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Abstract
Attention mechanisms play a crucial role in cogni-
tive systems by allowing them to flexibly allocate
cognitive resources. Transformers, in particular,
have become a dominant architecture in machine
learning, with attention as their central innovation.
However, the underlying intuition and formalism
of attention in Transformers is based on ideas of
keys and queries in database management systems.
In this work, we pursue a structural inference per-
spective, building upon, and bringing together,
previous theoretical descriptions of attention such
as; Gaussian Mixture Models, alignment mecha-
nisms and Hopfield Networks. Specifically, we
demonstrate that attention can be viewed as infer-
ence over an implicitly defined set of possible ad-
jacency structures in a graphical model, revealing
the generality of such a mechanism. This perspec-
tive unifies different attentional architectures in
machine learning and suggests potential modifi-
cations and generalizations of attention. We hope
by providing a new lens on attention architectures
our work can guide the development of new and
improved attentional mechanisms.

1. Introduction
This depth and breadth of success of the transformer ar-
chitecture indicates the attention mechanism expresses a
useful computational primitive. Recent work has shown
interesting theoretical links to kernel methods (Chen et al.,
2021; Tsai et al., 2019; Han et al., 2022), Hopfield networks
(Ramsauer et al., 2021), and Gaussian mixture models (Li
et al., 2019; Movellan & Gabbur, 2020; Gabbur et al., 2021;
Shim, 2022; Nguyen et al., 2022), however a formal under-
standing that captures the generality of this computation
remains outstanding. In this paper, we show the attention
mechanism can naturally be described as inference on the
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structure of a graphical model, agreeing with observations
that transformers are able to flexibly choose between mod-
els based on context (von Oswald et al., 2022; Garg et al.).
This Bayesian perspective complements previous theory
(Kim et al., 2017; Ramsauer et al., 2021; Shim, 2022), while
adding new methods for reasoning about inductive biases
and the functional role of attention variables.

This paper proceeds in three parts. First in Sec.3, we show
that ‘soft’ attention mechanisms (e.g. self-attention, cross-
attention, graph attention, which we call transformer atten-
tion hereafter) can be understood as taking an expectation
over possible connectivity structures, providing an inter-
esting link between softmax-based attention and marginal
likelihood. Second in Sec.4, we extend the inference over
connectivity to a Bayesian setting which, in turn, provides
a theoretical grounding for iterative attention mechanisms
(slot-attention and block-slot attention) (Locatello et al.,
2020; Singh et al., 2022), Modern Continuous Hopfield
Networks (Ramsauer et al., 2021) and Predictive Coding
Networks. Finally in Sec.5, we leverage the generality of
this description in order to design new mechanisms with
predictable properties.

Attention(Q,K, V ) =

p(E | Q,K)︷ ︸︸ ︷
softmax(

QWQW
T
KK

T

√
dk

)WV V

= Ep(E|Q,K)[V ]

A key observation is that the attention matrix can be seen as
the posterior distribution over edgesE, in a graph consisting
of query nodes Q and key nodes K. Where the full mecha-
nism computes an expectation of a function defined on the
graph V : G = (K ∪Q,E)→ Rd×|G| with respect to this
posterior. This formalism provides an alternate Bayesian
theoretical framing within which to understand attention
models, shifting the explanation from one centred around
retrieval to one that is fundamentally concerned with in-
context inference of probabilistic relationships (including
retrieval). Within this framework different attention archi-
tectures can be described by considering different implicit
probabilistic models, by making these explicit we hope to
support more effective analysis and the development of new
architectures.
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2. Related Work
A key benefit of the perspective outlined here is to tie to-
gether different approaches taken in the literature. Specif-
ically, structural variables can be seen as the alignment
variables discussed in previous Bayesian descriptions (Kim
et al., 2017; Deng et al., 2018; Fan et al., 2020), on the other
hand Gaussian Mixture Models (GMMs) (Li et al., 2019;
Gabbur et al., 2021; Shim, 2022; Nguyen et al., 2022) can
be seen as a specific instance of the framework developed
here. This description maintains the explanatory power of
GMMs by constraining the alignment variables to be the
edges of an implicit graphical model, while offering the
increased flexibility of alignment approaches to describe
multiple forms of attention (full discussion in Appendix A).

3. Transformer Attention
3.1. Attention as Expectation

We begin by demonstrating transformer attention can be
seen as calculating an expectation over graph structures.
Specifically, let x = (x1, .., xn) be observed input variables,
ϕ be some set of discrete latent variables representing edges
in a graphical model of x given by p(x | ϕ), and y a variable
we need to predict. Our goal is to find Ey|x[y], however the
graph structure ϕ is unobserved so we calculate the marginal
likelihood.

Ey|x[y] =
∑
ϕ

p(ϕ | x)Ey|x,ϕ[y]

Importantly, the softmax function is a natural representation
for the posterior p(ϕ | x) = softmax(ln p(x, ϕ)). In order
to expose the link to transformer attention, let the model
of y given the graph (x, ϕ) be parameterised by a function
Ey|x,ϕ[y] = v(x, ϕ).

Ey|x[y] =
∑
ϕ

softmax(ln p(x, ϕ))v(x, ϕ) = Eϕ|x[v(x, ϕ)]

(1)
In general, transformer attention can be seen as weighting
v(x, ϕ) by the posterior distribution p(ϕ | x) over different
graph structures. We show Eq.1 is exactly the equation un-
derlying self and cross-attention by presenting the specific
generative models corresponding to them. In this description
the latent variables ϕ are identified as edges between ob-
served variables x (keys and queries) in a pairwise Markov
Random Field, parameterised by matrices WK and WQ,
while the function v is parameterised by WV .

