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ABSTRACT

Can a mere next-token predictor faithfully model human intelligence? Our work
is aimed at crystallizing this intuitive concern, which is currently fragmented
in the literature. As a starting point, we advocate isolating the two phases of
next-token prediction that are often conflated: autoregression during inference vs.
teacher-forcing during training. We argue that the previously-identified problem
of “exponential error accumulation” is a symptom of autoregressive inference. We
then identify a more concerning problem: teacher-forcing can let the model fit the
training data by cheating, causing total in-distribution failure during inference. We
design a minimal planning task where empirically both the Transformer and the
Mamba architecture fail in this manner — remarkably, despite the task being easy
to learn. Our work consolidates these and other essential arguments surrounding
next-token prediction. We hope our effort can ground the next-token prediction
debate and inspire further explorations beyond this paradigm.

1 INTRODUCTION

Long after its inception in the seminal work of Shannon| (1948} [1951), next-token prediction has
made its way into becoming a core part of the modern language model. But despite its long list
of achievements, there is a small but growing belief that a next-token predicting model is merely
an impressive improv artist that cannot truly model human thought. Humans, when navigating the
world, meticulously imagine, curate and backtrack plans in their heads before executing them. Such
strategies are unfortunately not explicitly built into the present-day language model. This form of
criticism has been floating around as an informal viewpoint barring a few concrete observations of
failure scattered in the literature (Dziri et al., 2023} |LeCunl 2024} [Bubeck et al., | 2023)). Our paper
is aimed at crystallizing this intuitive criticism of next-token prediction, and developing the core
arguments of this debate.

We start by making more precise, what it means to say that human-generated language, or problem-
solving, does not follow next-token prediction. When formalizing this, we hit an immediate roadblock:
isn’t every sequence generation task possible autoregressively? Put differently, an optimist would say,
every distribution over a sequence of tokens can be captured by an appropriately sophisticated next-
token predictor simulating the chain rule of probability i.e., P(ri,r2,...) = [[, P(ri|r1...mi—1).
Thus, the autoregressivity in our systems is not antithetical to learning human language, after all.

However, a pessimist would worry, even with minor imperfections in the next-token predictor, the
accuracy may break down spectacularly for long sequences. Say, even if the per-token error is as
little as 0.01, the probability of seeing an erroneous token exponentially accumulates along the way,
and by the end of 200 tokens, blows up to 0.86 (LeCunl 2024} Dziri et al.| [2023).

We point out that this critique is still limited as it does not clearly distinguish the two phases at which
next-token prediction is involved: one during autoregressive inference, and the other during training
via teacher-forcing (Williams & Zipser, [1989) i.e., where we teach the model to predict token-by-
token, offering access to all previous ground truth tokens. The aforementioned error accumulation
solely corresponds to performing inference autoregressively. Thus, it could inspire solutions that
are post-hoc e.g., look for erroneous tokens and explicitly backtrack. However, training via teacher-
forcing can potentially induce more severe pathologies into the backbone model. Consequently, such
pathologies cannot be cured by simple post-hoc approaches.

In particular, we argue that, in tasks that involve planning, teacher-forcing provides supervision
that is both incorrect and impossible to learn from. First, teacher-forcing can induce problematic,
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cheating-based shortcuts that use the revealed prefix of the ground truth answer to fit future answer
tokens. We call this the Clever Hans cheat, named after a famous arithmetic-solving horse that was
debunked to have been following subtle cues from a trainer. Now, while the later tokens become easy
to fit by the Clever Hans cheat, in contrast, the earlier answer tokens become impossible to learn. This
is because they no longer come with any supervision about the full answer — part of the supervision
is lost to the Clever Hans cheat. These two flaws together would prevent the model from recovering
the underlying plan, and consequently, from even generalizing to in-distribution sequences.

Empirically, we demonstrate this failure in a minimal graph path finding setup. The setup captures the
core challenges of problems that require lookahead/planning, but at the same time, is so straightfor-
ward to solve that the failure of any model is remarkable. We observe failure for both the Transformer
(Vaswani et al.,2017) and the Mamba architecture, a structured state space model (Gu & Dao, [2023)
verifying that the issues we identify are indeed inherent to next-token prediction, and are not an
artifact of architectural choices like convolution or recurrence.

We summarize our contributions below.

1. We consolidate existing critiques against next-token prediction and crystallize other possible
points of contention (§3]and §6).

2. We identify that the next-token prediction debate must not conflate next-token prediction involved
in autoregressive inference and that of teacher-forcing. Both lead to vastly different issues, with
different solution strategies (§3] §A).

3. We conceptually argue that in planning-based tasks, teacher-forcing can provide flawed supervision,
severely detrimental to even in-distribution performance (§4).

4. We design a minimal planning task (§4.I). where we demonstrate the above failure for the
Transformer and Mamba architectures, despite the task being easy to learn (§5).

5. We identify a promising “teacherless” form of training to (sometime) circumvent these failures

(5 Eq[6).

We hope that our work can place future debates on next-token prediction on solid ground. We also
hope that our contributions — such as the minimal example of failure and the teacherless training —
can help explore alternative paradigms of training.

2 THE TwWO MODES OF NEXT-TOKEN PREDICTION

Consider a set of tokens V. Let D be a ground truth distribution over sequences that consist
of a prefix p and a response =, denoted as s = p,r where p = (p1,p2,...,) € VEwe and
r = (ry,ra,...) € Vi, We assume sequences of fixed length merely for simplicity.

