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Abstract

Sentiment analysis has seen rapid progress
driven by deep learning, but the opaque black-
box nature of these models hinders trust-
worthy deployment in high-stakes domains
where interpretability is crucial. We pro-
pose Sentium (Sentiment Evaluation through
Neurosymbolic Taxonomy, an Interpretable
and Understandable Model), a cognitively-
inspired architecture that closely emulates hu-
man sentiment comprehension processes. Sen-
tium takes a hybrid approach by combin-
ing structured sentiment knowledge with neu-
ral models, achieving state-of-the-art perfor-
mance while maintaining transparency through
explicit compositional reasoning over se-
mantic propositions. Compared to state-
of-the-art financial language models, Sen-
tium showed substantially lower misclassi-
fication rates for predicting true negatives
as positive (Sentium=1.97%; FLANG-BERT
(Shah et al., 2022) =6.78%, FinBERT (Araci,
2019) =10.17%). The code are available at:
https://github.com/anonymous-submission

1 Introduction

Sentiment analysis aims to bridge the gap between
human and machine capabilities in analysing sen-
timent (Yusof et al., 2018). This objective can
be interpreted through two complementary lenses
following Gobet and Lane (2010): (i) An engi-
neering approach that narrows the performance
disparity, harnessing computer science techniques
to create intelligent artifacts achieving human-level
outcomes. (ii) A cognitive modeling approach that
aligns the underlying processes, developing compu-
tational architectures that closely emulate human
behavior for interpretable simulations.

To reach state-of-the-art performance, the field
has extensively leveraged deep neural networks
for natural language processing tasks (Chen et al.,
2023). Indeed, sentiment analysis has transitioned
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Figure 1: Cognitive Architecture of Sentium. This
diagram illustrates Sentium’s hybrid approach, unifying
implicit knowledge (semantics/syntax captured by neu-
ral models) and explicit knowledge (encoded rule-based
domain ontology).

from traditional rule-based and lexicon-based mod-
els (Stone et al., 1962; Bradley and Lang, 1999; Hu
and Liu, 2004; Esuli and Sebastiani, 2006; Nielsen,
2011; Taboada et al., 2011; Hutto and Gilbert,
2014; Cambria et al., 2022) to transformer-based
approaches like Small Language Models (SLMs)
(Araci, 2019; Alaparthi and Mishra, 2021; Prot-
tasha et al., 2022; Shah et al., 2022; Cho et al.,
2023), and more recently, Large Language Mod-
els (LLMs) (Nadi et al., 2023; Kheiri and Karimi,
2023). This transition was inevitable, as lexicon-
based methods remained below acceptable per-
formance levels (Muhammad et al., 2016), typi-
cally achieving 55-85% accuracy compared to deep
learning models’ 70-95% range (Al-Qablan et al.,
2023).

However, this pursuit of performance gains has
given rise to profound challenges. While tradi-
tional deep learning drawbacks like substantial
data, computational resource, and training time
requirements (Muhammad et al., 2016; Schouten
et al., 2017; Sarker, 2021) have been relatively
mitigated through fine-tuning (Talaei Khoei et al.,
2023; Wojciuk et al., 2024), a fundamental issue



persists — the inherent lack of interpretability in
these black-box neural architectures.

Despite extensive exploration of four common
interpretation methods (Chen et al., 2023), the true
model interpretability remains unresolved. Post-
hoc techniques like LIME (Ribeiro et al., 2016)
offer local approximations but fail to capture the
global logic encoded within model parameters.
Even for LLMs, methods like sparse autoencoders
(Templeton et al., 2024) and chain-of-thought rea-
soning (Turpin et al., 2024) provide limited post-
hoc justifications rather than intrinsic interpretabil-
ity. After all, if these interpretations faithfully mir-
rored the original model, the explanation would
equal the model itself, rendering the original re-
dundant (Rudin, 2019).

This lack of transparency significantly hinders
the trustworthy and responsible deployment of
deep learning for sentiment analysis, especially
in high-stakes domains where decision rationales
profoundly impact businesses, investments, and
lives (Rudin, 2019; Rudin et al., 2022; Oh, 2024).
Opaque black-box predictions, while accurate, of-
fer little insight into the reasoning behind sentiment
derivations — an untenable predicament given the
real-world consequences.

