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Abstract

Dense retrieval models have exhibited remark-
able effectiveness, but they rely on abundant
labeled data and face challenges when applied
to different domains. Previous domain adapta-
tion methods have employed generative models
to generate pseudo queries, creating pseudo
datasets to enhance the performance of dense
retrieval models. However, these approaches
typically use unadapted rerank models, leading
to potentially imprecise labels. In this paper,
we demonstrate the significance of adapting the
rerank model to the target domain prior to utiliz-
ing it for label generation. This adaptation pro-
cess enables us to obtain more accurate labels,
thereby improving the overall performance of
the dense retrieval model. Additionally, by
combining the adapted retrieval model with the
adapted rerank model, we achieve significantly
better domain adaptation results across three re-
trieval datasets. We release our code for future
research.1

1 Introduction

The goal of information retrieval (IR) is to enable
users to input a query and retrieve relevant passages
or documents from the retrieval system. A standard
IR system (Matveeva et al., 2006; Liu et al., 2009;
Wang et al., 2011; Yang et al., 2019) typically com-
prises two main stages (refer to Fig. 1):

1. First-stage retrieval model: This model is de-
signed to retrieve a small subset of relevant
passages based on the given query.

2. Rerank model: Responsible for reordering the
retrieved passages, the rerank model aims to
enhance the overall user experience.

Recent advancements in contextualized word em-
beddings (Liu et al., 2019; Devlin et al., 2019;
Lewis et al., 2020) have established dense retrieval

1https://github.com/eric88525/UDADF
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Figure 1: Two-stage information retrieval involves using
a retrieval model to select a small subset of passages,
which are then reranked using a rerank model.

(Karpukhin et al., 2020; Xiong et al., 2021) as the
mainstream approach in information retrieval (IR).
This approach effectively addresses the issue of
missing words encountered in lexical methods like
BM25 (Robertson et al., 1995) or TF-IDF (Chris-
tian et al., 2016) and has powerful retrieval ability.

However, the introduction of the BEIR Bench-
mark (Thakur et al., 2021) has highlighted the limi-
tations of dense models. Surprisingly, traditional
lexical-based models like BM25 have exhibited
superior performance compared to dense retrieval
models in out-of-domain scenarios. Additionally,
training dense retrieval models from scratch ne-
cessitates a significant amount of domain-specific
training data, posing challenges in collecting large-
scale data for each specific domain. As a result,
there is a growing demand for domain adaptation
methods that can enhance model performance with-
out relying on labeled data.

Previous unsupervised domain adaptation ap-
proaches, such as Qgen (Ma et al., 2021) and GPL
(Wang et al., 2021b), have employed generative
models to generate pseudo queries and augment
the training data. Qgen and GPL utilized a fine-
tuned rerank model (Nogueira and Cho, 2019) on
the MSMARCO dataset (Nguyen et al., 2017) to as-
sign relevance scores to the generated queries and
passages, creating a pseudo dataset for training the
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dense retrieval model. However, they did not adapt
the rerank model to the target domain, resulting in
potential label imprecision and failure to improve
the two-stage retrieval score.

In this paper, we present a novel technique for
unsupervised domain adaptation (Fig.2). Our ap-
proach focuses on simultaneously adapting the
dense retrieval model and rerank model within a
two-stage retrieval system. The process begins by
generating pseudo queries for target domain pas-
sages, treating them as relative pairs. We employ
sparse and dense negative miners to identify chal-
lenging negatives and create a pseudo dataset by
combining queries with relevant and irrelevant pas-
sages. The rerank model is then fine-tuned using
this dataset.

Since this dataset is not labeled by human, it is
likely to contain noisy labels. Therefore, we pro-
pose a denoise-finetuning approach that incorpo-
rates random batch warm-up and co-regularization
learning. Our experimental results validate the ef-
fectiveness of this approach in alleviating the im-
pact of noisy labels.

In our domain adaptation approach, we utilize
models that have been fine-tuned on the exten-
sive MSMARCO (Nguyen et al., 2017) IR dataset,
which serves as a strong foundation for adapting to
various domains. Remarkably, our approach outper-
forms previous domain adaptation methods in both
one-stage and two-stage retrieval tasks, showcasing
superior performance.

In summary, our pipeline offers the following
contributions:

• Full adaptation of both the rerank model and
dense retrieval model without requiring target
domain labeling data.

• Successful training of the rerank model on the
generated dataset, effectively mitigating the in-
fluence of noisy labels through random batch
warm-up and co-regularization techniques.