For any sequence s, let s; denote the first i — 1 tokens of s, and s;. the tokens following the ith
token. Note that s is the empty prefix. With an abuse of notation, let Pp(s;|s<;) denote the ground
truth probability mass on s; being the ¢th token given the prefix s;. Consider a next-token-predicting
language model LMy (with parameters ) such that LMy (8; = s;;S<;) is the probability that the
model assigns to the ith output §; taking the value s;, given as input the sequence s.;. Note that the
next-token predictor only defines the probability for a single future token given an input, but not the
joint probability of multiple future tokens. This joint probability is axiomatically defined analagous
to the chain rule of probability. Letting # = r denote an exact token-by-token match, we define:

Lresp

LMg(F =7 ;p) == [ LMo (7 = risp,7<s) (1)
i=1

To model the above probability, two distinct types of next-token prediction are used. First, during
inference, for a given prefix, we autoregressively sample from the model token-by-token, providing
as input the prefix and all previously-generated tokens. Formally,

Definition 1. (Inference-time next-token prediction via autoregression) Autoregressive inference is
a form of inference-time next-token prediction in that to generate a response ¥, we iterate over i, to

sample the next token 7; with the distribution LMy(7; ; p, ;). We denote this as © ~ LMy(- ; p).
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There is another type of next-token prediction, one that is applied during the training process, called
teacher-forcing. Here, instead of feeding the model its own output back as input, the model is fed with
prefixes of the ground truth response ;. Meanwhile, the model is assigned as supervisory target, ;,
the next ground truth token. Then, the model maximizes a sum of next-token log-probabilities:

Definition 2. (Training-time next-token prediction via teacher-forcing) Teacher-forced training is
a form of training-time next-token prediction in that we find parameters 0 that maximize:

Lresp

jnemt—token(a) = E(ZL'I‘)ND [log LM9 (,ﬁ =T 717)} = E’D |: Z log LM9 (722 =Ty D, r<’i):| (2)
1=1

The key aspect here is that we extract the model’s output, allowing the model access to the ground
truth response preceding the current token. However, as noted in|Goyal et al.|(2016); Bengio et al.
(2015)), this creates a discrepancy during inference, when the model is only fed its own outputs rather
than the ground truth. This discrepancy is core to the failure that we will eventually describe in §4]

3 INTRODUCTORY ARGUMENTS

A broad criticism against next-token predictors is that these models are not designed to explicitly plan
ahead (LeCun, 2024} |Bubeck et al., 2023}, |Dziri et al., 2023)). However, this discourse is fragmented,
and does not distinguish between the two modes of next-token prediction. Our goal is to analyze the
existing intuition more systematically, and also consolidate other possible points of contention.

The chain-rule-of-probability defense: The most tempting defense for next-token prediction is that
the chain rule of probability always promises us a next-token predictor that can fit our distribution:
Fact 1. (Every sequence distribution can be represented by a next-token predictor) By the chain rule

of probability we have Pp(r | p) = HZL:TlP Pp(r | p,r<;). Therefore, define a next-token predictor
LM such that for every valid value of i, p, and v, we have LM(V"; = r; ;p,7<;) = Pp(r;|p,r< 7).
p, is equivalent to autoregressively sampling v ~ LM(- ; p).

Then, sampling r ~ D

The cleverness of this argument lies in the fact that it can apply to any imaginable distribution. Thus,
as long as the next-token predictor is sufficiently expressive (with enough context, memory and
compute), it can model both natural language and problem-solving. Thus, it may seem that next-token
predictors are not antithetical to planning-based tasks.

The snowballing errors criticism: A skeptic would attack the above by drawing attention to the
possibility that in practice, we never learn a perfect next-token predictor. Furthermore, if a model
makes an error in some token along the way, there is no way to backtrack and correct itself. The
argument then goes that, even if the model is impressively accurate in each token, the probability of
miniscule errors in each token exponentially snowballs along the way, leading to trivial accuracy by
the end of a long sequence of tokens. This has been formalized in|Dziri et al.| (2023); |LeCun| (2024)
in different ways. We formalize this failure, emphasizing its inference-time nature:

Failure 1. (Snowballing error due to autoregressive inference) Consider a model LMy, pre-
fix p and a unique ground truth response r such that the per-token accuracy obeys Vi <
Lyesp, LMy (7 # 1i5p,m<i) > €. Then, for # ~ LMy(- ;p) the probability that the generation
exactly matches the ground truth obeys:

P(7 = 1) < (1 —€)lres,

The wrapper defense: A potential solution to the snowballing errors would be to deploy wrappers
around the backbone model to explicitly verify errors and backtrack. This could be possible with
reasoning techniques like chain/tree/graph of thought (Wei et al., 2022;|Yao et al., 2023a; Besta et al.|
2023} Yao et al., [2023b)), or using the model to give itself feedback (Madaan et al.,[2023; Huang et al.|
20225 [Shinn et al., 2023)) (which is however doubted in|Valmeekam et al. (2023)).

The weak-bias criticism: The back-and-forth so far has been concerned with autoregressive inference.
We now turn our attention to the model learning via next-token prediction, using teacher-forcing.
Our concern is that teacher-forcing may potentially encode stubborn pathologies into the backbone
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Figure 1: Left: Illustration of a path-star graph. The prefix p represents the adjacency list and the
(central) start and goal node. The target is represented by . Under “standard” teacher-forcing, we
condition the model on prefixes of 7 to predict . But in §5]we explore alternatives where we train
without a teacher (condition on 7* and predict ) or train with a reversal (condition on and predict
V). Right: Illustration of the failure of teacher-forcing on a path-star graph. The left sub-image
marks the “easy tokens” which can be fit by the Clever Hans cheat (Failure [2a), while the “difficult
token” cannot be learned (Failure 2b)) due to lost supervision. The right sub-image shows how the
model would behave during autoregressive inference, under the absence of the “teacher”.

which no surfacial wrapper can cure. One such pathology could arise from the fact that, as per Fact|[I}
next-token prediction can fit any distribution. Thus, next-token prediction on language is (roughly)
analogous to fitting image data with fully-connected networks rather than convolution: there is little
structure to guide the learning process, which should result in (significant) sample-inefficiency.

