,a,y) - )\*dq(f,:r)}} :
z'e TE
Define t* as the largest number in [0,1] such that:
89 =t* IE]P [dU(T*(z),z)] + (1 —t%) E}P [T (x),x)].
Then, P* = t*T5P + (1 — t*)T, P is a worst-case distribution.

Now we are ready to apply the proposition Ito the formulation of fairness [3| I Let A* be the solution
of optimization problems in Theorem [2] To describe the worst-case distribution, let us define the
boundary and region sets for each i € {0,1} (see Fig.|3 Ifor geometrlc intuition):

RE reX*:0<d.(z )\(pi)\*) qe[1,00),
Yo lzeXti0<d(x) <6 q=0
R jTEX: 0 <dy(2) < (pA) T ge[l,0),
T lrexi0<d(z) <6 q=0
ot = reX*:d.(x) = (pz)\*) q€[1,%),

R Y%} q = 0.
F._lTeX (@) = (pA)T, ge[l,0),
B N %2 q=©

-1
In the cases A* = 0, we can set (p;A*) @« = o0 in above formulation. Let us define two set-valued

maps 7*, 7" : Z — Z as:
o [TE@hay) @S . ((T)hay) (ey)eS
ean = {0 e TEen= {700y

(7?(.’1)), ) ) (a7y)es’1
where:
x, x € X\Ry,
T () = 4 :amgl_rlréi/\r}+ d(z,z'), z € R\ |
xvarg min d(z,2'), €,
r'eX+
x, x e X\RY,
: / +\ A+
T () = 4 argxgégl_d(x,x ), x € RI\aT,

x U arg min d(x,2’), x €0,
x'eX™
) z, xT € X\Rb o aév
76(37) = arg min d(.%‘,.%'/), x E'R,(')\a(-]. ’
r’eXt
_ z, re X\R{ud
Ti(0) = Y arg miy dw,), 26 RIG.
r'eX”

Then it follows from Proposition there exist P-measurable transport maps 7%,7" : Z — Z that are
measurable selections of 7* and 7, respectively.

Theorem 7 (Worst-Case Distribution). Given that Assumptions|[(i)|and|[(iv)| hold, and the fairness
score function is defined as in Eq.[I0) then:

15
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X2 X2
R «

z:0<d_(x) <8 (a,y) € 51} {z (0<d-(z) < (pl)\*)%; (a,y) € S1}

Figure 3: Illustration of the boundary and region sets R} and R; defined in Eq.|3} corresponding to the worst-
case distribution described in Proposition[§] The shaded regions indicate the sets of points within the distance
threshold, while the boundaries J; and d; (for g € [1,0]) are shown as level sets of the distance functions.

(i) When q = o0 and when q € [1,00) with a dual optimizer \* = 0, let T* be a measurable selection
of T*. Then P* := T;ZIE” is a worst-case distribution with probability

PH(X7 | So) = P(A\RG | So); - PH(X*[ 1) = P(AM\RT | S1)

(ii) When q € [1,0) and all dual optimizers \* > 0, any worst-case transport plan 7* € P(Z x Z)
satisfies:

= E  [dz2)]

(2,2 )~
and if Z* = R} x So| JR7 x S1 then:
{(2, T (2)) : z€ Z*} S supp(r™) < {(2, T*(2)) : z € Z*}.
Moreover, there exist t* € [0,1] and measurable selections T* of T* and T~ of T~ such that
P* = t* TP + (1 —t*)TyP
is a worst-case distribution with probability
PH(X7 | So) = P(X\Ry | So) + (1= t*)P(5 | So)
PH(A" | $1) = P(X\R | $1) + (1— )P0} | S1)
By applying the Theoremwe can calculate the fairness regularizers Sgy o(P;0) and Igy (P:0).

Proposition 9. With assumption of Theorem@ there exists t* € [0, 1] such that:
S5.q(P,0) =Po(Ro\d5) + (1 — t*)Po () + P1(R\OT) + (1 —£%)Py(0F)
Ls,4(P,0) =P1(R3\01) + (1 = t*)P1(07) + Po(Rp\05) + (1 —£%)Po(05)
Proposition[9)is more general than Theorem(I] In this proposition, we do not require Assumption|(iiD}

therefore, the probability distribution P may be concentrated on the margins.

To build intuition for the definitions above and to illustrate how distances to the decision boundary,
as well as their conditional distributions, can be computed in practice, we present two representa-
tive examples. These examples—one for a linear classifier and one for a nonlinear kernel classi-
fier—demonstrate how the relevant quantities, such as d.(x), d, (), and the conditional CDFs G (s)
and G} (s), can be explicitly derived or efficiently approximated in common settings.

Example 3 (Linear Classifier). In the {, feature-space cost, consider the linear SVM, hg(x) =
I(w'z+b>0), where |w|,+ > 0and q,q* are conjugate exponents (1/q* +1/q = 1). The distances

16
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to the decision boundary are

d.(z)

= I(w'z+b>0)|w'z+0b|, d(z)= I(w'z+b<0)|w'z+b|
[0l g [P

If we have explicit formulation fo conditional distribution, Py ~ N (10, %0), then

T T
w po+b w ' po+b
T S —
e (o WX LD B Tl Toll
o(s) = <—<s5 | —= |- -
HwH * wTBow w! Tow
! ol Tl
q q

where ¢(-) is the CDF of the standard normal distribution. Similarly, we can calculate another
G (s) by the same derivation.

Example 4 (RBF Kernel Classifier). In the {5 feature-space cost, consider an RBF-kernel SVM
with decision function

N

go(x) = Z ;Y exp(—w”x — mlﬂg) +b, ho(x) = ]I(gg(at) > 0).

i=1
The exact distance from x to the nonlinear boundary Lg = {x : go(x) = 0} is intractable, but a
first-order approximation follows from a local linearisation of gg:
L(go(x) > 0) |go(x)] do(z) ~ I(go(x) <0) |go ()|

[Vago(z)|2 7 IVago(@)l2

where the gradient has the closed form

d.(z) ~

N

Vogo(@) = —2v Y asys exp(—yle — wi]2) (2 — 2y).
i=1

Because both gg(x) and ¥V ,gg(x) are explicit, the distance estimate is available in closed form.

A central issue in the dual formulation is to determine whether the optimal dual variable A* vanishes.
The next proposition pinpoints the conditions under which A\* is strictly positive.

Proposition 10 (Optimal Dual Solution Behavior). Let s and d7 be the constants:
1
ds : = (poEr, [(1 — ho(w))di(x)] + p1Ep, [ho(2)d! (z)]) 7,

1
67 : = (poEr, [ho(x)d?(z)] + prEp, [(1 — he(z))dd(z)]) * .
Consider the optimization problem equation|13|with associated dual variable ), then

» If 0 = 0g, the optimal dual solution is \* = 0.
* If § < ds, the optimal dual solution satisfies \* > 0.

An entirely analogous statement holds for d7 in problem equation
A.3 REFORMULATION OF WASSERSTEIN DISTRIBUTIONAL FAIRNESS

The e-WDF objective admits equivalent formulations via various conjugate representations. The next
proposition gives its characterization through the concave conjugate.

Theorem 8 (s-WDF as Concave Conjugate). Let Vs and V1 denote the functions defined below:
Us(t) := EP [1- () min(d?(z),py 't) + Ly+(2) min(d?(z),p; 't)]
Ur(t):= CEI?P [pg ' La- (z) min(pod? (z),t) + py ' La+ (z) min(p1dé (z),t)]

For any function U (t), define its concave conjugate by U*(s) := inf,~o{ts — U(t)}. Then hy satisfies

e-WDF if and only if:
UE(l—e)=4d7 and PiE(1-—¢) > ¢ (18)

A.4 FINITE SAMPLE GUARANTEE FOR WASSERSTEIN DISTRIBUTIONAL FAIRNESS.

The concentration theorem in DRO provides probabilistic guarantees that the true data-generating
distribution lies within a Wasserstein ambiguity set constructed from empirical data. The Proposition
highlights the trade-off between robustness (via §) and sample complexity, particularly in high-
dimensional settings.

17
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Proposition 11 (Concentration of Empirical Measures). Ler P € P(Z) be compactly supported
and satisfy Assumption and define the product measure P® = PQP®... on ZN. Then for any
N =1 and confidence level 1 — € with € € (0,1), there exists 6 = 0(N, &) such that if:

6(N,e) S (Nn (Ce—l))’*"axfdﬂw = PP(PeB,(P",0)) >1—c¢, (19)

where C'is a constant depending only on P and the metric dimension d.

Algorithm 2 DRUNE Algorithm with Sweeping Method

Require: {(x;,a;,y:)}N.1, g9, § > 0, tolerances €4, Kpax, {wi}, ¢ =1
: LS N q a
Ensure: {¢;} c [0,1] solving Eg[ré?i}](N N ZZ}lwlfls.t. N Z_Zjl dj& <6
Stage 1: Fast Sweeping distance to the constraint set Lg := {x | go(z) = 0}
Solve [V ¢(x)| = 1 with boundary ¢(x) =0 on Ly
Construct a Cartesian grid G — R? with spacing h
Initialize ¢(x) < O for z € Ly (go(x) = 0); otherwise ¢(z) «— o0
fork=1,..., Kpax do
Eight sweeping orders in 2-D (or 2% in d-D)
for each sweep direction s = 1,...,2% do
for grid point z € G in order s do
Compute tentative value ¢(x) by the upwind discretizations of |[V¢| = 1
¢(x) < min(¢(z),p(z))
end for
end for
if meagx|¢(k) (z) — pF—1) (z)| < ey then

break
end if
: end for
fori=1,...,N do
d; — ‘(b(:rz)‘ // (for general q one may apply |x; — y|q post-correction)
: end for

A A o e

— e e e
WRe AN h WY 2o 0

[\%]
S

: Stage 2: Greedy fractional knapsack on items with cost ¢; = d, value w;
: C«— N, &0, 1y —w;/c;, {(k)} < sortdesc. r
:fork=1,...,N while C > 0do
if ¢(;) < C then
Sy 1. O C—cay
else
Ey < Cley, C <0
27:  endif
28: end for
29: return {&;}, & 3N wi&

BN NN
AU A ey

To establish finite-sample guarantees for e-WDF, we adopt two key theorems from Le et al. [Le &
Malick| (2024)). Below, we present their assumptions and main results exactly as stated, as these form
the foundation for the proof of our Theorem[d] For clarity, we also briefly summarize the assumptions
underlying these theorems.

