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Bridging the Space Gap: Unifying Geometry Knowledge Graph
Embedding with Optimal Transport

Anonymous Author(s)

ABSTRACT
Knowledge Graph Embedding (KGE) is a critical field aiming to

transform the elements of knowledge graphs into continuous spaces,

offering great potential for structured data representation. In con-

temporary KGE research, the utilization of either hyperbolic or

Euclidean space for knowledge graph modeling is a common prac-

tice. However, Knowledge graphs encompass diverse geometric data

structures, including chains and hierarchies, whose hybrid nature

exceeds the capacity of a single embedding space to capture effec-

tively. This paper introduces a groundbreaking and highly effective

approach called Unified Geometry Knowledge Graph Embedding
(UniGE) to address the challenge of representing diverse geometry

data in KGs. UniGE stands out as the pioneering KGE methodology

that seamlessly integrates knowledge graph embeddings in both

Euclidean and hyperbolic geometric spaces. We introduce an em-

bedding alignment method and fusion strategy, which harnesses

optimal transport techniques and Wasserstein barycenter method.

Furthermore, we offer a comprehensive theoretical analysis to sub-

stantiate the superiority of our approach, as evident from a more

robust error bound. To substantiate the strength of UniGE, we con-

ducted comprehensive experiments on three benchmark datasets.

The results consistently demonstrate that UniGE outperforms state-

of-the-art methods, aligning with the conclusions drawn from our

theoretical evaluation.

KEYWORDS
Knowledge Graph Embedding, Optimal Transport, Euclidean space,

Hyperbolic Space
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1 INTRODUCTION
The creation and utilization of Knowledge Graphs (KGs) have gar-

nered significant attention from academia and industry alike. Its

applications have rapidly evolved, spanning from recommender

systems [7], dialogue generation [10], to question-answering sys-

tems [6]. Despite its efficacy in structured data representation, the
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Figure 1: A knowledge graph contains multiple distinct hi-
erarchies (e.g.,subClassOf and partOf ) and non-hierarchical
relations (e.g.,similarTo and sisterTerm)

fundamental symbolic nature of KG triples poses a challenge for

manipulation. To address this issue, the KGE method has emerged

as a practical solution in recent years. The primary aim of KGE is

to embed KG components (such as entities and relations) into a

continuous vector space, which preserves the intrinsic KG structure

while streamlining operations. Furthermore, KGEs can explicitly

capture the similarity between entities and relations by measuring

the similarity of their low-dimensional embeddings.

Recent significant KGEworks have predominantly viewed knowl-

edge graph modeling through the lenses of Euclidean space E and
ComplEx space C, introducing models like RotatE [23] and Com-

plEx [25]. These studies have shown that modeling in Euclidean

space can provide a suitable representation of entities and rela-

tionships, particularly for the chain structure in knowledge graphs.

However, it has become evident that training KGE in Euclidean

space falls short of adequately capturing the hierarchical structural

information present in knowledge graphs [1]. In response to this

limitation, recent KGE works have ventured into the use of hyper-

bolic embedding space. For instance, Kolyvakis et al. [11] extend

translational models to the hyperbolic space, enabling a more ac-

curate reflection of the topological properties of knowledge bases.

Additionally, Sun et al. [22] propose a hyperbolic relational graph

neural network for KGE, which captures knowledge associations

with a hyperbolic transformation.

Figure 1 illustrates a typical example of a KG, showcasing a het-

erogeneous graph structure with both hierarchy and chain compo-

nents, along with interactive relationships between them. Emerging

research [1, 23] has highlighted that a single geometric space can

effectively represent a specific type of KG. For example, Euclidean

space is well-suited for accurately representing chain-structured

KGs. Conversely, hyperbolic space is better equipped to handle the

diverse topological structures often associated with hierarchical

real-world KGs. These relations encompass interactions between en-

tities at the same level of the hierarchy, as well as non-hierarchical

relationships such as "similar to" and "sister team." Consequently, to
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model the knowledge graph more effectively, it becomes imperative

to utilize a combination of Euclidean and hierarchical structures

for modeling. Motivated by these findings, we develop a unified

geometric space representation for KG modeling, capable of better

representing the data’s heterogeneous structural aspects in the KG.

Moreover, this unified representation leverages the strengths of

both Euclidean and hyperbolic spaces.

In this paper, we introduce a novel approach, Unified Geometry
Knowledge Graph Embedding (UniGE), which unify the embedding

of KG components in both Euclidean and hyperbolic geometric

spaces. Specifically, we formulate the fusion of KGE in Euclidean

and hyperbolic spaces as an optimal transport problem. Optimal

transport facilitates the movement of heterogeneous geometric

space embeddings to a unified, aligned space by minimizing the

Wasserstein distance between different distributions. Leveraging

the Wasserstein barycenter, we enable seamless information com-

munication between Euclidean and hyperbolic geometric spaces.

Additionally, we provide theoretical evidence that the Wasserstein

distance can be used to limit the divergence between the distri-

butions of the respective source geometric spaces and the unified

space, ultimately leading to a lower error bound than that observed

in Euclidean and hyperbolic geometric spaces. Furthermore, empir-

ical experiments substantiate that UniGE significantly outperforms

state-of-the-art methods.

Our contributions are summarized as follows:

• We are the pioneers in exploiting KGE with a unified em-

bedding space, enabling more comprehensive modeling of

hierarchical and non-hierarchical structures in KGs.

• We present a novel method, UniGE, based on optimal trans-

port, which effectively addresses geometry space hetero-

geneity by reducing the Wasserstein distance between var-

ious embedding space distributions.

