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ABSTRACT

Under the Markov assumption of Markov Decision Processes (MDPs), an optimal
stationary policy does not need to consider history and is no worse than any non-
stationary or history-dependent policy. Therefore, existing Deep Reinforcement
Learning (DRL) algorithms usually model sequential decision-making as an MDP
and then try to optimize a stationary policy by single-step state transitions. How-
ever, such optimization is often faced with sample inefficiency when the causal
relationships of state transitions are complex. To address the above problem, this
paper investigates if augmenting the states with their historical information can
simplify the complex causal relationships in MDPs and thus improve the sample
efficiency for DRL. First, we demonstrate that a complex causal relationship of
single-step state transitions may be inferred by a simple causal function of the
historically augmented states. Then, we propose a convolutional neural network ar-
chitecture to learn the representation of the current state and its historical trajectory.
The main idea of this representation learning is to compress the high-dimensional
historical trajectories into a low-dimensional space. In this way, we can extract the
simple causal relationships from historical information and avoid the overfitting
caused by high-dimensional data. Finally, we formulate Historical Augmentation
Aided Actor-Critic (HA3C) algorithm by adding the learned representations to
the actor-critic method. The experiment on standard MDP tasks demonstrates
that HA3C outperforms current state-of-the-art methods in terms of both sample
efficiency and performance.

1 INTRODUCTION

Sequential decision-making widely exists in real-world control tasks, such as robot control and
autonomous driving (Dorf & Bishopl [2011}|Ibarz et al., |2021; Sallab et al.,[2017). Generally speaking,
it can be modelled as a Markov Decision Process (MDP), where an agent iteratively takes action in an
environment for transiting from one state to another (Puterman, |1990). Each transition is evaluated by
a reward signal passing from the environment to the agent so that Reinforcement Learning (RL) can
learn the optimal policy by maximizing the cumulative reward (Sutton & Barto| [2018). The Markov
Assumption of MDPs asserts that the probability distributions of the reward and next state depend
only on the current state and action. Under the Markov assumption of MDPs, there exists an optimal
stationary policy which does not need to consider history and is no worse than any non-stationary or
history-dependent policy (Puterman, 2014). Therefore, existing RL algorithms usually try to optimize
a stationary policy by single-step state transitions.

With advances in deep learning, many effective Deep RL (DRL) methods were proposed (Fujimoto
et al.} 2018; Haarnoja et al., [2018; [Lillicrap et al.,[2016; Mnih et al.| [2016}2015). Under the Markov
assumption of MDPs, they are usually based on the actor-critic method where the critic estimates
the (Q-function, i.e., the expected cumulative reward after taking action at each state, while the actor
updates the policy to choose the action which can maximize the estimated Q)-function (Schulman
et al.l 2015} [Silver et al.|[2014). However, such optimization may miss the useful causal relationships
of state transitions, leading to sample inefficiency (Allen et al., 2021; [Buckman et al., [2018}; Du
et al.| 2020; |Guo et al.,[2020). An existing partial solution to this issue is representation learning in
which a neural network is trained to infer the causal relationships of state transitions by predicting the
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reward or future state of each state-action pair (Munk et al.|[2016; Ni et al., 2023} Ravindran} 2004;
Rezaei-Shoshtari et al.| 2022). Then, the sample efficiency of DRL can be improved by adding the
learned representations to the actor-critic method. Unfortunately, it is hard to train the neural networks
which can infer complex causal relationships, e.g., polynomial causal relationships and the basic laws
of physics (Andoni et al., 2014; |Cranmer et al., 2020). Standard complexity-theoretic results strongly
suggest that there is no algorithm efficient enough for learning arbitrary target functions, even for
target functions representable by very low-depth networks (Applebaum et al.,2006). Therefore, the
sample efficiency for DRL is still limited in complex MDP tasks.

This paper addresses the above problem by augmenting the states with their historical information.
Based on the analysis in Section 3, we believe that historical augmentation can simplify the causal
relationships of state transitions by its inherent contextual information and increasing the search
space of the causal functions (Hallak et al.l 2015} |Sprunger & Jacobs, [2019)). Therefore, we focus
on optimzing a history-dependent stationary policy in an MDP. Our DRL approach comprises two
key components: 1) Learning the state representations to capture the causal relationships in an MDP
and 2) finding the optimal stationary policy by the learned representations. Given an action and
the historically augmented current state, our representation learning utilizes a Convolutional Neural
Network (CNN) architecture to compress the high-dimensional historical trajectory of the given state
into a low-dimensional space while predicting the future state. The compressed historical trajectories
can be seen as the abstracted features which can represent the simple causal relationships and avoid
the overfitting caused by high-dimensional data (Andre & Russell, [2002). To keep the Markov
assumption of MDPs, our representation learning does not compress the current state. We add the
learned state representations to the actor-critic method. In this way, the causal relationships captured
by our representation learning can be utilized to estimate the (Q-function and update policy. Therefore,
our new DRL approach can optimize the policy in a complex MDP with high sample efficiency. We
combine historical augmentation, state representations, and TD3 in our approach to formulate a new
DRL algorithm, Historical Augmentation Aided Actor-Critic (HA3C). The experiment on standard
MDP tasks, i.e. Mujoco control tasks and Deep Mind Control (DMC) suite, empirically demonstrates
that HA3C outperforms current state-of-the-art methods in terms of both sample efficiency and
performance (Brockman et al.| 2016; [Todorov et al., 2012 Tassa et al.| 2018)).

Our contributions are as follows: 1) Existing RL methods usually utilize historical information
to recover Markov assumption in dynamics. It is the first time in the literature that historical
augmentation can be used to improve sample efficiency when Markov assumption is satisfied. 2)
We propose a new DRL approach to address the problem of how to effectively utilize the historical
information in MDPs. 3) Based on this approach, we formulate a new RL algorithm, HA3C,
which outperforms existing state-of-the-art DRL algorithms, e.g. TD7 (Fujimoto et al., [2023)). 4)
Our examples, experiment, and discussion illustrate that in fact, DRL needs to consider historical
information in complex MDP tasks.

2 BACKGROUND

An MDP can be written as a 5-tuple Ml = (S, A, R, P, ~y) with state space S, action space .4, reward
function R, transition model P, and discount factor +. In an MDP, RL can maximize the discounted
cumulative reward by learning how to map the states to the actions (Baird, [1995; |Duan et al., 2016;
Williams), [1992)). For a given state s; € S at time step t, the agent executes an action a; € A w.r.t. a
policy 7 : S — A, to obtain a reward r; = R(s;, a;) and transfer to a new state s;1. The return of
the agent is defined as the discounted cumulative reward G; = E;;Otc ~*~tr;. Based on the Markov
assumption of MDPs, RL can find the optimal policy to maximize the following value function which
is the expected return when s; = s and following 7 thereafter.

—+o0
E ’YZT't+z‘|5t =8|,
i=0

where E™[] denotes the expected value of a random variable given that the agent follows policy 7.

Vﬂ—(s) =E7 [Gt\st = S] =FE"

With advances in deep learning, combining neural networks into RL has drawn significant attention
in the literature. Many DRL algorithms learn the optimal policy by the actor-critic method (Kaelbling
et al.,[1996), where the critic network estimates the )-function which is the expected return when
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sy = 8, a; = a, and following policy 7 thereafter.
+oo
Q" (s,a) =E" [Gi|s; = s,a; = a] = E” Zwirtﬂ-\st =s,a;=al,
i=0
while the actor network updates the policy to maximize the estimated (J-function.