The more-data or more-bias defense: In response, an optimist may suggest that the weak bias
could be fixed, if we retained next-token prediction, but additionally introduce either (a) scale up data
and compute (obeying the “bitter lesson” in|Sutton|(2019)) or (b) add regularizers or architectural
constraints. However, in the next section, we pinpoint a more detrimental pathology introduced by
next-token prediction during training, one that may not be fixed by adding more data or bias.

4 FAILURE DUE TO TEACHER-FORCING

While the last critique was that training to predict the next token is deficient in bias, we argue that
there is an even worse problem: the next-token prediction objective (namely, teacher-forcing) provides
supervision that is incorrect and impossible to learn from.

We build our argument based off of a path-finding problem on a simple class of graphs. We view this
as a minimal setting that captures the core essence of what it means to solve problems with foresight,
and the core essence of how teacher-forcing fails in such a setting, without unnecessary confounding
factors. This task is also straightforward to solve, as we will see, thus making any observed failures
remarkable. Thus we view this running example as a template for an intuitive argument that can be
made about teacher-forced models on more general problems that require foresight.

4.1 PATH-FINDING ON PATH-STAR GRAPHS: A MINIMAL AND EASY LOOKAHEAD TASK

Consider a path-finding problem on a graph G with a set of nodes {vstart, Vgoal, V1, V2, - - .}. The
graph is a “path-star” graph with vsrary as the central node, with at least 2 paths (each of length
at least 2 edges) emanating from it, with a unique path ending in vgo,;. The task is to find a path
from vgtart 10 Vgoa1. Correspondingly, we assume that the distribution D is over sequences where
the prefix p represents a (randomly generated) graph, and the response represents the path from
the start to the goal. In particular, we sample a graph GG which is represented as an adjacency list
as adj(G) = ey, ea, ... where each edge e = (v, v’) is represented such that v’ farther away from
Ustare than v. We then set the prefix as p = (adj(G), Vstart, Ugoar) SO the model knows what the
graph, and the desired start and goal states are. The ground truth response = corresponds to the
sequence of Vertices T = vgtart, - - - Ugoa1 ON the start-to-goal path. We visualize this in Fig.

The straightforward lookahead solution. Ideally, we want the model to learn a mapping from
the input p consisting only of (adj(G), Vstart, Ugea1) to an output that is the full path 7. Two such
solutions are possible. One idea is to plan by examining all the paths emanating from vg¢art and
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choosing the one that ends at vg,.1. But a second, straightforward solution exists: the model simply
needs to look ahead at the sequence “right-to-left” and observe that it corresponds to the one unique
path starting from vgea1 and ending at vggare. After internally computing the path from vgea; and
reversing it, the model can emit its response.

Intuitively, we claim that teacher-forcing prevents learning either of these two solutions, causing
failure. In teacher-forcing, for each vertex r; in the path, we make the model learn a mapping from
the input (p, r<;) — not just p — to the output r;. The additional information 7, in the input, we
argue, is problematic in two ways, each of which prevents learning one of the above two solutions.
We lay out our hypotheses below, and verify them in §5]

4.2 THE CLEVER HANS CHEAT

First, and most importantly, by revealing parts of the answer to the model as input, we allow the
model to fit the data by cheating. To describe this, without loss of generality, consider a ground truth
path that is of the form 7 = vgtart, V1, V2, . . ., Vgoa1. With a slight abuse of the indexing notation, let
T<; = Ustart, V1, - - - , Uj—1 be the prefix of length ¢ (so we index from 0 instead of 1).

Observe that nodes from vz onwards, until before vgqa1, have precisely one edge going “away” from
Ustare. Thus, consider when the model is given as input, (p, ;) where p = (adj(G), Ustart, Ugoa1)s
to fit the target v;. The model first merely needs to scan the adjacency list adj(G) within p for
the one edge containing v;_1 in the first position. Then, the model only has to predict the other
node on that edge as v;. Note though, this cheat cannot work on fitting the target v, given the input
T<] = Ustart SINCE Vsiart has many outward edges. We illustrate this difference as the “easy” vs.
“difficult” tokens in Fig.

Now, the above cheating mechanism for fitting the easy tokens does not require any planning or
lookahead. It is simple, and implementable by an induction head-like module (Olsson et al., [2022).
Owing to this simplicity, we hypothesize that these tokens will be quickly fit and ignored. This
destroys any signal for the model to learn the relatively more complicated “right-to-left” solution.
That solution requires looking at all tokens in 7, and then learning that they are simply the unique
path from vg.a1 spelled in reverse.

We emphasize two key aspects of the cheating behavior. First, these shortcuts are unlike previously-
identified shortcuts (see §6)) that map from the original input prefixes p to the ground truth r. The
behavior we identify is unique to the mapping from the teacher-forced prefix p, r~; to ;. We christen
this behavior as Clever Hans cheating (explained in remark below). Another notable point is that
this does not come from a dearth of samples: even if we had infinite training data at our disposal, the
model can still fit the easy tokens of all that data by Clever Hans cheating.

Remark 1. Clever Hans (Pfungst & Rahn, |1911) was a famous show horse that could solve simple
arithmetic tasks by repeatedly tapping with his hoof until he reached the correct count. It turns
out however, that Clever Hans did not really solve the problem, but merely stopped tapping upon
detecting certain (involuntary) facial cues from his coach. Clever Hans’ answers were wrong when
the coach was absent (as we will demonstrate even for our models).