In contrast to opaque black-box models, we
take a step forward towards interpretable and un-
derstandable sentiment analysis through cognitive
modelling. By uniting structured domain knowl-
edge with neural architectures in a cognitively-
plausible manner, our approach achieves state-of-
the-art performance while maintaining full inter-
pretability. Predictions are firmly grounded in an
intuitive sentiment ontology, enabling comprehen-
sive rationale generation through explicit compo-
sitional reasoning over human-readable semantic
propositions.

This human-inspired interpretability bridges a
crucial gap in current black-box methods. Rather
than inscrutable mappings from inputs to outputs,
Sentium offers a transparent window into its in-
ner workings, closely emulating the cognitive pro-
cesses underlying human semantic comprehension.
Stakeholders can intuitively audit and verify the
evidence chain driving each sentiment prediction,
fostering accountability and trust.

As the complexity of Al systems increases, em-
bedding interpretability as a core architectural prin-
ciple becomes vital. Sentium represents a tangible
step in this critical direction, establishing human-
centred transparency without compromising state-

of-the-art performance.

The main contributions of this work are three-
fold:

1. Demonstrating that models need not be
opaque end-to-end black boxes. Our rule-based ap-
proach matches and even exceeds the performance
of deep learning models, yet with the additional
benefit of intuitive interpretability — a capability
previously highlighted as advantageous by Hutto
and Gilbert (2014).

2. Proposing Ontological Sentiment Labelling
Framework (OSLF) — a machine-readable and
human-interpretable knowledge base that captures
the compositional semantics of how sentiment ex-
pressions interact with real-world concepts and
aspects. OSLF enables more elaborate analysis of
opinions on specific topics.

3. Introducing a cognitively-inspired neural ar-
chitecture that closely approximates human senti-
ment comprehension and reasoning processes — an
area receiving relatively less attention compared to
the performance-driven engineering approaches in
Al

Through these contributions, Sentium paves the
way towards developing trustworthy, accountable,
and transparently-aligned systems that can be ro-
bustly deployed in high-stakes real-world domains.
Rather than pursuing a broad cross-domain ap-
proach, we concentrate our efforts on showcasing
Sentium’s capabilities for the financial domain.

2 Sentium

Sentium is composed of three major modules in-
spired by theories of language comprehension from
cognitive psychology (Kintsch and Van Dijk, 1978;
Fodor, 1983; Anderson, 2000). These theories
posit that comprehension involves several distinct
yet interconnected stages. Fodor (1983) proposed
a modular view, where a dedicated linguistic mod-
ule first analyses the incoming language before
passing its output to general cognition. Similarly,
Kintsch and Van Dijk (1978) assumed an initial
parsing stage that transforms the text into a set of
propositions, which are then further processed.
Anderson (2000) outlined three key stages: 1)
Perceptual encoding of the textual input, 2) Pars-
ing, which involves syntactic and semantic analy-
sis to derive a coherent mental representation of
meaning, acting as an interface between low-level
encoding and higher-level cognition, and 3) Util-
isation, where this mental representation is used



for tasks like reasoning and decision-making. This
three-stage pipeline directly inspires the modular
design of Sentium.

Sentium’s modular architecture directly mirrors
this systematic progression from perception to pars-
ing to cognitive utilisation.

2.1 tag.pos replicates perceptual encoding by
annotating the input text with low-level linguis-
tic features like parts-of-speech, dependencies and
lemmas.

2.2 parse.aspect models the parsing stage by
extracting key semantic representations like enti-
ties and phrases, leveraging the annotated linguistic
knowledge.

2.3 evaluate.senti captures utilisation by per-
forming the target task — sentiment evaluation —
grounded in the previous analyses and explicit do-
main knowledge.

A key contribution that advances the field of
traditional rule-based sentiment analysis methods
is how the evaluate.senti module incorporates
explicit structured knowledge from the financial
sentiment ontology, enabling interpretable reason-
ing. This maps to the distinction between im-
plicit and explicit cognitive processes (Anderson,
2000). While tag.pos and parse.aspect rely on
implicit learned representations, evaluate.senti
combines these with explicit ontological knowl-
edge to produce human-intelligible sentiment pre-
diction rationales.