Pairwise Markov Random Fields Given a set of ran-
dom variables X = (Xv)v∈V with probability distribu-
tion [p] and a graph G = (V,E). The variables form a
pairwise Markov Random Field (pMRF) (Wainwright &
Jordan, 2008) with respect to G if the joint density function

P (X = x) = p(x) factorises as follows

p(x | E) =
1

Z
exp

(∑
v∈V

ψv +
∑
e∈E

ψe

)

where Z is the partition function ψv(xv) and ψe =
ψu,v(xu, xv) are known as the node and edge potentials
respectively. Beyond the typical set-up, we add a structural
prior p(ϕ) over a space of possible adjacency structures,
ϕ ∈ Φ, of the underlying graph: p(x, ϕ) = p(x | ϕ)p(ϕ).

We briefly remark that Eq.1 respects factorisation of [p] in
the following sense; if the distribution admits a factorisa-
tion (a partition of the space of graphs Φ =

∏
i Φi) with

respect to the latent variables p(x, ϕ) =
∏

i fi(x, ϕi), and
the value function distributes over the same partition of
edges v(x, ϕ) =

∑
i vi(x, ϕi) then each of the factors can

be marginalised independently:

Eϕ|x[v(x, ϕ)] =
∑
i

Eϕi|x[vi] (2)

To recover cross-attention and self-attention we need to
specify the structural prior, potential functions and a value
function. (In order to ease notation, when Φi is a set of
edges involving a common node xi, such that ϕi = (xi, xj)
represents a single edge, we use the notation ϕi = [j],
suppressing the shared index.)

3.2. Cross Attention and Self Attention

Key nodes: K = (x1, .., xn) and query nodes: Q =
(x′1, ..., x

′
m). Structural prior p(ϕ) =

∏m
i=1 p(ϕi), where

Φi = {(x1, x′i), .., (xn, x′i)} is the set of edges involving
x′i and ϕi ∼ Uniform(Φi) such that each query node is
uniformly likely to connect to each key node. Edge poten-
tials ψ(xj , x′i) = x′Ti W

T
QWKxj , in effect measuring the

similarity of xj and x′i in a projected space. Value functions
vi(x, ϕi = [j]) = WV xj , a linear transformation applied
to the node at the start of the edge ϕi. Taking the posterior
expectation in each of the factors defined in Eq.2 gives the
standard cross-attention mechanism

Ep(ϕi|Q,K)[vi] =
∑
j

softmaxj(x
′T
i W

T
QWKxj)WV xj

In contrast self-attention can be derived by considering a
similar pMRF with K = Q and directed edges (see Figure 1
and Appendix C.1).

4. Iterative Attention
We continue by extending attention to a latent variable set-
ting, where not all the nodes are observed. In essence ap-
plying the attention trick, i.e., a marginalisation of struc-
tural variables, to a variational free energy (Evidence Lower
Bound).
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Figure 1. Comparison of models involved in different attention
mechanisms. In each case, the highlighted edges indicate Φi the
support of the uniform prior over ϕi.

4.1. Collapsed Inference

We present a version of collapsed variational inference (Teh
et al., 2006), where the collapsed variables ϕ are again
structural, showing how this results in a Bayesian attention
mechanism. In contrast to the previous section, we have a set
of (non-structural) latent variables z. The goal is to infer z
given the observed variables, x, and a latent variable model
p(x, z, ϕ). Collapsed inference proceeds by marginalising
out the extraneous latent variables ϕ (Teh et al., 2006):

p(x, z) =
∑
ϕ

p(x, z, ϕ) (3)

We define a mean-field recognition density q(z) ∼∏
iN(zi;µi,Σi) and optimise the variational free energy

minλ Eq[ln qλ(z)− ln p(x, z)] with respect to the parame-
ters, λ = (µ,Σ), of this distribution. Under a first order
laplace approximation, the variational free energy can be
expressed as a negative log-likelihood F ≈ − ln p(x, µ)
(Appendix B.1). Substituting in Eq.3 and taking the deriva-
tive with respect to the variational parameters:

∂F

∂µ
= − 1∑

ϕ p(x, µ, ϕ)

∑
ϕ

∂

∂µ
p(x, µ, ϕ) (4)

In order to make the link to attention, we employ the log-
derivative trick, substituting pθ = eln pθ and re-express Eq.4
in two ways:

∂F

∂µ
= −

∑
ϕ

softmaxϕ(ln p(x, µ, ϕ))
∂

∂µ
ln p(x, µ, ϕ)

(5)
∂F

∂µ
= Eϕ|x,µ[−

∂

∂µ
ln p(x, µ, ϕ)] (6)

The first form reveals the softmax which is ubiquitous in
all attention models. The second, suggests the variational
update should be evaluated as the expectation of the typical
variational gradient (the term within the square brackets)
with respect to the posterior over the parameters represented
by the random variable ϕ. In other words, Bayesian attention
is exactly transformer attention applied iteratively where the
value function is the variational free energy gradient. We
continue by deriving updates for a general pMRF.