• Transfer of domain-adapted knowledge from the
rerank model to the dense retrieval model using
knowledge distillation (Hofstätter et al., 2020),
leading to significant performance improvements
in the final two-stage retrieval.

2 Related Works

2.1 Two-stage Retrieval
Two-stage retrieval (Matveeva et al., 2006; Liu
et al., 2009; Wang et al., 2011; Yang et al., 2019)

is a widely adopted approach that combines the
strengths of retrieval models and rerank models for
effective information retrieval. It has emerged as
the preferred pipeline for competitive IR compe-
tition tasks (Lassance, 2023; Huang et al., 2023;
Zhang et al., 2023).

Rerank models, such as cross-encoder (Nogueira
and Cho, 2019) and mono-T5 (Nogueira et al.,
2020), demonstrate exceptional performance com-
pared to retrieval models. However, their demand-
ing computational requirements (Khattab and Za-
haria, 2020) restrict their practical application to
reranking a limited subset of passages.

In this study, we adapt the BERT base retrieval
model (Devlin et al., 2019) using the bi-encoder
architecture (Reimers and Gurevych, 2019), while
the rerank model is implemented using the cross-
encoder architecture (Nogueira and Cho, 2019).

The bi-encoder serves as the initial retrieval
model, where we input a query Q and a passage
P to obtain their respective mean-pooled output
vectors E(Q) and E(P ). The similarity score be-
tween the query and passage is computed by taking
the dot product of these embeddings (Eq.1). To
optimize efficiency, we pre-compute and store the
passage embeddings, allowing for efficient retrieval
by encoding the query input and calculating simi-
larity scores.

Sim(Q,P ) = E(Q) · E(P ) (1)

On the other hand, the cross-encoder model treats
reranking as a binary classification task. It involves
tokenizing each query and passage, denoted as
q(1), · · · , q(n) and p(1), · · · , p(m) respectively. The
input sequence then is formed as follows:

[[CLS], q(1), . . . , q(n), [SEP ], p(1), . . . , p(m)]
(2)

This sequence is subsequently fed into the BERT
model, where the [CLS] embedding is utilized
as the input for a single neural network. Cross-
encoder exhibits strong performance but has higher
latency than the bi-encoder (Hofstätter and Han-
bury, 2019). Hence, it is a more suitable choice to
pair it with the first-stage retrieval model.

2.2 Query Generation

In previous research, docT5query (Nogueira et al.,
2019) fine-tuned the T5 (Raffel et al., 2020) model
as a query generator using labeled query-passage
pairs from the MSMARCO (Nguyen et al., 2017)
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Figure 2: Our adaptation pipeline transfers the rerank model and dense retrieval model from the source domain
to the target domain. The process begins with the generation of a pseudo-training dataset, which is then used to
fine-tune the rerank model. And then it employs the denoise fine-tuning technique to mitigate the influence of noisy
labels. Finally, the knowledge acquired from the rerank model is distilled into the dense retrieval model, completing
the adaptation process.

dataset. Their method involved generating ques-
tions based on passages and concatenating them
with the passages themselves, leading to improved
retrieval performance for lexical-based methods.

In the context of domain adaptation, previous
methods QGen (Ma et al., 2021) and GPL (Wang
et al., 2021b) utilized the generated questions as
training data to enhance the dense retrieval model.
These methods varied in their labeling approaches,
with QGen using binary labels and GPL utilizing a
cross-encoder (Nogueira and Cho, 2019) to assign
soft labels to query-passage pairs.

Building upon the work of GPL, we further re-
fined the performance of the cross-encoder model
in the target domain. By leveraging the adapted
cross-encoder, we achieved more precise label-
ing, resulting in improved performance of the
dense retrieval model. Additionally, we employed
a two-stage retrieval strategy by combining the
adapted cross-encoder with the adapted retrieval
model. This innovative approach led to a significant
10% enhancement in NDCG@10 across all three
datasets, surpassing the performance of previous
methodologies.

3 Methodology

Our method, illustrated in Fig.2, achieves do-
main adaptation for both the retrieval model and
rerank model components through three steps: (1)
constructing a pseudo training set, (2) denoise-
finetuning the rerank model for domain adaptation,
and (3) distilling the knowledge from the rerank

model to the dense retrieval model.