4.3 THE INDECIPHERABLE TOKEN

Perhaps, not all is lost. The model still needs to learn to predict the first node v1, where it is not
possible to fit the training data by the Clever Hans cheat. This may coerce the model into learning
the other ideal solution which requires planning: examining all paths emanating from vsyarty and
observing that v; lies on the way to the vgo,1. However, we argue this pattern is impossible to pick-up.
Once the Clever Hans cheat is perfected, the model is deprived of information about much of the
solution 71« := V2, . .., Ugoa1r Which was once present as supervisory targets, but are now fit perfectly.
The model is simply left with the task of mapping the input (adj(G), Vstart, Vgoa1) t0 a single output
node v1. Merely with gradients from this supervision, we hypothesize that it is impossible to discover
that vy is “the vertex that lies on the path to vgoa1 node”.

The role of prior biases. One may argue that if a human were given the input (adj(G), Vstart, Vgoa1)
and the target node v, they would trivially identify the underlying pattern. However, this may be
because the problem, by happenstance, requires biases that exist a priori in humans. Humans already
possess the idea of “path-finding” and thus are well-posed to identify how to fit node v;. But in
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generic problems, humans may not always be lucky. As a stark example, imagine being given a pair
of numbers z o y with a mystery operation o, and only the first digit of the solution z (with the rest
hidden). We conjecture that learning how to produce z from x and y is an impossible problem for
both models and humans alike, unless the the human/model happen to possess biases such as the
submodules required for o and the concept of composing/combining those submodules.

We informally generalize the above issues below:

Failure 2a. (Clever Hans cheating due to teacher-forcing) Although there is a true mechanism that
can recover r; from the original prefix p, there can be multiple other mechanisms that can recover
a token r; from the teacher-forced prefix (p, r<;). These mechanisms can be simpler to learn thus
disincentivizing the model from learning the true mechanism via that token.

Failure 2b. (Indecipherable token due to lost supervision) After the Clever Hans cheat is perfected
during training, the model is deprived of a part of the supervision. This makes it (near)-impossible to
learn the true mechanism from the remaining tokens alone.

In summary, our argument is that, for planning tasks, teacher-forcing leads to both the failures above,
in that order. As a result, the model does not learn the true mechanism — which is required during
inference when we do not do teacher-forcing. As we demonstrate shortly, this can cause the model to
fail on the very distribution it was trained on. This is a breakdown of planning abilities that emerges
right from training, and is orthogonal to the inference-time Snowballing Failure (See §A).

5 EXPERIMENTAL VERIFICATION

In this section, we empirically demonstrate our hypothesized failure modes on the graph path-finding
task for both the Transformer and Mamba architectures.

Dataset. We denote by G4 ;(N) for d,l, N € N, a path-star graph consisting of a center node
vstart With degree d € N, meaning there are d different paths emerging from the center node, each
consisting of [ — 1 nodes (excluding the start node). Node values are uniformly sampled from
({0,..., N — 1}) where N can be larger than the actual number of nodes in the path-star graph.
In every graph, we use the center node as the starting node vgtart and then pick as vgoa:, the last
node of one of the paths chosen uniformly at random. The order of the edges in the adjacency list is
randomized. We describe the tokenization in §D.1]

For each experiment, we generate the training and test graphs from the same D, all with the same
topology of G4,;(N) with fixed d,! and N. Thus, any failure we demonstrate is an in-distribution
failure, and does not arise from the inability to generalize to different problem lengths (Anil et al.|
2022). We note that while the graphs are all of the same topology, this is not a trivial memorization
problem for the model, since the graphs are labeled differently, and the adjacency list randomized,
so the model has to learn a general algorithm. Throughout the experiments, we fix the number of
samples to 200k and fix the number of node values to N = 100 across topologies to enable diverse
instantiations of the topology for training and testing.

Models. We evaluate models from two architectural families to highlight that the failures are not
tied to a particular architecture but stem from the next-token prediction objective. For Transformers,
we use from-scratch GPT-Mini, and pretrained GPT-2 large (Radford et al., [2019). For recurrent
models, we use from-scratch Mamba (Gu & Dao} 2023). We optimize using AdamW (Loshchilov &
Hutter, 2019) until perfect training accuracy. To rule out grokking behaviour (Power et al.|[2022)), we
trained the cheaper models for as long as 500 epochs. More details are in §D.2]

5.1 OBSERVATIONS.

To demonstrate our hypothesized failure, we begin by establishing that our teacher-forced models fit
the training data but fail in-distribution. Next, we design metrics to quantify the extent to which the
two hypothesized mechanisms occur (Failures [2a 2b). Finally, we design alternative objectives to
intervene and remove each of the two failure modes, to test whether the performance improves. We
report additional experiments in quantifying the Snowballing Failure
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Figure 2: For different architectures, we report the accuracy of the standard teacher-forced model
(Accag, Eq E[), teacherless-trained model’s accuracy (Accg, Eq |Z[) and accuracy of the model trained

with reversed targets (Accrey, Eq[S) evaluated on path-finding a range of graphs (with degree in the
first subscript, and path length in the second).
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Figure 3: Accys(LMp) (in percent %, Eq[5) for path-star graphs of various degrees d € {2,3,5,10}
for fixed path length [ = 5 (left). Individual token accuracies (for vy, v, v3) for the graph G5 5 under
teacherless training (Eq@ with GPT2-large (right).