Assumption 1.

1. (X,|.|lq) is compact.

2. d is jointly continuous with respect to |.||,, non-negative, and
d(z,{) =0 ifandonlyif z=(.

3. Every f € F is continuous and (F,| - | ) is compact. Furthermore, if N (t,X,| - |« ) denotes the
t-packing number of F, then Dudley’s entropy of F is defined by

0]
Zri= | ViogN @A )t
0

is finite.

18
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The following constant, referred to as the critical radius pe,;t, is also introduced.
Perit *= }2£E€~P [mln{c(§7<) 1 Q€ argrg;g{f(C)}]

Theorem 9 (Generalization Guarantee for Wasserstein Robust Models |Le & Malick| (2024)). If
16(a+8)*
2

crit

Assumptionholds and pg > 0, then there exists Aoy, > 0 such that when N >
We have with probability at least 1 — o

Rspn (f) 2 Egnp[f(2)] forall feF,
where o and 3 are the two constants

a=48(1+|\f||oo+ﬁ)(l +2H}—H°°4/210g§), B=9lz  gglTle, [r10g 4,

Proposition 12 (Excess Risk for Wasserstein Robust Models Le & Malick! (2024)). Let « be given
by Theorem[9 Under Assumption[I} if peyiy > 0,
2

and 6 > %

Pcrit «

16
N > 2& and 0 <

Perit 4 \/57

then with probability at least 1 — 9,
Rspn (f) < R5+a/ﬁ,xp(f) forall feF.

In particular, if ¢ = d(-,-)P with p € [1,00) and every f € F is Lip r—Lipschitz, then

o 1/p
Raps (§) < Bene 1) +Linr (54 )

We conclude this section with Algorithm[2] which blends a Fast-Sweeping level-set solver with a
fractional knapsack routine to produce the optimal fractional activation vector ¢ € [0,1]" under an L
budget constraint.

B PROOF

Proof of Proposition[I} First, we need to prove the following lemma:

Lemma 1 (Compact Approximation of Support). Let {x;}}, be a set of observations in a Polish
space X with proper metric, and consider the ambiguity set Bs(PN) centered at the empirical
distribution PN with radius 5 > 0. Then, for any € > 0, there exists a compact set K. € X, such that
for all measures Q € Bs(PY), we have Q(X € K.) > 1 —«.

Proof of Lemma The empirical distribution PV assigns probability mass % to each observation

x;. Let S = {x1,x9,...,2 N} denote the support of PV, which is a finite set and thus compact due
to its finiteness in the metric space X. Let r > 0 be a radius to be determined later, and define the
closed r-neighborhood of S as

N

- UBtrr

where B(z;,7) = {x € X : d(x,x;) < r} is the closed ball of radius r centered at x;. Since S is
finite and each E(xi,r) is closed, their finite union K, is closed. Additionally, each ball is bounded
(diameter at most 2r), and the finite union of bounded sets is bounded, so in a Polish space with a
proper metric, where closed and bounded subsets are compact, K. is compact.

Our goal is to choose r > 0 such that, for all Q € Bs(PY), Q(X € Ka,) > 1 — . Since for Bs(PY)
we have simple below equation:
Bs(PY) = {Q: Wy.a(QPY) <6} = {Q: W10 (Q,PY) < 6},
where W, ; means Wasserstein distance with power ¢ and distance d. It result to find the properties
of Q we only need to check problem for ¢ = 1 and d’(z1,x2) = d?(x1,x2), So for simplicity, we can
take ¢ = 1, which is standard for applying Kantorovich—Rubinstein duality [Villani et al.|(2009) which
states: The Kantorovich—Rubinstein duality states that this distance can equivalently be expressed as

P ) dP(x )d
mie@)= o { [ 0 are)— [ s a0,
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where the supremum is taken over all functions f : X — R with Lipschitz constant not exceeding 1.
Therefore, for any Q € Bs(IPY) and any non-negative, Lipschitz continuous function f : X — R with
Lipschitz constant L ¢, the Kantorovich-Rubinstein duality implies

de@—ffdPN < Lypo.
Let us define the function f, : X — [0,1] as
1, ifzeK,,
1
fr(x) =< 1— =dist¥(z,K,), ifz¢ K, and dist(z,K,) <,
T
0, if dist(z, K.) > r,

where dist(x, K, ) = inf e, d(x,y). The function f, is Lipschitz continuous with Lipschitz constant
Ly = %, and serves as a non-negative, bounded approximation to the indicator of K.

Compute the expectation of f, under P :

Jfrd]P’N -1 i fr(x) =1,
Ni:l
i) =

since each z; € S € K, by construction, so f,.(z
torovich—Rubinstein duality, we have

ffrdQ > fdeIPN — Ly 67=1-

Since f,(z) <lg,, (z) for all z, where [, is the indicator function of Ko, it follows that

QX € Ksy) = J I, dQ > ffrdQ o1

.
To ensure that Q(X € K»,) > 1 — ¢, choose r such that
84 84

—<e = r>—.
r €
Then set K, = Ko, depends on ¢ , and we have Q(X € K,) > 1 —e¢. Since K, is compact, this

establishes the existence of a compact set satisfying the required condition, completing the proof. [

1 for all ¢. Using the inequality from Kan-

54

r

For each ¢ > 0, by Lemma there exists a compact set K such that for all Q € Bs(P"), we have
Q(X € K.) > 1—¢e. We show that there exists ¢ such that for it we have go(z) > 0,Vx € K. By
assumption, go has a neural network header, so we can write the

90(z) = p(6] ¢, () + 6o). 0 = (60,01,62),
Where p is a continuous link function with domain in R, and ¢y, is a feature extractor, such as a kernel
map, or a neural network with parameters 6. By assumption, p is a continuous function with respect to
x and 0. Then the inverse image p~1((0,0)) is an open set (suppose p has positive in its domain). So
there exists an open interval (o, 3) < p~1((0,00)) = R*. Fix some 65 such that ¢y, (K.) < ¢g,(X).
Since ¢y, is continuous function then ¢g, (K.) is compact, and bounded; therefore, we can find
parameters 0 and 6; such that 61 ¢g, (K.) + 6o < (o, B) and 019, (X) + 0o ¢ (v, §). It means for
all z € K, there exist non-trivial parameters 6 such that for all z ~ Q € Bs(PV), we have hy(z) = 1
with high probability 1 — € and there exists « € X'\ K. such that hy(z) = 0. By the definition of the
generic notion of fairness, it satisfies the group fairness. Since for each e the equation has a solution,
the equation has a solution almost surely. O

Proof of Proposition[2] To prove the proposition, it is sufficient to show that, as the Wasserstein
radius d | 0, the distributionally—robust fair-learning problem
(DRO)5 = %Illéng(e) s.t. G5(6) <e,
€

where

F5(0):= sup Eq[l(he(X),Y)], Gs(0):= sup |[|Eg[he(X)e(U,Eq[U])]l,,
QeBs(PN) QeBs(PN)

converges (value and minimizers) to the nominal fair-constrained problem (NR) = (DRO),. We
need to prove the two lemmas below before discussing assertions.
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Lemma 2. By assumption|(i)l we have:

lim G5(6) = Go(0)

§—0
Proof. By assumption the classifier hy for each 6 € ©, is upper-semicontinuous so the function
ha(-)¢ (U,Eqg [U]) also upper-semicontinuous and that for ¢ < co the following growth condition
holds:

E - E *
e such et sup Ty (10@2UEQ[UD ~holao)e (U.Eg[UD)" _

06 d(z,w0)—n d(z,0)4

)

Then by applying the proposition 1 of |Gao et al.|(2024) we can write

%iné sup  Eq[ho(X)¢ (U,Eq[U])] — Epn [he(X)p (U, Epn [U])] =0
—YQeB;s (PN)

— 1im G5(0) = Go(6) (A)

Lemma 3. By assumptionsand the function Gy (0) is continuous.

Proof. Since the Go(0) = E,p, [ho(x)] — Exup, [Ro(z)], then if we prove for arbitrary P By the
assumption, it suffices to show F'(6) = E,_p[he(x)] is continuous then the assertion is satisfied. Fix
0 € © and let {0,,} nen < © with 6,, — 6. Smoothness of g implies gg,, (z) — go(z) for every z € R%.
Define

An() = Ligy,, (220} ~ Ligs()20}-
If go(z) # 0, the sign of gy, (z) eventually matches the sign of gy(z), hence A, (z) — 0. The
exceptional set Ay := {x : go(x) = 0} has probability 0 by Assumption
Because |A,,(z)| < 1 for all (z,n) and p is integrable, The dominated convergence theorem yields

70, -FO)=| | Au@) ] — o
Thus F'(0,,) — F(0), proving continuity of 7' on ©. O

By assumption, we know that the loss (z,y) — ¢(hg(x),y) is L Lipschitz in z and 6. For example,
we have score-based loss £(gs(X),Y'), such as Hinge loss, which is Lipschitz. Since the Lipschitz
property is preserved by the average, the F5(6) has Lipschitz and continuous too. By Kantorovich—
Rubinstein duality |Villani et al. (2009) yields, for every 6 € ©,

|F5(0) — Fo(9)| < LW1(Q,PY) < LW, (Q,PN) < Lé. (B)

By assumption, the bounds equationare uniform in 6. The mapping 0 — Gs(0) is non-decreasing,
whence the feasible sets satisfy S(§) 2 S(0”) for § < ¢’ and the optimal values v(6) := infges(s) Fs(0)
form a non-increasing sequence.

By assumption there exist strictly feasible 6y € © with G (6p) < e. Let p =& — G(6p) > 0. By
Lemma |2} there exist dg such that for § < dy, we have Gs(6y) — Go(6p) < p, therefore we have
G5(0p) satisfies the fairness constraints and therefore S(4) is non-empty.

we show v(d) | v(0) as § | 0. By proof by contradiction suppose there exist sequence {d }72; such
that 65 — 0 and for it there exist 7 > 0 such that for it v(d;) = v(0) + 7 for all k. Let 6* be the
solution of v(0). We assert without loss of generality that we can suppose for every small enough

p > 0, there exists 0 B,(0*) such that for it we have Go(0) < e. If Go(6*) < &, by continuity of

Go by Lemma there exist pg such that for p < po for all § € B,(6*), we have G (d) < .