3.1 Generation of Pseudo Training Dataset

To generate pseudo queries for the passages in a
given corpus, we employ a pre-trained T5 model
trained on the MSMARCO dataset. To promote
diversity, we generate three pseudo queries for each
passage, resulting in a total of approximately 300K
pseudo queries. For datasets with more than 100K
passages, we randomly select 100K passages and
generate three pseudo queries for each selected
passage. The training data for the target domain
comprises around 300K (pseudo query, passage)
pairs, denoted as Dpseudo = {(Qi, Pi)}i.

3.2 Cross-Encoder (Rerank Model)
Adaptation

The cross-encoder (Nogueira and Cho, 2019) treats
the reranking of passages as a binary classification
task. To fine-tune it for the target domain, the train-
ing data should consist of (query, passage, label)
triplets, where the label is either 1 or 0 to indi-
cate relevance or irrelevance. After obtaining the
generated training data Dpseudo = {(Qi, Pi)}i, we
apply a filter to exclude queries which is shorter
than 5 words. This filtering is necessary because
we noticed that shorter queries often inquire about
the meaning of a word in the format "What is xxx",
which does not align with the distribution of the
queries in our testing datasets. For a clearer exam-
ple, please refer to Appendix A.

We leverage a cross-encoder trained on the MS-
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Figure 3: Denoise finetuning: In the random batch warm-up phase, we train two separate cross-encoder models
using different data distributions. In the subsequent co-regularization learning stage, these models are jointly
optimized with task-specific losses and regulated through an agreement loss. This regularization technique ensures
consistent predictions and helps alleviate the influence of noisy labels, effectively preventing overfitting.

MARCO (Nguyen et al., 2017) dataset to assign
scores to each (query, passage) pair in Dpseudo.
From these pairs, we extract the top 100k (Qi, Pi)
with the highest cross-encoder prediction scores
as positive training samples, forming the positive
dataset Dpos = {(Qi, Pi, 1)}100ki .

To obtain challenging irrelevant passages, we
utilize two retrieval approaches: (1) BM25 and (2)
a bi-encoder trained on the MSMARCO dataset.
For each query, we retrieve the top-1000 similar
passages using both models. From the retrieval
pools of these two models, we randomly select one
passage from each pool, resulting in two negative
samples. This process allows us to create the nega-
tive training dataset Dneg = {(Qi, Pi, 0)}200Ki .

By combining the positive samples from Dpos

and the negative samples from Dneg, we construct
the final training dataset for the cross-encoder, de-
noted as Dce = Dneg ∪Dpos. The cross-encoder
is trained to predict the probability of relevance
between the query and passage pairs, guided by the
provided labels in the training data.

This selection process of positive and negative
samples ensures that the cross-encoder learns to
discriminate between relevant and irrelevant query-
passage pairs, enhancing its capability to capture
the semantic relationship between queries and pas-
sages.

3.3 Denoise Finetuning

However, it is probable that the dataset Dce =
{(Qi, Pi, yi)}i, yi ∈ {0, 1} contains noisy labels,
which can negatively impact the model’s perfor-
mance (refer to Figure.4). These labels can come
from (1) low-quality queries generated by the query

generator, (2) false positive passages resulting from
imprecise reranking of the cross-encoder, and (3)
false negative documents drawn from the top-1000
negative pools.

To address the issue of potentially noisy labels,
we propose a learning approach called denoise-
finetuning (Fig.3). In our experiments, this ap-
proach has been proven to effectively mitigate the
impact of incorrect labels.

Taking inspiration from common practices in
data science, such as N-fold validation and model
ensemble, our objective is for the models to learn
from diverse data distributions in the initial stages
and subsequently mutually correct each other dur-
ing the later training phase.

We initialize two cross-encoder models
{CEi}2i=1 and employ linear warm-up as the
learning rate scheduler. We train our models for
T steps, this scheduler gradually increases the
learning rate until it reaches its maximum value
at T × α%, where α is a hyperparameter within
[0, 100], and subsequently decreases it. During the
first α% of training steps, we randomly discard
batches with a probability of P to allow the two
models to learn from different data distributions.

During the later stage of training, we utilize an
adapted version of the co-regularization method
proposed by Zhou and Chen (2021). This method
is inspired by previous studies (Arpit et al., 2017;
Toneva et al., 2018) that highlight the delayed learn-
ing curves associated with noisy labels. This ap-
proach enables both models to learn from the batch
data as well as their combined predictions. In this
phase, the models benefit not only from the pro-
vided labels but also from the aggregated predic-



tions. The influence of co-regularization is con-
trolled by the hyperparameters γ. The total loss
(Eq. 3) consists of two components: Llabel, which
represents the loss based on the provided labels,
and Lagg, which reflects the loss derived from the
joint predictions.

