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Abstract

Sentiment analysis has seen rapid progress001
driven by deep learning, but the opaque black-002
box nature of these models hinders trust-003
worthy deployment in high-stakes domains004
where interpretability is crucial. We pro-005
pose Sentium (Sentiment Evaluation through006
Neurosymbolic Taxonomy, an Interpretable007
and Understandable Model), a cognitively-008
inspired architecture that closely emulates hu-009
man sentiment comprehension processes. Sen-010
tium takes a hybrid approach by combin-011
ing structured sentiment knowledge with neu-012
ral models, achieving state-of-the-art perfor-013
mance while maintaining transparency through014
explicit compositional reasoning over se-015
mantic propositions. Compared to state-016
of-the-art financial language models, Sen-017
tium showed substantially lower misclassi-018
fication rates for predicting true negatives019
as positive (Sentium=1.97%; FLANG-BERT020
(Shah et al., 2022) =6.78%, FinBERT (Araci,021
2019) =10.17%). The code are available at:022
https://github.com/anonymous-submission023

1 Introduction024

Sentiment analysis aims to bridge the gap between025

human and machine capabilities in analysing sen-026

timent (Yusof et al., 2018). This objective can027

be interpreted through two complementary lenses028

following Gobet and Lane (2010): (i) An engi-029

neering approach that narrows the performance030

disparity, harnessing computer science techniques031

to create intelligent artifacts achieving human-level032

outcomes. (ii) A cognitive modeling approach that033

aligns the underlying processes, developing compu-034

tational architectures that closely emulate human035

behavior for interpretable simulations.036

To reach state-of-the-art performance, the field037

has extensively leveraged deep neural networks038

for natural language processing tasks (Chen et al.,039

2023). Indeed, sentiment analysis has transitioned040
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Figure 1: Cognitive Architecture of Sentium. This
diagram illustrates Sentium’s hybrid approach, unifying
implicit knowledge (semantics/syntax captured by neu-
ral models) and explicit knowledge (encoded rule-based
domain ontology).