Verifying in-distribution failure. For each distribution, we evaluate all our teacher-forced models
by autoregressively generating solutions, and evaluating for an exact ground-truth match:

Accog(LMp) :=P(7 =), p,r ~D, 7 LM 3)

We report Accag(LMg) for path-star graphs of varying topologies in Fig. 2|and Table 2| We observe
that all models (even when pre-trained) struggle to learn the task accurately. The accuracy values
are precisely limited to the value achievable if the model uniformly guesses a path starting from
. ~ 1 . . . . . . . . . .
Ustart 1.€., & 5, thus establishing complete in-distribution failure. This is so even when trained to fit
sample sizes up to 200k to 100% accuracy, and despite the fact that the training and test graphs have
identical topology. Next, we quantitatively demonstrate how this stark failure arises from our two
hypothesized mechanisms (Failure 2a] [2b).

Verifying Failure 2a] (The Clever Hans cheat) We had hypothesized that the teacher-forcing
model would fit the training data by cheating. Specifically, to predict node v; in the true path, the
model can exploit the ground truth node v;_; that is revealed as input. Rather than learning to plan,
the model would simply predict the node that is outwardly adjacent to v;_1. To quantify whether this
behavior emerges, we “teacher-force” the model with a uniform random neigbhor v/ of vggars. We
then look for whether the model indiscriminately applies the learned Clever Hans cheat here: does it
simply follow along the path that emanates from the neigbhor v/, not necessarily ending in vgea;?
Formally, let Unif (N (vstare)) denote a uniform distribution over the set of adjacent nodes of vgyars.
For any node v in the graph, denote by path(v) the path emanating from v and going outwards, away
from the start node. Notice that except for v = vgtart, this path is unique. We thus measure

ACCcheat(LMg) == P (71~ = path(v])) 4

where p, T~ D7 ”A’1< ~ LMG(';pv Ustartavll)v vll ~ Unif(N(vstart))~

Empirically, we find that Acccpeat (LMg) 0n a test set is & 100% almost across the board (except for
graphs with very high degree where training is challenging). The exact values are in §C.1] Table[T]
Thus, to fit the training data, the teacher-forced model has indeed exploited the Clever Hans cheat.

Verifying Failure 2b|(The Indecipherable Token) Recall that the Clever Hans cheat only applies
to all but the first node vy after vstary lying on the path. After the Clever Hans cheat fits the rest of the
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path during training, we hypothesized that node v; may become impossible to learn since the model
is deprived of all information about the subsequent targets. To quantify this behavior, we evaluate
how well the model is able to predict the difficult first node, v :

Accigt(LMg) =P (71 = 11), p, 7~ D, 7~ LMy(:;p). @)

which we estimate using the held-out test set. As shown in Fig. 3] the model achieves a low
Accys(LMy), approximately 1/d. Thus, the model indeed fails to identify that v; is the one on
the path t0 vgoa1. It instead resorts to emitting one of the d neighbors of vstare at random.

Removing the Clever Hans cheat via teacherless training. We now design a training setup where
we prevent Clever Hans cheating (Failure [2a) and examine how learning differs. Concretely, we
modify teacher-forcing by replacing the input r (which reveals the ground truth) with an uninformative
input 7%, consisting of the same special token $ repeated [ times. For supervision in the loss, we still
use the original target r. Thus, the model cannot fit the targets by looking at the prefixes r.; and
predicting v; via cheating. Instead, the model only has access to the graph description in p in fitting
the target v;. Formally, we maximize:

Lresp

Feresa(0) = Ep| > loguitg (7 = risp, v, (©)

i=1
Denoting the model as LMg, we perform inference by conditioning on $ tokens:

Accg(LMS) =P (7 =7) p,r ~D, Vi # ~LM(;p,rd,). @)

We report the accuracy in Fig. [2]and Table[3] In most cases, since the Clever Hans cheat is unavailable,
the objective is too hard for the models to even fit the training data. However, surprisingly, on some
of the easier graphs, the models not only fit the training data, but generalize well to test data. This
positive result (even if limited) verifies two hypotheses. First, the Clever Hans cheat is indeed a cause
of failure in the teacher-forced model. Secondly, and remarkably, with the cheat gone, these models
are able to fit the first node which had once been indecipherable under teacher-forcing. This verifies
our hypothesis that Clever Hans cheat absorbs away supervision that is critical to learn the first token.

Removing the Indecipherable Token failure via path reversal. Back in the teacher-forcing setup,
we make a slight change: we train the model to predict the reversal of the true path = (similar to |Lee
et al.| (2023)); [Shen et al.| (2023)) who explored this for addition). The model now needs to predict
Vgoa1 first and make its way to vstart. The hope is that since there is only one unique path emanating
from vgoa1, there is no planning required, and thus we should never run into an Indecipherable
Token. Every next token/node can be learned as the node that is inwardly adjacent to the previous
node. Notationally, we let LM7®" be the model trained to maximize Jpext-toxen With the targets
(and the teacher-forced inputs) set to r**" = rp,__,...71, the reversal of r. We then measure the
autoregressive accuracy by comparing against r7°":

AcCrey(LM™) = P (7 = ™), p,r ~ D, 7 S LM (- p) ®

We display the results in Fig.[2]and Table ] As expected, we observe that reversing significantly
boosts learning, allowing even models trained from scratch to solve the task. This verifies that for the
standard model, indecipherability of the first token was indeed a roadblock to successful learning.