• Theoretically, we demonstrate that our proposed method

can achieve a lower error bound than that observed in

Euclidean and hyperbolic geometric spaces.

• Extensive experiments show that UniGE achieves state-of-

the-art performance on three well-established knowledge

graph completion benchmarks (WN18RR, FB15K237, and

YAGO3-10).

2 RELATEDWORK
Recent advancements in KGE have greatly benefited from the explo-

ration of geometric features and more complex spaces for precise

modeling. In this section, we provide an overview of KGE models

that leverage geometric characteristics to preserve the structural

integrity of KGs. Additionally, we delve into the general concept

of the optimal transport problem. To the best of our knowledge,

our approach marks the first attempt to unify geometry within the

domain of KGE using optimal transport.

2.1 KGE in Euclidean Space
The domain of Euclidean space has been a focal point of research in

knowledge graph embedding. Notable models such as TransE [2],

which interprets relationships as translations on low-dimensional

entity embeddings, and its variants, including those by [9, 15, 26],

have explored various forms of relational patterns. RotatE [23],

a model developed by Sun et al. [23], excels in modeling a wide

range of relation patterns, including symmetry, antisymmetry, in-

version, and composition. Other KGEmodels, such as ComplEx [25]

and DistMult [28], employ element-wise multiplication to handle a

broad spectrum of binary relations. Models like RESCAL [19] and

QuatE [29] utilize angle transformation to model relational pat-

terns, while MuRE [1] adopts a diagonal relational matrix. While

these methods have demonstrated remarkable performance, they

have limitations when it comes to encoding complex hierarchi-

cal and chaining components due to their reliance on Euclidean

space representations. Our approach leverages optimal transport

to incorporate information from hyperbolic space to address this

challenge.

2.2 KGE in Hyperbolic Space
Hyperbolic space has recently garnered considerable attention due

to its potential to represent symbolic data more effectively by cap-

turing hierarchical structure [13, 21]. Several pioneering efforts in

hyperbolic KGE have emerged in contrast to the Euclidean space.

Balazevic et al. [1] introduces the MuRP model, which utilizes

Möbius matrix-vector multiplication and Möbius addition oper-

ations for embedding multi-relational KG data in the Poincaré ball

model of hyperbolic space. Kolyvakis et al. [11] extends transla-

tional models into hyperbolic space to better capture the topological

characteristics of knowledge bases. Sun et al. [22] introduces a hy-

perbolic relational graph neural network for KGE, incorporating

a hyperbolic transformation to capture knowledge relationships.

Chami et al. [4] introduces a class of hyperbolic KGE models that

simultaneously capture hierarchical and logical patterns, including

RotH, RefH, and AttH. Our model is distinctive in its ability to unify

geometry in both Euclidean and Hyperbolic KGEmodels, delivering

competitive performance compared to existing methods.

2.3 Optimal Transport
Optimal transport, as discussed by Monge [17], presents a versatile

tool with potential applications in machine learning, notably for

finding the optimal path between two targets. Recent studies have

harnessed the power of optimal transport in various ways. For ex-

ample, Nouri [20] incorporats syntactic and semantic information

into similarity computations between source and converted text us-

ing optimal transport. Tang et al. [24] assesss the semantic coverage

of summaries in relation to the original document through optimal

transport. Additionally, Li et al. [14] employs optimal transport

to reduce exposure bias by matching sequences generated during

training and testing. Our approach leverages optimal transport to

incorporate information from both Euclidean and hyperbolic space

for KGE.

3 PRELIMINARIES AND BACKGROUND
This section lays the foundation by introducing the prerequisites

of KGE, as well as the fundamentals of Euclidean and Hyperbolic

geometry. It elucidates the essential components essential for a

comprehensive understanding of ourmodel. In particular, ourmodel

seeks to establish a unified framework for geometry within the

realm of KGE, and we provide the requisite contextual background.

2
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Table 1: Summary of characteristic properties and operations in Euclidean and Hyperbolic space

Euclidean Space Hyperbolic Space

Curvature = 0 < 0

ManifoldM𝑑 R𝑑 {𝑥 ∈ R𝑑 : ∥𝑥 ∥ < − 1

𝐾
}

Sum of triangle angles 𝜋 < 𝜋

Exponential map 𝑒𝑥𝑝𝑥 (𝑣) 𝑥 + 𝑣 𝑥 ⊕𝑘 (𝑡𝑎𝑛ℎ(
√︁
|𝐾 | 𝜆

𝑘
𝑥 ∥𝑣 ∥
2

) 𝑣√
|𝐾 | ∥𝑣 ∥

)

3.1 Knowledge Graph Embedding
In the context of KGE, a set of triples (ℎ, 𝑟, 𝑡) ∈ E ⊆ V × R × V
is defined, where V and R represent the sets of entities and re-

lationships within the KGs, respectively. To model the KG struc-

ture, we employ an embedding space denoted as U, which en-

compasses both Euclidean and hyperbolic geometry embeddings.

Entities 𝑣 ∈ V are embedded into representations 𝑒𝑣 ∈ U𝑑V
, and

relationships 𝑟 ∈ R are mapped to embeddings 𝑟𝑟 ∈ U𝑑R
. Further-

more, our dataset is segregated into two subsets: E𝑇𝑟𝑎𝑖𝑛 and E𝑇𝑒𝑠𝑡
triples. The training for KGE involves optimizing a scoring function

𝑆 : V × R × V −→ R, which quantifies the likelihood of tuples.