To improve sample efficiency, some DRL methods learn the state representations of the collected
state transitions and then add the learned representations to the actor-critic method (Anand et al.
2019; Dayan, {1993} |Gelada et al., |2019; |Li et al.l |2006). This representation learning aims to
capture the causal relationships in MDPs, and thus improves sample efficiency (Liu et al., [2020;
Van Hoof et al., 2016; Ye et al., {2023 |Zhang et al., 2021). For example, ML-DDPG learns the state
representations by predicting the next state representation and the reward in MDPs (Munk et al.,
2016). As an improvement of ML-DDPG, OFENet learns the high-dimensional state representations
by predicting the next state in DenseNet architecture (Ota et al.,|2020). TD7 improves the learning
of state representations by Avgl.1Norm and then combines the learned representations with TD3,
checkpoints, and prioritized replay buffer (Fujimoto et al.,[2023).

DRL algorithms need to consider historical information when the Markov assumption of MDPs
is violated (Eysenbach et al [2020; Majeed & Hutter, 2018} [Hafner et al. [2019b). For Partially
Observable MDPs (POMDPs), in which the states are partially observable, deep recurrent (Q-network
uses LSTMs to encode state transition trajectories in the ()-function estimation (Hausknecht &
Stonel, 2015). As an improvement of deep recurrent ()-network, deep transformer Q)-network uses
transformers to encode the state transition trajectories (Esslinger et al., [2022)). As a famous DRL
algorithm, Dreamer encodes the historical information into the state at every time step in POMDPs (Ha
& Schmidhuber, 2018; [Hafner et al.,|2019a). In delayed MDPs, in which the current state and reward
may arrive at the agent with a delay (Katsikopoulos & Engelbrecht, [2003), researchers usually recover
the Markov assumption of MDPs by considering the historical actions (Bouteiller et al.,|2020; |Derman
et al.,2021). When the Markov assumption of MDPs is violated by the state abstraction, it is possible
to find a history-based policy which works in the abstracted space and is of the same quality as
optimal policy (Patil et al., 2024). However, the history-based DRL for the dynamics which are under
Markov assumption is largely absent from the literature.

3  MOTIVATION

Let h; = {so, ao, ..., ¢} as the history up to time step ¢ in a sequential decision-making task. The
optimal policy may change the decision rule in different time steps and select actions based on
historical information. In this case, we should optimize a history-dependent policy 7 = {d;|t =
0,1,...} which selects action at time step ¢ by decision-rule d;(a|h;). Fortunately, based on the
Markov assumption of MDPs, there is an optimal stationary policy 7(a:|s;) which is unrelated to
time and selects action a; by only the state s;. This Markov assumption asserts that the probability
distributions of state s;; and reward r; depend only on the s; and a; as

P{si41=8",r. =7|s0,a0,70,.... S, a1 = P{sy41 = 8", 1 = r|s;, a;},

where P is the probability distribution in P. Let H R and SR denote the class of history-dependent
and stationary policies, respectively. Lemma [3.1]is the key of most existing RL algorithms (Puterman|
2014)[Thm. 6.2.10]. The different types of policies are detailed in Appendix

Lemma 3.1. Under the Markov assumption of MDPs, there exists a policy m* € SR such that, for
all t, Vo« (8¢) = sup e Va(he).

Based on Lemma [3.1] existing DRL algorithms for MDPs usually optimize a stationary policy by
single-step transitions. If the causal relationships in the modelled MDP are simple, e.g., there are
only linear causal relationships in this MDP, such optimization effectively finds the optimal policy.
A classical result is that a neural network with a single hidden layer can successfully learn a linear
function (Andoni et al., |2014). However, it is still hard to capture complex causal relationships by
neural networks. Standard complexity-theoretic results strongly suggest that there is no algorithm
efficient enough for learning arbitrary functions, even for target functions representable by very
low-depth networks (Applebaum et al., 2006). In fact, a more complex causal function requires
neural networks to approximate with more parameters, samples, and time consumption (Bianchini &
Scarselli, 2014).
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Historical augmentation has the potential to address the above problem by simplifying the causal
relationships in MDPs as it can increase the search space of the causal functions and provide much
contextual information on state transitions (Hallak et al., 2015} |Sodhani et al., {2022)).

Example 3.1. For example, if we model the state transitions with Fibonacci sequence as sy = 1,
s1=1,8=2,83=3,84 =5,--, when t > 2, the state transitions in this model will satisfy the
Markov assumption of Markov Processes as (Dynkin, |1965)

P{s;11 =8|s0,...,8:} = P{si11 = &|s:}.

Without considering history, at s;, s, will be predicted by a complex time-related formula

- 1 1 n \/5 t+1 1_ \/5 t+1
S = 2 72

Fortunately, when considering history, we can predict s, by a simple linear function

St41 = St—1 + St.

In Appendix [B] we give another example to illustrate that by historical augmentation, a non-linear
causal relationship in single-step transitions may be simplified as a linear causal relationship. Fig.
presents the original MDP causal relationships and Fig. [[(b)] demonstrates the MDP causal relation-
ships with state augmentation. When inferring the causal relationships in a trajectory, the causal

(b) MDP with historical augmentation

Figure 1: Causal diagrams of an MDP with or without historical augmentation. The black lines index
the original MDP causal relationships and the red lines index the added causal relationships, e.g., the
causal relationships from historical augmentation.The dashed lines indicate the information needed
in the optimization.

function in Fig can be simpler than the causal function in Fig

From the analysis above, the motivation of our work is that historical information can simplify the
complex causal relationships in MDPs and thus has the potential to improve the sample efficiency
of DRL. However, the challenges are 1) how to ensure that the causal relationships learned from
historical augmentation are simple and 2) avoiding overfitting caused by the high-dimensional
historical data.

4 METHOD

In this section, we propose a new DRL approach by the representation learning of historically
augmented states. Then, we formulate a new DRL algorithm, HA3C, and illustrate the advantage of
this algorithm with a visual example.

4.1 REPRESENTATION LEARNING ON HISTORICALLY AUGMENTED STATES

To address the problem of how to effectively utilize the historical information in MDPs, we propose
a new DRL approach by the representation learning of historically augmented states. The main
idea of this representation learning is to compress the high-dimensional historical trajectories into a
low-dimensional representation space (Andre & Russell, 2002} [Li et al., 2006). On the one hand, the
compressed historical trajectories can be seen as the abstracted features of the historical information to
extract the simple causal relationships. On the other hand, this compression will avoid the overfitting
caused by the high-dimensional historical data (Ying, [2019).
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To keep the Markov assumption of MDPs, our
representation learning does not compress the
current state. Let sy, = {S¢—gt1,..., 8¢}. If
t < k, one can set each s; € sj_4 1 by the
zero vector 0. The causal diagram of MDP with
our state abstraction is in Fig. 2] As we can
see, when predicting s, by s; ; and a;, the
dimensionality reduction is only performed on
Sk—1,t—1-

Figure 2: Causal diagram of a historically aug-
mented MDP with state abstraction. DR represents
the operation of dimensionality reduction.