We conclude with the note that the success of the reversal task makes the in-distribution failure of
teacher-forcing even more remarkable. Although when viewed left-to-right, the problem requires
complex planning and backtracking (i.e., evaluating multiple paths), when viewed right-to-left, the
problem is solvable with a straightforward strategy. Evidently, the left-to-right teacher-forced model
is unable to view the problem any differently and falls into a trap. The (pretrained) teacherless
model however is free to choose the view that affords the simplest solution, and succeeds — this is
evidenced in Fig. 3| where we see that the tokens are automatically learned right-to-left. Thus, we
hope that the teacherless objective provides one possible way for future work to build alternatives to
next-token prediction. We discuss more details and intuition about this finding in
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6 RELATED WORK

Arguments in support of next-token prediction. |Shannon| (1948 |1951) demonstrated that the
English language has sufficient redundancy that given a large enough context window, next-token
statistics can be used to generate English-sounding text. Empirically, Shlegeris et al.|(2022) find that
modern language models are surprisingly better than humans at next-token prediction on a text dataset
(OpenWebText (Gokaslan & Cohen, 2019)). However, this does not preclude the possibility that next-
token predictors may still be poor at planning. Furthermore, the above result may be confounded by
the ability of language models to store more general knowledge than humans. Theoretically, Merrill
& Sabharwal (2023b)) show that autoregressive Transformers that generate chains of thought have a
markedly larger expressive power. Most relevant to us is the positive learnability result in|Malach
(2023)): even linear next-token predictors can learn complex tasks, provided there is chain-of-thought
supervision. We do not contradict this. In our task, the first token requires an implicit chain of thought
(e.g., the reversed path) that we do not provide.

Arguments against next-token prediction. We build on an emerging intuition that next-token
predictors are ill-suited for planning. Momennejad et al.|(2023) report failures on several planning
tasks (including path-finding expressed as a word problem) and [Bubeck et al.| (2023) on various
arithmetic, summarization and poem/story generation problems. McCoy et al.[(2023) argue that, for
such tasks, the performance of the model must greatly depend on its frequency during pretraining.
However, we demonstrate that even when trained on many samples from a distribution, the next-token
predictor fails on the very distribution. |Goyal et al.| (2016)); [Bengio et al.| (2015) note that teacher-
forcing causes a distribution shift between training and inference, which can lead to errors amplifying
over time. Finally, Dziri et al.[(2023)); LeCun| (2024)) describe what we term as the snowballing error.

Broadly, our work extends and clarifies this discourse. First, we introduce the Clever Hans cheat
failure mode, while also highlighting other core arguments in the debate. Next, we empirically
report this failure in both the Transformer (Vaswani et al.,[2017) and the Mamba architecture (Gu
& Dao, 2023). This establishes that what we witness is indeed a failure of next-token prediction.
Importantly, existing literature pins these failures broadly on the next-token prediction paradigm
and interchangeably, on the inability of the autoregressive architecture to backtrack. We emphasize
distinguishing the two types of next-token prediction (teacher-forcing and autoregressive inference)
as they lead to distinct planning-related failures and require distinct solutions.

Shortcut-learning in language models. A line of work has empirically and theoretically analyzed
another distinct type of shortcuts that language models learn to (partially) solve tasks such as learning
multiplication (Dzir1 et al. 2023)), automata (Liu et al., |2023), recursion (Young & You, [2023)),
reading comprehension (Lai et al., 2021) and multiple-choice questions (Ranaldi & Zanzotto, [2023))
These shortcuts must not be confused with the Clever Hans cheating induced by teacher-forcing.
First, these shortcuts exist independent of teacher-forcing: these are correlations between the prefix
(such as the initial digits of two multiplicands) and the final answer (the initial digits of the product)
in the distribution. But Clever Hans cheats arise only upon teacher-forcing as they are correlations
between the prefixes of the answer itself to the rest of the answer. Second, the above shortcuts only
fail out-of-distribution (such as when the number of multiplied digits is increased, where the failure
is in length generalization (Anil et al.,[2022))). Clever Hans causes in-distribution failure. Thirdly, the
aforementioned observations are specific to Transformers. Our argument however only relies on the
teacher-forcing objective with no reliance on the Transformer architecture, and is demonstrated even
for the recurrent Mamba architecture. Please see § [E] for more related works.

7 CONCLUSIONS

Our work is an attempt at crystallizing an emerging debate about next-token prediction, that lies at the
heart of modern language models. We advocate that we must avoid conflating the ideas of next-token
prediction during autoregressive inference with that during teacher-forced training. Extending existing
criticisms, we find a more deep-rooted issue inherent to the next-token prediction-training, rather
than inherent to the data, the architecture or autoregressive inference. We also provide a minimal
example that can help ground the next-token prediction debate. Both this example and the idea of
teacherless training may help inspire alternative paradigms to next-token prediction in practice.

We discuss the limitations of our study in §[H
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A TEACHER-FORCING FAILURE AND SNOWBALLING FAILURE ARE DISTINCT

We emphasize that, while both the Clever Hans failure mode and the Snowball mode are both
indicative of the inability to plan, these failure modes are also orthogonal to each other, and demand
different solutions. We make this a bit more formal:

Proposition 3. In the path finding problem of there exists a next-token predictor that experiences
Failures[2d] 2b] due to teacher-forcing, but not the snowballing error Failure[l|due to autoregressive
inference. Conversely, there exists a next-token predictor that experiences the latter failure but not
the former.

Proof. Consider the model learned via teacher-forcing on the graph problem. During inference, we
saw that it suffers a tremendous error right in the first step (with accuracy of 1/d for degree d of the
start node). Thus, during inference the error does not accumulate over length. In fact, if only the first
node is set correctly during inference, a model with the perfect Clever Hans cheat, would achieve
100% accuracy rate. Such a model does not experience snowballing errors.

On the other hand, consider a model, that in each step predicts the correct next vertex with a high
accuracy of 1 — ¢ for small e. Such a model clearly has learned the correct plan, albeit with minor
errors in each token. These errors however can snowball during inference. Thus, this model has
no failure due to teacher-forcing, but will fail during autoregressive inference, if the path length is
long.