from traditional rule-based and lexicon-based mod- 041

els (Stone et al., 1962; Bradley and Lang, 1999; Hu 042

and Liu, 2004; Esuli and Sebastiani, 2006; Nielsen, 043

2011; Taboada et al., 2011; Hutto and Gilbert, 044

2014; Cambria et al., 2022) to transformer-based 045

approaches like Small Language Models (SLMs) 046

(Araci, 2019; Alaparthi and Mishra, 2021; Prot- 047

tasha et al., 2022; Shah et al., 2022; Cho et al., 048

2023), and more recently, Large Language Mod- 049

els (LLMs) (Nadi et al., 2023; Kheiri and Karimi, 050

2023). This transition was inevitable, as lexicon- 051

based methods remained below acceptable per- 052

formance levels (Muhammad et al., 2016), typi- 053

cally achieving 55-85% accuracy compared to deep 054

learning models’ 70-95% range (Al-Qablan et al., 055

2023). 056

However, this pursuit of performance gains has 057

given rise to profound challenges. While tradi- 058

tional deep learning drawbacks like substantial 059

data, computational resource, and training time 060

requirements (Muhammad et al., 2016; Schouten 061

et al., 2017; Sarker, 2021) have been relatively 062

mitigated through fine-tuning (Talaei Khoei et al., 063

2023; Wojciuk et al., 2024), a fundamental issue 064

1



persists – the inherent lack of interpretability in065

these black-box neural architectures.066

Despite extensive exploration of four common067

interpretation methods (Chen et al., 2023), the true068

model interpretability remains unresolved. Post-069

hoc techniques like LIME (Ribeiro et al., 2016)070

offer local approximations but fail to capture the071

global logic encoded within model parameters.072

Even for LLMs, methods like sparse autoencoders073

(Templeton et al., 2024) and chain-of-thought rea-074

soning (Turpin et al., 2024) provide limited post-075

hoc justifications rather than intrinsic interpretabil-076

ity. After all, if these interpretations faithfully mir-077

rored the original model, the explanation would078

equal the model itself, rendering the original re-079

dundant (Rudin, 2019).080

This lack of transparency significantly hinders081

the trustworthy and responsible deployment of082

deep learning for sentiment analysis, especially083

in high-stakes domains where decision rationales084

profoundly impact businesses, investments, and085

lives (Rudin, 2019; Rudin et al., 2022; Oh, 2024).086

Opaque black-box predictions, while accurate, of-087

fer little insight into the reasoning behind sentiment088

derivations – an untenable predicament given the089

real-world consequences.090

In contrast to opaque black-box models, we091

take a step forward towards interpretable and un-092

derstandable sentiment analysis through cognitive093

modelling. By uniting structured domain knowl-094

edge with neural architectures in a cognitively-095

plausible manner, our approach achieves state-of-096

the-art performance while maintaining full inter-097

pretability. Predictions are firmly grounded in an098

intuitive sentiment ontology, enabling comprehen-099

sive rationale generation through explicit compo-100

sitional reasoning over human-readable semantic101

propositions.102

This human-inspired interpretability bridges a103

crucial gap in current black-box methods. Rather104

than inscrutable mappings from inputs to outputs,105

Sentium offers a transparent window into its in-106

ner workings, closely emulating the cognitive pro-107

cesses underlying human semantic comprehension.108

Stakeholders can intuitively audit and verify the109

evidence chain driving each sentiment prediction,110

fostering accountability and trust.111

As the complexity of AI systems increases, em-112

bedding interpretability as a core architectural prin-113

ciple becomes vital. Sentium represents a tangible114

step in this critical direction, establishing human-115

centred transparency without compromising state-116

of-the-art performance. 117

The main contributions of this work are three- 118

fold: 119

1. Demonstrating that models need not be 120

opaque end-to-end black boxes. Our rule-based ap- 121

proach matches and even exceeds the performance 122

of deep learning models, yet with the additional 123

benefit of intuitive interpretability – a capability 124

previously highlighted as advantageous by Hutto 125

and Gilbert (2014). 126

2. Proposing Ontological Sentiment Labelling 127

Framework (OSLF) – a machine-readable and 128

human-interpretable knowledge base that captures 129

the compositional semantics of how sentiment ex- 130

pressions interact with real-world concepts and 131

aspects. OSLF enables more elaborate analysis of 132

opinions on specific topics. 133

3. Introducing a cognitively-inspired neural ar- 134

chitecture that closely approximates human senti- 135

ment comprehension and reasoning processes – an 136

area receiving relatively less attention compared to 137

the performance-driven engineering approaches in 138

AI. 139

Through these contributions, Sentium paves the 140

way towards developing trustworthy, accountable, 141

and transparently-aligned systems that can be ro- 142

bustly deployed in high-stakes real-world domains. 143

Rather than pursuing a broad cross-domain ap- 144

proach, we concentrate our efforts on showcasing 145

Sentium’s capabilities for the financial domain. 146

2 Sentium 147

Sentium is composed of three major modules in- 148

spired by theories of language comprehension from 149

cognitive psychology (Kintsch and Van Dijk, 1978; 150

Fodor, 1983; Anderson, 2000). These theories 151

posit that comprehension involves several distinct 152

yet interconnected stages. Fodor (1983) proposed 153

a modular view, where a dedicated linguistic mod- 154

ule first analyses the incoming language before 155

passing its output to general cognition. Similarly, 156

Kintsch and Van Dijk (1978) assumed an initial 157

parsing stage that transforms the text into a set of 158

propositions, which are then further processed. 159

Anderson (2000) outlined three key stages: 1) 160

Perceptual encoding of the textual input, 2) Pars- 161

ing, which involves syntactic and semantic analy- 162

sis to derive a coherent mental representation of 163

meaning, acting as an interface between low-level 164

encoding and higher-level cognition, and 3) Util- 165

isation, where this mental representation is used 166
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for tasks like reasoning and decision-making. This167