L = Llabel + γ · Lagg (3)

When a new batch B is received, the first step is
to calculate the task-specific lossLlabel. In Eq.4, ŷk
represents the batch prediction of the cross-encoder
CEk, and y represents the labels from the batch.
We use the binary cross-entropy loss (BCE) for loss
calculation.

Llabel =
1

2

2∑
k=1

BCE(ŷk, y) (4)

The agreement loss Lagg measures the discrep-
ancy between the model’s prediction and the ag-
gregate prediction agg. To compute this, we first
obtain the aggregate prediction agg by averaging
the batch predictions from the two cross-encoder
models. Subsequently, we calculate the loss Lagg
using the cross-entropy loss.

agg =
1

2

2∑
i=1

(CEk(B)) (5)

Lagg =
1

2

2∑
k=1

BCE(ŷk, agg) (6)

Our experiments demonstrate that by incorpo-
rating this co-regularization technique, the models
can leverage their shared predictions to enhance
their learning and improve overall performance.

3.4 Bi-Encoder (Retrieval Model) Adaptation

Knowledge distillation is a widely used method to
transfer knowledge from a high-compute model to
a smaller and faster model while preserving per-
formance to some extent. Applying this technique
to transfer knowledge from a rerank model to a
retrieval model is also meaningful.

In a previous study, Hofstätter et al. (2020) pro-
posed a cross-architecture training approach to
transfer knowledge from a cross-encoder (Nogueira
and Cho, 2019) to various dense retrieval models.
They used the cross-encoder as the teacher model
to label the marginM between pairs of (query, rel-
evant passage) and (query, irrelevant passage). By

Algorithm 1: Denoise Finetuning
Input: Dataset Dce = {(Qi, Pi, yi)}i;

hyperparameters T, γ, α;
Output: Adapted cross-encoders

Initialize cross-encoders {CEk}2k=1

for steps← 1 to T do
Select a batch B from Dce

if step ≤ a%× T then
for k ← 1 to 2 do

With probability 1− P:
ŷk ← CEk(B)
Llabel ← BCE(ŷk, y)
Update CEk with Llabel

else
Compute predictions:
{ŷk ← CEk(B)}2k=1

Compute label loss: Llabel by Eq. 4.
Compute mean prediction agg by

Eq.5.
Compute agreement loss Lagg by
Eq. 6.

Total loss: L ← Llabel + γ · Lagg.
Update model parameters with L.

utilizing the Margin Mean Squared Error (Margin-
MSE) loss and the margin value, they successfully
trained the student model (bi-encoder) to discrimi-
nate between relevant and irrelevant passages.

The Margin-MSE loss is defined in Eq. 8, where
Q denotes the query, P+ denotes the relevant pas-
sage, and P− denotes the irrelevant passage. The
term MSE corresponds to the Mean Squared Er-
ror loss function (Stein, 1992), while CE and BE
represent the output relevant scores of the cross-
encoder and bi-encoder, respectively, given a query
and passage.

M = CE(Q,P+)− CE(Q,P−) (7)

L = MSE(M, BE(Q,P+)−BE(Q,P−)) (8)

Previous experiments conducted by Hofstätter
et al. (2020) have demonstrated the effectiveness of
ensembling the teacher’s scores in improving the
accuracy of margin estimation. In our study, we
calculate the margin by averaging the scores from
both the unadapted cross-encoder and the adapted
cross-encoder (referred to as Mix). This approach
yields more precise labels for the pseudo queries
and passages. For a detailed example, please refer



Domain Dataset #Corpus #Test query

Finance FiQA-2018 57638 648
Science SciFact 5183 300
Bio-Medical TREC-COVID 171,332 50

Table 1: The statistics of the three experimental datasets

to Appendix F.

4 Experiment Setup

4.1 Datasets

Our experiments are performed on three datasets
obtained from the BEIR benchmark (Thakur et al.,
2021). Details regarding the test sizes and corpus
sizes for each dataset are provided in Table 1 and
can be found in Appendix B.

4.2 Baselines

In our evaluation, we compare the performance of
our adapted cross-encoder and adapted bi-encoder
models with previous domain adaptation methods
and zero-shot models. Further details about the
baselines can be found in Appendix C.

4.3 Hyperparameters

We adapt existing models trained on the MS-
MARCO (Nguyen et al., 2017) dataset from the
source domain to multiple target domains using our
domain adaptation method.