By systematic modelling of both implicit learned
representations and explicit structured knowledge
in a cognitively-plausible architecture, Sentium
achieves a powerful synthesis: the predictive ac-
curacy of neural models with the intuitive inter-
pretability of human-like reasoning grounded in
real-world finance knowledge. This synergy ad-
dresses key limitations of existing black-box senti-
ment analysis methods.

2.1 tag.pos

Humans possess an innate linguistic competence
(Chomsky, 2014) - an implicit, abstract knowledge
of language that allows intuitive judgments about
syntactic structure, despite the infinite possible ut-
terances (Anderson, 2000). We internalise thou-
sands of subtle grammatical rules without being
able to explicitly articulate them.

Sentium’s tag.pos module aims to computa-
tionally capture this implicit low-level linguis-
tic knowledge by leveraging neural models from
spaCy (Honnibal et al., 2020). The input text is

ROOT

| [token_0, ..., token_spy ] i [token_0, ..., token_sp; ]

token_0 token_p

phrase
(subdoc)

subphrase

sentence
(doc)

Figure 2: Sentence Subtree Representation. Subphrases
are processed from phrases iff len(phrase)>15, seg-
mented based on hierarchical subtree structure of such
a phrase.

encoded with linguistic annotations like parts-of-
speech tags, dependencies, and lemmas, produc-
ing sentence-level doc objects and phrase-level
subdoc objects.

The hierarchical division of sentences into
phrases is a core component of parsing and inter-
pretation (Anderson, 2000) (Figure 2). As demon-
strated by Graf and Torrey (1966), identifying con-
stituent phrase structure is crucial for sentence
comprehension. Sentium emulates this process
by first segmenting sentences based on punctua-
tion boundaries, following evidence that humans
naturally pause at clause boundaries when reading
(Aaronson and Scarborough, 1977). Coordinating
conjunctions like "but" and subordinating conjunc-
tions like "while", which link phrases and convey
relationships (Gleitman, 1965), then guide further
subdivision.

To handle long phrases that may require simpli-
fication, phrases exceeding 15 tokens are split into
sub-phrases sharing a common parent node within
the dependency parse subtree. This 15 token thresh-
old aligns with typical readability guidelines and
automatic simplification targets (DuBay, 2004).

Both doc and subdoc objects in Sentium encap-
sulate the encoded linguistic features, mirroring
the perceptual process of syntactic analysis in hu-
man cognition (Anderson, 2000). While concate-
nating the subdoc (phrase) objects to construct
doc (sentence) representations, or passing multiple
subdocs to subsequent modules may seem cogni-
tively plausible, Sentium deliberately avoids these
approaches. A simplistic concatenation risks fail-
ing to accurately capture the syntactic structure and
compositional semantics of sentences, as empha-
sised by compositional semantics theories (Partee,



2007). A sentence’s meaning does not merely arise
from combining its constituent phrases (Dankers
and Lucas, 2023) — it emerges through nuanced
composition rules governing how phrase meanings
systematically interact'.

Passing the complete, structured doc representa-
tion is not only more cognitively plausible by better
approximating human-level composition abilities,
but also computationally more efficient. By allow-
ing subsequent modules to analyse a single doc
object that encapsulates the full sentential context,
rather than operating over multiple disconnected
subdoc phrases, Sentium can construct more holis-
tic and contextualised sentence interpretations.

2.2 prase.aspect

Building upon the syntactically-informed doc rep-
resentations from tag.pos, the parse.aspect
module aims to derive semantic interpretations
more aligned with human language comprehen-
sion. This involves two core capabilities.

1. Extracting rich noun phrases by leveraging
the encoded universal dependency parse structures
(Manning, 2015; De Marneffe et al., 2021) within
each doc object. While basic noun chunks provide
a foundational starting point, parse.aspect goes
further by capturing crucial prepositional modifier
relationships. Prepositions like "in", "of", and "at"
link nouns and noun phrases, expressing specific
semantic relationships between the connected con-
cepts. By modelling these dependency structures
where one noun modifies another via a preposi-
tional link, parse.aspect identifies semantically
richer noun phrases than simple chunks alone.