The scoring function, 𝑆 (·, ·, ·), is learned by utilizing triples from

E𝑇𝑟𝑎𝑖𝑛 , and subsequently, the trained embeddings are employed to

assess the performance of triples in E𝑇𝑒𝑠𝑡 .

3.2 Euclidean and Hyperbolic Embedding Space
Non-Euclidean embedding spaces, characterized by their curvature

in contrast to the zero-curvature Euclidean embedding space, ex-

hibit a range of distinct features. The Riemannian manifolds M𝑑

encompass the Euclidean embedding space E𝑑 and the hyperbolic

spaces H𝑑 , where each point 𝑥 ∈ M𝑑
possesses a tangent space

denoted as (𝑇𝑥M𝑑 )𝑑 , offering a local approximation ofM𝑑
in the

vicinity of 𝑥 . Notably, every Riemannian manifold is equipped with

a Riemannian metric distance that quantifies the geodesic separa-

tion between any two points within the manifold. Additionally, the

curvature 𝐾 of the space varies: Euclidean spaces maintain 𝐾𝐸 = 0

and are frequently utilized in numerous publications, while hy-

perbolic spaces exhibit negative curvature (𝐾𝐻 < 0) and are more

adept at capturing power-law patterns, as discussed by Nickel and

Kiela [18]. Table 1 provides a concise summary of the key attributes

distinguishing Euclidean and hyperbolic spaces.

Hyperbolic distance. In hyperbolic space, the distance between
embedding u and v is expressed as follows:

𝐷𝐻 (u, v) = 𝑎𝑟𝑐𝑐𝑜𝑠ℎ(1 + 2

∥u − v∥2
(1 − ∥u∥2) (1 − ∥v∥2)

),

from the distance formula, we can deduce that as points move away

from the origin towards the boundary of the ball, the distance grows

exponentially. This phenomenon results in a significantly larger

volume of space available for KGE.

Hyperbolic addition. The vector addition in hyperbolic space

is defined by the Möbius addition :

u ⊕ v =
(1 + 2⟨u, v⟩ + ∥v∥2)u + (1 − ∥u∥2)v

1 + 2⟨u, v⟩ + ∥u∥2∥v∥2
.

Exponential and Logarithmic maps. Hyperbolic embeddings

are initially projected into the tangent space at 0 using the logarith-
mic map. Subsequently, operations similar to those in Euclidean

space are performed, and the results are finally projected back

onto the manifold using the exponential map. The mathematical

definitions of these two mappings are as follows:

𝑒𝑥𝑝0 (u) = 𝑡𝑎𝑛ℎ(∥u∥)
u
∥u∥ ,

𝑙𝑜𝑔0 (u) = 𝑡𝑎𝑛ℎ−1 (∥u∥)
u
∥u∥ .

Matrix-vector multiplication in the hyperbolic embedding space

can be performed using the Möbius map:

M ⊙ u = 𝑒𝑥𝑝0 (M𝑙𝑜𝑔0 (u)) .

4 METHODOLOGY
Our model proposes the development of a unified KGE in geometry,

seamlessly integrating the advantages offered by the Euclidean

space with the structural benefits of the hyperbolic space. In con-

trast to existing KGE models, which are limited to representing data

in a specific geometric context [2, 4, 23], we introduce a comprehen-

sive model termed UniGE. Utilizing optimal transport techniques,

our model fuses the representations of both Euclidean and hyper-

bolic spaces, harnessing the strengths of both paradigms. In Section

5, we provide an in-depth theoretical analysis.

4.1 Overview
The schematic representation of our proposed model is illustrated

in Figure 2. Our model comprises a foundational structure that

integrates models based on both Euclidean and hyperbolic spaces,

a KGE alignment dynamics learner employing optimal transport

principles, and a KGE fusion module designed to harmonize embed-

dings from both spatial contexts. Notably, the embedding alignment

dynamics learner and the fusion module constitute the central func-

tional components of our model.

4.2 Representations for Entities and Relations
For KGE, it is imperative to represent entities and relationships as

vectors that encapsulate meaningful semantic information. Prior

research has primarily concentrated on modeling relationships and

entities within a single embedding space, which typically encom-

passes both Euclidean and hyperbolic geometries. However, KGs

often contain data with diverse structural attributes, necessitat-

ing the amalgamation of multiple embedding spaces to effectively

model them.

3
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Figure 2: Our model encompasses a backbone consisting of both euclidean (top) and hyperbolic (bottom) space models, a KGE
alignment dynamics learner based on optimal transport, and a KGE fusion module to unify both embedding spaces.

The embedding methods employed within the Euclidean and hy-

perbolic geometry spaces differ. Specifically, for an entity denoted

as 𝑒𝐻 ∈ B𝑑𝑐 , it corresponds to the hyperbolic embeddings of entity

𝑒 . For a given relation 𝑟 , we define two hyperbolic relation vectors,

𝑟𝐻 and 𝑟
′𝐻 ∈ B𝑑𝑐 , representing two translation operations. These

hyperbolic embeddings are parameterized using a dimensional vec-

tor 𝑟 , which subsequently defines a givens Rotation operation with

a block-diagonal matrix structure:

𝑅𝑜𝑡 (𝑟 ) = 𝑑𝑖𝑎𝑔(𝐺 (𝑟1, 𝑟2), . . . ,𝐺 (𝑟𝑑−1, 𝑟𝑑 )). (1)

Then,for a triple (ℎ, 𝑟, 𝑡),the scoring function 𝐹𝐻 is defined as:

𝑄𝑐𝐻 (ℎ, 𝑟 ) = 𝑅𝑜𝑡 (𝑟 ) ⊗𝑐 (ℎ𝐻 ⊕𝑐 𝑟𝐻 ) ⊕𝑐 𝑟
′𝐻 ,

𝐷𝑐𝐻 (𝑞, 𝑡) = − 2

√
𝑐
𝑎𝑟𝑐𝑡𝑎𝑛ℎ(

√
𝑐 ∥ − 𝑞 ⊕𝑐 𝑡𝐻 ∥)2,

𝐹𝐻 (ℎ, 𝑟, 𝑡) = 𝐷𝑐𝑟
𝐻
(𝑄𝑐𝑟
𝐻
(ℎ, 𝑟 ), 𝑡) + 𝑏ℎ + 𝑏𝑡 ,

(2)

where 𝑐𝑟 > 0 is the relation-specific curvature parameter and 𝑏𝑒
are entity biases that act as margins in the scoring function [1, 4].

In addition, the embedding methods we used in Euclidean Space

are similar to the one described above, but it is based on Euclidean

space, and their scoring function is defined as:

𝐹𝐸 (ℎ, 𝑟, 𝑡) = −∥(𝑅𝑜𝑡 (𝑟 )ℎ + 𝑟 ) − 𝑡 ∥2 + 𝑏ℎ + 𝑏𝑡 , (3)

where ℎ, 𝑟, 𝑡 ∈ R𝑑 . Without complex hyperbolic calculations, 𝐹𝐸
can be computed in linear time of the embedding dimensions.

4.3 Knowledge Graph Embedding Alignment
Our model integrates the representation of Euclidean and hyper-

bolic spaces through optimal transport, leveraging the advantages

of both. Since the embedding distributions in the two spaces do not

align directly, combining them directly would disrupt the original

pattern relationships. Therefore, we employ optimal transport to

achieve embedding alignment.

We provide a brief explanation of the transportation problem

and how to interpret the total transportation cost as an embedding

distance measure. A transportation problem consists of three key

components: the initial and final states of transportation and a cost

matrix. Typically, the two states are represented in Euclidean and

hyperbolic spaces, denoted as 𝑒𝑒 ∈ R𝑛 and 𝑒ℎ ∈ H𝑚 , where each

dimension corresponds to a specific location with a non-negative

quantity. Following the aforementioned steps, we use u = {𝑢𝑖 }𝑛𝑖=1
and v = {𝑣 𝑗 }𝑚𝑗=1 to represent the probabilistic simplexes of Eu-

clidean and hyperbolic knowledge graph embeddings, respectively.

We denote Ω𝑒 =
𝑛∑
𝑖=1
𝑢𝑖𝛿𝑒𝑒 and Ωℎ =

𝑚∑
𝑗=1

𝑣 𝑗𝛿𝑒ℎ as discrete distribu-

tions of Euclidean and hyperbolic knowledge embeddings, where 𝛿

represents the Dirac function. The cost matrix M ∈ R𝑛×𝑚 encodes

the unit transportation cost from location 𝑖 to 𝑗 inM𝑖, 𝑗 .

In this context, we seek a transportation plan to move from 𝑒𝑒

to 𝑒ℎ while minimizing the overall cost. Using the above notations,

the optimization problem can be formulated as follows:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑇 ∈R𝑛×𝑚

∑︁
𝑖, 𝑗

T𝑖, 𝑗M𝑖, 𝑗

𝑠 .𝑡 .

𝑛∑︁
𝑗=1

𝑡𝑖 𝑗 = u,
𝑛∑︁
𝑖=1

𝑡𝑖 𝑗 = v,

𝑡𝑖 𝑗 ≥ 0,∀𝑖, 𝑗 ∈ 1, . . . , 𝑁 ,

(4)

where the first two constraints indicate the quantity requirements

for both suppliers and customers, and the last constraint proves

a non-negative order quantity. Mathematically, this OT problem

4
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is to find a joint distribution T concerning a cost M of which the

marginal distribution is in the Euclidean and hyperbolic spaces. In

particular, Wasserstein distance can be defined as:

W𝑝
𝑝 (Ω𝑒 ,Ωℎ) = min

𝑇 ∈∏(Ω𝑒 ,Ωℎ )

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

T𝑖, 𝑗M𝑖, 𝑗 . (5)

It can be viewed as the distance between the two probability

distributions Ω𝑒 and Ωℎ , if they are normalized, in line with the

cost M.

In our model, an important step is introduced to approximate

the entities’ semantic distributions in the Euclidean and hyperbolic

spaces. We define the unit transportation cost between two KGE

in the two different spaces by measuring their semantic similarity.

Intuitively, the more semantically dissimilar a pair of knowledge

graph embeddings are, the higher the “transport cost" of trans-

porting one knowledge graph embedding to another. Given two

knowledge graph embedding models in different spaces, define

𝑒𝑒
𝑖
and 𝑒ℎ

𝑗
to represent the feature embedding in the two differ-

ent spaces. The transport cost from Euclidean space to hyperbolic

spaces can be written as follows:

𝑀𝑖 𝑗 = ∥𝑒𝑒𝑖 − 𝑒
ℎ
𝑗 ∥2 . (6)

4.4 Knowledge Graph Embedding Fusion
After obtaining the transport matrix 𝑇 , the hyperbolic knowledge

graph embedding 𝑒ℎ can be transformed into target-aligned embed-

ding 𝑒ℎ with the barycenter-based strategies:

𝑒𝑒 = 𝑒𝑒 × 𝑑𝑖𝑎𝑔( 1
𝑢
) × (𝑇𝑇 + Δ𝑇 ),

𝑒ℎ = 𝑒ℎ × 𝑑𝑖𝑎𝑔( 1
𝑣
) × (𝑇𝑇 + Δ𝑇 ) .