Let Si D denote the class of the stationary de-
terministic policies based on k-order state tra-
jectories. Theorem [4.T] forms the basis of our
DRL approach. This theorem can be implied by
Lemma 3.1] For completeness, we provide a proof in Appendix [D]

Theorem 4.1. Under the Markov assumption of MDPs, there exists a stationary deterministic policy
@ € SiD such that, for all t, V*" (sy.1) = sup,cpr V™ (he).

To capture the simplified causal relationships in MDPs by historical augmentation, we define a pair
of encoders z°%t = f(sy,,) and 2%+t = g(z°*t, a,). Based on the Markov assumption in MDPs,
we can predict z°+¢+1, i.e., the representation of sy ; 1, by 2%t Thus, the two encoders are
trained by minimizing the following predicting loss:

L(f,9) = l9(f (sr), @e) = | f (s141) |5 = [[270% — 242 | I3, M
where | * | denotes the stop-gradient operation. As presented in Fig. (3] a simple yet effective CNN
network architecture is utilized in our representation learning. In the network of f(sy ), we first use
a CNN layer to mine the historical information in s;_1 ;1. This layer produces the feature maps of
Sk—1,t—1 by the multiple filters, which are as wide as the state dimensionality. Second, we utilize a
max pooling layer to capture the most important features and an average pooling layer to capture
the tendency features. Third, we compress the captured features into a low-dimensional space and
learn the features of s;. Finally, we concatenate the compressed features of s;_; ;1 and the learned
features of s;. The concatenated features are the input of the next fully connected layer to obtain the
representation z*+¢. In the network of g(z*°*t, a;), we put the concatenation of z%* and a into the
two fully connected layers to obtain the representation z ¢,

We combine our learned representations with the actor-critic method and thus the Q-function can

be defined as Q(zs’“ ,a;) and the policy can be defined as p(z°*t) € Sy D. Define the probability
distribution of z®*-t+! under p as

P;L{ZSk,t+1 _ Zsfw|zsk,t _ sz,:} :/ an‘u(zs’c’:) p(z55€==|zs’°*,a)} dz®s,
=z

where sy, . is a k-order state trajectory {so, ..., S—1 | ending with s, i.e., s,_1 = s, Z is the set of all
possible 2+, and p(z°++|z°*, a) is the probability of transferring to z°+- with taking a at z%.
Our optimization is based on a Bellman optimality operator B for yu as

B.Q(z",a) = m3XEat+lNlt7zsk=t+1NP“ [re +7Q(2™+"  ayy1)). 2

The following theorem gives the conditions to find the optimal stationary policy in our approach. The
proof of this theorem is given in Appendix [D}

Theorem 4.2. Given a finite MDP, if 1) f(x) and g(x) are fixed, 2) Vsy, ., s}, . € Si., s # 8’ &

2%k £ 2%k, and 3) L(f,g) — O, then Q(zs’“,at) converges to the optimal Q* (s, a;) by the
Bellman optimality operator in equation 2]

This theorem illustrates that no matter whether different historical trajectories lead to different
representations on the state s, we can still find the optimal stationary policy in the representation
space. To make condition 2) hold, we can increase the dimensionality of s in representation learning.
This operation also can improve sample efficiency (Ota et al.,[2020). To see condition 3) hold, there
should exist a sj,  that satisfies

p{Sk,t+1 = 327;|3k,t7at} — 1.
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Figure 3: Network architecture of our representation learning. FC represents a fully connected layer
and RF represents the state representation features.

There is an analysis of the function approxima-
tion error in Appendixlﬂ We add z°+#% to Q
to consider the learned relationship between a;
and z®%* in the representation space. We also
add s; to Q and p to consolidate the relation-
ships in single-step transitions. Thus @) and g
can be writtern as Q(zsk’fv‘“, z%t gy ay) and
(z%%t, 8;), respectively. The operations in Q
and y are shown in Fig. ] Figure 4: The operations in () and p.

Our approach can be connected with POMDPs,
High-order MDPs (HMDPs), and state abstrac-
tion. A detailed analysis of the connections between our approach and the related work is shown in

Appendix [C]
4.2 HA3C ALGORITHM

In this subsection, we propose HA3C algorithm which is a combination of TD3, representation
learning, historical augmentation. HA3C has several networks as follows. Two critic networks

(Qg,,Qg,), two target critic networks (Q 6T Q 1), an actor network /g, a target actor network fig7,

two encoders (f,, go ), two fixed encoders (f =, g, ), two target encoders (f,r, g, ), a checkpoint
actor network myc, and a checkpoint encoder f,c.

To learn the representations with historical augmentation, f,, and g, are trained by the transitions in
buffer B = {sy i, a;,7;, Sk,i+1} to minimize the predicting loss in equation 1| For any parameter set
«, we define

zzk,t — foz(sk,t)a zik,nat — ga(zsk’t7at)~

Based on the assumption that f,r and g,r satisfy the conditions in Theorem [4.2] on the most
transitions in B, the QQ-function is estimated by the following Huber loss function (Huber, |[1992).

L(¢l> B) = HU/beT‘(skwt,at,m,skﬁt+1)NB [xt - (Q(i)l (zj?t’ata Z:IF , St at)] ) (3)
N ’ A s A~

£ = o+ elip(min(Qur (=25 2257 041, a)), QR QPe),

a’ = pgr (Zj’;t+l>3t+1) +ep,ep ~ N,

where e is target policy noise (Fujimoto et al., [2018)), A/ is a Gaussian distribution N (0,0), and
Q™™ and Q™?* are updated at each time step as

Qmax - max(xh Qmax)’ Qmin — min(mt, QAmin).
Based on the learned Q-function, the policy network 7y is updated by

maxy By, s [ D1 5 Qo (2509, 2% 1, 0)] | @)

a=pe(z25', s1).
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To explore the new actions and thus generate new transitions in 3, exploration noise ¢ is added as
Qi < Q¢ + €, € NN
In our TD learning, o', o7, ¢, and 7 are updated by

o 0T, T 0o, ¢ 0, 07«0 %)

Because DRL algorithms are unstable (Henderson et al., 2018} (Teh et al., 2017), we use the checkpoint
policy to obtain the cumulative reward in our evaluation (Vaswani et al., [2017). In the training of
HA3C, if the current policy outperforms the checkpoint policy, we will update the checkpoint policy
with the current policy, then ¢ < o and 8 < . The checkpoint policy can give a more accurate
evaluation by maintaining the high-performance policy unchanged. Furthermore, the LAP replay
buffer is utilized to store and replay the transitions (Fujimoto et al.,|2023;2020). The algorithm of
online HA3C is presented in Algorithm [T}

Algorithm 1 Online HA3C

Initialize the hyper-parameters and networks
Initialize replay buffer 5
for episode = 0 to episode,,q. do
Collect k-order transitions by pg and store them in LAP buffer B
if Checkpoint condition then
if 1o outperforms fige then then
Update checkpoint networks pge <— pg and foc < fo
end if
end if
Sample k-order transitions from LAP buffer 5
Train the encoder f, and g, by equation][I]
Train Q¢1 and Q¢2 by equation
Train 7 by equation [
if Target update frequency steps have passed then
Update target networks by equation 3]
end if
end for