Query Generation: To generate queries for pas-
sages in the target domain, we utilize the T5 query
generator 1 with a temperature setting of 1, which
has been shown to produce high-quality queries
in previous studies (Ma et al., 2021; Wang et al.,
2021b).

Cross-Encoder (Rerank Model) Adaptation:
We adapt the Mini-LM cross-encoder (Wang et al.,
2020b)2 to the target domains. For retrieving hard
negatives, we employ BM25 from Elasticsearch
and a bi-encoder3 from Sentence-Transformers.
From the top-1000 relevant passages retrieved by
each retriever, we select one passage as a hard nega-
tive. The input passage is created by concatenating
the title and body text. The hyperparameter γ in
Eq.3 is set to 1. The pseudo training dataset Dce

1https://huggingface.co/BeIR/
query-gen-msmarco-t5-large-v1

2https://huggingface.co/cross-encoder/
ms-marco-MiniLM-L-12-v2

3https://huggingface.co/sentence-transformers/
msmarco-distilbert-base-v3

consists of 300k samples, with 100k relevant labels
and 200k irrelevant labels.

Denoise-Finetuning: We allocate the initial T×
α training steps for the random batch warm-up
stage, with α set to 0.1. The remaining steps are
dedicated to the co-regularization stage. The cross-
encoder is trained with a batch size of 32 for 2
epochs. The maximum sequence length is set to
300 for all datasets.

Bi-Encoder (Retrieval Model) Adaptation:
We use DistilBERT (Sanh et al., 2019) as the pre-
trained model for the bi-encoder, following the con-
figuration of GPL (Wang et al., 2021b). For nega-
tive retrieval, we employ two dense retrieval mod-
els, msmarco-distilbert3 and msmarco-MiniLM4,
obtained from Sentence-Transformers. Each re-
triever retrieves 50 negative passages. From these
retrieved passages, we randomly select one neg-
ative passage and one positive passage for each
training query, forming a single training example.
The bi-encoder is trained for 140k steps with a
batch size of 32. The maximum sequence length is
set to 350 for all datasets.

5 Experiment Results and Analyses

5.1 Overall Performance

The main results are summarized in Table 2. A
comparison of the recall rates for first-stage re-
trieval is described in Appendix D. We utilize the
adapted bi-encoder (BE(w/Ad)) for initial retrieval,
retrieving 100 relevant passages per query, and the
adapted cross-encoder (CE(w/Ad)) for reranking.
This combination yields substantial improvements
in NDCG@10 compared to previous domain adap-
tation methods and zero-shot models. Notably,
our adapted bi-encoder outperforms previous query
generation-based domain adaptation methods, GPL
and QGen, in the first-stage retrieval. We achieve a
remarkable 10% performance increase. Note that
we do not experiment with BE(Mix) + CE(Mix)
setup, since an online system in practice typically
comprises one BE and one CE to ensure shorter re-
trieval time. Introducing Mix as the cross-encoder
would double the inference time for reranking, mak-
ing it impractical for real-world implementation.
Therefore, we opted not to explore this particular
setup in our experiments.

https://huggingface.co/BeIR/query-gen-msmarco-t5-large-v1
https://huggingface.co/BeIR/query-gen-msmarco-t5-large-v1
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2
https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v3
https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v3


Model FiQA SciFact TRECC Avg.

Zero-shot sparse model

BM25 23.6 66.5 65.6 51.9
docT5query (Nogueira et al., 2019) 29.1 67.5 71.3 55.9

Zero-shot dense model

ANCE (Xiong et al., 2021) 29.5 50.7 65.4 48.5
ColBERTV2 (Santhanam et al., 2022) 31.7 67.1 67.7 55.5

Reranking

BM25+CE 35.0 68.8 75.4 59.7

Pre-training base domain adaptation

MLM (Gururangan et al., 2020) 30.2 60.0 69.5 53.2
TSDAE (Wang et al., 2021a) 29.3 62.8 76.1 56.0

Query generation base domain adaptation

QGen (Ma et al., 2021) 28.7 63.8 72.4 54.9
GPL (Wang et al., 2021b) 32.8 66.4 72.6 57.2
GPL + CE(wo/Ad) 36.8 68.4 76.5 60.5

Ours

BE(w/Ad) 33.9 69.9 74.6 59.4
BM25+CE(w/Ad) 36.7 71.1 78.6 62.1
BE(w/Ad)+CE(w/Ad) 38.4 71.1 79.6 63.0

Table 2: Our approach outperforms previous methods in terms of NDCG@10 for domain adaptation. For reranking
by cross-encoder (CE), we utilize the top 100 results from either the bi-encoder (BE) or BM25. For BE(w/Ad), it
denotes the bi-encoder (BE) distilled from the Mix cross-encoder (See Table.3).