So suppose that Go(6*) = ¢. Since P has a bounded density and gy is smooth with non-degenerate
zeros, the classifier mapping 6 — hy cannot be locally constant: whenever 61 # 0, one has | hy, —
ho,llc > 0. Tt follows that Gy itself is not locally constant at *. By the preceding argument, it
suffices to show that 6* cannot be a local maximum of GG. Since G is nowhere locally constant and
is differentiable except at a countable set of points, we can perturb ¢ by an arbitrarily small amount
to ensure that no local extremum of Gy lies exactly on the level set G(6) = . In practice, such an
infinitesimal adjustment of ¢ is always permitted.

Therefore for small enough p, there exists 0 such that G (é) < e. By continuity of Fp, we can select

p such that for it we have |Fy(0) — Fyp(0*)| < 7/2.
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Such as 0y, there exist dg that if §;, < dy, we have G(;(é) < &, SO wWe can write:
F5,.(0) = Fo(0*) + 7> Fo(0) +7/2 — |F5,(0) — Fo(0)| > 7/2 — Lb}, > 7/2

So the last inequality is not valid for small dx; consequently, by contradiction, we show v(4) | v(0).

Let 65 € argmin(DRO); and pick any sequence d; | 0 for which 65, — 6* (compactness of ©).
by continuity of G at 0, together with G, (05, ) < €, gives Go(0*) < ¢, i.e. 6* is feasible for (NR).
Using equation [B]and the value convergence,

FO(Q*) = k‘h—>H010F5k (95k) = kh_)ngov((sk) = U(O)a

so0 0% is optimal for (NR). Hence, every accumulation point of DRO minimizers lies in argmin(NR),
proving set convergence.

Proof of Proposition[3} By assumption[(iv)|the cost function c is defined as:
c((a:,a,y), (x’,a’,y’)) =d(z,2' )+ -Tla#ad)+0-I(y£1y),

The cost function imposes a constraint that if the actions a and a’ are not equal or y and y’ are
not, the cost becomes infinite. This implies that in the Wasserstein distance computation between
distributions Q and IP, the marginal distributions over actions A and labels Y must match exactly, i.e.,
Qay =Pay.

Let P be a nominal probability distribution and consider the Wasserstein ambiguity set:

Bs(P) = {QeP(X x AxY)| Wy(P,Q) <d}.

By the Kantorovich—Rubinstein duality|Villani et al., 2009, Theorem 1.14, the g-Wasserstein distance

between two probability distributions P and Q is given by:

qu(]P)vQ): sup (Jj}( 4 yf(waa7y) dP_J

[fluip<1 XXAXY
where f is a 1-Lipschitz function respect to the cost function d9.

Now, applying this dual form of the Wasserstein distance to the distributions Q, , and P, ,, we
have:

sup ( f F(z.a.y) dp—f F(z.a,y) d@) -
[fllLip<l \JXXAXY XxAXY

sup (nyLf(a:,a,y) dP, (z) dPa vy (a,y) — Lf(x,a,y) dQ, ,(z) dQAy(a,y)) _

Fe.ay) d@) ,

[flrip<1 Axy
Pay(a, Ja,y) AP, (z) — ay) dQ, _
(B e ([ s = s i)
(a,y)ze,:axxyPA’Y(a’y)(fa,jufpsl (J-X fay (@) dPa,y(7) = J;( fay(@) d@a,y(x)>) =
Z Pa,y (@)W Qq.y,Pay)
(a,y)eAXY

where f, () = f(z,a,y). Since the total Wasserstein distance is bounded by ¢, summing over all
(a,y) € A x Y, the ambiguity set Bs(P) restricts the Wasserstein distances as:

Z ]P)A,Y (avy)Wg (Qa,yapa,y) <41
(a,y)eAXY
where W (Qq,y, P,y ) is the g-Wasserstein distance between these conditional distributions computed
with the cost d. O

Proof of Proposition[d] By the definition|[I] g satisfies the e-WDF property, if
sup B [1a(X)p(UB[UD ]} < = sup  [Elln(X)ei(A V]| < v
QeBs (PN) QeB;s(PN)

>  sup Eqlhe(X)pi(A,Y)]<e A inf  Eglhy(X)pi(A,Y)] > —¢, Vi
QeBs (PN) QeBs (PN)

— Si,(P,0)+ F(P,0) <e A Ti, (P.0) — F(P,0) <, Vi
«— max(Ss,4(P,0)) + F(P,0) <e A max(Zs4(P,0)) — F(P,0) <e
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The last equation completes the proof. O

Proof of Theorem [, Based on Proposition [7, we need to compute the mapping worst-case
fairness criteria that depends on computing ¥*(2) = Supy(,+ )< ¥ (', a,y) for the function (z) =

ho(z) (py ' Ls,(a,y) —p7 'L, (a,y)). First, we need to compute the value of 1 under different
conditions. It is simply obtained by:

)

0, (x,a,y) € X" x Sy A dy(x) =6,
0, (x,a,y) € X" x Sy, po’ (x,a,y) € X" x Sy A d,(x) <9,
)0, (x,a,y) € X" x Sy, N N (z,a,y) € X" x Sy,
YA @amex xS VI T @ayex xS,
—prt, (z,a,y) € X* x Sy -t (@,0,y) € X xS Ad.(z) =6,
0, (x,a,y) € X* x Sy A d-(x) <.

Therefore by subtracting ©* by v we have:
pots (wa,y) € X x Sy Ad,(x) <4,
W* = 9)(2) =<4 pi!, (@,0,y) € X x Sy Ad.(z) <6,

0 otherwise.
Therefore, we have:
SsaB0)= s { B[00} - B E [(0* - 9)(2)]
QGBJ(P) Z~@ ZN]P z~P
=py ' P(2: X" xSy A do(2) <8)+p'P(2: X x Sy Ad.(2) <6)

=Po(X)py 'P (S A do(x) <6 | do(x) > 0) +p] ‘P (X*)P(S) Ad.(z) <& |d.(x) >0)
= Po(X7)G5(6) +Pr(X7)G7(9)
If we define 4 (2) = supy(, 4)<s ¥ (7', a,y), then we have:

pgl, (x,a,y) € X* x Sg Ad.(x) <6,
)

(W —vs)(2) =<pr" (w,a,y) € X7 xSy Ady(z) <
0 otherwise.

b

Then we have:
Lsn(P,0) = B [(¥7 = )(2)] = Po(X") Gy (9) + Pr(X7)G1(0)
The last completes the proof. O

Proof of Corollary[T} The proof is obtained by applying Theorem [T} When we have:
P(x dist(z,Lg) < 8)
=P(d.(z) <0 di(z) > 0)P(di(2) > 0) + P(d-(z) < § | d.(z) > 0)P(d.(x) > 0)
=poPo(X7)G§ (0 )+P1]P’1(X+)G1(5 = min (po,p1) Ss,00 (P, 0)

)
= S50(P,0) < min (oopy) P(x dist(z Eg) <)

Similarly, it can be shown that:

T5 (PO < —
5o (B 0) < i Gopn)

By combining the two results, it is concluded that:
1

min (pO ) pl)
Now by applying the proposition ] we can say hy satisfies the e-WDF property if:

P(x : dist(z, Lg)) < 6)

P(x : dist(z,Lg)) < 0) = max(Sso(P,0),Zs (P,0))

|F(P,0)] + P(x : dist(z,Lg)) <6) <e

min (po, p1)
The last equation completes the proof. O
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Proof of Theorem[2, We want to compute the worst-case loss quantity. By strong duality formula
which has explained in Proposition[7} we have:

o L] = 0 B o)

where ¥y (z,a,y) = supycy (2, a,y) — Ad¥(z’,x). We can write

wk(z) = S}l};ha(l‘) <p81]150 (avy) _le]lSI (avy)) - /\dq(x/a'r) =

inf
A=0

po Ly (2)) = Nd9(x,2")  (w,a,y) € X* x Sp
Ya(z) = sup ¢ —py La+(2') = Ad¥(2,2")  (2,0,y) € X* x Sy

S () otherwise
Since we have
S5q(B.0) = inf {X6% + E [(4s—)()]] (A)
We want to calculate the function 1 — . We split it into two cases: Case (a,y) € Sp:
pal re Xt
¥x(z) = sup {p51]1X+(x’) —Adi(z,2")} ={pyt —Adi(z) zEX* 2 e Xt =
viex 0 T ¢ Xt a ¢ Xt
pal re X
max(0,py " — \d4(x)) x¢ X
Therefore for (a,y) € Sy we have (1 —1)(z) = max(0,py * — Ad?(2))Lx- (). Case (a,y) € S;:
—p;! re Xt 2 e X
sup {—pi ' La+(2') = Ad%(z,2')} =< —Adi(z) TeX*2 ¢ X =
x'eX -
0 reX
max(—p; ', —\d(z)) weX*
0 r¢ Xt

So it results for for (a,y) € S; we have () —¢)(2) = max(0,p; ' — Ad?(z))1 x+ (). By collecting
both results, we have:

max(0,py* — Ad4(z)), ze€ X" x Sp,

+

(Px —)(2) = { max(0,p;* — \d4(x)), zeX* xSy,

0, otherwise.
So we can calculate:
pgl, z€ X* x Sy,
-1 -1

—p; +max(0,p; " — Adi(x)), zeX* xSy,
= B
() max(0,p; " — \d4(x)), 2€ X" xSy, (B)

0, ze X X Sl-

By strong duality, the worst-case loss equals:
P,0) = i f{ 94 E [(¢r— }:
S5.q(P,0) = f {207 + B [(va —)(2)]

ig% {/\5‘7 + zI~EIF’ [maX(O,pal — Ad9(x))Lx- x5, (2) + max(0,p7* — Ad?(x)) La+xs, (z)]} =

inf{)\éq—i— E [1a-(z)(1—pordi(z))]+ E [1X+<x)(1—p1Ad?(x))*]}=

A=0 x~Po z~P
(poX) M1 (p1A) 1
/{r;% YK —HP’O(X')J (1 —poAs?) dGy(s) +IE”1(X+)J (1—=p1As?) dG7(s)
> 0 0
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For Computing Z5 4 (P, ) the infimum we have:

Ls.o(P0) = E [¢(2)] — inf { E [w<z)]} = E [¢(2)]+ sup { E [_¢<z)]} -

Z~P QeBs(P) | 2~Q 2~P QeBs(P) (2~Q

E,[¥(=)] + inf {07+ E [v()]

z~P

where 15 (2) is dual conjugate of —hg(2)[p] ' Lx+xs, (2) — Py " La-xs, (2)]. With similar reasoning
as in part one, we have the following:

max(0,p; " — \d4(z)), zeX* xSy,
(6 +153)(2) = { max(0,p; — Adi(2), ze X" x Sy,
0, otherwise.