2. In parallel, dedicated neural Named Entity
Recognition (NER) models are employed to clas-
sify mentions of real-world entities like organi-
sations and persons based on contextualised se-
mantic representations. This separable semantics
pathway accounts for how syntax alone cannot
reliably disambiguate meanings — for instance,
whether "Apple" refers to the fruit or technology
company. Currently, apart from spaCy, three addi-
tional NER models pre-trained on diverse datasets
like OntoNotes, Reuters corpus, WikiNews and
Wikipedia by Aarsen are avaliable.

The architectural separation of these syntax-
guided phrase extraction and neural entity recog-

'Tt is important to note that the doc object primarily en-
codes syntactic representations, while largely abstracting
away the compositional and non-compositional semantic nu-
ances that contribute to a sentence’s full meaning.

nition functionalities is grounded in cognitive psy-
chology findings. Electrophysiological studies un-
veil distinct neural signatures for syntactic and se-
mantic processing through dissociable N400 and
P600 event-related potential components (Kutas
and Hillyard, 1980a,b; Osterhout and Holcomb,
1993, cited in Anderson, 2000). This empirical ev-
idence motivates modelling syntax and semantics
as separable yet interacting mechanisms.

2.3 evaluate.senti

Cognitive systems gain the ability to predict — ex-
pectation about the concept — by categorising the
concept, and because of this ability, categories give
us great economy in representation and communi-
cation (Anderson, 2000, p.151). Traditional sen-
timent analysis methods have attempted to oper-
ationalise this by manually associating sentiment
lexicons with conceptual representations. For in-
stance, Henry (2008) examined the context of each
lexicon’s occurrence by calculating collocation per-
centages with desirable financial terms like "rev-
enue" versus undesirable ones like "expenses" to
categorise words as positive or negative.

While pioneering, such dictionary-based ap-
proaches have inherent limitations. Henry’s (2008)
lexicon achieved 80.12% accuracy in our 3 Exper-
iment — impressive yet insufficient for real-world
robustness. Even "increased", positively used 66%
of the time (Henry, 2008, p.33), carries a 34%
chance of being neutral or negative. This variabil-
ity arises from failing to account for the composi-
tional effects of combining sentiment expressions
with different semantic contexts.

To address these shortcomings, this paper pro-
poses the Ontological Sentiment Labelling Frame-
work (OSLF). The "ontology" refers to an expertly-
curated, structured knowledge base defining rele-
vant concepts and their interrelationships (Bandari
and Bulusu, 2020; Kontopoulos et al., 2013). For
example, in finance, representing "sales", "profit",
and "loss" as distinct aspects, with modelled as-
sociations to sentiment-bearing expressions like
"increase" or "decrease". Grounding sentiment
analysis in such a rich, domain-adapted ontology
enables interpretable rule-based propositional anal-
ysis over the input text. By mapping linguistic
entities to ontological concepts, and expressions
to sentiment variables, evaluate.senti later in-
stantiates intuitive propositions capturing how each
sentiment contributor interacts with the referenced
aspect.



2.3.1 Ontological Sentiment Labelling
Framework (OSLF)

The framework is centred around curating financial
sentiment ontology, inspired by ontology construc-
tion methods (Kontopoulos et al., 2013; Schouten
etal., 2017). The central idea was to systematically
group key financial constructs and explicitly repre-
sent the relationships between them as an intuitive
cross-table taxonomy (Table 1), later translated
into a structured dictionary format below.

Ontological Sentiment Labelling Framework

domain_ontology < {
"Synset'": {
"Target": Sentiment

}

finance_ontology + {

"increase'': {
"positive_financial_metrics": 1,
"negative_financial_metrics": -1,
"market_consensus": 1

|2

"decrease': {
"positive_financial_metrics": -1,
"negative_financial_metrics": 1,
"market_consensus": -1

|2

"'strength'": {
"positive_financial_metrics": 1,
"strategic_partnerships": 1

}

"warn'': {
"positive_financial_metrics": -1,
"negative_financial_metrics": -1,
"performance_indicators": -1

}

The ontology coherently models three core com-
ponents essential for nuanced financial sentiment
analysis:

1. Targets represent important aspects in
the financial domain, acting as overarching con-
cepts. Each Target encompasses a set of re-
lated aspects exhibiting superordinate-subordinate
conceptual relationships. For example, "posi-
tive_financial_metrics" is a broad 7arget under

which more specific metrics like "sales," "rev-

enue," and "profit" are subsumed as subordinate
terms. In total, 12 hierarchically-organised Targets
were manually curated by experts.