5.2 Impact of Denoise-finetuning
During the evaluation of the denoise-finetuning ap-
proach, we conducted tests at intervals of 1000
training steps. In the denoise setting, we reported
the model with the higher score. The results de-
picted in Figure 4 illustrate the effectiveness of
denoise-finetuning in stabilizing model training and
mitigating the influence of noisy labels, particularly
in situations involving diverse data distributions.
We compare the two methods using three different
random seeds, resulting in six scores for each test
point.

5.3 Impact of Teacher Models in Distillation
In our distillation experiments, we evaluate three
teacher models: (1) adapted cross-encoder, (2) un-
adapted cross-encoder and (3) Mix model. The Mix
model is created by averaging the margin values of
models (1) and (2), as described in Section 3.4. We

4https://huggingface.co/sentence-transformers/
msmarco-MiniLM-L-6-v3

Teacher FiQA SciFact TRECC Avg.

CE(wo/Ad) 33.1 66.7 72.9 57.5
CE(w/Ad) 32.3 69.1 69.7 57.0
Mix 33.9 69.9 74.6 59.4

Table 3: NDCG@10 results obtained using different
cross-encoder models as bi-encoder teachers. "Mix"
utilizes the average margin score of "CE(wo/Ad)" and
"CE(w/Ad)" for training the bi-encoder model.

assess the models every 10k steps and report the
best evaluation result.

Interestingly, we observe that while the adapted
cross-encoder performs better in reranking, it’s dis-
tillation result do not surpass the unadapted cross-
encoder over all datasets, such as TREC-COVID.
After studying the distribution of the margin and
some data cases, we found that the unadapted cross-
encoder tends to assign a smaller absolute margin
score, which means that it exhibits a more conser-

https://huggingface.co/sentence-transformers/msmarco-MiniLM-L-6-v3
https://huggingface.co/sentence-transformers/msmarco-MiniLM-L-6-v3


Figure 4: We perform model evaluation on the testing set every 1000 steps during the training of the cross-encoder
on the pseudo training dataset. In total, we train the model for 18,750 steps across all datasets, with an allocation of
1870 steps for warm-up and the remaining steps for essential co-regularization. The impact of denoise fine-tuning
becomes evident from the second test point, which occurs at approximately 2000 steps.

Dataset Method
Reverse%

1 5 10

FiQA
Normal 30.3 24.7 23.2
Denoise 33.1 26.4 24.9

SciFact
Normal 70.1 62.9 63.6
Denoise 70.1 67.5 68.4

Table 4: The performance of the cross-encoder model
was assessed at 18,000 training steps, comparing two
training conditions: normal fine-tuning and denoise-
finetuning.

vative distinction between relevant and irrelevant
passages. We speculate that the adapted model
widens the gap between relevant and irrelevant
passages, while the unadapted model maintains
a certain level of regularization. Consequently,
the adapted and unadapted cross-encoders together
complement each other and surpass single models.
Therefore, we combine both models as Mix and uti-
lize it as the optimal teacher model for knowledge
distillation. For a detailed example, please refer to
Appendix F.

5.4 Extreme Environment

Table 4 presents the results of our experiments on
a simulated dataset with significant label noise,
demonstrating the effectiveness of denoise finetun-
ing. We inverted {1, 5, 10}% of the labels in the
pseudo dataset Dce and report the final test scores.
Additionally, we conducted experiments with 20%
of the labels inverted, testing with different values
of the hyperparameter α. Further detailed analysis
can be found in Appendix E.

6 Conclusion

In conclusion, we have presented a novel approach
for unsupervised domain adaptation in information
retrieval. Our method addresses the limitations of
dense retrieval models and aims to enhance per-
formance in out-of-domain scenarios. By simulta-
neously adapting the rerank model and dense re-
trieval model, we achieve significant improvements
in two-stage retrieval performance.

Experiment results demonstrate that our domain
adaptation approach outperforms previous meth-
ods in both one-stage and two-stage retrieval tasks.
The fine-tuned rerank model effectively captures
domain-specific information, which is then trans-
ferred to the dense retrieval model through knowl-
edge distillation.