Free Energy of a marginalised pMRF Recall the fac-
torised pMRF, p(x, ϕ) = 1

Z

∏
i fi(x, ϕi). Again, indepen-

dence properties simplify the calculation, the marginali-
sation can be expressed as a product of local marginals,∑

ϕ p(x, ϕ) = 1
Z

∏
i

∑
ϕi
fi(x, ϕi). Returning to the in-

ference setting, the nodes are partitioned into observed
nodes, x, and variational parameters µ. Hence the col-
lapsed variational free energy Eq.4, can be expressed as,
F (x, µ) = −

∑
i ln
∑

ϕi
fi(x, µ, ϕi) and it’s derivative:

∂F

∂µj
= −

∑
i

∑
ϕi

softmax(fi(x, µ, ϕi))
∂fi
∂µj

Finally, we follow (Ramsauer et al., 2021) in using the
Convex-Concave Procedure (CCCP) to derive a simple fixed
point equation which necessarily reduces the free energy
(details in Appendix B.1),

µ∗
j =

∑
i

∑
ϕi

softmax(gi(x, µ, ϕi))
∂gi
∂µj

(7)

where gi =
∑

e∈ϕi
ψe. We follow Sec.3 in specifying

specific structural priors and potential functions that recover
different iterative attention mechanisms.

4.2. Hopfield-Style Cross Attention

Let the observed, or memory, nodes x = (x1, .., xn)
and latent nodes z = (z1, .., zm) have the follow-
ing structural prior p(ϕ) =

∏m
i=1 p(ϕi), where ϕi ∼

Uniform{(x1, zi), .., (xn, zi)}, meaning each latent nodes
is uniformly likely to connect to a memory node. Define
edge potentials ψ(xj , zi) = ziW

T
QWKxj . Application of

Eq.7

µ∗
i =

∑
j

softmaxj(µiW
T
QWKxj)W

T
QWKxj

When µi is initialised to some query ξ the system the fixed
point update is given by µ∗

i (ξ) = Eϕi|x,ξ[W
T
QWKxj ]. If the

patterns x are well separated, µ∗
i (ξ) ≈WT

QWKxj′ , where
WT

QWKxj′ is the closest vector and hence can be used as
an associative memory.

4.3. Slot Attention

Slot attention (Locatello et al., 2020) is an object cen-
tric learning module centred around an iterative attention
mechanism. Here we show this is a simple adjustment
of the prior beliefs on our edge set. With the same set
of nodes and potentials, let p(ϕ) =

∏n
j=1 p(ϕj), ϕj ∼

Uniform{(xj , z1), .., (xj , zm)}. Notice, in comparison to
MCHN, the prior over edges is swapped, each observed
node is uniformly likely to connect to a latent node, in turn
altering the index of the softmax.

µ∗
i =

∑
j

softmaxi(µiW
T
QWKxj)W

T
QWKxj
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Figure 2. Multihop Attention: (left) Graphical description of the
toy problem, x2 is generated causally from x1 and x0, which are
used to generate y. (centre) Comparison of the attention employed
by Multihop which takes two steps on the attention graph (top)
contrasted with Self Attention (bottom). Multihop Attention has
the correct bias to learn the task approaching the performance of
two-layer Self Attention, while a single layer of Self Attention is
unable (top right). Empirically examining the attention weights,
Multihop Attention is able to balance attention across two posi-
tions, while self-attention favours a single position.

while the original slot attention employed an RNN to aid the
basic update shown here, the important feature is that the
softmax is taken over the ‘slots’. This forces competition
between slots to account for the observed variables, creating
object centric representations.

5. New Designs
By identifying the attention mechanism in terms of an im-
plicit probabilistic model, we can review and modify the
underlying modelling assumptions in a principled man-
ner to design new attention mechanisms. Recall trans-
former attention can be written as the marginal probability
p(y | x) =

∑
ϕ p(ϕ | x)Ey|x,ϕ[y], the specific mechanism

is therefore informed by three pieces of data: (a) the value
function p(y | x, ϕ), (b) the likelihood p(x | ϕ) and (c)
the prior p(ϕ). Here, we explore modifying (a) and (c) and
show they can exhibit favourable biases on toy problems.

Multi-hop Attention Our description makes it clear that
the value function employed by transformer attention can be
extended to any function over the graph. For example, con-
sider the calculation of Ey|x,ϕ[yi] in transformer attention, a
linear transformation is applied to the most likely neighbour,
xj , of xi. A natural extension is to include a two-hop neigh-
bourhood, additionally using the most likely neighbour xk
of xj . The attention mechanism then takes a different form
Ep(ϕj |ϕi)p(ϕi|x)[V (xϕi

+ xϕj
)] = (Pϕ + P 2

ϕ)V X , where
Pϕ is the typical attention matrix (Appendix B.4). While
containing the same number of parameters as a single-layer
of transformer attention, for some datasets two-hop attention
should be able to approximate the behaviour of two-layers
of transformer attention (Figure 2).

Expanding Attention One major limitation of transformer
attention is the reliance on a fixed context window. From one
direction, a small context window does not represent long
range relationships, on the other hand a large window does

ϵ ϵ ϵ ϵ ϵ ϵ ϵ x1 x2

y

. . . ϵ ϵ ϵ x1 ϵ ϵ ϵ ϵ x2

y

Shuffle pos(x1) ∼ Geo(p)
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io

r

. . . ϵ ϵ ϵ x1 ϵ ϵ ϵ ϵ x2

Pr
io

r

. . . ϵ ϵ ϵ x1 ϵ ϵ ϵ ϵ x2

Figure 3. Expanding Attention: (left) Graphical description of the
toy problem, x2 and y are generated from x1 which is shuffled
with a (exponentially decaying) recency bias. (centre) Comparison
of the geometric prior, with different shades of red representing
the iterative refinements during inference, used by Expanding and
uniform prior used by Self Attention. (right) The relative number
of operations used by Expanding Attention is beneficial when
either the recency bias (1/p) or the number of feature dimensions
(d) is large, training curves (overlaid) across each of these settings
remained roughly equivalent.

an unnecessary amount of computation when modelling a
short range relationship. By replacing the uniform prior with
a geometric distribution p(ϕ | q) ∼ Geo(q), and a conjugate
hyper-prior p(q) ∼ Beta(α, β), and using a (truncated)
mean-field variational inference procedure (Zobay, 2009),
we derive a mechanism (Appendix B.4) that dynamically
scales depending on input (Figure 3).