three-stage pipeline directly inspires the modular168

design of Sentium.169

Sentium’s modular architecture directly mirrors170

this systematic progression from perception to pars-171

ing to cognitive utilisation.172

2.1 tag.pos replicates perceptual encoding by173

annotating the input text with low-level linguis-174

tic features like parts-of-speech, dependencies and175

lemmas.176

2.2 parse.aspect models the parsing stage by177

extracting key semantic representations like enti-178

ties and phrases, leveraging the annotated linguistic179

knowledge.180

2.3 evaluate.senti captures utilisation by per-181

forming the target task – sentiment evaluation –182

grounded in the previous analyses and explicit do-183

main knowledge.184

A key contribution that advances the field of185

traditional rule-based sentiment analysis methods186

is how the evaluate.senti module incorporates187

explicit structured knowledge from the financial188

sentiment ontology, enabling interpretable reason-189

ing. This maps to the distinction between im-190

plicit and explicit cognitive processes (Anderson,191

2000). While tag.pos and parse.aspect rely on192

implicit learned representations, evaluate.senti193

combines these with explicit ontological knowl-194

edge to produce human-intelligible sentiment pre-195

diction rationales.196

By systematic modelling of both implicit learned197

representations and explicit structured knowledge198

in a cognitively-plausible architecture, Sentium199

achieves a powerful synthesis: the predictive ac-200

curacy of neural models with the intuitive inter-201

pretability of human-like reasoning grounded in202

real-world finance knowledge. This synergy ad-203

dresses key limitations of existing black-box senti-204

ment analysis methods.205

2.1 tag.pos206

Humans possess an innate linguistic competence207

(Chomsky, 2014) - an implicit, abstract knowledge208

of language that allows intuitive judgments about209

syntactic structure, despite the infinite possible ut-210

terances (Anderson, 2000). We internalise thou-211

sands of subtle grammatical rules without being212

able to explicitly articulate them.213

Sentium’s tag.pos module aims to computa-214

tionally capture this implicit low-level linguis-215

tic knowledge by leveraging neural models from216

spaCy (Honnibal et al., 2020). The input text is217

ROOT

token_0 token_p [token_0, ..., token_sp  ]0 [token_0, ..., token_sp  ]1

phrase
(subdoc)

subphrase

sentence
(doc)

Figure 2: Sentence Subtree Representation. Subphrases
are processed from phrases iff len(phrase)>15, seg-
mented based on hierarchical subtree structure of such
a phrase.

encoded with linguistic annotations like parts-of- 218

speech tags, dependencies, and lemmas, produc- 219

ing sentence-level doc objects and phrase-level 220

subdoc objects. 221

The hierarchical division of sentences into 222

phrases is a core component of parsing and inter- 223

pretation (Anderson, 2000) (Figure 2). As demon- 224

strated by Graf and Torrey (1966), identifying con- 225

stituent phrase structure is crucial for sentence 226

comprehension. Sentium emulates this process 227

by first segmenting sentences based on punctua- 228

tion boundaries, following evidence that humans 229

naturally pause at clause boundaries when reading 230

(Aaronson and Scarborough, 1977). Coordinating 231

conjunctions like "but" and subordinating conjunc- 232

tions like "while", which link phrases and convey 233

relationships (Gleitman, 1965), then guide further 234

subdivision. 235

To handle long phrases that may require simpli- 236

fication, phrases exceeding 15 tokens are split into 237

sub-phrases sharing a common parent node within 238

the dependency parse subtree. This 15 token thresh- 239

old aligns with typical readability guidelines and 240

automatic simplification targets (DuBay, 2004). 241

Both doc and subdoc objects in Sentium encap- 242

sulate the encoded linguistic features, mirroring 243

the perceptual process of syntactic analysis in hu- 244

man cognition (Anderson, 2000). While concate- 245

nating the subdoc (phrase) objects to construct 246

doc (sentence) representations, or passing multiple 247

subdocs to subsequent modules may seem cogni- 248

tively plausible, Sentium deliberately avoids these 249

approaches. A simplistic concatenation risks fail- 250

ing to accurately capture the syntactic structure and 251

compositional semantics of sentences, as empha- 252

sised by compositional semantics theories (Partee, 253
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2007). A sentence’s meaning does not merely arise254