(7)

After obtaining the target-aligned knowledge graph embedding,

the transported Euclidean and hyperbolic knowledge embeddings

are in the same space, where Δ𝑇 is an adjustable transport param-

eter. We obtain the aligned knowledge graph embedding in the

different spaces from the above equation. Then the next step is

to fuse the aligned different knowledge graph embedding with

Barycenters strategy:

𝑒𝑢 =
1

2

min

𝑒𝑒

∑︁
𝑖∈{𝑒,ℎ}

𝜆𝑖W, (𝑒𝑖 , 𝑒𝑒 ), (8)

where 𝑒𝑢 is the unified representation; 𝜆𝑖 represents the weight.

4.5 Loss Function and Training
After performing the above knowledge graph embedding alignment

and fusion, we can obtain the loss function from the score function.

To optimize the parameters, we train the model by minimizing the

following loss:

𝐿 =
∑︁

𝑙𝑜𝑔(1 + 𝑒𝑥𝑝 (−𝑌𝑙𝑎𝑏𝑒𝑙𝐹 (ℎ, 𝑟, 𝑡))), (9)

where 𝑌𝑙𝑎𝑏𝑒𝑙 ∈ {−1, 1} denotes the label of the triple (ℎ, 𝑟, 𝑡). In the

training procedure, we adopt the negative sampling strategies (e.g.,

uniform sampling or Bernoulli sampling [26]).

5 THEORETICAL ANALYSIS
This section shows a theoretical analysis showing that unified KGE

preserves comprehensiveness.

The target error [5] is an indicator to measure the distribution

difference between the final unified KGE and the respective KGE.

Supposing X,Y,Z are represented for entities, KGE, and labels

of triples, respectively. In addition, the euclidean and hyperbolic

embedding of the entity is always assumed to satisfy the proper

function 𝑓 ∗ : Z −→ Y in KGE problems. The proper scoring

function 𝑓 ∗ can not be viewed, so we usually choose a prediction

function 𝑓 from a hypothesis class F for substitution.

Afterward, there is an approximation error between the hypoth-

esis 𝑓 and the true score function 𝑓 ∗ under the distribution Ω, we
measure it here with the taget error :

𝑒𝑟𝑟Ω (𝑓 , 𝑓 ∗)
𝑑𝑒𝑓
= E𝑥∈Ω [|𝑓 (𝑥) − 𝑓 ∗ (𝑥) |] . (10)

To simplify the proof, we denote 𝑒𝑟𝑟Ω (𝑓 , 𝑓 ∗) as 𝑒𝑟𝑟Ω (𝑓 ). In ad-

dition, we utilize the Wasserstein distance W1 (·, ·) to relate the

source distribution and unified distribution.

We can make inferences about the unified embedding space

based on the above definitions and assumptions.

Theorem 1 (The minimized bound on the error). Supposing
that Ω𝐸 ,Ω𝐻 and Ω𝑈 represent the distribution of the euclidean, hy-
perbolic and unified embedding,and the hypotheses 𝑓 , 𝑓 ∗ ∈ F are
all L-Lipschitz continuous for some constant L. Then the following
inferences hold for every hypothesis 𝑓 , 𝑓 ∗ ∈ F :

𝑒𝑟𝑟𝑈 (𝑓 ) ≤ min

𝑖∈{𝐸,𝐻 }
{𝑒𝑟𝑟𝑖 (𝑓 ) +W1 (Ω𝑖 ,Ω𝑈 )}, (11)

where W1 (·, ·) is the 1-Wasserstein distance, 𝑒𝑟𝑟∗ (𝑓 ) is the target
error at the respective knowledge graph embedding space ∗.

Proof. Due to 𝑓 ∈ F is L-Lipschitz continuous , ∀𝑥,𝑦 ∈ D,

there is |𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐿𝑑 (𝑥,𝑦). Given the L-Lipschitz continuous

hypotheses 𝑓 , 𝑓
′ ∈ F , we can obtain the following formula with

the triangle inequality:

|𝑓 (𝑥) − 𝑓
′
(𝑥) | ≤ |𝑓 (𝑥) − 𝑓 (𝑦) | + |𝑓 (𝑦) − 𝑓

′
(𝑥) |

≤ |𝑓 (𝑥) − 𝑓 (𝑦) | + |𝑓 (𝑦) − 𝑓
′
(𝑦) |

+ |𝑓
′
(𝑦) − 𝑓

′
(𝑥) |.

(12)

Assuming that 𝑑 (𝑥,𝑦) represents a measure for the distance

between 𝑥 and 𝑦, ∀𝑥,𝑦 ∈ X, we can obtain:

|𝑓 (𝑥) − 𝑓
′
(𝑥) | − |𝑓 (𝑦) − 𝑓

′
(𝑦) |

≤ |𝑓 (𝑥) − 𝑓 (𝑦) | + |𝑓
′
(𝑦) − 𝑓

′
(𝑥) |

≤ 2𝐿𝑑 (𝑥,𝑦) .
(13)

We can infer that given the euclidean and hyperbolic embedding

space distribution,

𝑒𝑟𝑟𝑈 (𝑓 , 𝑓 ∗) − 𝑒𝑟𝑟𝐻 (𝑓 , 𝑓 ∗)

= E𝑥∼Ω𝑈
[|𝑓 (𝑥) − 𝑓

′
(𝑥) |] − E𝑥∼Ω𝐻

[|𝑓 (𝑥) − 𝑓
′
(𝑥) |]

≤ sup

∥ 𝑓 ∥2≤2𝐿
EΩ𝑈

[𝑓 (𝑥)] − EΩ𝐻
[𝑓 (𝑥)]

≤ 2𝐿W1 (Ω𝐻 ,Ω𝑈 ) .