6. Discussion
In this paper, we presented a probabilistic description of
the attention mechanism, formulating attention as structural
inference within a probabilistic model. This approach builds
upon previous research that connects cross attention to in-
ference in a Gaussian Mixture Model. By considering the
discrete inference step in a Gaussian Mixture Model as in-
ference on marginalised structural variables, we bridge the
gap with alignment-focused descriptions. This framework
naturally extends to self-attention, graph attention, and iter-
ative mechanisms, such as Hopfield Networks additionally
allowing us to discuss the relationship to cognitive theories
of attention (Appendix B.2).

We hope this work will contribute to a more unified under-
standing of the functional advantages and disadvantages
brought by Transformers. Furthermore, we argue that view-
ing Transformers from a structural inference perspective
provides different insights into their central mechanism.
Typically, optimising structure is considered a learning prob-
lem, changing on a relatively slow timescale compared to
inference. However, understanding Transformers as fast
structural inference suggests that their remarkable success
stems from their ability to change effective connectivity on
the same timescale as inference.

This general idea can potentially be applied to various ar-
chitectures and systems. For instance, Transformers employ
relatively simple switches in connectivity compared to the
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complex dynamics observed in the brain (Tognoli & Kelso,
2014). Exploring inference over more intricate structural
distributions, such as connectivity motifs or modules in net-
work architecture, could offer artificial systems even more
flexible control of resources.

6.1. Limitations and Future Directions

The connection to structural inference presented here is lim-
ited to the attention computation of a single transformer
head. While positional encodings are naturally incorporated
(see appendix for details), an interesting future direction
would be to investigate whether multiple layers and multiple
heads typically used in a transformer block can also be inter-
preted within this framework. Additionally, the extension to
iterative inference employed a crude approximation to the
variational free energy, arguably destroying the favourable
properties of Bayesian methods. Suggesting the possibility
of creating iterative attention mechanisms with second or-
der approximation terms, possibly producing more robust
mechanisms.
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Table 1. Different attention modules

Name Graph (G) Prior (p(ϕ)) Potentials (ψ) Value v(x, ϕ)

Cross Attention Key nodes K, query
nodes Q

Uniform x′Ti W
T
QWKxj V xj

Self Attention K = Q, directed edges Uniform xTi W
T
QWKxj V xj

Graph Attention,
Sparse Attention

K = Q, directed edges Uniform (restricted) xTi W
T
QWKxj V xj

Relative Posi-
tional Encodings

K = Q, directed edges Categorical xTi W
T
QWKxj V xj

Absolute Posi-
tional Encodings

K = Q Uniform x̃i
TWT

QWK x̃j
x̃i = xi + ei

V xj

Classification
Layer

NN output fθ(X),
classes y

Uniform fθ(X)Ti yj yj

MCHN Observed nodes X ,
latent nodes Z

Uniform (observed) zTi W
T
QWKxj

∂F
∂z

Slot Attention Observed nodes X la-
tent nodes Z

Uniform (latent) zTi W
T
QWKxj

∂F
∂z

Block-Slot Atten-
tion

Observed nodes X ,
latent nodes Z, mem-
ory nodes M

Uniform (latent) zTi W
T
QWKxj ,

mT
kW

T
QWKzi

∂F
∂z

PCN Observed nodes X ,
multiple layers of la-
tent nodes {Z(l)}l≤L

Uniform (latent) zTi W
T
QWKxj

∂F
∂z

Multihop Atten-
tion

K = Q, directed edges Uniform xTi W
T
QWKxj V xj + V xk

Expanding Atten-
tion

K = Q, directed edges Geometric x Beta xTi W
T
QWKxj V xj

Here we include some more detailed derivations of claims made in the paper, and list the hyperparameters used for the
experiments.

A. Related Work
Latent alignment and Bayesian Attention Several attempts have been made to combine the benefits of soft (differentiability)
and stochastic attention, often viewing attention as a probabilistic alignment problem. Most approaches proceed by sampling,
e.g., using the REINFORCE estimator (Deng et al., 2018) or a topK approximation (Shankar et al., 2018). Two notable
exceptions are (Kim et al., 2017) which embeds an inference algorithm within the forward pass of a neural network, and
(Fan et al., 2020) which employs the re-parameterisation trick for the alignment variables. In this work, rather than treating
attention weights as an independent learning problem, we aim to provide the implicit model that would give rise to the
attention weights.

Relationship to Gaussian mixture model Previous works that have taken a probabilistic perspective on the attention
mechanism note the connection to inference in a gaussian mixture model (Li et al., 2019; Gabbur et al., 2021; Shim, 2022;
Nguyen et al., 2022). Indeed (Annabi et al., 2022) directly show the connection between the Hopfield energy and the
variational free energy of a Gaussian mixture model. Although Gaussian mixture models, a special case of the framework
we present here, are enough to explain cross attention they do not capture slot or self-attention, obscuring the generality
underlying attention mechanisms. In contrast, the description presented here extends to structural inductive biases beyond
what can be expressed in a Gaussian mixture model.
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Attention as bi-level optimisation Mapping feed-forward architecture to a minimisation step on a related energy function
has been called unfolded optimisation (Frecon et al., 2022). Taking this perspective can lead to insights about the inductive
biases involved for each architecture. It has been shown that the cross-attention mechanism can be viewed as an optimisation
step on the energy function of a form of Hopfield Network (Ramsauer et al., 2021), providing a link between attention and
associative memory. while (Yang et al., 2022) extend this view to account for self-attention. Our framework distinguishes
Hopfield attention, which does not allow an arbritary value matrix, from transformer attention. while there remains a strong
theoretical connection, it places the Hopfield Energy as an instance of variational free energy, aligning more closely with
iterative attention mechanisms such as slot-attention.