Fig.[is an example to illustrate the advantage
of learning the policy in HA3C. We first collect
the obtained states of Walker2d MuJoCo con-
trol task by learning the policy with and without
historical augmentation, respectively. The max
learning step is 4 x 10°. Then we map the col-
lected states in 2D space together by UMAP.
Finally, we show the reached states without the
learning of historical augmentation in the left
subfigure of Fig. 5] and the reached states with
the learning of historical augmentation in the
right subfigure of Fig.[5] Each state is coloured
by the reward of reaching it. As we can see,

although the actions to obtain the states in high-  pjoure 5: Visual results of the obtained states in

reward regions (indexed by the red circles) can - waker2d environment. Each state is coloured by
be explored, without historical augmentation, it  (he reward of reaching this state.

is hard to learn the policy which can regenerate

these explored actions. Therefore, in the left

subfigure, there are only a few states in the high-reward regions. Fortunately, as shown in the right
subfigure, there are a lot of states in the high-reward regions when learning the policy with historical
augmentation. The visual results of other environments are shown in Appendix [
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5 EXPERIMENTAL RESULT

In this section, first, we compare HA3C to five existing RL algorithms on five Mujoco control
tasks (Todorov et al.,[2012)). Second, we give the ablation study of HA3C to illustrate that historical
augmentation is the real source of the improvement in sample efficiency. Third, we analyze the
parameter sensitivity on the length of the historical state trajectory and the number of dimensions of
compressed historical trajectories. Finally, we give the running times of the different RL algorithms.
The experimental setting is in Appendix [El Appendix [F] has some supplementary experiments
including the state visualization and DMC experiment (Tassa et al., 2018).

5.1 COMPARATIVE EVALUATION

In this subsection, we evaluate our HA3C on five MuJoCo control tasks including Walker2d,
HalfCheetah, Ant, Humanoid, and Hopper. The compared algorithms are TD3 (Fujimoto et al.,
2018), SAC (Haarnoja et al., 2018), TQC (Kuznetsov et al.,|2020), TD3+OFE (Ota et al., [2020), and
TD7 (Fujimoto et al.,2023)). For all algorithms, each task runs 10 instances with different random
seeds. In each instance, the evaluation is performed every 5000 time steps. The learning curves are
shown in Fig.[6]and the numerical results at 400K time step and 1M time step are shown in Table[I]

Walker2d Ant Hopper

HalfCheetah Humanoid
17.5

__15.0

2

=125 6

B

£10.0 —— W HA3C | TD7 TQC

= 75 4

[ D SAC M TD3+OFE
T 5.0

s >

e Nt
o

0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2

A 0.8 1.0
Time steps (1M)

0.4 0.6
Time steps (1M)

Figure 6: Learning curves of different RL algorithms on the MuJoCo control tasks. The shaded area
captures a 90% confidence interval around the average performance.

From Fig. [f] and Table [T} we can see that 1) With the help of historical augmentation, HA3C
significantly outperforms the compared algorithms in terms of the early average highest returns (400K
time step) and final average highest returns (IM time step); 2) as shown in Fig. [] because of the
instability in rapidly learning complex causal relationships, the early average returns of HA3C on
Walker2d and Humanoid are a little lower than the early average returns of TD7, however, HA3C can
get the highest final average returns on all of the control tasks.

5.2 ABLATION STUDY

Our ablation study aims to prove that our historical augmentation is the real source of the improvement
in sample efficiency. Therefore, we compare HA3C to the following two ablations: 1) Copy Aug.
copies the current state k times instead of augmenting with k& steps of history in our CNN; 2) No Aug.
is TD3 with single-step representation learning and LAP. Our ablation study is performed on Ant,
Hopper, and Walker2d. All of the comparison methods have the same parameter setting.
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Table 1: The average highest returns over 10 instances on the MuJoCo control tasks at 400K and 1M
time steps. £ captures the standard deviation over trials. The best score is highlighted by cyan and

the second best score is highlighted by orange.

Algorithm Time step Walker2d ~ HalfCheetah Ant Humanoid Hopper
D3 400K 2636933 82294757 3297+1084 13844282  2876+859
1M 4198516  10560+675 4617+1287 53084105  3387+137
SAC 400K 3122156  8945+1368  3893+569 2268905 327686
1M 3921163 11729-£258 5956+2209 54984131 3422+87,
TQC 400K 49944397 96441006 33074939 4061+703  3534+91
1M 58954552 13431+561 5258+1165 6140+426  3602+117
TD3+OFE 400K 43294550  11508+635  6406+-549 51934797 3471445
1M 45744551 14759-+696  7246+497 72624209 361628
D7 400K 57874444  15625+559  7305+197 58234231 3440+92
1M 63544209  17343+359  8346+291 7405+236 3757+214
HA3C 400K 64414366  16652+323  7838+138 60994305 3783+153
1M 7143456 181084294  8687+128  8584-+273  4143-+170
9 Ant Hopper Walker2d
s 4.0 !
< 6
=7 3.5
° 5
%6
g 3.0 4
EE
© 2.5 3
4
2
3702 04 06 08 10 20 02 04 06 08 10 02 04 06 08 10
Time steps (1M) Time steps (1M) Time steps (1M)
B HA3C M Copy Aug. B No Aug.

Figure 7: Learning curves of the ablation study on the MuJoCo benchmark. The shaded area captures
a 90% confidence interval around the average performance.

As we can see from Fig.[7]] HA3C significantly outperforms the compared algorithms in terms of both
sample efficiency and performance on Ant and Walker2d. HA3C also significantly outperforms the
compared algorithms in final performance on Hopper. This phenomenon illustrates that historical
augmentation is the real source for improving sample efficiency.

5.3 PARAMETER SENSITIVITY ANALYSIS

In Fig.|8] we analyze the sensitivities of two important parameters, k£ and NV, on Ant. k is the length of
the historical state trajectory and [V is the number of dimensions of compressed historical trajectories.
Both of the above parameters are not used in the previous representation-based RL algorithms. & is
set from {6, 12, 18,24} and N is set from {8, 16, 64, 256}.

As we can see, HA3C is a little sensitive to £ and N. When k& < 12 and N < 16, our historical
augmentation will significantly improve the sample efficiency. When N = 256, the historical
information cannot improve neither sample efficiency nor final performance. This phenomenon
illustrates that compressing the historical trajectories into a low-dimensional space is the key to
effectively utilize the historical information in MDP tasks.
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Figure 8: Learning curves of the parameter sensitivity analysis on the MuJoCo benchmark. The
shaded area captures a 90% confidence interval around the average performance.

5.4 RUNNING TIME

To understand the computational cost of HA3C, we compare the running times of different algorithms
with identical computational resources in HalfCheetah control task. The result is shown in Fig.[0] As

we can see, the computational cost of HA3C is less than the computational costs of TD3+OFE and
TQC but is more than the computational costs of TD3, SAC, and TD7.

6 CONCLUSION

Under the Markov assumption of MDPs, the probabil-
ity distributions of the next state and reward depend Runing time

7h 21m

only on the current state and action. Therefore, given
a finite (-table, we can find the optimal policy in an
MDP by a heuristic algorithm which only considers
single-step transitions. Different from the heuristic
algorithm, DRL algorithms need to approximate the
causal functions by learning the causal relationships
in MDPs. In this case, DRL is often faced with sam-
ple inefficiency from complex causal relationships, as 1
a more complex causal function requires neural net- 0
works to approximate with more parameters, samples,
and time consumption.