2. Synsets represent sentiment-laden expressions
prevalent in financial discourse, encapsulating col-
lections of synonymous lemmas that convey analo-
gous meanings. For instance, the "increase” synset
comprises 23 lemmas, encompassing terms like
"expand" and "rocket" that articulate a connotation
of growth and positive trajectory. In total, 23 Synset
categories were systematically adapted to the finan-
cial domain by leveraging semi-automatic meth-
ods (Hu and Liu, 2004; Strapparava and Valitutti,
2004; Esuli and Sebastiani, 2006). This involved
iteratively expanding initial seed lists using Word-
Net (Miller, 1995; Fellbaum, 1998), followed by
manual filtering to retain only expressions highly
relevant to the financial news genre, accounting for
genre variations noted by Pennebaker et al. (2015)
and domain-specific language needs highlighted
by Loughran and McDonald (2011).

3. Sentiments precisely capture the contextual
sentiment polarity associated with each (7arget,
Synset) pair in the taxonomy. This models how
the same sentiment expression can convey oppo-
site polarities depending on the financial aspect
referenced — a key challenge in this domain. For
example, the "increase" Synset conveys positive
sentiment for "positive_financial_metrics" Target
like higher sales or revenue. However, it indi-
cates negative sentiment when used with "nega-
tive_financial_metrics" Target such as rising costs
or losses, capturing how the same expression can
flip polarity across financial aspects.

The hallmark of this ontological framework is
explicitly representing the nuanced, many-to-many
relationships between Targets and Synsets in an
intuitive yet comprehensive taxonomy manually
curated by experts. This structured knowledge
modelling enables highly precise, domain-specific
sentiment analysis grounded in finance knowledge,
while maintaining crucial transparency and audi-
bility often lacking in opaque neural models.

2.3.2 Rule-based Propositional Analysis

A core capability of Sentium’s evaluate.senti
module is performing rule-based propositional
analysis grounded in the financial sentiment on-
tology. This approach models the semantic com-
position of sentiments by systematically mapping
linguistic inputs to propositions representing co-
herent units of sentiment-bearing knowledge.



pfm nfm pi ca me

increase 1 -1
decrease -1 1
higher 1 -1 1
lower -1 1 -1

Directional

Performance win 1
beat 1
reach
continue
strength

Action generate
cause
protect
turn
propose
equip
improve 1 1
expect 1 -1

recommend

Temporal faster
slower

Negative warn -1 -1 -1
lose
slip -1 -1 -1

Table 1: Cross-table taxonomy (OSLF). This cross-table taxonomy systematically organises key financial con-
structs (Targets and Synsets) and explicitly represents their relationships. The grouping is based on the se-
mantic meanings and contexts in which these Synsets are typically used in the financial domain. For example,
the Directional group captures Synsets that describe the upward or downward movement of financial metrics,
while the Performance group encompasses Synsets that represent the results or achievements of financial enti-
ties or activities. Abbreviations: pfm (positive_financial_metrics), nfm (negative_financial_metrics), pi (perfor-
mance_indicators), ca (contractual_agreements), mc (market_consensus), div (dividend), sp (strategic_partnership),
op (operation_process), stf (staff), tc (technological_capabilities), par (positive_analyst_recommendation), nar

(negative_analyst_recommendation)

The key idea, inspired by theories from Kintsch
(1974), is to represent the smallest units of knowl-
edge that can be evaluated as true or false sentiment
propositions. Specifically, evaluate.senti iden-
tifies dependencies between ontological Targets
(e.g. "positive_financial_metrics") and sentiment-
bearing Synset expressions (e.g. "own", "lose")
in the input text. When a valid (Synset, Target)
mapping is detected based on the ontology, a cor-
responding proposition is instantiated.

However, unlike Kintsch’s (1974) propositions
containing arguments like entities and objects, Sen-
tium’s propositions focus solely on the (Synset,
Target) relations that convey sentiment polarity.
This abstract semantic structure aligns with how
humans conceptualise sentiment, facilitating intu-
itive modelling and interpretability.