B. Mathematical Details
B.1. Iterative Attention

In this section we provide a more detailed treatment of the Laplace approximation, and provide proper justification for
invoking the CCCP. For both, the following lemma is useful:

Lemma B.1. The function ln p(x) = ln
∑

ϕ p(x, ϕ) = ln
∑

ϕ expEϕ(x) has derivatives (i) ∂
∂x ln p(x) = Eϕ|x[

∂
∂xEϕ] and

(ii) ∂2

∂x2 ln p(x) = V arϕ|x[
∂
∂xEϕ] + Eϕ|x[

∂2

∂x2Eϕ]

Proof. Let E = (Eϕ) the vector of possible energies, and p = (pϕ) = (p(ϕ | x))ϕ the vector of conditional probabilities.
Consider ln p(ϕ | x) written in canonical form,

ln p(ϕ | x) = ⟨Eϕ(x),1ϕ⟩ −A[Eϕ(x)] + h(ϕ)

Where A[E(x)] = lnZ(E) is the cumulant generating function. By well known properties of the cumulant: ∂A
∂Ei

= p(ϕ =

i | x) = pi. Hence by the chain rule for partial derivatives, ∂A
∂x =

∑
ϕ p(ϕ | x)

∂
∂xEϕ, which is (i).

To find the second derivative we apply again the chain-rule d
dtf(g(t)) = f ′′(g(t))g′(t)2+f ′(g(t))g′′(t). Again by properties

of the cumulant ∂2A
∂Ei∂Ej

= Cov(1i,1j) = [diag(p)− pT p]i,j = Vi,j . Hence the second derivative is

∂2A

∂2x
=
∂E

∂x

T

V
∂E

∂x
+ E[

∂2Eϕ

∂x2
] (8)

Second order Laplace Approximation With these derivatives in hand we can calculate the second order laplace approxi-
mation of the free energy F = Eq[ln qλ(z)− ln p(x, z)].

F ≈ Eq[ln p(µ, x) +
∂

∂z
ln p(µ, x)T (z − µ) + (z − µ)T ∂2

∂z2
ln p(µ, x)(z − µ)] +H[q]

≈ ln p(µ, x) + tr(Σ−1
q V arϕ|µ,x[

∂

∂z
Eϕ]) + tr(Σ−1

q Eϕ|µ,x[
∂2

∂z2
Eϕ]) +

1

2
log | Σq | +C

Optimising this second order approximation w.r.t (µ,Σ) could lead to more robust iterative attention mechanisms. However,
the second order terms have both µ and Σ dependence making this approximation difficult to use in practice. As alluded to
in the paper, iterative attention mechanisms can also be viewed as an alternating maximisation procedure, which breaks this
dependence:

As Alternating Minimisation Collapsed Inference can also be seen as co-ordinate wise variational inference (Teh et al.,
2006). Consider the family of distributions Q = {q(z;λ)q(ϕ | z)}, where q(z;λ) is parameterised, however q(ϕ) is
unconstrained.

F = min
q∈Q

Eq[ln q(z, ϕ)− ln p(x, z, ϕ)]

= min
q∈Q

Eq(z)[Eq(ϕ)[ln q(ϕ)− ln p(x, ϕ | z)] + ln q(z)− ln p(z)]
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The inner expectation is maximised for q(ϕ) = p(ϕ | x, z) and the inner expectation evaluates to − ln p(x | z) which
recovers the marginalised objective

min
q∈Q

Eq(z)[q(z)− ln
∑
ϕ

p(x, z, ϕ)]

This motivates an alternate derivation of iterative attention as structural inference which is less reliant on the Laplace
approximation; Consider optimising over the variational family Q = {q(z;λ)q(ϕ)} coordinate wise:

ln qt+1(ϕ) = Eqt(z;λt)[ln p(ϕ | x, z)] + C

λt+1 = argmin
λ

Eqt(ϕ)[Eq(z;λ)[ln q(z)− ln p(x, z | ϕ)]

= argmin
λ

Eqt(ϕ)[Fϕ]

In the case of quadratic potentials, qt+1(ϕ) = p(ϕ | x, λt), hence the combined update step can be written

argmin
λ

Ep(ϕ|x,λt)[Fϕ(λ)]

Each step necessarily reduces the free energy of the mean-field approximation, so this process converges. This derivation is
independent of which approximation or estimation is used to minimise the typical variational free energy.

Quadratic Potentials and the Convex Concave Procedure Assuming the node potentials are quadratic ψ(xi) = − 1
2x

2
i

and the edge potentials have the form ψ(xi, xj) = xiWxj , and define gi =
∑

e∈ϕi
ψe. Consider the following fixed point

equation,

µ∗
j =

∑
i

∑
ϕi

softmax(gi(x, µ, ϕi))
∂gi
∂µj

(9)

since node potentials are convex and edge potentials are concave, we can invoke the CCCP (Yuille & Rangarajan, 2001),
hence this fixed point equation has the property F (x, µ∗

j ) ≤ F (x, µj) with equality if and only if µ∗
j is a stationary point of

F .