from combining its constituent phrases (Dankers255

and Lucas, 2023) – it emerges through nuanced256

composition rules governing how phrase meanings257

systematically interact1.258

Passing the complete, structured doc representa-259

tion is not only more cognitively plausible by better260

approximating human-level composition abilities,261

but also computationally more efficient. By allow-262

ing subsequent modules to analyse a single doc263

object that encapsulates the full sentential context,264

rather than operating over multiple disconnected265

subdoc phrases, Sentium can construct more holis-266

tic and contextualised sentence interpretations.267

2.2 prase.aspect268

Building upon the syntactically-informed doc rep-269

resentations from tag.pos, the parse.aspect270

module aims to derive semantic interpretations271

more aligned with human language comprehen-272

sion. This involves two core capabilities.273

1. Extracting rich noun phrases by leveraging274

the encoded universal dependency parse structures275

(Manning, 2015; De Marneffe et al., 2021) within276

each doc object. While basic noun chunks provide277

a foundational starting point, parse.aspect goes278

further by capturing crucial prepositional modifier279

relationships. Prepositions like "in", "of", and "at"280

link nouns and noun phrases, expressing specific281

semantic relationships between the connected con-282

cepts. By modelling these dependency structures283

where one noun modifies another via a preposi-284

tional link, parse.aspect identifies semantically285

richer noun phrases than simple chunks alone.286

2. In parallel, dedicated neural Named Entity287

Recognition (NER) models are employed to clas-288

sify mentions of real-world entities like organi-289

sations and persons based on contextualised se-290

mantic representations. This separable semantics291

pathway accounts for how syntax alone cannot292

reliably disambiguate meanings – for instance,293

whether "Apple" refers to the fruit or technology294

company. Currently, apart from spaCy, three addi-295

tional NER models pre-trained on diverse datasets296

like OntoNotes, Reuters corpus, WikiNews and297

Wikipedia by Aarsen are avaliable.298

The architectural separation of these syntax-299

guided phrase extraction and neural entity recog-300

1It is important to note that the doc object primarily en-
codes syntactic representations, while largely abstracting
away the compositional and non-compositional semantic nu-
ances that contribute to a sentence’s full meaning.