(14)
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Table 2: Link prediction results (%) on WN18RR, FB15k-237 and YAGO3-10 for low-dimensional embeddings (𝑑 = 32) in the
filtered setting. The first group of models are Euclidean models, and the second groups are non-Euclidean models baseline. All
results are taken from [27]. The best score and best baseline are in bold and underlined, respectively.

WN18RR FB15k-237 YAGO3-10

Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE 36.6 27.4 43.3 51.5 29.5 21.0 32.2 46.6 - - - -

RotatE 38.7 33.0 41.7 49.1 29.0 20.8 31.6 45.8 - - - -

ComplEx 42.1 39.1 43.4 47.6 28.7 20.3 31.6 45.6 33.6 25.9 36.7 48.4

MuRE 45.8 42.1 47.1 52.5 31.3 22.6 34.0 48.9 28.3 18.7 31.7 47.8

MuRP 46.5 42.0 48.4 54.4 32.3 23.5 35.3 50.1 23.0 15.0 24.7 39.2

RotH 47.2 42.8 49.0 55.3 31.4 22.3 34.6 49.7 39.3 30.7 43.5 55.9

RefH 44.7 40.8 46.4 51.8 31.2 22.4 34.2 48.9 38.1 30.2 41.5 53.0

AttH 46.6 41.9 48.4 55.1 32.4 23.6 35.4 50.1 39.7 31.0 43.7 56.6

UltraE 48.8 44.0 50.3 55.8 33.8 24.7 36.3 51.4 40.5 31.8 44.7 57.2

UniGE(Ours) 49.1 44.7 51.2 56.3 34.3 25.7 37.5 52.3 41.2 32.5 45.1 57.9

Then,we can derive the following statement:

𝑒𝑟𝑟𝑈 (𝑓 ) ≤ 𝑒𝑟𝑟𝐻 (𝑓 ) + 2𝐿W1 (Ω𝐻 ,Ω𝑈 ). (15)

Similarly,we can derive the following formula:

𝑒𝑟𝑟𝑈 (𝑓 ) ≤ 𝑒𝑟𝑟𝐸 (𝑓 ) + 2𝐿W1 (Ω𝐸 ,Ω𝑈 ) . (16)

Obviously,

𝑒𝑟𝑟𝑈 (𝑓 ) ≤ min

𝑖∈{𝐸,𝐻 }
{𝑒𝑟𝑟𝑖 (𝑓 ) +W1 (Ω𝑖 ,Ω𝑈 )}. (17)

□

From the above proof, it is possible to obtain a reasonably unified

KGE, which the target error can be smaller than any involved KGE

error.

6 EXPERIMENTS
6.1 Experiment Setup
6.1.1 Datasets. Our approach is rigorously evaluated on the task of
link prediction, utilizing three well-established competitive bench-

marks: WN18RR [2], FB15K237 [2], and YAGO3-10 [16]. Each of

these datasets offers distinct challenges and characteristics for as-

sessing the efficacy of our method.

• WN18RR, a subset of WN18, is known for its primary rela-

tion patterns of symmetry/antisymmetry and composition.

• FB15K237, derived from FB15K, retains its distinctiveness

by excluding inverse relations.

• YAGO3-10, a subset of YAGO3, predominantly comprises

symmetry/antisymmetry and composition patterns.

To ensure a consistent evaluation framework, we adopt the stan-

dard dataset split configuration of training, validation, and testing

sets, as outlined in the work by Sun et al. [23]. Furthermore, we

apply a standard data augmentation technique by incorporating

inverse relations into the baseline datasets, following the protocol

established by Lacroix et al. [12] ,and strictly adhere to the estab-

lished evaluation protocol in the filtered setting [2]. Notably, for

evaluation, we exclude all genuine triplets already present in the

KG. This practice is vital because penalizing low ranks for triplets

that are already part of the KGwould be inconsistent with the task’s

objectives.

For a more comprehensive description of the datasets, we direct

readers to the Appendix A. We also commit to releasing the source

code upon acceptance for the benefit of the research community.

6.1.2 Evaluation Metrics. In each experimental scenario, we eval-

uate our approach by ranking the test triplets among all possible

triplets, where entities that were initially masked are substituted

with entities from the KG. To evaluate our method’s performance,

we report key evaluation metrics, including Hit@n (with n values

of 1, 3, and 10) and the Mean Reciprocal Rank (MRR).

6.1.3 Hyperparameters. In this study, we meticulously explore a

range of hyperparameters tailored to each KG to fine-tune our

model’s performance. Specifically, we experiment with two distinct

batch sizes, 500 and 1000, and three learning rates, 3e-3, 5e-3, and

7e-3, all of which are evaluated on the validation sets. Wemaintain a

fixed negative sampling size of 50 and establish a maximum number

of training epochs set at 1000. During training, we employ an early

stopping mechanism, intervening if the validation MRR ceases to

exhibit improvement after 100 epochs. Our choice of optimizers is

tailored to each dataset: for WN18RR and YAGO3-10 datasets, we

opt for the Adam optimizer, whereas for the FB15k-237 dataset, we

employ Adagrad. Notably, for certain baseline methods, we report

results as outlined in their respective original papers for reference.