Convexity details for the CCCP Given a pairwise pMRF with quadratic potentials ψ(xi) = − 1
2x

2
i and the edge

potentials have the form ψ(xi, xj) = xiWxj and W p.s.d., s.t. ln p(x, ϕ) = − 1
2

∑
v∈G x

2
v + ln

∑
ϕ exp gϕ(x), where

gϕ(x) =
∑

e∈ϕ ψe. We need the following lemma to apply the CCCP:
Lemma B.2. ln

∑
ϕ exp gϕ(x) is convex in x.

Proof. We reapply Lemma.B.1, with Eϕ = gϕ(x), hence ∂2

∂x2 ln
∑

ϕ exp gϕ(x) = V arϕ|x[
∂
∂xgϕ] + Eϕ|x[

∂2

∂x2 gϕ]. The first

matrix is a variance, so p.s.d. The second term Eϕ|x[
∑

e∈ϕ
∂2

∂x2ψe] is a convex sum of p.s.d matrices. Hence both terms are
p.s.d, implying ln

∑
ϕ exp gϕ(x) is indeed convex.

B.2. Predictive Coding Networks

Predictive Coding Networks (PCN) have emerged as an influential theory in Computational Neuroscience (Rao & Ballard,
1999; Friston & Kiebel, 2009; Buckley et al., 2017). Building on theories of perception as inference and the Bayesian
brain, PCNs perform approximate Bayesian inference by minimising a variational free energy of a graphical model,
where incoming sensory data are used as observations. Typical implementations use a hierarchical model with Gaussian
conditionals, resulting in a local prediction error minimising scheme. The minimisation happens on two distinct time-scales,
which can be seen as E-step and M-steps on the variational free energy: a (fast) inference phase encoded by neural activity
corresponding to perception and a (slow) learning phase associated with synaptic plasticity. Gradient descent on the free
energy gives the inference dynamics for a particular neuron µi, (Millidge et al., 2022)

∂F
∂µi

= −
∑
ϕ−

kϕϵϕ +
∑
ϕ+

kϕϵϕwϕ

Where ϵ are prediction errors, w represent synaptic strength, k are node specific precisions representing uncertainty in the
generative model and ϕ−, ϕ+ represent pre-synaptic and post-synaptic terminals resectively. Applying a uniform prior over
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the incoming synapses results in a slightly modified dynamics,

∂F
∂µi

= −
∑
ϕ−

softmax(−ϵϕ2)kϕϵϕ +
∑
ϕ+

softmax(−ϵϕ2)kϕϵϕwϕ

where the softmax function induces a normalisation across prediction errors received by a neuron. This dovetails with
theories of attention as normalisation in Psychology and Neuroscience (Reynolds & Heeger, 2009; Carandini & Heeger,
2012; Lindsay, 2020). In contrast previous predictive coding based theories of attention have focused on the precision terms,
k, due to their ability to up and down regulate the impact of prediction errors (Clark, 2013; Feldman & Friston, 2010; Mirza
et al., 2019). Here we see the softmax terms play a functionally equivalent role to precision variables, inheriting their ability
to account for bottom-up and top-down attention, while exhibiting the fast winner-takes-all dynamics that are associated
with cognitive attention.

B.3. PCN Detailed Derivation

Here we go through the derivations for the equations presented in section ??. PCNs typically assume a hierarchical model
with gaussian residuals:

z0 ∼ N(µ̂0,Σ0)

zi+1 | zi ∼ N(fi(zi; θi),Σi)

y | zN ∼ N(fN (zN ; θN ),ΣN )

Under these conditions, a delta approximation of the variational free energy is given by:

F [p, q] = Eq(z;µ)[− ln p(y, z)] +H[q]

F(µ, θ) ≈
N∑
l=0

Σ−1
l ϵ2l

Where ϵl = (µl+1 − fl(µl; θl))
2. The inference phase involves adjusting the parameters, µ in the direction of the gradient

of F , which for a given layer is:
∂F
∂µl

= Σ−1
l−1ϵl−1 − Σ−1

l ϵlf
′(µl) (10)

Here, for ease of comparison, we consider the case where the link functions are linear, fi(·) = Wi(·) and further the
precision matrices are diagonal Σ−1

i = diag(ki). Under these conditions we can write the derivative component-wise as
sums of errors over incoming and outgoing edges :

(
∂F
∂µl

)i = −
∑
ϕ−

kϕϵϕ +
∑
ϕ+

kϕϵϕwϕ

Where ϕ−, ϕ+ represent the set of incoming and outgoing edges respectively, and we redefine ϵϕ = (µi − µjwij) for an
edge ϕ = (zi, zj) and kϕ = K(zj) the precision associated with the node at the terminus of ϕ.

Now if we instead assume a uniform prior over incoming edges, or concretely;

z0 ∼ N(µ̂0,Σ0)

ϕil ∼ Uniform({(zil+1, z
0
l ), (z

i
l+1, z

1
l ), ...}

zil+1 | zl, ϕil ∼ N(wij
l z

ϕi
l

l , 1/k
i
l)

y | zN ∼ N(fN (zN ; θN ),ΣN )

The system becomes a pMRF with edge potentials given by the prediction errors, recall applying Eq.4:

∂F

∂µj
= −

∑
i

∑
ϕi

softmax(fi(x, µ, ϕi))
∂fi
∂µj
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Here for a node in a given layer, it participates in one Φj
l−1 and all the Φk

l+1 from the layer above, where every fi(x, µ, ϕi)
here is a squared prediction error corresponding to the given edge eijl = kijl (zil − w

ij
l z

j
l−1)

2, hence:

∂F

∂µj
=−

∑
i∈Φj

l−1

softmaxi(−(ϵijl−1)
2)ϵijl−1kj

+
∑
k∈[l]