6h 18m

4h 17m

3h 27m
2h 42m
1h 29m

TD3 SAC TD3+OFE TQC TD7 HA3C

Hours
N w B w o ~

Figure 9: Running times of different algo-

This paper addresses the above problem by augment- tithms for IM time steps.

ing the current state with historical information. We

believe that historical augmentation can simplify the

causal relationships of state transitions by its inherent contextual information and increasing the
search space of the causal functions. Therefore, we focus on optimzing a history-dependent stationary
policy in MDPs and propose a new RL algorithm, HA3C. The main idea of HA3C is to learn the state
representations by compressing the high-dimensional historical trajectories into a low-dimensional
space. In this way, we can extract the simple causal relationships from historical trajectories and
avoid the overfitting caused by high-dimensional historical data. Our experiment demonstrates the
superior performance of HA3C over five state-of-the-art RL algorithms on MuJoCo control tasks.
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A DIFFERENT POLICIES

Time-related policies can be History-dependent (H) or k-order Markov (M},) (Derman et al.,[2020;
Puterman), 2014). Denote #, as the set of possible histories up to time step ¢. A history-dependent
policy m = {d|t = 0,1, ...} at ¢ maps histories to actions as d; : H; — A. A k-order Markov policy
7w = {di|t = 0,1, ...} at t maps k-order state transition trajectories to actions as d; : Si; — A. A
k-order stationary (.S) policy is unrelated to time as 7 : Sy. — .A. In general, a randomized (R)
policy selects the actions by a probability distribution as 7(a/|*). 7 is a deterministic (D) policy if
and only if (a|*) € {0, 1}. Based on the above analysis, we can obtain History-dependent Random
(H R) policies, History-dependent Deterministic (H D) policies, k-order Markov Random (M}, R)
policies, k-order Markov Deterministic (M}, D) policies, k-order Stationary Random (S R) policies,
and k-order Stationary Deterministic (S D) policies.

The above policies are summarized in Table[2] The relationships among them are demonstrated in
Fig.[I0] It is noteworthy that sometimes historical actions will be considered in decision-making. In
this case, without loss of generality, a historical state s;;<;_1 can be updated by s; <— s; U a;.

Table 2: Different types of policies.

Policy Abbreviation Action
History-dependent Random HR ar~di(so),di €T
History-dependent Deterministic HD a; =di(so),de €
k-order Markov Random MR a; ~ di(Sk—iy14), di €T
k-order Markov Deterministic M. D ar =di(Sg—ty14), de €T
k-order Stationary Random SR a; ~ T(Sk—t+1,t)
k-order Stationary Deterministic Si.D a; = m(Sk—t+1,t)

Figure 10: The relations among different policies.
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B AN EXAMPLE OF IMPROVING SAMPLE EFFICIENCY IN MDPS BY
HISTORICAL AUGMENTATION

Define a sequence as follows: 1) |By| # 1;2) If ¢ > 1, then 3,11 = ﬁ?

Based on the sequence above, we can define an MDP M = (S, A, R, P,~). At time step ¢, state
st = B, Bt+2]T and action a; is computed by a linear function f(x) on state s; or augmented state
sy, ¢ Without considering historical information, reward r, is defined as

re = —|f(8¢) — (Be + / Big2 + Big2)| = —|wsy + b — (B + / Bit2 + Bet2)], (6)

where w is a two-dimensional vector and b is a constant. In transition model P, s can be defined as
[Bo, B2] " and sy can be computed by s; as

Se41 = 157, BtQJrz]T =8t O 8¢, @)
where © is Hadamard product. v = 0.99.

From equation [6] and equation[7] it is easy to see that M satisfies the Markov assumption of MDPs.
To maximize the discounted cumulative reward in M, we should minimize

argrinuibnﬂf(st) = (Bi + /B2 + Bit2)ll2 = arg min lwsy +b— (87 + /Biyz + Bir2)ll2 - (8)
at each time step t. However, it is hard to minimize equation by f(8¢), which is a linear model on
St.

The above problem can be solved by the historical augmentation of s;. When considering the
historical augmentation of s, f(x*) on sz ; can be defined as

f(s2,t) = wosy +wis—1 + b.

Instead of minimizing equation |8} we can minimize

arg min b||f(82,t) — (B + V/Be2 + Bry2)ll2
wo,Wi,

= arg min ||wos; + wisi—1 +b— (87 + /Briz + Bita)|l2.

Wo,W1,

Let wo = [1,1], w; = [0,1], and b = 0. From B;11 = 1/8¢+2, we have

[lwose + wisi—1 +b— (B +\/Bega + Ber2)l]2
[lwose + wisi—1 +b— (B + Big1 + Bet2)]2

I1([L, 1[Bt, Beta] T + [0,1][Be—1, Bit1] T — (Be + Big1 + Bea2)||2
= 0.

In this case, the cumulative reward in M can be maximized.

C CONNECTED TO RELATED WORK

C.1 CONNECTED TO HMDPs

In HMDPs, the probability distributions of the reward and next state depend not only on the current
state and action but also on the historical states and actions. For a k-order HMDPs, we have

7 /7
P{siy1 = 8", 1, =r|sg,a0,70,..-,St, a1} = P{si41 = 8,14 = 7|St—k+1,Qt—k+1, -, St, At}

The causal diagram of HMDP is presented in Fig.[I1(a)] Our approach optimizes the policy by a
simplified HMDP model in which the probability distributions of the reward and next state depend on
the current state-action pair and compressed historical trajectory as

P{St+1 = S,,’I"t = T'|SQ, Qag,TQ, .-y St, at} = P{St—i-l = SI, ry = ’/‘|DR(S,5_17]€_1), .y St, at}.
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Figure 11: Causal diagram of HMDPs and POMDPs.

C.2 CONNECTED TO POMDPs

In POMDPs, the states are partially observable. Define the partially observable state at time step
t as l; and the observable part of I; as 0;. The causal diagram of POMDPs is shown in Fig.
Under the faithfulness assumption, o; and oy, are mutually dependent conditional on Vk > 1,
{0i, a;}t<i<ttr (Kalisch & Biihlman, 2007). Therefore, in a POMDP, the optimal policy 7 at time
step ¢ should consider not only o, but also the historical information {0;, a; }o<;<¢. When k is large,
long-length rollout estimation is needed in POMDPs.

RL algorithms of world models, such as Dream, model the sequential decision-making as a
POMDP (Ha & Schmidhuber, 2018; Hafner et al.l 2019a). They usually encode the historical
information at ¢ by an encoder f* to construct s; ;1 as

1
St+1 = ft(0t7 Qg ...y f (017 aj, fO(OOa aO))-

When ¢ is large, some partially observable states will be encoded many times, leading to the loss of

some important discriminative information.

Compared with POMDP-based RL algorithms, our HA3C can better adjust the considered steps
in history according to the actual task and thus effectively find the optimal policy in history-based
sequential decision-making.

C.3 CONNECTED TO STATE ABSTRACTION

State abstraction aims to reduce ground MDPs with large state spaces to abstract MDPs with smaller
state spaces by aggregating states according to some notion of equality or similarity (Bartlett,
1966). Through abstraction, intelligent agents may need to consider only the salient distinguishing
information of their environments. Given an abstraction function as F' : S — S, we can define the
abstract version of MDP M as M = (S, A, R, P,v). A Q-irrelevance abstraction function F? is
that for any action a, F%(s) = F?(s’) implies Q(s,a) = Q(s’, a). Then we have the following
theorem.