Differing solutions. Based on the above simple illustration, we argue how the two failures need
different approaches. Specifically, while snowballing errors may be fixable via “backtracking-and-
planning” wrappers, teacher-forcing failures cannot. In the above example, the first model which only
experiences the teacher-forcing failure, assigns a low probability of 1/d to the true plan. In a more
generic problem, this probability may be exponentially small (inversely proportional to the number
of all possible plans). A wrapper on such a backbone would essentially have to brute-force search
through all the exponential solutions. Thus, it cannot cure the pathologies inherent to a teacher-forced
model.

On the other hand, consider the model in the above example that assigns 1 — € probability to the
correct solution at every step. In this simple setting, we can use greedy sampling as a wrapper to
trivially extract the true plan.
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B MORE ON TEACHERLESS TRAINING

We discuss a possible intuition behind how teacherless training solves the path-finding task. Our
hypothesis is that the model automatically learns to fit the targets in the reverse order, since the path
from the vgoa1 is unique. This is indeed what we find in FigE], where the accuracies of the later tokens
become higher earlier.

Note though that this is a fairly difficult computation to implement. First, when the model predicts v;,
it must “know” the identity of v;11 in one of its internal representations. This is because the identity
is not available on the input side, in the absence of the teacher. Then, by induction, when predicting
the first node v1, the model must know the identity of all the other nodes in the path. In other words,
the model must have (a) computed and (b) stored the whole solution in its hidden representations
before it outputs the first token. This is a substantial type of lookahead that some of our models are
able to achieve under teacherless training.

C MORE EXPERIMENTAL RESULTS

C.1 SNOWBALL FAILURE

To explicitly measure to what degree the model falls victim to the snowball effect, we train GPT-Mini
on graphs of various path lengths /. In order to remove the failure stemming from the difficult first
token, we teacher-force the model for the first token and then check how accurate the generations are
for subsequent tokens. More concretely, we evaluate

Accgp(LMp) = P (1< = T1<) ®)
where p,r ~ D, F1. ~ LMy(-;p,71)

If Accg,(LMy) is =~ 1, then Failure is not prominent in our task. If Accg,(LMy) < 1, then clearly
teacher-forcing is responsible for surpressing errors in generation, strongly hinting at the fact that
Failure([l]is at play. We display the results in Fig. ] (left). We observe that the accuracy Accgy is
barely affected even for graphs with very long paths L = 40.

As another metric, we proceed token by token during inference, and evaluate the probability of
correctly predicting all tokens up to the current one. We report this for G 49 in Fig. 4] (right).
Similarly, while the success probability does decay for larger length (at an exponential rate), it
remains very high due to the failure events being so unlikely. We thus conclude that Failure[I]is not
as prominent in this setting.
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Figure 4: Accuracy of LMy when conditioned on the first difficult token (left) for graphs of various
length. Probability of correct prediction of LMy as a function of current token position on G’z 49, as
we walk towards the goal.
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C.2 CLEVER HANS CHEATING ACCURACIES

In Table We display the Clever Hans cheating accuracies AcCcpeat (LMg ). We observe that in almost
all cases, all the models achieve nearly perfect cheating accuracies. The only exception is the
high-degree graph G2 5 where all models struggle to even fit the training data.

Gas G220 Gss5 Gis  Gaos

GPT-MINI 99.7 100 100 99.8 0.0
GPT2-LARGE 99.8  99.7 100 99.8 0.0
MAMBA 976 983 995 959 0.0

Table 1: Evaluating Clever Hans cheating accuracies AccCepeat (LMg) (in percent %) for different types
of graphs.

C.3 MORE DETAILED ACCURACIES

We report more detailed accuracy values per model in the following tables. We display standard
accuracy Accag(LMg) in Table. [2| teacherless accuracy Accg(LMg) in Table. and reverse accuracy
Accrey(LMp) in Table. In general we observe that solving the task with standard next-token
prediction is very tough and performance is limited to é where d is the degree of the graph G4;.

Gas G220 Gss Gips  Gaos

GPT-MINI 49.8  49.1 19.1 8.1 0.0
GPT2-LARGE 48.9 49.2 19.4 10.3 3.5
MAMBA 48.5 48.7 20.2 9.3 0.0

Table 2: Autoregressive accuracies Acc,g(LMg) (in percent %) for different types of graphs.

Teacherless training on the other hand works very well with GPT2-Large, allowing it to solve most
graph tasks perfectly. From-scratch models however also struggle to learn the task in this fashion
(except for GPT-Mini on the simplest graph, G5 5).

Gas G210 G220 Gss Guos  Googs
GPT-MINI  99.9 0.0 0.0 0.0 0.0 0.0
GPT2-L 99.9 98.8 0.0 99.0 97.8 0.0
MAMBA 0.0 0.0 0.0 0.0 0.0 0.0

Table 3: Autoregressive accuracy Accg when using a teacherless response.

Finally, reversing the sequence significantly simplifies the problem for all the models, allowing near
perfect accuracies across all graphs.
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Gas G220 Gss Gis  Gaos

GPT-MINI 99.7  99.8 100 99.8 0.0
GPT2-LARGE 99.9 999 99.6 99.8 99.9
MAMBA 98.5 96.2 99.1 99.5 0.0

Table 4: Autoregressive accuracy Accye, When reversing the response 7.