By substituting the above function in the strong duality formula, we have

T54(B,0) = inf (M7 + E [(6+3)()]} =

inf{/\5q+ E [La+(2)(1—poAdi(z))]+ E [h-(x)(l—plAdZ(x))*]}—

A=0 z~Pg z~Py
(poX) ™M1 (p )1
inf  A67 +]P’O(X+)f (1= pors?) dG (s) +IP’1(X')J (1= puas?) A6 (s)
= 0 0
The last equation completes the proof. O

Proof of Theorem To begin, we establish the case ¢ € [1,00). Central to our analysis is a
robust semi-infinite duality theorem, which forms the cornerstone of the subsequent proofs. To
this end, assume that ¢ : X x A x ) — R is a Borel measurable loss function, and recall that
Pay =PV (A =a,Y =y) forallae Aand y € Y. So we have:

Strong Duality Theorem. If p,, € (0,1) for all a € A and y € ), and if 6 > 0, then the following
strong semi-infinite duality holds:

N
1
sup Eg[é(X,A,Y)] =inf A7 + Payhay + ~— Z ”
QeBa (1) ;U% N i=1

st.  AeRy, peR?? peR?
)\dq((xg,ag,y;),(xi,ai,yi)) +luaq‘,y1‘, +v = (;S(z;,a;,y;)
V(x},al,yi) e X x Ax Y,Vie [N]. (A)

The proof of the above theorem can be found in the references |Blanchet & Murthy| (2019);|Gao et al.
(2017); Mohajerin Esfahani & Kuhn|(2018a), so we omit it. By applying our cost assumption, the
formulation [A] converts to:

- i 15,
QEZ?(%N)EQ[(MX,A,Y)] = inf A0+ N;%
s.t. NeR,, veR?
Ad (x5, 1) +vi = ¢, a5, y5)
Va! e X,Vie [N]. (B)

To compute S; ,(PV,6), we define the equation ¢ as follows:

]]-SO(a’ay) ]]-S1(aay)> 1 1
z,a,y) = hg(x — = —lyrxs,(2,a,y) — —La+xs, (z,a,
oe0.0) = hofo) (o~ L) L) = s, (@00

To further simplify Eq.[B] we reformulate the constraints on v; using Proposition [2]as follows:

o, ze X* x So,

—1 —1
—py - +max(0,p; " — Adi(z;)), zeX* x5
i = Laiyi) — A ()} =4 " 7 7
V. zs’llég/{d)(m”a Y ) (xl,x )} maX(O,pal —)\df(aiz)), 2e X" x SO;
0, ze X" x 8.
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After putting these constraints in Eq. |E[, we have:

min  A6? + —Zl/l

s.t. AeRy, ueRd

v =pgt ifze X* xS

1 S ©
Vi = —p;y if z€ X* x S
Z/Z+>\d?($1) >0 if ze X* x S .
v; =0 if ze X" xSy vie[N].
I/Z-—l—)\d?(xi)}pal if ze X” x Sy
v; =0 ifze X" xS,

By defining the sets 7} = {i € [N] : z; e X* x S1}and Iy = {i € [N] : z; € X~ x Sy}, and subtracting
the F(PY,0) from both side we simplified the equation as

Ss5q(PV,0) =min A9+ % D v

€T UT;,
s.t. AeR,, veR?
Vi + X9 (x;) = pyt .
V>0 Vie Iy
;=0 .
Vi 1 VZEI(').

v; + /\d?(xl) = Do
Rewrite every inequality in the form “function< 0” and attach a multiplier. For each 7 € Z7:

g1i (A, V)‘:pfl—Vi—)\df’(xi)<0 «— 71 =0,

g2i(v) = —1; <0 «— 72 =20
gdz(y) —V; < 0 > V3 = 07
g\ ) i=pyt —vi —Xdl(z;) <O «— =0

Define dy; := d.(x;),Vi € Z} and dOi :=d,(x;), Vi€ I the Lagrangian is

L(Av,y) =X+ Zuz + 2 Y14 p1 -y —)\dgi) + Z ~Yoi (—v;)

i€t i€}
+ 2 i) + D vailpg = vi— AdY),
€Ty €Ty
where v = (71,...,74) = 0. Because v is unconstrained after dualisation, the finiteness of inf, £
requires the v;-coefficients to vanish, giving
1 . R
N*f}/”—r}/%:() (ZGII), N*’Ygi*’)qi:() (ZEIO).

Hence 0 < 71;,74; < 1/N. So we can write:

max pl_1 Z Y1i +p51 Z Yai

i€} i€y
ray |Zo]
st. yeRIY, vy eRLY,

- Z Y df; — Z Y4 dg; = 0,
ieTt ieT;

Viel],

Viel,.

et

g
Vi <

2= =

Set the rescaled variables.
fiZZ NVlZG[O,l](ZGII), §iZ= N*y;;,e[O,l](zeI{))
Taking the infimum over A > 0 yields the additional feasibility condition

Z 711d - Z ’Y4z O — = Zfqu

i€} €Ly
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So the problem can be simplified as

1 1
maxXs oy Diers&it+ Npo Diez; &i
st 0<&<1 VieTtuT;,

%Ziel}'uIa §idi () <07
Case ¢ = c0:  In this case by Theorem|[I] we can write:
Ss.00(P,0) = Po(X7)G(8) +P1(X7)G7(9)
If instead of P we use the P, so we have
G0 = B (0)Gh(0) =00
G (9) 1= B (A*)C1(9) = pr" {21 € X7 x 81 2 () < )

#{ZzEX x So : dy(2;) < 6}

S0 Ss.0 (PN, 0) = G*(8) + G~ (5). Therefore, the last equation completes the proof. O
Proof of Theorem[d The complete version of Theorem [d]is presented in the following:
Theorem. Given that Assumptions [(D} [(iv)|hold, and the fairness score function is defined as in

16(a+ﬂ)
0

Eq. Suppose pg > 0. Then there exists a constant Ao > 0 such that whenever NV > and

0> NIE We have, with probability at least 1 — o, the uniform lower bound
sup E..g[f(2)] =E,p[f(z)] forallfe®,
QeBs(PN)

Here the constants « and 3 depend on the dimension /& and diameter D of the parameter space, and
are defined by

L
e :=48(2+ /\%) (5 + %q/2log§), B:= % —&-48)\—10 210g§7 M = ee%ufex“ve gg(:ﬁ)”q*,

24/mDgM a

= inf V. L= YT (L,L) VK.
¢ 06@,x€z¥1'1|199(z)|<50“ "gQ(I)Hq* c Max{ 352 b1

Hence, § v decays at the dimension-independent rate O(N —i ).

Let f be the fairness score function[I0} The generic notion of fairness is not continuous with respect
to x, so by adding the function f 6( )

ot (1— Ldi(z)) zeX xSy nd(z)<e,
g5(z) =< pit(1—Ldi(z)) zeXx* xS and(z)<e (A)

0 otherwise.

So the function f§(z) = f(2) + g§(z) is continuous.
For family of functions F, and for A > 0, we recall the expression of the maximal radius:

pmax(>\> = }Ielﬁ_IEZNIP? [—a;f)\(Z)] .

where 8; the right-sided derivative (i.e. 0;\* f(z) =limpo %) with respect to A € R and

transport conjugate fx(2) = sup,.cz f(2') — Ac?(2,2). Let f§ , be the cost-conjugate of f5. We
need to explore the behavior of the family F = { f§ : 6 € ©} and the function f§. Before proving the
main result, we need some lemmas.

Lemma 4. If A <min(;-,--) %, then f§ \ = fx.

Proof of Lemma 4} For the binary classifier g, the transport conjugate fx(z) = sup,.cz f(z') —
Ac(2', ). It can be written:

argmgx{f(.) — (., 2)} =

{(a:’,a,y) € X" x SO : d(x’,x) = d+(l')}, z€ X" X SO A d+($) < (pOA)i
{(#';a,y) e X" x S :d(2,z) =d.(x)}, zeX* xS Ad(x)<
{z}, Otherwise.

9

(mA) "9,

Q= Q=
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Since our goal is to explore the behavior of f§ for sufficiently small € and ), it suffices to consider

the family F¢ for the case where A < mm(i i)— Specifically, the set of maximizers can be

explicitly characterized as follows: e
argmax{f5() ~ Ad?(.2)} =
{z}, z€ X* x Sy,
{(#',a,y) e X* x Sy :d(2',z) =d,(x)}, z€X xSynd(r)<e,
{(@',a,y) e X* x Sp : d(2,x) =d.(x)}, 2z€X xSy Are<d(x)< (po/\) 7
{2}, 2e X" x Sy Ad,(x) > (poA) ®)
{z}, 2€ X" xS,
{(#',a,y) e X" x Sy :d(2),x) =d.(x)}, ze€X* xS And(z)<e,
{(z',a,y) e X" x S :d(2,z) =d.(x)}, zeX* xS re<d(z)<(mA) 4,
{z}, z2€X* x Sy Ad.(x) > (p1A) 4,

Therefore in the case A < min(,-, --) %, we have f§ ,(2) = f1(2) and completes the proof. [

Lemma 5. ler \* be the solution of problem infy>q {)\(5‘1 + E.p[fr(2)] } then \* <
max (=, L)2,
po’ p1/ 64

Proof of Lemma 5] By applying part (iii) of Proposition 7 for fairness score f, we can write that

0" = Eunry [d+q(”“”)ﬂ(°<d+( ) < (poX*) )]+Ezwpl [dq( ) (0<d_(x)<(p1)\*)_%)]
1

< eten1(0<a <00y )] o 1o <0< urt )
1 1 1.2

1 1
<max(—,—)— = \* <max(—,—)—
po p1°A* po’p1’ o9

Where I is the indicator function. The last equation completes the proof. O

Lemma 6. Let F€ := { f§ : 0 € O} be the family of functions defined in Eq. E] constructed from the orig-
inal classifier family F. Then we have pt, .. () is right continuous at zero and limy_, g+ pS,x(A) = po.
Moreover, there exists a constant Ao > 0 such that

Prnax(A) = %0, forall X e [0,2X0].
Importantly, if € < 5%, both \g and pq are independent of the value of e.