Theorem C.1. Define an MDP as My, = (S, A, R, Py, ). Under the conditions 1), 2), and 3) in
Theorem encoder f is a Q-irrelevance abstraction on sy ..

Theorem [C.T]illustrates that our representation learning can be seen as the ()-irrelevance abstraction

of the historically augmented states. The proof of this theorem is given in Appendix D]

D THEORETICAL ANALYSIS

D.1 PROOF OF THEOREM 4.1l
Now we give the proof to Theorem[d.1] The different types of policies in this proof are summarized
in Table 2| The relationships between these policies are shown in Fig.
Based on the Markov assumption of MDPs, we have
P{s;.1 =8",rs =7|s0,a0,70, ..., 8, a: } )
= P{syy1=5" 1 =7|8i_ky1,1 a4t}
= P{si11 =8",r: =7|s,a:}.
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For any 7 € HR, we can define V. (h;) by

VT(ht) =

+oo .
> Y R(hisi, at-&-i)] :
i=t
From Fig.[T0] we have Sy D € My D € MR € HR. In view of equation[9] we see for all ¢ that
sup V™ (hy) = sup V7™ (sk.).
r€HR rE€SKD
First, for all ¢, we demonstrate that

sup V7 (hy) = sup V7 (spu). (10)
wT€EHR TEMKR

This is a direct result of Theorem[D.1] The proof of this theorem is presented in[D.1.1}
Theorem D.1. Let m = {d;|t = 0,1,...} € HR. Then Vsy. € Sk, ., based on equatlong there
exists a policy 7' = {d}|t =0, 1, .. } € MkR sansfylng
P (@i = a, Sk,t+i = 32,;\8k,t = Sk,:) =p" (at-i-i =a, Sk,t+i = 327;|3k-,t = sk‘,:)a
where p™ (x) denotes the probability of * provided that the agent follows policy .

Then Theorem [D.2]illustrates that the value functions of 7 € M. D and © € MR have the same
upper bound. The proof of this theorem is demonstrated in

Theorem D.2. If a bounded function V on Sy, . satisfies the optimal Bellman equation that

V(8k,t) = sup {R(sk’ha) + 7/

V(skt1l8e+1 = 8")p(s' |8k, a)dsfc,:} ;
acA Sk,

then

sup V7™(sk) = sup V7™ (sky).
xEMD TEMR

Finally, based on equationEI, for all sy, . € Sk, if 85+ = Sy, then

sup V(sg,t) = sup V(sg,.). (11
acA acA
Let @ = 7(sy,.), where m € S D. It follows that
sup V™ (sg.) = sup V™(sgs). (12)
wE€SKD TEM D

Under equation [T0] equation|TT]and equation[T2} V¢, if 5 ; = sy..., then

sup V™ (hy) = sup V7™ (sp:) = sup V7™(sp.) = sup V™(sg,.).
T€EHR TEMrR TEME D TESED

D.1.1 PROOF OF THEOREM[D.1I

We assume that Theorem [D.1] holds for ¢ = 1,2,3,...,n — 1. Given a policy 7 € HR, based
on equatlon@ we see that there exists a policy 7’ € M kR satisfying

" (Sk,ti = Sk |8kt = Sk.:)

/ / (Sk i1 = sk @i = a'|Skt = Sk.)p (s"|s§€7:,a')da'ds;€}:
Sk,

[ 5 s = st arsios = alone = s p(s"s},. ')da’dsf,
Sk.. JA

= P (Skiti = SK.ISkt = Sk,.)-
The above equality follows from the induction hypothesis. The 7’ also can satisfy
P (@i = a'[spiqi = 8;.) = P (G = @ |8k = 57,.).
Therefore,

i (at+i = CL,7 Sk,t+i = S;q,;|3k,t - Sk,:)

"(arri = @[Sk = 85, )P (Skyi = Sh|Skt = Sk.2)

p
! ’
= p"(aryi = a'|skivi = 84 )P" (ki = 8|Skt = Sk.:)
P
P (@i = a’, Sk,t+i = S;g,;‘sk,t = Sk,:)-
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D.1.2 PROOF OF THEOREM [D.2]

In view of M D € MR, we have

sup V7™(sp) < sup V7™ (spy). (13)
xEMD TEMLR

It follows that

sup {R(Sk,t7a) + 7/ V(Sk,tﬂ\sk,tﬂ = sl)P(5,|3k,t7a))d3/}
acA Sk,

> /Ap(dt(sk,t) =a)

where d; € M R. Thus

R(sp,¢,a) +W/ V(Sk,tt1]8041 = S')p(sl|3k,t,0))dsi,:] da,
Sk,:

sup V7(skt) > sup V7(skt). (14)
wEM D TEMErR

Combining equation[I3|and equation [T4] we have
sup V7™(sk) = sup V7™ (spy).
TEM D TEMErR

D.2 PROOF OF THEOREM [4.2]

To prove Theorem[d.2] we give the proof of Theorem|[C.]first. Under the condition 1) of Theorem[#.2]
one sees that there are only two independent variables sy, . and a. Under the Markov assumption and
the condition 2) of Theorem 4.2} we have

P{s,t41 = 84|80, @0,70; -+, 81, @t} = P{sg 111 = s, .[2°, ar}. 15)
Then, under the condition 3) of Theorem 2] we have
P{z%&ttt = zsﬁc,=|sk,t,at} = P{zfkt = zs§w|zs’“v“‘“} (16)

= Pzt = 2% |g(f (sn4), ar)}
= P{zer = 2%g(z", )}
= Pzt = zs;w|zs’°’t,at}.
Define an MDP as M, = (Sk., A, R, Py, ). From equationand equation|16] we obtain

Sk

Z% = 2% = Q(s),a) = Q(s},, )

Because z°% = f(sy.), we see that encoder f is a Q-irrelevance abstraction on sy ..

Define an abstracted MDP of M, as M[;, = (Z,A, R, Py, ), where Z is the encoded space of S...
Operator B,, can be written as

B,Q(2°*,a) = R(z°*, a) + maxy / Q= p(2%))p(2%h+ |24+ ) d 2.
H ps

Now we provide a proof (sketch) to Theorem[d.2] Since the optimality of 1 follows from the optimal
actions as well as their (Q-values are preserved after abstraction, we see that B is a contraction in the

sup-norm and the optimal Q-function Q* is the unique fixed point of B. Thus we can finally find the
optimal policy u* by B,, (Melo, [2001). When the agent estimates the optimal ()-function based on
experience, we have the following update rule in each time step 7" by Lemma[D.3] (Jaakkola et al,
1993 Melo, 2001).

Qui1(2° ar) = Qu(2%1, ay) + ay(ry + ymax Qu (25 1+1, pu(2°41+1)) — Qu(2°%*, ay)).
o

Qt converges to Q* as long as

oo (o]
E Qp = 00, E ozf < 0.
t=0 t=0
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Lemma D.3. The random process {A;} taking values in R™ and defined as
Ary1(y) = (1 — a)Ai(y) + u Fi(y)

converges to zero under the followzng assumptions:

DY oo =o0candy ;2 a? < oo,

2) ENFW)IFllu] < A2 with y < 1, and

3) Var[Fy(y)|F:) < C(1 + ||Ay]|2) for C > 0,

where F = {Ay, Ay—1, oo, Fi_1, ..., 41, ..., } strands for the past at step t and || * ||,, refers to
some weighted maximum norm.