nition functionalities is grounded in cognitive psy- 301

chology findings. Electrophysiological studies un- 302

veil distinct neural signatures for syntactic and se- 303

mantic processing through dissociable N400 and 304

P600 event-related potential components (Kutas 305

and Hillyard, 1980a,b; Osterhout and Holcomb, 306

1993, cited in Anderson, 2000). This empirical ev- 307

idence motivates modelling syntax and semantics 308

as separable yet interacting mechanisms. 309

2.3 evaluate.senti 310

Cognitive systems gain the ability to predict – ex- 311

pectation about the concept – by categorising the 312

concept, and because of this ability, categories give 313

us great economy in representation and communi- 314

cation (Anderson, 2000, p.151). Traditional sen- 315

timent analysis methods have attempted to oper- 316

ationalise this by manually associating sentiment 317

lexicons with conceptual representations. For in- 318

stance, Henry (2008) examined the context of each 319

lexicon’s occurrence by calculating collocation per- 320

centages with desirable financial terms like "rev- 321

enue" versus undesirable ones like "expenses" to 322

categorise words as positive or negative. 323

While pioneering, such dictionary-based ap- 324

proaches have inherent limitations. Henry’s (2008) 325

lexicon achieved 80.12% accuracy in our 3 Exper- 326

iment – impressive yet insufficient for real-world 327

robustness. Even "increased", positively used 66% 328

of the time (Henry, 2008, p.33), carries a 34% 329

chance of being neutral or negative. This variabil- 330

ity arises from failing to account for the composi- 331

tional effects of combining sentiment expressions 332

with different semantic contexts. 333

To address these shortcomings, this paper pro- 334

poses the Ontological Sentiment Labelling Frame- 335

work (OSLF). The "ontology" refers to an expertly- 336

curated, structured knowledge base defining rele- 337

vant concepts and their interrelationships (Bandari 338

and Bulusu, 2020; Kontopoulos et al., 2013). For 339

example, in finance, representing "sales", "profit", 340

and "loss" as distinct aspects, with modelled as- 341

sociations to sentiment-bearing expressions like 342

"increase" or "decrease". Grounding sentiment 343

analysis in such a rich, domain-adapted ontology 344

enables interpretable rule-based propositional anal- 345

ysis over the input text. By mapping linguistic 346

entities to ontological concepts, and expressions 347

to sentiment variables, evaluate.senti later in- 348

stantiates intuitive propositions capturing how each 349

sentiment contributor interacts with the referenced 350

aspect. 351
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2.3.1 Ontological Sentiment Labelling352

Framework (OSLF)353

The framework is centred around curating financial354

sentiment ontology, inspired by ontology construc-355

tion methods (Kontopoulos et al., 2013; Schouten356

et al., 2017). The central idea was to systematically357

group key financial constructs and explicitly repre-358

sent the relationships between them as an intuitive359

cross-table taxonomy (Table 1), later translated360

into a structured dictionary format below.361

Ontological Sentiment Labelling Framework

domain_ontology← {
"Synset": {

"Target": Sentiment
}

}

finance_ontology← {
"increase": {

"positive_financial_metrics": 1,
"negative_financial_metrics": -1,
"market_consensus": 1

},
"decrease": {

"positive_financial_metrics": -1,
"negative_financial_metrics": 1,
"market_consensus": -1

},
"strength": {

"positive_financial_metrics": 1,
"strategic_partnerships": 1

},
"warn": {

"positive_financial_metrics": -1,
"negative_financial_metrics": -1,
"performance_indicators": -1

}
...