∑
i′∈Φk

l

softmaxi′(−(ϵi
′k
l )2)ϵi

′k
l wi′k

l 1(i′ = j)

∂F

∂µj
=−

∑
i∈Φj

l−1

softmaxi(−(ϵijl−1)
2)ϵijl−1

+
∑
k∈[l]

softmaxi′(−(ϵi
′k
l )2)ϵi

′k
l wi′k

l

Here incoming signals (nodes i) compete through the softmax, whilst the outgoing signal competes with other outgoing
signals from nodes (nodes i′) in the same layer for representation in the next layer (nodes k), see block-slot attention diagram
for intuition. By abuse of notation (reindexing edges as ϕ)

∂F
∂µi

= −
∑
ϕ−

softmax(−ϵϕ2)kϕϵϕ +
∑
ϕ+

softmax(−ϵϕ2)kϕϵϕwϕ

While we derived these equations for individual units to draw an easy comparison to standard Predictive Coding, we note it
is likely more useful to consider blocks of units competing with each other for representation, similar to multidimensional
token representations in typical attention mechanisms. We also briefly note here, the Hammersley–Clifford theorem indicates
a deeper duality between attention as mediated by precision matrices and as structural inference.

B.4. New Designs

Multihop Derivation Ey|x,ϕ[yi] in transformer attention, a linear transformation is applied to the most likely neighbour, xj ,
of xi. A natural extension is to include a two-hop neighbourhood, additionally using the most likely neighbour xk of xj .
Formally, the value function v no longer neatly distributes over the partition Φi, however the attention mechanism then takes
a different form: Ep(ϕj |ϕi)p(ϕi|x)[V (xϕi

+ xϕj
)] = (Pϕ + P 2

ϕ)V X . Where we use ϕj(i) = ϕj to denote the edge set of the
node at the end of ϕi. To see this note:

Ep(ϕ|x)[V (xϕi
+ xϕj

)] =
∑
ϕ

∏
k

p(ϕk | x)V (xϕi
+ xϕj

)

=
∑
ϕ

∏
k

p(ϕk | x)V (xϕi
+ xϕj

)

=
∑
ϕ

∏
k

p(ϕk | x)V xϕi
+
∑
ϕ

∏
k

p(ϕk | x)V xϕj

by independence properties

=
∑
ϕi

p(ϕi | x)V xϕi +
∑
ϕi,ϕj

p(ϕi | x)p(ϕj | x)V xϕj

Denoting the typical attention matrix, P , where pij = p(ϕi = [j] | x)

=
∑
k

∑
j

pjkpijV xk +
∑
j

pijV xj

= (Pϕ + P 2
ϕ)V X

Expanding We iteratively approximate p(ϕ | x) using the updates: 1. qt ← βt

αt+βt
, 2. pt = p(ϕ | x, qt), 3. αt+1 ← αt + 1,

βt+1 ← βt +
∑

<H(qt)
i(pt)i. Where α and β are hyperparameters determining the strength of the prior and H is the
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truncation horizon. Since attention dot products can be cached and reused for each calculation of step 2. the iterative
procedure is computationally cheap.

The attention mechanism has asymptotic time complexity O(n2d) where n is the size of the size of the context window and
d is dimension over which the inner product is computed. In comparison, expanding attention O(n(md+ k)) where m is
the size of the window at convergence, and k is the number of steps to converge. If, as is typical, d is large such that d >> k
the time complexity of expanding attention should be favourable.

Expanding Derivation As in the main text, let p(ϕ | q) ∼ Geo(q) and p(q) ∼ Beta(α, β), such that we have the full
model p(x, ϕ, q;α, β) = p(x | ϕ)p(ϕ | q)p(q;α, β). In order to find p(ϕ | x) we employ a truncated Mean Field Variational
Bayes (Zobay, 2009), assuming a factorisation pt(ϕ, q) = pt(ϕ)pt(q), and using the updates:

ln pt+1(ϕ) = Ept(q)[ln p(x | ϕ) + ln p(ϕ | q)] + C1

ln pt+1(q) = Ept(ϕ)[ln p(ϕ | q) + ln p(q;α, β)] + C2

By conjugacy the second equation simplifies to a simple update of the beta distribution

=⇒ pt+1(q) = Beta(αt+1, βt+1)

αt+1 = αt + 1

βt+1 = βt + Ept(ϕ)[ϕ]

While the second update can be seen as calculating the posterior given qt = Ept(q)[q],

ln pt+1(ϕ) = ln p(x | ϕ) + Ept(q)[ln p(ϕ | q)] + C2

= ln p(x | ϕ) + ϕEpt(q)[ln q] + C2

= ln p(ϕ | x, qt)

Finally, we use a truncation to approximate the infinite sum Ept(ϕ)[ϕ] =
∑

k pt(ϕ = k)k ≈
∑

<H pt(ϕ = k)k. Where we
set the horizon according to the current distribution of q. For example in our experiments we chose H(qt) = ln 0.05/ ln(1−
qt) the truncation that would capture 95% of the probability mass of the prior.

C. Attention Variants
Here we briefly discuss some variants of attention that there wasn’t space for in the paper.

C.1. Self Attention

Details of the MRF for self-attention:

• Nodes K = Q = (x1, .., xn)

• Structural prior, over a fully connected, directed graph p(
−→
ϕ ) =

∏n
i=1 p(

−→
ϕ i), where

−→
Φ i = {(x1, xi), .., (xn, xi)} is

the set of edges involving xi and
−→
ϕ i ∼ Uniform(

−→
Φ i), such that each node is uniformly likely to connect to every

other node in a given direction.