D.3 APPROXIMATION ERROR ANALYSIS

Define the value function in Z as V. The bound of the approximation error between the transition

probabilities in space S ., and Z based on the optimal value function V* can be defined as (Miiller,
1997)

max
Sk,:, @

/ W@%MMLMwM@Lf/Vﬂfﬂmfﬂfwww%=:&
Sk,: Z

Based on 4, we analyze the approximation error in Theorem

Theorem D.4. The worst-case difference between V' (z°%:) and optimal value function V*(s) is
bounded as:

* 7k (8K ’75
— Ky < 7
1V*(5) = V"2l < 72

We provide the proof to the above theorem as follows. Based on the Markov assumption of MDPs,
we have

IV (8) = V¥ (2*5) oo = [V (88,) = V7 (2°") oo
Now we prove that

6

V¥ (s8,) = V¥ (25) oo < T (17)

In view of R(s,a) = R(s k@) = R(z°, a) in the value function approximation, we have

1V (8) = V(%)

< max Q" (50 a) - Q" (="a)]
= max Sk ,a / 3k,:|3k,:7a)ds;c,:
Sk,:, @
- Ru%m@—v/ﬁfw%>msku% a)dz.
z

< ymux| [V st fsns @)dsh, — V(2 (st s a)dst,

seoal g, ' ' ’ ' i
+ 7 max / V*(zszu)p(sfc:|sk7:,a)ds§€:7/ V*(zs;w)p(zs;w|zs’“vi,a)dz3;w

Skl | s, ’ ’ =z

< 7 (IV* (1) = V(") loe +6)

This proves equation[I7] Thus Theorem [D.4]holds.
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D.4 ANALYZING SAMPLE EFFICIENCY IN EXPLORATION AND EXPLOITATION

In this subsection, we illustrate the benefit of sample efficiency from history augmentation based on
two facts:

1) Historical augmentation can improve exploration in DRL. The policy can generate different actions
for different transition trajectories that end with the same state;

2) Historical augmentation can also improve exploitation in DRL. History augmentation may simplify
the causal relationships between the state and the explored high-reward action, thus the policy network
can effectively learn and then regenerate this action.

The detailed analysis of these two facts is as follows. In the previous DRL methods for MDPs, when
the policy i and s; = s are fixed, we can get only one action by

a; = u(s¢), peSiD.
However, based on our history-based policy
a; = p(Ske), 1€ SKD|p>2.

a; can be changed by the change of the s;,_1 —1. We define the set of possible actions from policy
w € SpD at state s as AJ and the set of possible k-order trajectories end with state s as Si. As we

14

can see, | A7 | < [S}|.

Fig.[12]is the causal diagram of regenerating a high-reward action with or without historical aug-
mentation. For a policy network g € S1D and a = py(s), we may get a* = a + ¢ with
R(s,a*) > R(s, a). However, it may be hard to regenerate a* by the policy network p¢(s) because
the noise € is independent of parameter 6. Fortunately, the causal relationship between sy, ¢|i>2
and a* may be simpler than the causal relationship between s; and a* (See the example in Ap-
pendix [B). In this case, we can effectively learn the policy pp € Sy D to regenerate the a* at state s
by a* = 1g(sk,¢) (See the example in Fig. [5).

A high-reward action

@ from random explorations
/ V\

S

Regenerate a*without Regenerate a* with
historical augmentation historical augmentation

Figure 12: The causal diagram of regenerating a high-reward action with or without historical
augmentation. The dashed lines indicate the information needed in the optimization.
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E EXPERIMENTAL SETTING

All experiments are run on a single Nvidia 3090 GPU and AMD 5900X CPU. We use the following
software versions:
* Python 3.9.12

* Pytorch 2.0.0 (Paszke et al,[2019)
*CUDA 12.2

* Gymnasium 0.29.1 (Brockman et al.} 2016))
* MuJoCo 3.2.3 (Todorov et al., 2012)

Walker2d HalfCheetah Ant Humanoid Hopper

Figure 13: The environments in our experiments.

The environments in our experiment are shown in Fig.[T3]and detailed as follows:

1) Walker2d aims to walk in the forward direction as fast as possible.

2) HalfCheetah aims to run forward as fast as possible.

3) Ant aims to coordinate the four legs to move in the forward direction as fast as possible.
4) Humanoid aims to walk forward as fast as possible without falling over.

5) Hopper aims to make hops that move in the forward direction as fast as possible.

The compared RL algorithms in our experiment are detailed as follows.

¢ Online:

1) TD3 takes the minimum value between a pair of critic networks to address the overestimation of
Q-value and reduces per-update error by delaying policy updates (Fujimoto et al., 2018).

2) SAC is an actor-critic algorithm based on the maximum entropy approach. The objective
encourages policy stochasticity by augmenting the reward with the entropy at each step
2018).

3) OFE-TD3 increases the input dimensionality of the networks by representation learning to improve
the sample efficiency of TD3 2020).

4) TQC addresses the overestimation of ()-value by the combination of the distributional representa-
tion of a critic, truncation of critic prediction, and ensembling of multiple critics
2020).

5) TD7 is an effective DRL algorithm which combines TD3, state representation learning,
checkpoints, prioritized experience replay, and a behaviour cloning term (only used for offline

RL) (Fujimoto et al.} [2023).

The hyper-parameters of HA3C are shown in Table [3] For Hopper, ~ is set as 0.992. Network
architecture details are described in Pseudocode 1-3. The optimizer of our networks is Adam Kingma
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Table 3: Hyper-parameters.

Parameter Value Brief explanation
Start-timesteps 25000 Time steps of the initial random policy is used
Batch-size 512 Batch size for both actor and critic
tpol 2 Policy update frequency
tiar 250 Target update rate
tear 1 Early assessment episodes for checkpoint operation
tiat 3 Late assessment episodes for checkpoint operation
Tear 750K Early time steps for checkpoint operation
Oe¢ 0.1 Std of exploration noise
or 0.005 Std of target policy noise
c (-0.11,0.11) Target policy noise clipping
k 6 The length of the considering state sequences
ol 0.99 Discount factor
le 0.0006 The learning rate of the encoder network
Iy 0.0003 The learning rate of the actor-network
lg 0.0003 The learning rate of the network of the Q-functions
o 0.25 Controlling the amount of prioritization in LAP
P, 1.1 Minimum priority in LAP

Pseudocode 1: Critic network Details

Critic network:

L1 = Linear(state-dim + action-dim, 256)
L2 = Linear(z®-dim * 2 + 256, 256)
L3 = Linear(256, 256)

L4 = Linear(256, 1)

Critic forward pass:

x = Concatenate([s;, a:])

x = AvgL1Norm(L1(x))

x = Concatenate([ z°%:t%, 2%kt x])
x = Elu(L2(x ))

x = Elu(L3(x ))

T(Sk,ta a;) =L4(x)

Pseudocode 2: Actor network Details

Actor network:

L1 = Linear(state-dim, 256)
L2 = Linear(z®-dim + 256, 256)
L3 = Linear(256, 256)

L4 = Linear(256, action-dim)
Actor forward pass:

x = AvgL1Norm(L1(sy))

x = Concatenate([z°*t, x])
x = ReLU(11(x))

x = ReLU(12(x))

a; = Tanh(13(x))
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Pseudocode 3: Encoder Details

State Encoder f Network:

Conv = Conv2d(kernel-num=64, kernel-size=(3, state-dim), stride=1)
Pool = MaxPool2d((1, 1))

L1 = Linear(64, 16)

L2 = Linear(state-dim, 256)

L3 = Linear(256+16, 256)

L4 = Linear(256, zs-dim)

State Encoder f Forward Pass:
x =Conv(sg_1,+—1)

x = Pool(x)

x = Elu(L1(x))

x = AvgL1Norm(x)

y = Elu(L2(sy))

x = Concatenate([x, y])

x = Elu(L3(x))

2%t = Avgl.1Norm(L4(x))

State-Action Encoder g Network:

L1 = Linear(action-dim + z®-dim, 256)
L2 = Linear(256, 256)

L3 = Linear(256, z®-dim)

State-Action Encoder g Forward Pass:
x = Concatenate([a;, z°+t])

x = Elu(L1(x))

x = Elu(L2(x))

2%k 0% =1.3(x)
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F SUPPLEMENTARY EXPERIMENT

F.1 BIPEDAWALKER EXPERIMENT

To illustrate the benefit of history augmentation for complex MDP tasks, we test HA3C and No
Aug. (HA3C without historical augmentation) on BipedalWalker and BipedalWalker-hardcore tasks.
In BipedalWalker a robot is trained to move forward with slightly uneven terrain. Compared with
BipedalWalker, BipedalWalker-hardcore is a more complex task, where the above robot is trained to
move forward with ladders, stumps, and pitfalls. Therefore, the causal relationships in the transitions
of BipedalWalker-hardcore are more complex than those in the transitions of BipedalWalker. The
environments and learning curves are shown in Fig.[T4]and the numerical results are shown in Table 4]

s

BipedalWalker BipedalWalker-hardcore

Total reward (1K)
5
8

Total reward (1K)
=
)
8

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time steps (1M)

0.0 0.2 0.8 1.0

0.4 0.6
Time steps (1M)

B HA3C M No Aug.

Figure 14: The environments and learning curves on BipedalWalker and BipedalWalker-hardcore
tasks.

Table 4: The average highest returns of HA3C and No Aug. on BipedaWalker and BipedaWalker-
hardcore tasks.

Algorithm BipedalWalke BipedalWalker-hardcore

HA3C 332 +27 316 +19
No Aug. 325 +31 171 £21

As we can see, although, both HA3C and No Aug. can get the high cumulative rewards in Bipedal-
Walker, only HA3C can get the high cumulative rewards in BipedalWalker-hardcore. This is because
by historical augmentation our HA3C can simplify the causal relationships in the transitions of
BipedalWalker-hardcore.

F.2 VISUALIZED RESULTS OF HA3C
Fig. [I3] presents the visual results of the transitions in HA3C and No Aug. The collected states of

each control task are mapped together by UMAP. The max learning step is 4 x 10° and each state is
coloured by the reward of reaching it.
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Figure 15: Visualized results of the explored states in No Aug. and HA3C.

As we can see, in Walker2d, Ant, and Humanoid, the high-reward states from HA3C are more than
those from No Aug. This result illustrates that the sample efficiency of DRL can be effectively
improved by learning the state representations with historical augmentation.

F.3 DEEP MIND CONTROL SUITE EXPERIMENT

In this subsection, we evaluate our HA3C on five DMC tasks including ball_in_cup-catch, walker-run,
quadruped-run, cheetah-run, and reacher-hard (Tassa et al, [2018). The compared algorithms are
TD3 (Fujimoto et al, 2018) and TD7 (Fujimoto et al.} 2023). For all algorithms, each task runs
10 instances with 10° time steps with different random seeds. In each instance, the evaluation is
performed every 5000 time steps. Some parameters are changed as follows. For quadruped-run, [, is
set as 0.0006, o is set as 0.06, and c is set as (—0.12,0.12). For other tasks, [, is set as 0.0005 and
cis setas (—0.1,0.1). The learning curves are shown in Fig. [I8and the numerical results at 300K
time step and 1M time step are shown in Table[5]

As we can see, in most cases, HA3C has higher cumulative rewards than the compared algorithms.
For walker-run, quadruped-run, and reacher-hard, HA3C outperforms the compared algorithms in
terms of both the early performance and the final performance. For ball_in_cup-catch and cheetah-run,
HA3C outperforms all of the compared algorithms in the final performance but the average return of
HAZ3C is lower than the average return of TD7 in the early performance.
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Figure 16: Learning curves of different RL algorithms on the deep mind control suite tasks.

Table 5: The average highest returns over 10 instances on the deep mind control suite tasks at 400K
and 1M time steps.

Algorithm Time step ball_in_cup-catch walker-run quadruped-run cheetah-run reacher-hard

D3 400K 981-+2 387+71 331465 550+76 971-+3
M 985+£1 481+54 444+22 729+39 979+1
D7 400K 9902 654-+96 531+69 836+75 879+91
IM 991-+1 70695 70354 868+56 979+5
HA3C 400K 98942 713441 598436 834+108 97645
IM 9921 789-+19 75824 91645 98545

F.4 LONGER TRAINING RUNS

In this section, we compare our HA3C with TD7 on five Mujoco control tasks with 3M training steps.
The learning curves are shown in Fig.[T7)and the numerical results are shown in Table[6]

Walker2d Ant

Hopper
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Figure 17: Learning curves of HA3C and TD7 on the Mujoco control tasks.
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Table 6: The average highest returns over 10 instances of HA3C and TD7 at 3M time steps. =+
captures the standard deviation over trials.

Algorithm  Walker2d  HalfCheetah Ant Humanoid Hopper

TD7 75704321 177874286 92254450 9850+226  4049+156
HA3C 8463+829 186874683 9794891 11381+344  4413+59

As we can see, HA3C outperforms TD7 on the five Mujoco control tasks. It is noteworthy that
the cumulative rewards of HA3C are significantly higher than the cumulative rewards of TD7 on
Walker2d, Humanoid, and Hopper.

F.5 COMBINING HISTORICAL REPRESENTATION LEARNING WITH SAC

In this section, we combine our historical representation learning with SAC to construct HA3C-
SAC method (Haarnoja et al., [2018). Then we evaluate HA3C-SAC on three MuJoCo control
tasks including Walker2d, Humanoid, and Hopper. The compared methods includes the original
SAC and SALE-SAC, which combines the representation learning with SAC without historical
augmentation (Fujimoto et al.,|2023). The learning curves are shown in Fig.[l"7|and the numerical
results are shown in Table 7]

Walker2d Humanoid Hopper

7 . 4
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¥
25 6 3
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o 3
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21
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1M) Time steps (1M) Time steps (1M)

B HA3C W TD7 H SAC

Figure 18: Learning curves of different RL algorithms on the deep mind control suite tasks.

Table 7: The average highest returns on Mujoco control tasks at 400K and 1M time steps.

Algorithm  Time step  Walker2d  Humanoid Hopper
400K 2843+148  2268+905 3195433

SAC IM 3921163  5498+131 3422486
400K 5414+377  6430+191 3515125

SALE-SAC IM 6021+492  8368+330 4038+126
HA3C-SAC 400K 5796+395  7112+339 3566439

M 6950+623  9047+238 4131448

As we can see, HA3C-SAC outperforms SAC and SALE-SAC on the three Mujoco control tasks.
The above results and the results Section [5.1]illustrate that our historical representation learning is
robust to different algorithms and tasks.
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