}

The ontology coherently models three core com-362

ponents essential for nuanced financial sentiment363

analysis:364

1. Targets represent important aspects in365

the financial domain, acting as overarching con-366

cepts. Each Target encompasses a set of re-367

lated aspects exhibiting superordinate-subordinate368

conceptual relationships. For example, "posi-369

tive_financial_metrics" is a broad Target under370

which more specific metrics like "sales," "rev-371

enue," and "profit" are subsumed as subordinate 372

terms. In total, 12 hierarchically-organised Targets 373

were manually curated by experts. 374

2. Synsets represent sentiment-laden expressions 375

prevalent in financial discourse, encapsulating col- 376

lections of synonymous lemmas that convey analo- 377

gous meanings. For instance, the "increase" synset 378

comprises 23 lemmas, encompassing terms like 379

"expand" and "rocket" that articulate a connotation 380

of growth and positive trajectory. In total, 23 Synset 381

categories were systematically adapted to the finan- 382

cial domain by leveraging semi-automatic meth- 383

ods (Hu and Liu, 2004; Strapparava and Valitutti, 384

2004; Esuli and Sebastiani, 2006). This involved 385

iteratively expanding initial seed lists using Word- 386

Net (Miller, 1995; Fellbaum, 1998), followed by 387

manual filtering to retain only expressions highly 388

relevant to the financial news genre, accounting for 389

genre variations noted by Pennebaker et al. (2015) 390

and domain-specific language needs highlighted 391

by Loughran and McDonald (2011). 392

3. Sentiments precisely capture the contextual 393

sentiment polarity associated with each (Target, 394

Synset) pair in the taxonomy. This models how 395

the same sentiment expression can convey oppo- 396

site polarities depending on the financial aspect 397

referenced – a key challenge in this domain. For 398

example, the "increase" Synset conveys positive 399

sentiment for "positive_financial_metrics" Target 400

like higher sales or revenue. However, it indi- 401

cates negative sentiment when used with "nega- 402

tive_financial_metrics" Target such as rising costs 403

or losses, capturing how the same expression can 404

flip polarity across financial aspects. 405

The hallmark of this ontological framework is 406

explicitly representing the nuanced, many-to-many 407

relationships between Targets and Synsets in an 408

intuitive yet comprehensive taxonomy manually 409

curated by experts. This structured knowledge 410

modelling enables highly precise, domain-specific 411

sentiment analysis grounded in finance knowledge, 412

while maintaining crucial transparency and audi- 413

bility often lacking in opaque neural models. 414

2.3.2 Rule-based Propositional Analysis 415

A core capability of Sentium’s evaluate.senti 416

module is performing rule-based propositional 417

analysis grounded in the financial sentiment on- 418

tology. This approach models the semantic com- 419

position of sentiments by systematically mapping 420

linguistic inputs to propositions representing co- 421

herent units of sentiment-bearing knowledge. 422
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pfm nfm pi ca mc div sp op stf tc par nar

Directional increase 1 -1 1
decrease -1 1 -1
higher 1 -1 1 1
lower -1 1 -1 -1

Performance win 1
beat 1
reach 1
continue 1 1 1
strength 1 1

Action generate 1 -1
cause 1 -1
protect 1 -1 1
turn 1 1
propose 1
equip 1
improve 1 1
expect 1 -1
recommend 1 -1

Temporal faster 1
slower -1

Negative warn -1 -1 -1
lose -1
slip -1 -1 -1

Table 1: Cross-table taxonomy (OSLF). This cross-table taxonomy systematically organises key financial con-
structs (Targets and Synsets) and explicitly represents their relationships. The grouping is based on the se-
mantic meanings and contexts in which these Synsets are typically used in the financial domain. For example,
the Directional group captures Synsets that describe the upward or downward movement of financial metrics,
while the Performance group encompasses Synsets that represent the results or achievements of financial enti-
ties or activities. Abbreviations: pfm (positive_financial_metrics), nfm (negative_financial_metrics), pi (perfor-
mance_indicators), ca (contractual_agreements), mc (market_consensus), div (dividend), sp (strategic_partnership),
op (operation_process), stf (staff), tc (technological_capabilities), par (positive_analyst_recommendation), nar
(negative_analyst_recommendation)