Analysing sentiment through propositions also
accounts for how different semantic scope inter-
pretations can lead to divergent annotations, even
among expert human labellers, as observed in
Malo et al. (2014). Such variability likely arises
from backward inferencing processes and differing
proposition weighting strategies employed by each
annotator.

To illustrate, consider "NVIDIA, owning 80%
of the $65.3B GPU market, is slowly losing share
to AMD". One annotator may label this nega-

tively by prioritising the "lose" proposition, which
could be structurally represented as {"own": {"mar-
ket_share": +1}, "lose": {"market_share": -2}}.
Another may view it as positive, giving more
weight to the "own" proposition about NVIDIA’s
large market share, represented as {"own": {"mar-
ket_share": +2}, "lose": {"market_share": -1}}.
OSLF allows the adaptive combination of proposi-
tions into personalised ontologies mapping Synset
to Target polarity weights, akin to human subjec-
tivity. Representing each (Synset, Target) mapping
as an interpretable proposition enables capturing
and examining these distinct reasoning paths.

To empirically extract robust dependency pat-
terns between ontological 7argets and sentiment-
bearing Synsets, we applied a 50-50 split on the
Financial Phrasebank dataset (Malo et al., 2014)
instead of the traditional 80-20. While using more
data could increase accuracy, the aim was not to ex-
haustively cover all possible dependencies. Rather,
it is sought to derive a representative set of high-
confidence rules capturing common sentiment com-
position phenomena in this domain.

Through this data-driven analysis, 61 depen-
dency patterns were identified between Targets like
"positive_financial_metrics" and Synsets like "in-
crease" and "decrease". For example, such Targets
frequently depend on were objects of these Synsets



(nsubj/dobj dependency relations), as in "Profit in-
creased this quarter".

Importantly, news headlines exhibit their own
grammar structures for concisely conveying key
information (Salih and Abdulla, 2012), unlike nois-
ier social media text (Kontopoulos et al., 2013). To
handle this, we uncovered 9 common grammatical
templates like "versus" comparisons (e.g. "pre-
tax profit of $100M versus a loss of $50M") and
"up/down" framing (e.g. "operating profit totalled
$7.2M, up from a $4.0M loss year-on-year").

This empirical pattern mining approach allows
Sentium to robustly capture the diverse linguistic
constructions used to express financial sentiment,
beyond just simplistic word co-occurrences. The
extracted dependency rules systematically map nat-
ural language to proposition-like semantic repre-
sentations grounded in the ontology. This tight
coupling of data-driven patterns with structured
knowledge facilitates precise sentiment composi-
tion modeling.

For example, analysing "revenue increased 5%
over projections” involves accessing the ontol-
ogy {"increase": {'"positive_financial_metrics":
+1}} based on matching the dependency
revenue(Target) — increased(Synset). In
contrast, "costs increased unexpectedly” would
yield {"increase": "negative_financial_metrics":
-1}} — the same Synset flips polarity for a different
Target concept.

By deriving these rich semantic parses in an
automated yet interpretable, reasoning-driven man-
ner, Sentium can provide reliable sentiment predic-
tions along with rationale explanations auditable
by humans. This combination of empirical pat-
tern coverage and cognitive modeling of compo-
sitional semantics allows our approach to achieve
new levels of accuracy and transparency for senti-
ment analysis.

3 Experiment

To conduct an evaluation, we leverage the re-
maining 50% test set of the Financial Phrasebank
dataset (Malo et al., 2014), compared against four
benchmark models. We include two dictionary-
based bag-of-words approaches, Henry (Henry,
2008) and MASTER (Loughran and McDonald,
2011), accessed through the sentibank library
(Oh, 2024) (under CC-BY-NC-SA-4.0 license).
Additionally, we consider two state-of-the-art fi-
nancial language models, FinBERT (Araci, 2019)

and FLANG-BERT (Shah et al., 2022), leverag-
ing the HuggingFace transformers library (Wolf
et al., 2020) (under Apache 2.0 license).

The Henry dictionary, designed explicitly for
analysing tones in earnings press releases, com-
prises 189 unigram entries selected based on con-
textual analysis, with a focus on directional col-
locates. The MASTER dictionary targets senti-
ment expressions commonly encountered in finan-
cial regulatory filings, such as 10-K reports. With
3,876 domain-specific affect terms, this lexicon
has demonstrated a statistically significant negative
correlation with file date excess returns, underscor-
ing its applicability. Both dictionaries underwent a
manual labelling process by the authors.