Proof of Lemma [6} To prove the lemma, we have adopted the same strategy as in the proof
of Lemma D1 from [Le & Malick| (2024). Observing the definition of hfj, we clearly see that
f5(2) > f(=). Since for any = € X, the function f§(-) — Ac?(+, ) is continuous, we can invoke the
envelope theorem (Corollary 1, section 2.8 in|Clarke|(1990)). Consequently, the right-sided derivative
of the function fg , with respect to A, is given by:

Y foa(z) = —min{dq(z',z) e argmzax{fg(~) - )\cq(-,z)}}.

Let define for any compact set S € Z, the distance to set c4(z,5) := min{c(z,s) : s€ S}. By
integrating and subsequently taking the infimum over F¢, we have:

€ — i q € q(.
P (N) = inf By [ (2, argmac{£5() — (-, 2)}) . (©
we define pf as below:
€ __ 3 q AN €.
Py = ég(gEINP [mln{d (2,2"):2'€ argmgxfg( )}]
— nddi(s 2" - o N =i q q
élél(gEINP [mln{d (2,2'): 7 € argmzaxf( )}] égcf) {Eg~p, [d1(z)] +Eqpep, [d1(x)]}.

Thus, by the very construction of fg, the critical constant pj does not depend on the choice of e,
remaining invariant for all e. So we use pg notation from now on.

To establish the result, it suffices to demonstrate that for any positive sequence (A )xen approaching
0 as k — o0, the following holds liminfy .o py,ax (M) = po. The functions E. .p[f§ ,(2)] are convex
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with respect to A, so their right-hand derivatives E,p[—0;" I6, 1 (2)] are nondecreasing. As a result,
Piaax» defined as the infimum over these nondecreasing functions, is also nondecreasing. Hence,
for any sequence A, — 0, we have limsup;,_, ., Pmax(At) < Pmax(0). Now, suppose for the sake of
contradiction that there exists an 7 > 0 and a sequence (Ag)gen in Ry with A\, — 0 as k — oo, such
that p .. (A\x) < po—7 forall k e N. From the definition of p .. in Eq.[C] this implies that for
each k, there exists an fgk such that:
EI~IF’ [Ci (z,argmzax{fgk () - Ad(vz)}>:| < Po — %

Given the compactness of ¢ under the | - |, norm, we can assume the sequence (fg, )ken converges
to some fg € F*. Specifically, for z € Z, the expression fg, — Ard?(-, 2) converges to f5 as k — o0.
Consider an arbitrary z € Z. The mapping (X, f§) — argmaxz{f§ — Ac?(-,2)} is outer semicontinu-
ous with compact values (By Lemma A.2|Le & Malick|(2024))), and d is jointly continuous. Thus, the
mapping (A, f§) — c«(z,argmaxz{f§ — Ac?(+,z)}) Is lower semicontinuous, according to Lemma
A.1|Le & Malick (2024). Consequently:

liminf cy (2, argmax{fg, — A\d?(-,2)}) = cx(z,argmax fg(-)).
k—a0 Z Z
Taking the expectation over z ~ [P, we obtain:
B, e[ (2 argmae f5 ()] < Bz [liminf cf (=, argmax{f5, — Med?(-,2)})]
—00

< liminfE, p[cf (z,argmax{f5, — A\ed?(-,2)})]
k—0o0 Z
€
< po— bR
However, since: pg < E,p[cl(z,argmaxz fg)], this creates a contradiction; therefore, there exist
A§ such that we have p, (A) = 2, forall Ae [0,2)A5].
To complete the proof, we know from Lemma , if A < min( p%ﬂ pil)e%, then f§ \ = fx As clearly
evident, the definition of argmaxz{f§(-) — Ac?(+, )} is independent of €. Thus, the quantity \§ also
does not depend on e and remains valid for the entire family F°. O

Lemma 7 (Estimation of Distance). The approximation of distance to the decision boundary is
expressed as:

_ |90(9C)| )2
() = T g @)e O

Proof. Let z* be the projection of x on the decision boundary L£y. Expanding gg(z*) around
projection of x using a Taylor series:

1
90(2*) = gol) + Vago(a) - (2% —2) + £ (% —2)" Vg (6)(@" — ),

for some ¢ € R%. Since go(2*) = 0 and dy(x) = |2* — z|,, Thus the quadratic term is O(|z* —
z[2) = O(dg(x)?). Therefore:

0= go(z) + Vago(z) - (¢F — ) + O(dg()?).
Using Holder’s inequality again:

|96 ()| = [Vage(2) g - do(x) + O(ds (2)?).

Solving for dg(x):
|90 ()| 2
dg(z) = +O(dg(z)7).
IV2go(2)] 4
O

Lemma 8 (Lipschitz Coefficient). Let go(x) be C* in both x € X < R™ and § € © = R? are compact
and bounded set. Assume the quantitative regularity bounds

M= eeztﬁvaagg(x)Hq* = aF eee,meiﬁyffe(z>|<sHv"'g‘9(x>”q* >0. D)

Then For all 0,0 € © and Lipschitz coefficient L = max(-L, L)% we have:

po’p1’/ ce’

15 = forlloo < LJO = 0.
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Proof of Lemma|8} By Eq.[A] We can write the function

+

i =’ (1- 2t 1san—ai’ (1- 5a00) 1500 ®

Since the we just measure the distance in e-distance from boundary Ly, by using Lemma(7] we can
write:

X :% 62 xXr) = A xT) =
Ll = g g O (Bl =0 = 000 =0)

where ¢* is dual conjugate of ¢, i.e., % + qi* = 1. Since the mapping ¥ — gy(z) is differentiable,
go, () — go,(x) = Vgg(x) - (01 —2) for some 6 € [0;,605].

Therefore |go, () — go, ()| < M [|6 — 6'||,,. If the 23 is projection point of = on decision boundary

Lo, , the we have:

|96, (23) — g0, (23)| = |ge, (23)| < M [|0 —0']],
Hence, we can calculate the distance 3 to the new boundary Ly, with an extra motion of length at
most 226, — 6. Thus, by the triangle inequality, we have:

M
dp, (z) < dg,(v) + ?H@l — 024

Interchanging 6; and 65 yields the reverse inequality, so

M
(o, () —do, (2)] < — 01 —ballq Ve, 01,02.

Inside the smoothing part, p.(t) := [1 — %% ] has slope p.(t) = —ge~ 9971, so |pL| < g/e.
Because p. is (g/¢)-Lipschitz and (*) holds,

qM
‘Ps(dwl(f)) _ps(d+0z (7)) < Euel - 02”!}'

So by combining this result in Eq.[E] we can write

- - qM qM
|f6, (2) = fo,(2)] < @\\91 — b2 + ﬁWl — 024

2qM
So, the function f§ is Lipschitz with L = max (-, p%)q—g It completes the proof. O
c

Lemma 9 (Entropy Integral for Lipschitz Classes). Let F = { fo:0¢€ @},@ < R? compact,
D := diam(0©). Assume that the parameter map is L-Lipschitz in the sup—norm, i.e.
Ifo— forlloo < L|0 =02 V0.0 €O.

1
Denote by Tr := f \/1og N(F,| - |0, 0)dd Dudley’s entropy integral. Then
0

Ir </7TDLVd.

Proof of Lemma 9} First, we bound the covering numbers of the class F. Since the map 6 — fj is
L-Lipschitz in the supremum norm, for any 6,60’ € ©,

[ fo— forllco < L6 =62
Hence an £/L—cover of © in | - |2 induces an e~cover of F in || - | . Thus
N(F, |- lw,e) <N(O,]-]2,e/L).

Since © c R4 is compact of diameter D, the standard volumetric estimate gives, for 0 <e < DL,
2DLN\4
N(©-|2e/L) < (=)

and therefore

S

log N (F, |- |oo,€) < d10g<2DL).
Dudley’s entropy integral is

1
Zr = | \flogN (7. |.0) o
0
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Substituting the bound on the covering numbers,
\ff A /log 2DL d(S
tand d§ = —ae~tdt.

Set a := 2D L and make the change of variables ¢ = log a/ 5), sothat § = ae™
The integral becomes
f A /log % dé—aJ Vite tdt < J \/ze_tdt—af(%) \f
t=loga 2
Hence
T
Ir < x/&7(2DL) = /7 DLVd.
O

This completes the proof.
First of all it is easy to check that Assumption|[I]is valid for family of F¢, so By applying Theorem 9]

(Theorem 3.1|Le & Malick| (2024)) on the family of functions F¢, and using Lemmal6] Lemma 9]
Lemma 8] we can find pg, Ao, e, and § such that we have with probability at least 1 — o
)

Rspn(f5) = E
Here Rsp(f) := supgep, p) Ez~0 [f(2)]. By replacing f§ = f + g§ we can write E, .p[f§(2)] =
L 1y2 5o if we set € <

E.-p[9§(2)] + E.p[f(2)]. By Lemma[5 we know A* < max(L, 1),
L L) T , so by Lemmai| we can write fg y = f. By replacing it in the equation
for all 0 € ©,

dmax(-, o
R pn (f) 2 Eenp [f(2)] + Eonp[95(2)] = Rspn(f) 2 Eonr[f(2)]

~p[fi(2)] forallfe®,

By the Theorem [9] we have:

o =48(1+ | F ) +
Now by applying Lemmaﬁand Lemmal we can write Zre < f D max( 1 = Py ) 2qM VK. Itis

)(I + A e /Qlogg), B = %lee 4 ygl7 Lo /QIOggl

5max(pi pi) ¢, we can write

easy to check that ||, = 1. So by setting € <
a= 48(2+ i) (IF + 24/2log é), B=9%lze 48 L, /2log 4.