Overall, our work contributes to the field of unsu-
pervised domain adaptation in information retrieval
and provides a valuable framework for improving
retrieval performance across diverse domains with-
out the need for domain-specific labeled data.

Limitations

Our proposed method exhibits superior perfor-
mance compared to other baselines on FiQA (Fi-
nance), SciFact (Science), and TREC-COVID
(Bio-Medical) datasets by a significant margin.
However, it is important to acknowledge that re-
trieval datasets from different domains may possess
highly diverse distributions of passages and queries.
Therefore, further experiments across additional
domains are required to comprehensively evaluate
the general performance of this method.
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Dataset Example

Gen Testset

TRECC what is smus how does the coronavirus
respond to changes in the

weather

FiQA what is step2? what software do you use to
track your net worth

SciFact what is mdsc ATF4 is a general endoplasmic
reticulum stress marker.

Table 5: Example of pseudo queries and testing set
queries.

A Example of short generated queries

We have noticed that shorter generated queries fre-
quently inquire about the definition or meaning of
a word in the format of "What is xxx," which de-
viates from the distribution found in our testing
dataset. See Table 5 for the comparison of a gen-
erated query and a query from the corresponding
testing dataset.

B Dataset

We evaluate the performance of our method on
three datasets from the BEIR benchmark. To en-
sure a fair evaluation, we utilize the datasets and
evaluation code 5 provided by Thakur et al., 2021.

The FiQA dataset (Maia et al., 2018) focuses on
the financial domain and utilizes StackExchange
posts from 2009 to 2017 as its corpus.

The TREC-COVID dataset(Voorhees et al.,
2021) is based on the CORD-19 (Wang et al.,
2020a) challenge and includes recent publications
and historical research on COVID-19 and related
coronaviruses.

The SciFact dataset (Wadden et al., 2020) com-
prises evidence-containing abstracts that corre-
spond to expert-written scientific claims. Each
claim is labeled, and the dataset also includes ra-
tionales that provide supporting evidence for the
labels.

We selected these three datasets for the following
reasons:

Accessibility: All three datasets are publicly
available and open for use.

Objective Evaluation: We employed the BEIR
toolkit, utilizing its provided corpus, queries, qrels,
and validation methods, ensuring a fair and unbi-
ased evaluation.

5https://github.com/beir-cellar/beir.git

Diverse Domains: Our chosen datasets span
diverse domains, including finance, scientific ab-
stracts, and COVID-19 research, representing areas
of significant relevance.

C Baseline

We compare our approach with previous zero-shot
and domain adaptation approaches. For GPL,
MLM, Qgen and TSDAE, we utilize the data pro-
vided from Wang et al. (2021b). For docT5query,
we use the data provided by the Thakur et al. (2021).
For BM25, we employ the Anserini toolkit 6 with
a pre-built index.

Zero-shot sparse model: The BM25 (Robert-
son et al., 1995) and docT5query (Nogueira et al.,
2019) models represent the sparse approach. The
docT5query model utilizes a T5 model (Raffel
et al., 2020) to generate queries and append them
to the passages, thereby improving the retrieval
performance.

Zero-shot dense model: ANCE (Xiong et al.,
2021) is a bi-encoder that utilizes an Approximate
Nearest Neighbor (ANN) index of the corpus to
generate challenging negative examples. During
model fine-tuning, the index is updated in parallel
to select these instances. On the other hand, Col-
BERTV2 (Santhanam et al., 2022) computes con-
textualized embeddings at the token level, which of-
fers better robustness compared to whole-sentence-
based approaches.

Pre-training: MLM (Gururangan et al., 2020)
and TSDAE (Wang et al., 2021a) enable unsuper-
vised training of the model in the target domain,
facilitating subsequent fine-tuning for downstream
tasks.

Question generation domain adaptation:
QGen (Ma et al., 2021) and GPL (Wang et al.,
2021b) leverage generated questions as training
data to enhance the dense retrieval model. These
methods differ in their labeling approaches, with
QGen using binary labels, and GPL utilizing a
cross-encoder (Nogueira and Cho, 2019) to assign
soft labels to query-passage pairs.

D Recall Performance

In the context of two-stage retrieval, the recall rate
of the first retrieval model holds paramount signifi-
cance. This is because achieving maximum recall
of relevant articles is essential to enable the subse-
quent rerank model for effective sorting. In Table

6https://github.com/castorini/anserini.git

https://github.com/beir-cellar/beir.git
https://github.com/castorini/anserini.git


Model/Dataset FiQA SciFact TRECC

BM25 53.9 92.5 47.1*

GPL 63.7 89.5 53.8*

QGen 61.8 89.3 45.6*

BE(w/ad) 63.1 91.6 54.7*

Table 6: Comparison between Recall@100 of our ap-
proach with BM25 and a previous domain adaptation
method. The ’*’ denotes capped recall@k.