D OTHER EXPERIMENTAL DETAILS

D.1 TOKENIZATION

We tokenize the graph in the following manner: (1) we first tokenize the randomly shuffled edge list
as “|v1 v2|vs vy|...” where the first vertex in each edge is the one closest to vsart, (2) then append
start and goal node as “/vgtars Vgoa1 = and (3) then append the full path repeating start and goal
node, " Vstart Vi, -+ - Vi;,_, Vgoa1 - Note that (1) and (2) make up the prefix p, which the model does
not learn to predict. Then, (3) is the target sequence that the model aims to learn. The vocabulary size
is thus given by N + 3, where we add entries for the special tokens “|”, “/” and “ = ”. When using
the pre-trained models GPT2 we use the tokenizer that was employed for pre-training, in this case the
Byte-Pair tokenizer (Radford et al.,|[2019).

D.2 MODELS

When training Transformer models from scratch, we use a small model consisting of njayers = 12
blocks with embedding dimension egi, = 384, npeags = 6 attention heads and MLP expansion
factor e = 4, coined GPT-Mini. For pre-trained models, we consider GPT2-Large with njayers = 36,
edim = 1280, nheads = 20 and expansion factor e = 4 (Radford et al., 2019). To further evaluate
purely recurrent models, we perform experiments with the recent Mamba model (Gu & Daol 2023).
We train the Mamba models from scratch with 12 layers and embedding dimension 784. We train
all the models with the AdamW optimizer (Loshchilov & Hutter, 2019). For models trained from
scratch we use a learning rate of 7 = 0.0005 while for pre-trained models we use a smaller one of
1 = 0.0001. In both cases we use weight decay of strength 0.01. Models from scratch are trained for
up to 500 epochs in order to ensure convergence. Pre-trained models require less training time and
we usually fit the training data perfectly after 10 epochs.

E MORE RELATED WORK

Other arguments about next-token prediction We discuss some criticisms of next-token prediction,
orthogonal to our main discussion regarding planning. |Allen-Zhu & Li (2023); |Lv et al.| (2023)
report that language models that are trained on A equals B are unable to infer B equals A, which
Allen-Zhu & Li|(2023)) suggest is due to “autoregressive left-right training”. [Lin et al.|(2021) are
concerned with failures that arise from the model size being fixed in comparison to the length of the
sequence that is being scored. Their theoretically prove that, asymptotically, the parameter count
must grow with the sequence length. |Li et al.| (2024) provide an Transformer-specific analysis of how
self-attention affects the optimization geometry of next-token prediction.

Other limitations of Transformers Merrill & Sabharwal| (2023a)) identify limitations of the represen-
tative power of Transformer architecture when the arithmetic precision is logarithmic in the number
of input tokens. |[Bender et al.[|(2021) criticize GPT-like language models as simply parroting out
training data with minor stochasticity, while others |Arkoudas| (2023) report that such models struggle
with reasoning, even if not a stochastic parrot. |Young & You|(2023) studies masked language (T3,
BERT) models and not causally trained models and argue there are inconsistencies in the probabilities
that they assign. E.g., when conditioned on ‘white’, the probability of ‘rice’ may be higher ‘bread’
but the probability of ‘white bread’ and ‘white rice’ are the opposite. Artetxe et al|(2022)
empirically analyze the effect of bidirectional attention and bidirectional supervision (as in masked
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language modeling) during pretraining on the ability of the model to do various things, including
next-token prediction.

Finally, we note that (Ranaldi & Zanzotto, 2023) use the term Clever Hans effect to denote how
models can pick up spurious correlations between the position of a choice in a multiple-choice
question, and the correctness of the answer. We note that the above correlation is inherent to the
distribution, and independent of teacher-forcing. We distinguish this from the Clever Hans cheating
which happens under the guidance of teacher-forcing.

Going beyond next-token prediction-based training. Different lines of work have explored models
that go beyond next-token prediction-based training for language. This includes non-autoregressive
models (Gu et al.l 2018)), diffusion models (Gong et al.,|2023)), and variants of Transformers learning
to predict multiple tokens at the same go (Q1 et al.). Our teacherless training follows this line of work,
albeit with a much simpler approach that involves a trivial modification to teacher-forcing. Note that
while research in parallel decoding too is concerned with predicting multiple future tokens (Stern
et al.| 2018)), the goal is purely inference-time efficiency.

One may argue that reinforcement learning-based training (Bohm et al.l 2019; |Ziegler et al., 2019
Stiennon et al.,|2020; Ouyang et al., 2022) is another way to build backbones that go beyond teacher-
forcing. However, it is worth noting that the gradients in these techniques boil down to teacher-forcing
on the model’s own generated answer. Furthermore, if we desire that the model be able to generate a
solution that can plan ahead of time, it is unclear how a model can go from a complete inability to
plan (that may assign near-zero probability to the true plan in an exponential space of solutions), can
manage to discover the correct plan simply through preference-based feedback.

Finally, we note that some works (Gurnee et al., 2023} |Meng et al., 2022} |Pal et al.| [2023)) aim to
recover future tokens that an already-trained model may predict based on the internal layers of the
current token. Note that the success of this does not imply that the model necessarily plans well.
This only means that it is possible to recover what the already-trained model wants to generate in the
future (which may simply be a bad plan).

F LIMITATIONS

We emphasize the limitations of our findings. First, our arguments are purely empirical and conceptual.
We have not provably demonstrated that the teacher-forced model is “stuck” at the failed solution
regardless of how long it is trained. A proof would particularly benefit our informal Indecipherable
Token argument (and the role of prior biases in it), which is not as straightforward an argument as
the Clever Hans cheat. We have also not demonstrated failure for very large models such as L1ama?2
(Touvron et al.}[2023) or Mistral (Jiang et al.,|2023). Next, beyond the graph path-finding setting,
we have not characterized the range of problems where teacher-forcing-induced failure may occur.
We only intuitively believe it should extend to other problem-solving tasks and creative-writing tasks
that require lookahead. But it is certainly unclear if it generalizes to run-of-the-mill text-generation
tasks.
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