So by the Theorem@Le & Malick: (2024), for N > 16((”[3) and 6 > f we can write

Rspn (f) = Egep| f()] for allf e O,
But we need to tie up conditions, so we re-derive the relation between the radius parameter ¢ and the
1 2 4 96 48 4

A:=482+ — B:=—\2lIn—, C:=—, §:= 2In — M:=AB+ S,

Ao Ao o Ao Ao o’

_ 2y/mDgM 1 o1\ Ve .

K= —— ——max (p ,m)\/i n —max(po pl) , E:=k/n,

Thus o = Al + AB,and 8 = ClIx- + S . The complexity term satisfies I r-

of € gives € < dn. Choosing € = 7 (the worst admissible value) yields I z-

sample size IV from the five hypotheses

L:=(A+C)E
< £ and for the value
< %. So by choosing

these coefficients, we have below upper bound for « and 3
AFE CFE L
a < T+AB ﬂ<T+S:>Oz+B<g+M.
O

Proof of Proposition[5| The result follows by a direct application of Proposition [I2] (from Proposi-
tion |Le & Malick| (2024)) to the function fg. Indeed, Proposition|12| guarantees that, whenever

160&2 Perit «@
n>—— and p< - —,
pzrit 4 \/ﬁ
Then, with probability at least 1 — o, we have
Rspnv (f5) < Rpiayymp(fy)  forall fge Fe.
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Moreover, from the proof of Theorem[d] we know that by setting
—1/q
€ < dmax (i, i) ,
Po’ P1
and invoking LemmaEI, one obtains f§ , = fi. Hence, under the same sample-size and margin-
parameter conditions,

R57]P>N (f) < Rp-&-(x/\/ﬁ,IP’(f) for all f € ©.
which completes the proof. O

Proof of Proposition [6} By proposition [I0]if § < Js then A\* > 0. We assert that if A* > 0,
then it implies that (poA*) =/ = s} or (p;A\*)~ Y4 > s7. Assume contrary if the (po\*)~ 4 <
st and (p1A*)~1/? < s7 then it implies that Py(R}) = 0 and Py (R;) = 0 then by part (ii) of Theo-
rem [7] for optimal coupling 7* we have

7= E [di(z7)]

(z,2")~m*
but (poA*) 19 < sf and (Pl)\*)il/q < s7 implies that ( I)E . [d9(z,2")] = 0, therefore by contra-
diction we have \* Y7 > min(s} pgl/qu'l pl_l/q)_

By assumption [(iii)| we have P(Lg) = 0 then it implies Po(J;) = P1(0}) = 0. Then by Theorem|[7]
we have:

(po)\*)*l/q (pl)\*)*l/q
5 =IP’0(X')J pos? dGy(s) + }P’l(X")f p1s? dGi(s) =
0 0
(poX*)~1/a (p1A¥)~1/a (A)
) [ st G B [ st a6,
sg s7
By Theorem [2]it can be written:
(poX*)~1/a (pLA¥)~1a
S5.4(P,8) =Po(X") f 1dGs(s) + IPl(X")f 1 Gt (s) =
0 0
(po/\*)*l/q (pl)\*)fl/q (B)
IP’O(X')J 1dGy(s) +]P’1(X+)J 1dGi(s) =
55 51

Po (A7) (Gy(poA*) = Gy (s5)) + Po(X) (G ((p12*) 77) = G (51))
With combining (A) and (B), it follows that:
min(posy”. p153%) (Bo(A) (G (poN") — Gols1)) + B1 (X)(G (mN) %) — G (51))) <87 =
(pA¥)~He

pos? dGy(s) +IP’1(X+)I p1s?1dGi(s) <

S1

(por¥)~1/a

Bo(it") [

So
N (Po(A7) (GapoA*) = Gis5)) + P1(X7) (G (p1V*) /) = G (51)) )
which implies that
54
min(posg?, p1s19)
The last equation completes the proof. O

N 69 < S5 ,4(P,0) <
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Proof of Theorem[5| By Theorem[7]and Assumption )] we can write:

(poX*)~1/a (p1A*)=1/a
54 =IP’0(X')J pos? dGy(s) +Pq (X*)f p1s? dG7(s) = (A)
sg s7
(poX*)~ta 0
polPo(X7) J+ s5%g0(s) ds = pOPO(X')SBqL go(sh+s) ds <
50
) 70 i ) ) 1 9
o) [ (59~ Los) ds = P )55 (st — L) | = (B)
S0
1 ) . . —
ipopo()( )LOU(QJ = 95(56)PoPo (X )mo + %5579 =0 ©

The Eq. [A]is obtained by Lipschitz property of g;. Similarly by considering the second term in Eq.
we have below inequality such as Eq.[C}

1 ) . o

SPIPUX)Lant — g1(s1)pa Py (X7) + 878777 > 0
where 79 = (poA*) "1/ — 5% and 17, = (pyA*) "9 — s%. When

q

1 - (ot =\ ot
8 < 57-95(56)°PoPo(X7)s; (D)
2L
The inequality of is equivalent to either

(55)PoPo(X") + /(g5 (s5)PoPo(X")

LopoPo(X~)
90(55)PoPo (") — /(95 (58)poPo(X")
LopoPo(X~)
If the condition@ satisfies then 19 > g (s5) Ly *, So we have:

)2 = 2LopoPo(X)s5 167 ©
2

770290

) — 2L0p0]P)0(X')867q6q

N

Mo (F)

55+10
5= poPo(x) [ 57 dGi (o)

sh
st (st)Ly? )
> poPo(X7) J 557 dGy(s) = poPo(AX7)s9Gy (st + g3 (s5) L3 L)

"
S0

Now by setting
0 < (poPo(X")s5"Gy (56 + g0 (s6) L ') ™ » G)
the inequality |E| does not satisfy. Therefore for estimation A* we consider the inequality E
_ 95(s5)poPo(X7) — \/(96(86)1901?’0(9('))2 — 2LopoPo(X7)sp 07
Ch LopoPo(X")
257904 2557904

90(s5)polPo(X~) + \/(96(55)27019’0(95'))2 — 2LopoPo(X") s34 = go(s8)poPo (A7)’

1
By propositionHwe have S5 4(P,0) > A*§9 = — (s + 1n0) ~267. By using inequality
Po

(I+2z)9>1—gqx
for x > 0 and p > 1, it follows that

25t 7954 4 25+ P—154 1
5o+ 1m0) 107 = 64 <s+ +—0 ) =09s57 1 <1 0 )
(55 +7m0) Ot 5 poPo(r) 0 95050 PoPo ()

= (5q8+7q <1 —p256p16q> — (5q8+7q _ 2q (g- (S+)pOPO(X->)—1 8+72q7162q
’ 95 (55)PoPo (X7) 0 0% 0
The last equality has a simple form:

1 - - + - — +— —
Ss.4(P,0) = . (5‘155 7 — 24 (g5 (s4)poPo(X7)) 1 sy 2 152q> H)

33



Under review as a conference paper at ICLR 2026

$\—1/
By similar reasoning for §¢ > Py (X™*) Si’.’lA ) qplsq dG%(s) we have:
1

1 )T + (o™ +\\ — -\—2g—
Ss,4(P,0) > o (5q(81) 9 —2q (gt (s7)p1P1(X*)) ! (s7) 29 1§2q) M
By combining the both equations|H|and |l we have:
g1 2024
Ss5.4(P,0) = q

min(posy?,p1s1%)  min(posy>@* gy (s5)Po(X7),p1 (57 )2q+191(81)P1(X+))

By setting K = 2¢ min (pos®?™ g5 (s§)P(X7),p1(s1)%7 gt (s )]P’(X*)) ~ we have

54
S5.4(P,0) = — — K62
W0 i Gosy? i)
Where K depend only to the P and ¢. By combining the bounds in the equations [D]and|[G] to ensure
that the above inequality is correct, we need that § should be less than

. 1.4 + o) 1. (o )
50=mm((2Lolgo<50>2poPo<X )so) ,<2Lllgl<sl>2m<x >sl) ,

Q=

(PoPo(X7)s57 Gy (55 + 95(50) Lo 1)) *, (p1P1(X7)sT7GY (1 + 91(s71) L1 )

The value of §y only depends on the P and ¢, and it completes the proof.

)

Proof of Theorem@ Since the most interesting part of claim of Theoremhappens when g§(0) =
97(0) # 0, without loss of generality to have sharper upper bound, we suppose g;;(0),¢7(0) > 0,
under Assumption there exist constants 0 < §; < ¢ and 0 < C7 < (3 < oo such that

0<Cr<g(s),91(s) <Cr <o, Vse[0,61]

O

q+1

Hence, g{(s) = Cy on [0,61]. Let 6 < (q+1 (poPo(X7),p1Po(X )))7 §,% . We claim that

)\;1/q < min(po,pl)%él. Suppose on the contrary that Va o min(po,pl)ﬁdl. Then without loss
generality if pp = min(pg,p1 ), then we have (po)\*)_l/q < 41, SO we can write

(PO/\*) 1/q (p1/\*)_1/q
09 = PO(X')J pos? dGy(s) +IP’1(X+)J p1s? dG7(s)
0 0
(POA*)il/q 01 o1
> IP’O(X').[ pos? dGy(s) > pOIP’O(X')J s1dGy(s) > pOIPO(X')Clj s?ds

0 0 0

c, C G g+l
Py (X)) 571 —L (poPo(X" “

- L nRa)art — 5> (LS nra(x) o]

The last equation contradicts by assumption about 4, therefore )\;1/ 7 < min(po, pl)%él. Let us define
two functions.