The key idea, inspired by theories from Kintsch423

(1974), is to represent the smallest units of knowl-424

edge that can be evaluated as true or false sentiment425

propositions. Specifically, evaluate.senti iden-426

tifies dependencies between ontological Targets427

(e.g. "positive_financial_metrics") and sentiment-428

bearing Synset expressions (e.g. "own", "lose")429

in the input text. When a valid (Synset, Target)430

mapping is detected based on the ontology, a cor-431

responding proposition is instantiated.432

However, unlike Kintsch’s (1974) propositions433

containing arguments like entities and objects, Sen-434

tium’s propositions focus solely on the (Synset,435

Target) relations that convey sentiment polarity.436

This abstract semantic structure aligns with how437

humans conceptualise sentiment, facilitating intu-438

itive modelling and interpretability.439

Analysing sentiment through propositions also440

accounts for how different semantic scope inter-441

pretations can lead to divergent annotations, even442

among expert human labellers, as observed in443

Malo et al. (2014). Such variability likely arises444

from backward inferencing processes and differing445

proposition weighting strategies employed by each446

annotator.447

To illustrate, consider "NVIDIA, owning 80%448

of the $65.3B GPU market, is slowly losing share449

to AMD". One annotator may label this nega-450

tively by prioritising the "lose" proposition, which 451

could be structurally represented as {"own": {"mar- 452

ket_share": +1}, "lose": {"market_share": -2}}. 453

Another may view it as positive, giving more 454

weight to the "own" proposition about NVIDIA’s 455

large market share, represented as {"own": {"mar- 456

ket_share": +2}, "lose": {"market_share": -1}}. 457

OSLF allows the adaptive combination of proposi- 458

tions into personalised ontologies mapping Synset 459

to Target polarity weights, akin to human subjec- 460

tivity. Representing each (Synset, Target) mapping 461

as an interpretable proposition enables capturing 462

and examining these distinct reasoning paths. 463

To empirically extract robust dependency pat- 464

terns between ontological Targets and sentiment- 465

bearing Synsets, we applied a 50-50 split on the 466

Financial Phrasebank dataset (Malo et al., 2014) 467

instead of the traditional 80-20. While using more 468

data could increase accuracy, the aim was not to ex- 469

haustively cover all possible dependencies. Rather, 470

it is sought to derive a representative set of high- 471

confidence rules capturing common sentiment com- 472

position phenomena in this domain. 473

Through this data-driven analysis, 61 depen- 474

dency patterns were identified between Targets like 475

"positive_financial_metrics" and Synsets like "in- 476

crease" and "decrease". For example, such Targets 477

frequently depend on were objects of these Synsets 478
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(nsubj/dobj dependency relations), as in "Profit in-479

creased this quarter".480

Importantly, news headlines exhibit their own481

grammar structures for concisely conveying key482

information (Salih and Abdulla, 2012), unlike nois-483

ier social media text (Kontopoulos et al., 2013). To484

handle this, we uncovered 9 common grammatical485

templates like "versus" comparisons (e.g. "pre-486

tax profit of $100M versus a loss of $50M") and487

"up/down" framing (e.g. "operating profit totalled488

$7.2M, up from a $4.0M loss year-on-year").489

This empirical pattern mining approach allows490

Sentium to robustly capture the diverse linguistic491

constructions used to express financial sentiment,492

beyond just simplistic word co-occurrences. The493

extracted dependency rules systematically map nat-494

ural language to proposition-like semantic repre-495

sentations grounded in the ontology. This tight496

coupling of data-driven patterns with structured497

knowledge facilitates precise sentiment composi-498

tion modeling.499

For example, analysing "revenue increased 5%500

over projections" involves accessing the ontol-501

ogy {"increase": {"positive_financial_metrics":502

+1}} based on matching the dependency503

revenue(Target) → increased(Synset). In504

contrast, "costs increased unexpectedly" would505

yield {"increase": "negative_financial_metrics":506

-1}} – the same Synset flips polarity for a different507

Target concept.508

By deriving these rich semantic parses in an509

automated yet interpretable, reasoning-driven man-510

ner, Sentium can provide reliable sentiment predic-511

tions along with rationale explanations auditable512

by humans. This combination of empirical pat-513

tern coverage and cognitive modeling of compo-514

sitional semantics allows our approach to achieve515

new levels of accuracy and transparency for senti-516

ment analysis.517

3 Experiment518

To conduct an evaluation, we leverage the re-519

maining 50% test set of the Financial Phrasebank520

dataset (Malo et al., 2014), compared against four521

benchmark models. We include two dictionary-522

based bag-of-words approaches, Henry (Henry,523

2008) and MASTER (Loughran and McDonald,524

2011), accessed through the sentibank library525

(Oh, 2024) (under CC-BY-NC-SA-4.0 license).526

Additionally, we consider two state-of-the-art fi-527

nancial language models, FinBERT (Araci, 2019)528

and FLANG-BERT (Shah et al., 2022), leverag- 529

ing the HuggingFace transformers library (Wolf 530

et al., 2020) (under Apache 2.0 license). 531

The Henry dictionary, designed explicitly for 532

analysing tones in earnings press releases, com- 533

prises 189 unigram entries selected based on con- 534

textual analysis, with a focus on directional col- 535

locates. The MASTER dictionary targets senti- 536

ment expressions commonly encountered in finan- 537

cial regulatory filings, such as 10-K reports. With 538

3,876 domain-specific affect terms, this lexicon 539

has demonstrated a statistically significant negative 540

correlation with file date excess returns, underscor- 541

ing its applicability. Both dictionaries underwent a 542

manual labelling process by the authors. 543

Both FinBERT and FLANG-BERT are state-of- 544

the-art language models based on the BERT archi- 545

tecture (Devlin et al., 2018). While both models 546

were originally pre-trained on the Financial Phrase- 547

bank dataset, to ensure optimal performance, we 548

further fine-tuned these models using the 50% train- 549

ing set, aligning them with the task-specific data 550

distribution. 551

4 Results 552

The accuracy results demonstrate Sentium consis- 553

tently outperforming traditional dictionary-based 554

approaches (Henry=80.12%; MASTER=58.83%) 555

while achieving highly competitive results com- 556

pared to state-of-the-art language models (Fin- 557

BERT=96.03%; FLANG-BERT=97.35%) with an 558

accuracy of 92.05% (Table 2). 559

Model Accuracy Precision F1

Henry 0.8012 0.7985 0.7976
(Henry, 2008)