6.2 Baseline
• Euclidean models. 1) TransE [2], the first translational

model; 2) RotatE [23], a rotation model in a complex space;

3) DistMult [28], a multiplicative model with a diagonal

relational matrix; 4) ComplEx [25], an extension of DisMult

in a complex space; 5) MuRE [1], a Euclidean model with a

diagonal relational matrix.
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Table 3: Link prediction results (%) on WN18RR, FB15k-237 and YAGO3-10 for high-dimensional embeddings (best for 𝑑 ∈
{200, 400, 500} ) in the filtered setting. All results are taken from [27]. The best score and best baseline are in bold and underlined,
respectively.

WN18RR FB15k-237 YAGO3-10

Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE 48.1 43.3 48.9 57.0 34.2 24.0 37.8 52.7 - - - -

RotatE 47.6 42.8 49.2 57.1 33.8 24.1 37.5 53.3 49.5 40.2 55.0 67.0

ComplEx 48.0 43.5 49.5 57.2 35.7 26.4 39.2 54.7 56.9 49.8 60.9 70.1

MuRE 47.5 43.6 48.7 55.4 33.6 24.5 37.0 52.1 53.2 44.4 58.4 69.4

MuRP 48.1 44.0 49.5 56.6 33.5 24.3 36.7 51.8 35.4 24.9 40.0 56.7

RotH 49.6 44.9 51.4 58.6 34.4 24.6 38.0 53.5 57.0 49.5 61.2 70.6

RefH 46.1 40.4 48.5 56.8 34.6 25.2 38.3 53.6 57.6 50.2 61.9 71.1

AttH 48.6 44.3 49.9 57.3 34.8 25.2 38.4 54.0 56.8 49.3 61.2 70.2

UltraE 50.1 45.0 51.5 59.2 36.8 27.6 40.0 56.3 58.0 50.6 62.3 71.1

UniGE(Ours) 50.2 45.5 52.0 59.2 35.7 26.4 39.1 55.9 58.3 51.2 62.7 71.5

• Non-Euclidean models. 1) MuRP [1], a hyperbolic model

with a diagonal relational matrix; 2) MuRS, a spherical anal-

ogy of MuRP; 3) RotH/RefH [4], a hyperbolic embedding

with rotation or reflection; 4) AttH [4], a combination of

RotH and RefH by attention mechanism; 5) UltraE [27], a

method of pseudo-orthogonal transformation.

6.3 Results in Low Dimensions and Discussion
To assess the effectiveness of our approach, we initially evaluate it

in a low-dimensional setting with 𝑑 = 32, comparable to prior KGE

methods. Table 2 presents a comparative analysis of UniGE against

various baselines, including recent Euclidean and hyperbolic KGE

methods. Notably, UniGE excels in providing superior representa-

tions for knowledge graph data, accommodating multiple geometric

structures even in lower dimensions.

Our findings reveal that UniGE outperforms both previous Eu-

clidean and hyperbolic KGE methods, showcasing substantial im-

provements. Specifically, UniGE exhibits a noteworthy performance

gain of 0.6%, 1.5%, and 1.7% in terms of MRR on WN18RR, FB15k-

237, and YAGO3-10, respectively. Moreover, on FB15k-237, UniGE

stands out with a remarkable 9.6% performance boost compared

to Euclidean KGE methods. This impressive result can be attrib-

uted to the presence of multiple hierarchical relationships in all

datasets, a challenging factor in knowledge graph representation.

It’s worth noting that UniGE’s unified geometric approach effec-

tively captures hierarchical and chain structures, compensating for

the limitations of previous Euclidean and hyperbolic KGE methods.

Additionally, we observe that UniGE surpasses RotH by 4.0%

and 9.6% in MRR on WN18RR and FB15k-237, respectively. Ana-

lyzing the supplementary material, we note that WN18RR exhibits

a lower 𝜉𝐺 value, suggesting a more tree-like structure compared

to YAGO3-10. Conversely, FB15k-237 is characterized by a more

prominent chain structure within the knowledge graph data. These

observations corroborate the earlier results, emphasizing the sig-

nificant contributions of UniGE to KGE methods operating within

a single embedding space.

For methods operating in hyperbolic space, our findings demon-

strate that the extent of chain structure within the knowledge graph

correlates with the need for information from the Euclidean space

as an auxiliary source. Furthermore, our experimental results un-

derscore that FB15k-237, with its greater dependence on Euclidean

space information, benefits significantly from our approach. This

further attests to the effectiveness of UniGE in addressing the limita-

tions of single embedding space models and improving knowledge

graph representations, especially in low-dimensional settings.

6.4 Results in High Dimensions and Discussion
In Table 3, we present the results of link prediction in high dimen-

sions (specifically, 𝑑 ∈ 200, 400, 500). In this setting, UniGE com-

petes against several other models and remarkably achieves new

state-of-the-art results on WN18RR, YAGO3-10, and FB15k-237.

As expected, it’s worth noting that UniGE consistently outper-

forms all the compared approaches, with the sole exception of

UltraE, which achieves competitive results. Nonetheless, the perfor-

mance gain observed in high-dimensional cases is less pronounced

than in lower dimensions. This reinforces the idea that KG embed-

dings become less sensitive to embedding space as dimensionality

increases.

However, when working in high dimensions, UniGE and other

KGE methods exhibit similar performance across all datasets. This

behavior is consistent with the observation that, in sufficiently high-

dimensional spaces, both Euclidean and hyperbolic embeddings

can effectively capture the complexity of hierarchies in knowledge

graphs. It suggests that the choice of embedding space becomes

less critical when the dimensionality is sufficiently large.