F() = Bo() |

0

(p1A)~11

pos? dGy(s) + Py (X*)f p1s? dG7(s)
0

(poX) ™11

(po) 1/q (p1>\)_1/q
GOV = mBoX) [ 516i(0) ~ Los) ds B (A) [ s9(67(0) < Las) s
0 0
1
q g+1
]. q+2

_2 _2
- m <P0 “Po(X7)Lo +py “P1(X*) Ly >)‘_

q+1

(po FBo ()55 (0) + pr TPy (X9 (0 )) A

Both function F'(\) and G(\) are strictly decreasing in the interval (51 ,+00) and we have F'(\) >
G(\) by assumptlonl Therefore we have F'(\*) > G(\*). Define A such that:

2

A L 0 Van a +\ o+ art __a_ . »?
A=2<p0q113>0(26 )95(0) + pr TPy (X )91(0)> (q+1)" a5 am
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We want to ensure that \ > 01 . To do that, it is sufficient to have the following condition:
1

q g+1

_g+1 -1 - - -1 +\ o+ -1 a
5<% (5 PR 0) + 51 PR ) 41,

We put X\ in the function G so we have:

~ q+1 1 _2 R _2 .
6= 201 (0 Rl Lo+ B )
q+2
e -

’ (i (pgépo(x-)gb(o)+p1_;P1(X+)gI(0)> (q+1)‘qil5—q’f1>

a+2 a+2
w1 2% (g+ )T [ —2 . _2 .
R e (RS TRre XE Ty

q+2

9+l p(g+2)

y (p; T Bo(A)g5 (0) +p;3P1<X+>gx<o>) 5

If we restrict the value of ¢ to:

(a+1)(qa+2) ( +1)7(q+1)£q+2) N

(a+1)(a+2) _g+2 g+l P -2 _ -2 .

b<(2 »  —27w ) : [ES) (po "Po(X7) Lo +py "Pr(X )L1>
(g+2)"

9 (pa By g5 (0) +p;5m<x+>g;<o>)

A)

(B)

q+2

It results that G(\) > 7. Since F'()\) is strictly decreasing on (] ¢, +00), it results A, > \. By this

fact, we can write
_1

Po Tp
Ssa(®.0) = iut Lot Bo() [ o 1s7) G

pl_qM
s [ ) dG1<s>}
0
po_%u
= inf | {M_qéq—l—PO(X')f (1 —pop~%s?) dG§(s)
0<u<i7§ 0
pliélt
s [ 0 dGa<s>}
0
poféu
> it st ro@) [0 s L030) - Los]ds
O<p<X 4 0
plié}t
#2@) [ 0 0) -~ Lo ds}
0
= inf {95+ =L (g O0)Po(X7)py ¢ + 61 (0P (XF)py * | e
0 -1 qg+1
<p<A 4
q - _% + _%
— a+2) (LOPO(X o © + LoP1(X*)p, )MQ}
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; - q + \p_ 9 - + 7%
>t Lo (@ORE )+ OR @) ]
-1 q+1
Oo<p<X ¢
q
2(q+2
q+1)

_2 2
) (LoPo(X')po “ + LoPy (X*)p, > 22
T Vot -1 +\ - 1 ﬁ _4a_
. (PO(X )95 (0)po~ @ +P1(X*)g7(0)p1 q) da+l —

270 p

(g+2)

ot -1 +\ - 1 Q_Tzl _2q_

x (]PO(X )95(0)po~ @ +P1(X™)gi(0)p1 a) §att (©)

The result is valid when § satisfies in two inequalities, @ and By result of equationswe can write

(q+ 7T (P2(X)Lopo™* +Bo(X")Lipy )

. ) N\ T _a 2
SoalF.0) = (a+ 177 (B s O +Pa(A)gi O+ ) 07T - o7

q+1

b © = (B8 ) (O 0

and ¢ = 9% ﬁ(q +1) T The above inequality is satisfied when

[

g+1

. —gatl g+1 1 N+ 1 o - 1
§ < do =min(po.p1)” #* p'v (¢+1)7 (Po(X )96(0)po~ # +P1(X*)gi (0)p1 )
and it completes the proof. O

<l

Proof of Proposition To find the maximum of the expectation of 1(x, a,y) over the ambiguity
set B5(IP), we use strong duality Mohajerin Esfahani & Kuhn| (2018b)); Blanchet & Murthy|(2019),
which was explained before in Eq.
With assumption [(iv)l we have
c((z,a,y), (2',d',y)) =d(z,2") + 0-I(a#a') +o0-I(y # ),
so in the case ¢ € [1,00) the conjugate function is obtained by
Ua(x,a,y) = sug)( {v(a',a,y) — Ad(z,2")}
z’'e

Therefore, by the strong duality theorem, we can write

sup Eglv(z,a,y)] = inf {w +Ep [Sup (2 a,y) — )\dq(gc,x’))] } .

QeBs (P) A0 z'eX
similarly for ¢ = co we can have:
sup f(x’,a’,y’) = sup f(x’,a,y)
2":c(2,2")<8 z’:d(x,x’) <o
By substituting the above equation into the strong duality theorem, the proof is completed. O

Proof of proposition[8, The proposition is a straightforward consequence of Lemma EC.6[Yang &
Gao, |2022| once we impose the cost-function restriction set out in Assumption and use the strong
duality theorem that is described in Proposition[7}

Proof of Theorem([7, To prove we use the Proposition [§] The formula of ¢ function is
(2) = ho(x) (pg ' Ls, (a,y) = p1 " s, (a,))
(@)
By Proposition 8] for ¢ = oo, there is a P-measurable map T : Z — Z such that :
T*(z) € {(i,a,y) 1T€E argma;({w(;v',a,y) cd(2 1) < (5}} , P—ae.
z’'e
as in the proof of Theorem by replacing the argument of 1)(z), T* is obtained by solving for each
(a,y):
T (z) € arg;rllea)}(({hg(x) (palllgo (a,y) —p; *1g, (a,9)) :d(a’,2) <6} =
T*(2) e Xt (z,a,y) € X x Sy Ady(x) <6, . P*(X" | Sp) =P(X\Rj | So);
! X (z,a,9) e X* xSy ad.(x) <6 P*(X* | Sy) = P(X*\R} | S1)
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where T3 (z) is the value of first coordinate of z. For g € [1,00) and A\* = 0, there is a P-measurable
map T satisfying:

. Xt ze X" xSy
* A / _ * )
T*(2) eargglelg{c(z,z ):z eargl?eazxw(z )}, P-ae. = T (2) € {X' S
By the definition of R},, when A\* = 0 then Ry = X~ and similarly R} = X* so we have:
{P*(X' | S0) = P(XA\Rg [ So) = 0;
PH(A*[51) = P(A\R] [ 51) =0

(ii) For ¢ € [1,00) and A\* > 0, there are P-measurable maps 7* and 7" such that

T*(2) eargma‘%c{c(z,z) 2 e argmaxz/)( )—A*c(z,2 q} (A)
z'e
. x z€ X\Rj x Sy, T z€ X\RY x 51,
T (2) arg mi)? d(z,2"), zeRyxSy arg mlndmx) z€RT xSy
z’'e X+
T (z) € argmlg{c(zgz) 2 e argmaxz/J( } (B)
z'e
x z € X\Rj x Sy, z€ X\RY x Sy,
T;(z) € { arg mi{\r{l d(z,2"), zeR\0 x So, | T;(z arg | mm d(z,2"), zeR{\d} x Sq,
x'eXt
x, x € 0y x Sy z€ 0 xSy

Define t* as the largest number in [0, 1] such that:
09 = t*ZIEP [dU(T*(2),2)] + (1 — 15”‘)ZI~}1’,]P> [dY(T"(2),2)].
Then, P* := t*T4P + (1 —t*)T, P is a worst-case distribution. Moreover if define Z* = R{ x
So R x S1, then it can be easily to check for optimal coupling 7* we have:
{(2,T(2)) : z€ Z*} Csupp(n™) < {(2,T*(2)) : z€ Z*}.
By using equations[A]and [B]it is easily to find that:
P* (A" | So) = P(A\Rp | So) + (1 — t*)B(% | So)
PH(X* | S1) = P(A\RT | S1) + (1 —t*)P(07 | S1)
The last equation completes the proof. O
Proof of Proposﬂmn@ Let P* is the worst-case distribution for finding the S5 , (P, ). By applying
it on the formulation of fairness score[I0} and Theorem[7] we have:
S5.4(P,0) = Epe [f(2)] = P*(X" | So) + P*(X* | 1)
— P(X\R | So) + (1—¥)B(& | So) + PIA\RE | S1) + (1 —)B(; | S1)
Similarly, by swapping the indices of 0 to 1, we can obtain
T5q(P,0) = Py (R}\G}) + (1— )P4 (2]) + Po(RY\GE) + (1 — £%)Po ()
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Proof of Proposition[10} Let P* be a worst-case distribution. If § > ds,

Ss.q(P,0) (A)
= {0+ B [0 (=m0 ]+ B, (L (o) (1= prdt(o)]}

. nf{mu E [(1-ho(e)) (1 - pord?(«))'] + E [he<x><1—md?<x>>*]}

A=0 z~Py z~Py

= inf {)\5‘1+ E [(1—he(z))(1—min(l,pord?(x)))]

A=0 z~Po

¢ E [ha<z><1min(l,plxdﬂx)))]}

:ENIPl

= inf {/\6‘1 - IE [(1—he(z))min(1,poAd(z))]— E [h@(a:)min(l,plx\d?(x))]}

A=0 x~Po z~Py
+Ep [pg " (1= ho(x)) +p1 ' ho(x)]
By definition of ds:

LB [(1 ho(@) min(1,poMd2(@)] + E [ho(x)min(1,pi\d! (z))

< E [(1=he(@)pordi(@)]+ E [ho(z)piAd?(z)] = AT (B)

Let § > ds. By applying Eq. [B]in Eq.[Al we have:
A8T = B [(1—he(x))min(L,poAdi(z))] = E [ho(z)min(1,p1Ad!(x))] = A(67 —05) = 0
xr~Ig T~y
so the infimum happens when A\* = 0.