MASTER
(Loughran and 0.5883 0.6171 0.5666
McDonald, 2011)

FinBERT 0.9603 0.9604 0.9602
(Araci, 2019)

FLANG-BERT 0.9735 0.9738 0.9736
(Shah et al., 2022)

Sentium 0.9205 0.9228 0.9191

Table 2: Performance comparison of Sentium against
benchmarks on financial sentiment analysis task.

While the overall accuracy is impressive by it- 560

self, Sentium’s true strength lies in its precision - a 561
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Figure 3: Confusion Matrix Analysis (Left=FinBERT; Right=Sentium). The comparison highlights Sentium’s
strength in precision compared to FinBERT’s (Araci, 2019) baseline.

crucial capability for financial sentiment analysis.562

Both FLANG-BERT (Negative=93.22%; 6.78%563

misclassified as positive) and FinBERT (Nega-564

tive=86.44%; 10.17% misclassified as positive) ex-565

hibit non-trivial error rates in misclassifying true566

negatives as positive sentiment.567

In contrast, Sentium demonstrates a substan-568

tially lower 1.97% misclassification rate for true569

negatives predicted as positive - a 3.5x and 5x re-570

duction compared to FLANG-BERT and FinBERT571

respectively. Additionally, unlike FinBERT which572

misclassified 2.78% of true positives as negative,573

Sentium’s error rate is a mere 0.69% for this type574

of egregious polarity reversal (Figure 3).575

The implications are clear: Sentium excels at576

reliably distinguishing positive and negative sen-577

timents, a critical requirement in a domain578

where misinterpreting pessimistic or optimistic579

signals can have severe consequences. While580

FLANG-BERT and FinBERT achieve higher over-581

all accuracy on this dataset, their error profiles are582

considerably more skewed towards costly polarity583

confusions between positive and negative classes.584

5 Conclusion585

Sentium represents a significant stride towards586

developing transparent, interpretable and under-587

standable sentiment analysis systems. By unit-588

ing structured knowledge from the financial do-589

main with neural models under a cognitively-590

inspired framework, it achieves state-of-the-art per-591

formance while maintaining crucial interpretabil-592

ity. Sentium’s explicit compositional reasoning 593

over semantic propositions grounded in an intuitive 594

ontology enables comprehensive rationale genera- 595

tion, fostering trust and auditability in high-stakes 596

decision-making scenarios. This human-centred 597

approach bridges a critical gap in existing opaque 598

black-box methods, paving the way for the re- 599

sponsible deployment of AI in sentiment analysis 600

and allied domains where decision transparency is 601

paramount. 602

6 Limitation 603

While Sentium demonstrates impressive perfor- 604

mance and interpretability, certain limitations 605

should be acknowledged. First, the financial senti- 606

ment ontology currently focuses exclusively on the 607

financial domain, potentially constraining its ap- 608

plicability across diverse domains. Extending the 609

ontology to capture sentiment nuances in other sec- 610

tors would be a valuable future endeavor. Addition- 611

ally, the ontology construction process, although 612

grounded in empirical data analysis, still involves 613

manual curation by domain experts, introducing po- 614

tential human biases. Exploring semi-automated or 615

fully automated ontology learning methods could 616

alleviate this limitation. Finally, Sentium’s mod- 617

ular architecture, while cognitively inspired, may 618

not fully capture the complex, parallel processing 619

dynamics of human language comprehension, sug- 620

gesting opportunities for further refinement. 621
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