Both FinBERT and FLANG-BERT are state-of-
the-art language models based on the BERT archi-
tecture (Devlin et al., 2018). While both models
were originally pre-trained on the Financial Phrase-
bank dataset, to ensure optimal performance, we
further fine-tuned these models using the 50% train-
ing set, aligning them with the task-specific data
distribution.

4 Results

The accuracy results demonstrate Sentium consis-
tently outperforming traditional dictionary-based
approaches (Henry=80.12%; MASTER=58.83%)
while achieving highly competitive results com-
pared to state-of-the-art language models (Fin-
BERT=96.03%; FLANG-BERT=97.35%) with an
accuracy of 92.05% (Table 2).

Model Accuracy Precision F1
Henry 0.8012 0.7985 0.7976
(Henry, 2008)

MASTER

(Loughran and 0.5883 0.6171 0.5666
McDonald, 2011)

FinBERT 0.9603 0.9604 0.9602
(Araci, 2019)

FLANG-BERT 0.9735 0.9738 0.9736
(Shah et al., 2022)

Sentium 0.9205 0.9228 0.9191

Table 2: Performance comparison of Sentium against
benchmarks on financial sentiment analysis task.

While the overall accuracy is impressive by it-
self, Sentium’s true strength lies in its precision - a
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Figure 3: Confusion Matrix Analysis (Left=FinBERT; Right=Sentium). The comparison highlights Sentium’s
strength in precision compared to FinBERT’s (Araci, 2019) baseline.

crucial capability for financial sentiment analysis.
Both FLANG-BERT (Negative=93.22%; 6.78%
misclassified as positive) and FinBERT (Nega-
tive=86.44%; 10.17% misclassified as positive) ex-
hibit non-trivial error rates in misclassifying true
negatives as positive sentiment.

In contrast, Sentium demonstrates a substan-
tially lower 1.97% misclassification rate for true
negatives predicted as positive - a 3.5x and 5x re-
duction compared to FLANG-BERT and FinBERT
respectively. Additionally, unlike FinBERT which
misclassified 2.78% of true positives as negative,
Sentium’s error rate is a mere 0.69% for this type
of egregious polarity reversal (Figure 3).

The implications are clear: Sentium excels at
reliably distinguishing positive and negative sen-
timents, a critical requirement in a domain
where misinterpreting pessimistic or optimistic
signals can have severe consequences. While
FLANG-BERT and FinBERT achieve higher over-
all accuracy on this dataset, their error profiles are
considerably more skewed towards costly polarity
confusions between positive and negative classes.

5 Conclusion

Sentium represents a significant stride towards
developing transparent, interpretable and under-
standable sentiment analysis systems. By unit-
ing structured knowledge from the financial do-
main with neural models under a cognitively-
inspired framework, it achieves state-of-the-art per-
formance while maintaining crucial interpretabil-

ity. Sentium’s explicit compositional reasoning
over semantic propositions grounded in an intuitive
ontology enables comprehensive rationale genera-
tion, fostering trust and auditability in high-stakes
decision-making scenarios. This human-centred
approach bridges a critical gap in existing opaque
black-box methods, paving the way for the re-
sponsible deployment of Al in sentiment analysis
and allied domains where decision transparency is
paramount.

6 Limitation

While Sentium demonstrates impressive perfor-
mance and interpretability, certain limitations
should be acknowledged. First, the financial senti-
ment ontology currently focuses exclusively on the
financial domain, potentially constraining its ap-
plicability across diverse domains. Extending the
ontology to capture sentiment nuances in other sec-
tors would be a valuable future endeavor. Addition-
ally, the ontology construction process, although
grounded in empirical data analysis, still involves
manual curation by domain experts, introducing po-
tential human biases. Exploring semi-automated or
fully automated ontology learning methods could
alleviate this limitation. Finally, Sentium’s mod-
ular architecture, while cognitively inspired, may
not fully capture the complex, parallel processing
dynamics of human language comprehension, sug-
gesting opportunities for further refinement.
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