Now consider the case § < ds. By proof by contradiction, suppose A* = 0, so by previous part, we
have:

)i\nfo{)\éq - IE [(1=ho(z))min(1,poAd?(z))] — IE [ho(z) min(Lpl)\d?(ac))]} =0 (O

= z~Po z~Pq

Let e := 0% — 49, so by assumption we have e > 0. By the definition of Js,

bs = (poEr, [(1 — ho(x))dd(z)] + p1Ep, [Re(x)di(z)])* < 0,
By Billingsley| (2013)) Applying Dominated Convergence Theorem, we can find the constant M, such
that

poEp, [(1 — ho(x))dd(2)I(di(z) > M)] + ;1 Ep, [hg(x)d?(x)]l(d?(x) > M)] <=
So if we put A < 1/M, so for A we have:
X7 B [(1~ ho(e)) min(LpoMi ()]~ B [ha(e)min(1,pi\d?(2))]
= A7 — N6 + zlEPO [(1— hg(x)) max(1,poAd?(x))] + ELE]Pl [ho(z) max(1,p1 Ad4(z))]

—Xe + A (poEr, [(1 — ho(x))dd (z)1(d%(x) > M)| + p1Ep, [ho(z)d? (z)1(d¢(x) > M)])
<%
2

Therefore, we can find X such that the inf of Eq.[C]is less than zero, so by contradiction, we can
prove that A* > 0. O

Proof of Theorem@ First of all, it is easy to check that:

ls,(a,y)  1g(a y)>]
F IP’,G =FE |h O\ o 1 \% — E [h _E I
( ) ZNP[ e(x) < EP[HSOJ E]P’[]151] I~IP’0[ g(x)] x~Py [ 9(58)]
=1— E [(1-he)(x)]— E [ho()]
z~Pg z~P;
So by substituting the above equation beside equations from the proof of Theorem |ZL We can write:

sup Eg[y(2)] = Ss,4(P,0) + F(P,0) <e <= 1— “EP [(1 = he)(x)] - IEP [ho(z)]+
QeBs (P) w~Fo z~Py

inf {)\(w + ZIEP |:]]-X'XSO (2) (pal — Adz(x)y + Ly+xs, (2) (pl_l — )\d?(x))+] } S¢

A=0
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First, we show the direct implication. For each €’ > ¢ there exist A > 0 such that
1— E [(1—he)(z)]— E [ho(z)]+
x~Py z~P;

2T+ E [1X-XSO(Z) (5" = A2 (2))" + Lysns, (2) (7" — )\d?(a:))+] < —
1- E [(1—he)(x)]— E [ o(z)]+

ASY + $£E . [(1—ho)(a) (1 - )\pod (2))'] + MI E [he(z)(1—Ap1di(z))"] <& —>
A"~ B [(1~ho)(x)min(pod] (@), )] = E, [ho(w)min(Aprd?(@), )] < ' ~1 =

AT < E (1= ho)(@) min(hpodd(2). )]+ _E, [ho(e) min(aprd(2).1)] ~ (1 —¢') =
s B [(1 = ho)(2) min(pod(z),t)] + [ o(z)min(p1d?(z),t)] —t(1-¢') =

< sup { B [0- o) mind? ()] 4 Tro(ohminpn? (), 0] ~ (1~ &)} —

07 < inf {t(l —&y— E [(1—hg)(x)min(ped?(x),t)]— E [he(x) min(pld?(x),t)]}

£~P0 I~P1

07< inf {(1—€)t—Us(t
— 01< inf {(1 &)t = Vs(0)}

In the above, dividing both sides by A and replacing ¢t = % and by definition of W s(t), the last equation
is obtained. The concave conjugate of a function Ws(¢) is defined as W% (s) = inf; {ts — ¢(t)}. By a
similar reasoning, of theorem implies:
swp Eq[y()] < — Wa(1—<) > 4"
QEB& (]P’)

Now we prove the reverse by contradiction assumption that supgeg, () Eo[t(2)] > ¢, then it implies
there exist &’ > ¢ such that supgeg, ) Eq[(2)] = €’. We set k =&’ —e > 0. By strong duality
theorem, for all A > 0 we have:

A6? > E [(1—h9)( )min(Apod?(x), )]—|— IE [hg(as)min()\pld?(a?),l)]—(1—5’) =
M=k > E [(1—he)(z)min(Aped!(z), )]+ E [hg(x)min(/\pld?(x),l)]—(1—5) =

’£~0

0 —wt> E [(1—he)(z)min(podi(z),t)] + E [he(ﬂf)min(mdf’(ﬁv),t)]—(1—6)t =

:E~0

0 —kt=Ug(t)— (1—¢)t = sup{¥s(t )—(1—5)t}<5q = PUL(l—e) <o’

The last equation happens because the A* > 0, so ¢* the solution of optimization problem
sup, {(1 —e)t — Ugs(t)} is greater than zero. By the above contradiction, the reverse proof is
complete. The proof of the second part is totally similar to the first one. O

Proof of Proposition Let Z = X x A x Y and recall that the cost ¢((z,a,y), (2',d',y')) =
d(z,x") + ol(a # a’) + 00l(y # y'). Because a transport plan with finite cost must match the labels
(a,y) exactly, the g-Wasserstein metric induced by d factorizes over the finitely many label pairs by
proposition [3}

W,(BPV) = ' Pay(a,y)Wq(Pay.BY,)",

a,ysr= a,y
(a,y)eAxY
where P, ,, is the conditional law of X given (A,Y) = (a,y) and P}, its empirical counterpart.

Assumption gives a finite g-moment on & and compact support, so each P, , lives in a d-
dimensional compact metric space. The sharp non-asymptotic bound of Fournier—Guillin (Theorem 2
in|Fournier & Guillin|(2015))) implies that for some constants C,, ¢4, > 0

@y~ a,y

PO{W, (PaysPY,) >t} < Coyexp| —cay Nem=i020H | >0,
Let K := | A x Y| < 0. By a union bound and W, (P,P) < K"/9maxq, Wy, (Pa,y,PY, ).
]Il’@{Wq(P,]P’N ) > 6} < KC’maxexp[fcminN(5/K1/q)max{d’2q}],
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where Cryax := maxg,y Cq .y and cpin := ming y ¢4,y Choose

K/ )1/max{d,2q}

d(N,e) = ( ln(CmaXKg_l)

Then the exponential tail above is at most , yielding P® (P € B,(PY,6(N,¢))) > 1 — . Absorbing
the (fixed) label and constant factors into a single C' = C(P,d) gives exactly the upper-bound scale

§< (Nln(Cg_l))_1/max{d’2q>, proving Proposition O
C NUMERICAL STUDIES SUPPLEMENTARY

Cmin

A. DATASETS

To demonstrate the fragility of group-fairness notions, we apply Scenarios 1 and 2 across a wide range
of models—including Gradient Boosting and AdaBoost. However, when evaluating our DRUNE
algorithm, we restrict our experiments to logistic regression, linear and non-linear SVMs, and MLPs.
We evaluate our distributionally robust fairness approach on several real-world datasets. Table [1]
provides a comprehensive overview of the datasets used in our study.

Table 1: Overview of datasets used in the study

Dataset Protected Attribute Label

Adult Census Gender (Male=1, Female=0) Income >50K (1) vs <50K (0)

ACS Income SEX (Male=1, Female=0) PINCP > median (1) else (0)

HELOC Age (above median=1, below=0) RiskPerformance (Good=0, Bad=1)
Bank Marketing Age (>25=1, <25=0) Term deposit (yes=1, no=0)

CelebA Male (1) vs Female (0) Smiling (1) vs Not Smiling (0)

Heritage Health ~ Sex (M=1, F=0) DaysInHospital_Y2 > median (1) else (0)
Law School Race (white=1, non-white=0) Pass bar exam (1=passed, O=failed)
MEPS SEX (1=male, 2=female) TOTEXP16 > median (1) else (0)

B. MODEL SPECIFICATIONS
‘We evaluate four classification models:

Table 2: Model specifications and parameters

Model Parameters

Logistic Regression max_iter=1000, L2 regularization

Linear SVM max_iter=1000, linear kernel

Non-linear SVM kernel='rbf’, gamma=0.5

Gradient Boosting n_estimators=100, learning_rate=0.1, max_depth=3
AdaBoost n_estimators=100, learning.rate=1.0

MLP max_-iter=1000, solver='1bfgs’,

tol=1e-4, hidden layers (10,10)

C. EXPERIMENTAL SETUP

Table 3: Experimental parameters and settings

Parameter Value/Description

Data Splitting 80/20 train/test split (random state=42)

Sample Size 1000 instances per experiment

Sampling Strategy Balanced between privileged/unprivileged groups
Robustness Parameter (9) 0.001

Distance Norm (q) 2 (Euclidean)

Convergence Parameters €, =10"%¢€,=10""°

Maximum Iterations (K,,4.) 100

Number of Experiments 1000 independent runs

Performance Metrics g;%lﬁ}gy;eiir?;igzrjfhlc parity, equalized odds,

Mean and standard deviation of metrics,

Statistical Analysis confidence intervals, comparative analysis
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Figure 4: Variability of fairness metrics under Scenario 1. The green shaded bands depict the range of
Demographic Parity, Equal Opportunity, and Equalized Odds across 10,000 trials, each of which trains a fresh
classifier on a new random subsample of 1000 points. The substantial width of these bands illustrates the
pronounced fragility of group-fairness measures to sampling variation.
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Demographic Parity Equal Opportunity Equalized Odds

MEPS - /\
Law School -

Heritage Health -
HELOC -
CelebA-

Jsoogepy

Bank Marketing -
Adult Census -
ACS Income -

MEPS - ©
Law School - %
Heritage Health - E’
HELOC - g
CelebA - s
Bank Marketing -
Adult Census -
ACS Income -

MEPS -
Law School -
Heritage Health -
HELOC -
CelebA -

Bank Marketing -
Adult Census -

??
-

b
W P
A\
AT
i f@ ——
K

~ D
e
ooy

Bank Marketing -
Adult Census -

WAS sesury

ACS Income -

MEPS -
Law School -
Heritage Health -
HELOC -
CelebA -

Bank Marketing -
Adult Census -

uorssaibey osibo]

ACS Income -

MEPS -
Law School -
Heritage Health -
HELOC -
CelebA -

Bank Marketing -
Adult Census -
ACS Income -

7>§ 7[>>> 7f>

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.8

Figure 5: Variability of fairness metrics when recomputing on repeated subsamples. A single classifier is trained
once on 1000 randomly drawn data points, and then Demographic Parity, Equal Opportunity, and Equalized
Odds are recalculated over 10,000 different subsamples of size 1000. The shaded green bands reveal the extent
to which fairness assessments fluctuate purely due to sampling variation.
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