Dataset / γ 0 1 2 5 10 20

FiQA 25.8 29.0 27.7 30.1 33.4 35.0
SciFact 65.1 62.8 66.4 67.4 68.9 71.4

Table 7: Reranking BM25 top 100 results with ranking
model in the latest checkpoint evaluation on test set.

6, we conduct a comparison between the adapted
bi-encoder and other domain adaptation methods
in terms of Recall@100.

Due to the fact that the TREC-COVID dataset
contains over 100 instances with relevance annota-
tions for each query, utilizing the standard version
of recall would result in very low values, as the
number of relevant passages always exceeds the pa-
rameter ’k’. Hence, we adopt the capped recall@k
(Eq.10) as a replacement measure, the same as
BEIR Benchmark (Thakur et al., 2021).

Recall@k =
1

N

N∑
i=1

TPi

GTi
(9)

Capped Recall@k =
1

N

N∑
i=1

TPi

min(k,GTi)
(10)

where:

N : Total number of queries.

TPi : Number of true positives for retrieval

instance i.

GTi : Number of ground truth positive items

for retrieval instance i.

k : Cutoff value for recall calculation.

E Extremely Noisy Setting

In our experiments, we intentionally create noisy
labels by inverting 20% of the labels in the pseudo
dataset Dce. This allowed us to simulate an ex-
tremely noisy dataset and evaluate the performance

Figure 5: Experimental results with reversed 20% labels
on the SciFact dataset.

Figure 6: Experimental results with reversed 20% labels
on the FiQA dataset.

of the denoise-finetuning method. We conducted
tests every 1000 training steps to track the model’s
fine-tuning progress. The results presented in Fig-
ure 5 and Figure 6 demonstrate the impact of the
hyperparameter γ (defined in Eq. 3). Table 7 shows
the last checkpoint rerank performance. These find-
ings highlight the importance of carefully tuning
this parameter to achieve optimal performance and
minimize the influence of label noise.

F Margin from different teacher models

In Table 8 and Figure 7, different models exhibit
variations in margin predictions for positive and
negative samples across different datasets. Hence,
we can leverage these differences to complement
each other’s shortcomings.



CE(wo/Ad): -0.41 CE(w/Ad): -11.56 Mix: -5.98 CE(wo/Ad): 4.63 CE(w/Ad): -9.15 Mix: -2.26
Q: how to calculate the rent you can get from own-
ing your house

Q: why is honesty important in business

P+ ...Yes, you should certainly compare the
monthly rent to what your mortgage payments
would be, as you have done. Yes, you should con-
sider how long you might live there. If you do
move out, how difficult will it be to sell the house,
given the market conditions in your area? If you
try to rent it, how difficult is it to find a tenant, and
what rent could you expect to receive? Speaking of
moving out and renting the place: Who will man-
age the property and do maintenance? ...

P+ ...I refuse to be dishonest in business and am
lucky to work for senior management that shares
that view. We win some, we lose some. We are
as transparent as possible, keep our commitments,
and seek deals that drive value for all parties. Some-
times I am deeply frustrated by the lack of integrity
of others and the benefits they seem to reap. But
my reputation is excellent, my clients know they
can take me at my word...

P- In order to arrive at a decision you need the
numbers: I suggest a spreadsheet. List the monthly
and annual costs (see other responses). Then de-
termine what the market rate for rental. Once you
have the numbers it will be clear from a numbers
standpoint. One has to consider the hassle of own-
ing property from a distance, which is not factored
into the spreadsheet

P- Even if there’s nobody outside who needs to see
it right away (investors, etc.), an honestly-written
business plan is a valuable exercise. If done well
(and preferably with external guidance) it forces
you to think all the way through your idea and
make sure your bases are covered.

Table 8: In the example on the left, CE(w/Ad) demonstrates better performance, whereas in the example on the right,
CE(wo/Ad) outperforms. Various models showcase diverse margin predictions for positive and negative samples
across distinct datasets. Thus, we can exploit these variances to compensate for each model’s limitations.

Figure 7: The margin values of using adapted cross-
encoder, unadapted cross-encoder, and mixed margin.