Moreover, it’s plausible that the additional performance gain can

be attributed to the flexibility of UniGE’s inference mechanisms,

which contribute to its effectiveness in capturing relational patterns

in knowledge graphs.
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Figure 3: Ablation Study results on WN18RR (left) and FB15k-237 (right) datasets.

6.5 Performance per Relation
To assess the versatility of UniGE in modeling various relation

types, we present a summary of Hits@10 for each relation within

the WN18RR dataset. This analysis helps validate the exceptional

representational capabilities of UniGE. We also investigate the influ-

ence of relation types on the performance of our proposed method,

as well as the strong baseline GIE.

To characterize each relation, we employ two crucial metrics:

the global graph curvature 𝜉𝐺 and the Krackhardt hierarchy score

(Khs). These metrics provide insights into the presence of a rich

hierarchical structure within the dataset. The curvature estimate

captures global hierarchical patterns, reflecting the extent to which

the graph exhibits tree-like structures when zooming out. On the

other hand, the Khs characterizes more localized behaviors, specif-

ically quantifying the number of small loops present within the

graph. A lower value of 𝜉𝐺 indicates a higher degree of tree-like

structure within the KG. In fully observed symmetric relations, Khs

equals 0, and for anti-symmetric relations, Khs equals 1. Subse-

quently, we calculate the average Hits@10 over 10 iterations for

models with low dimensionality.

The results in Table 4 clearly demonstrate that our proposed

UniGE model excels in handling diverse relation types, indicating

its effectiveness in addressing intricate structures within knowledge

graphs (KGs). Furthermore, UniGE consistently outperforms the

baseline approach GIE in modeling these relations, highlighting its

robustness and superior performance across various relation types.

6.6 Ablation Study
In this subsection, we delve into the effectiveness of the unified

embedding space within UniGE. As depicted in Figure 3, we conduct

a series of experiments to examine the contributions of various

components in UniGE. Specifically, we explore alternative fusion

methods, replacing the optimal transport procedure with mean

and concat operations, denoted as UniGE w/ mean and UniGE w/

concat, respectively. Additionally, we conduct experiments on KGE

using only Euclidean or hyperbolic spaces, denoted as UniGE w/o

Euclidean and UniGE w/o Hyperbolic.

The results of these ablation experiments are notably inferior to

the original UniGE, underscoring the advantages of our approach.

UniGE’s fusion method stands out as the most effective in modeling

logical patterns within the knowledge graph. In particular, the

performance of concat andmean operations lags behind, reinforcing

the superiority of our proposed approach in addressing the intricate

structures and relationships within KGs.

Table 4: Comparison of hits@10 forWN18RR. GIE represents
GIE in [3]

relation name 𝜉𝐺 Khs GIE UniGE

also_see -2.09 0.24 0.759 .768
hypernym -2.46 0.99 0.262 .274
has_part -1.43 1 0.334 .341
member_meronym -2.90 1 0.360 0.357

synset_domain_topic_of -0.69 0.99 0.435 .446
instance_hypernum -0.82 1 0.501 .511
member_of_domain_region -0.78 1 0.404 .437
member_of_domain_usage -0.74 1 0.438 0.446
derivationally_related_form -3.84 0.4 0.968 0.964

similar_to -1.00 0 1 1
verb_group -0.5 0 0.984 0.981

7 CONCLUSION
In this study, we have introduced UniGE, a novel and highly ef-

fective model for KGE. To tackle the challenge of handling hy-

brid geometric spaces, UniGE transfers Euclidean and hyperbolic

spaces into a unified space using optimal transport and fuses the

two space information via the Wasserstein barycenter. Theoretical

analysis supports the effectiveness of our method, with provable

error bounds for the unified embeddings. Empirically, UniGE out-

performs many previous Euclidean and non-Euclidean models on

three standard KG datasets.

The remarkable performance of UniGE encourages further re-

search into unified geometric approaches, not only for KGE but

also for other tasks that stand to benefit from this innovative per-

spective, such as graph neural network-based methods. Moreover,

UniGE can be extended to fuse embeddings from different types

of KGs, harnessing their unique characteristics to achieve superior

performance.

8 ETHICS STATEMENT
In this study, we utilized three publicly available KG datasets. All

of these datasets are widely used in the KG research community

and are free from ethical or copyright concerns.
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A APPENDIX
A.1 Datesets Details
In this study, we employ three established benchmarks for eval-

uation: WN18RR [2], a subset of WordNet comprising 11 lexical

relations; FB15k-237 [2], a Freebase subset encompassing general

world knowledge; and YAGO3-10 [16], a YAGO3 subset that details

relationships between individuals. We adopt the global graph curva-

ture metric [8], in accordance with prior research [4], to assess the

geometric attributes of these datasets. The datasets’ characteristics

are consolidated in Table 5. Our analysis reveals that all datasets

exhibit a global hierarchical nature, as evidenced by their negative

curvature values. However, none of the datasets strictly adhere to

a tree structure. Notably, WN18RR demonstrates a higher degree

of hierarchy than FB15k-237 and YAGO3-10, as indicated by its

relatively lower global graph curvature.

Table 5: The statistics of KGs,where 𝜉𝐺 measures the treelike-
ness (the lower the 𝜉𝐺 is, the more tree-like the KG is).

Dataset 𝜉𝐺 entities relations triples

WN18RR -2.54 41k 11 93k

FB15k-237 -0.65 15k 237 310k

YAGO3-10 -0.54 123k 37 1M
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