• Edge potentials ψ(xj , xi) = xTi W
T
QWKxj , in effect measuring the similarity of xj and x′i in a projected space.

• Value functions vi(x, ϕi = [j]) =WV xj , a linear transformation applied to the node at the start of the edge ϕi.

C.2. Positional Encodings and Graph Neural Networks

In Table.1 we show that positional encodings and graph attention are naturally incorporated in this framework. Absolute
positional encoding as suggested by Vaswani et al. (2017) can be seen as modifying the edge potentials with a vector that
depends on position, while relative position encodings can be seen as a categorical prior, where the prior depends on the
relative distance between nodes. Graph and Sparse attention operate similarly to graph attention, except the uniform prior is
restricted to edges in the provided graph, or according to predefined sparsity pattern.
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Relative Position Encodings If the prior over edges is categorical i.e. P (ϕi = [j]) = pi,j , it can be fully specified by the
matrix (P )i,j = pi,j . This leads to the modified attention update∑

j

softmaxj(xiQ
TKxj + ln pij)xj

However this requires local parameters for each node zi. A more natural prior assign a different probability to the relative
distance of i from j. This is achieved with P = circ(p1, p2, .., pn), where circ is the circulant matrix of (p)i≤n. Due to
properties of circulant matrices lnPij can be reparameterised with the hartley transform

ln pi,j =
∑
k

βk[cos(kθi,j) + sin(kθi,j)] = β · b(i,j)

Where b(i,j)k = cos(k i−j
2πn ) + sin(k i−j

2πn ) can be thought of as a relative position encoding, and β are parameters to be learnt.

C.3. Block-Slot Attention

Singh et al. (2022) suggest combining an associative memory ability with an object-centric slot-like ability and provide
an iterative scheme for doing so, alternating between slot-attention and hopfield updates. Our framework permits us to
flexibly combine different attention mechanisms through different latent graph structures, allowing us to derive a version of
block-slot attention.

In this setting we have three sets of variables X , the observations, Z the latent variables to be inferred and M which are
parameters. Define the pairwise MRF X = {x1, ..., xn}, Z = {z1, ..., zm} and M = {m1, ...,ml} with a prior over edges
p(E) =

∏m
j=1 p(Ej)

∏l
k=1 p(Ẽk), Ej ∼ Uniform{(xj , z1), .., (xj , zm)}, Ẽk ∼ Uniform{(z1,mk), .., (zm,mk)},

with edge potentials between X and Z given by ψ(xj , zi) = ziQ
TKxj and between Z and M , ψ(zi,mk) = zi · mk

applying (9) gives

µ∗
i =

∑
j

softmaxi(µiQ
TKxj)Q

TKxj

+
∑
k

softmaxk(µi ·mk)mk

In the original block-slot attention each slot zi is broken into blocks, where each block can access block-specific memories
i.e. z(b)i can has possible connections to memory nodes {m(b)

k }k≤l. Allowing objects to be represented by slots which in
turn disentangle features of each object in different blocks. We presented a single block version above, however it is easy to
see that the update extends to the multiple block version applying (9) gives

µ∗
i =

∑
j

softmaxi(µiQ
TKxj)Q

TKxj

+
∑
k,b

softmaxk(µ
(b)
i ·m

(b)
k )m

(b)
k

D. Experimental Details
Multihop Task Setup We simulate a simple dataset that has this property using the following data generation process:
Initialise a projection matrix Wy ∈ Rd×1 and a relationship matrix Wr ∈ Rd×d. X is then generated causally, using the
relationship xi+1 = Wrxi + N(0, σ) to generate x0, x1 and x2, while the remaining nodes are sampled from the noise
distribution N(0, σ). Finally, the target y is generated from the history of x2, y = Wy(x1 + x0) and the nodes of X are
shuffled. Importantly Wr is designed to be low rank, such that performance on the task requires paying attention to both x1
and x0, Figure 2. Following the notation in the text; data generation parameters:

• Total number of tokens: 10

• Embedding dimension (dimension of each x):10



Attention as Implicit Structural Inference

• Output dimension (dimension of y): 1

• σ2 (autoregressive noise): 1

• Random matrix initialisation was performed with torch.rand

Training parameters (across all models):

• batch size:200

• number of batches: 10

• optimiser: ADAM

• learning rate: 1e− 3

• Number of different random seeds: 10

Model: To make analysis easier, all models were prevented from self-attending to the final token.

Expanding Task Setup Input and target sequence are generated similarly to above (without x0). Here x1 is moved away
from x2 according to a draw from a geometric distribution, Figure 3. Following the notation in the text; data generation
parameters:

• Total number of tokens: 50

• Embedding dimension(s) (dimension of each x):[10, 50]

• p the parameter for generating a geometric shuffle:[0.5, .2, .1, .04]

• Output dimension (dimension of y): 1

• σ2 (autoregressive noise): .1

• Random matrix initialisation was performed with torch.rand

Training parameters (across all models):

• batch size:1*

• number of batches: 10000

• optimiser: ADAM

• learning rate: 5e− 4

Model: To make analysis easier, all models were prevented from self-attending to the final token. For expanding attention
the hyperparameters were set as α = .1, β = .9 these were chosen to have a mean value at roughly a quarter of the (size 50)
window.

*Training was performed with single samples, despite the iterative process being completely parallel (no shared state).
Naive parallel implementation of expanding attention would encounter synchronisation locks, as the fastest samples wait for
the longest ones to complete. In order to take full advantage of a dynamic window over a batch, intelligent asynchronous
processing would be necessary.


