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ABSTRACT

The rapid advancement of Zero-Shot Text-to-Speech (ZS-TTS) technology has
enabled high-fidelity voice synthesis from minimal audio cues, raising significant
privacy and ethical concerns. In particular, the ability to replicate an individual’s
voice without consent poses risks, highlighting the need for machine unlearning
techniques to protect voice privacy. In this paper, we introduce the first machine
unlearning framework for ZS-TTS, Teacher-Guided Unlearning (TGU), designed
to ensure that the model forgets designated speaker identities while retaining its
ability to generate accurate speech for other speakers. Unlike conventional un-
learning methods, TGU leverages randomness to prevent consistent replication of
forget speakers’ voices, ensuring unlearned identities remain untraceable. Addi-
tionally, we propose a new evaluation metric, speaker-Zero Retrain Forgetting
(spk-ZRF), which measures the model’s effectiveness in preventing the repro-
duction of forgotten voices. The experiments conducted on the state-of-the-art
model demonstrate that TGU prevents the model from replicating forget speakers’
voices while maintaining high quality for other speakers. The demo is available at
https://speechunlearn.github.io/

1 INTRODUCTION

Significant advancements in Zero-Shot Text-to-Speech (ZS-TTS) (Le et al., 2024; Casanova et al.,
2022; Ju et al., 2024; Wang et al., 2023) have demonstrated ground-breaking performance, enabling
models to replicate and synthesize speech in any given speaker’s voice. Among the prominent
methods in ZS-TTS, VALL-E (Wang et al., 2023) represents speech as discrete tokens to train a
language model, while VoiceBox (Le et al., 2024) uses a masked prediction learning technique to
effectively handle both ZS-TTS and audio-infilling tasks. Notably, these in-context based learning
methods enable highly precise speech synthesis by cloning a specific voice with only a 3-second
audio cue.

Given that a person’s voice is a key biometric characteristic used for identification (Nautsch et al.,
2019a;b), these rapid advancements in ZS-TTS raise significant ethical concerns, especially regard-
ing the potential misuse of synthesizing speech from an individual’s voice without consent. These
concerns are further amplified by regulations such as the European Union’s General Data Protection
Regulation (GDPR) (Regulation, 2016) and the Right To Be Forgotten (RTBF) (Mantelero, 2013),
which emphasize the importance of protecting personally identifiable information.

As an approach to address these challenges, machine unlearning (MU) can serve as an effective
solution by selectively removing certain knowledge through modifications to the model weights.
Given that generative AI models are inherently capable of creating new content and thus particularly
susceptible to privacy breaches (Panariello et al., 2024; Tomashenko et al., 2024), MU has been
increasingly applied across various fields of generative AI to address these vulnerabilities. The
application of MU in computer vision has focused on removing and preventing the synthesis of
specific concepts (Gandikota et al., 2023; Fan et al., 2024; Seo et al., 2024; Li et al., 2024), while
in natural language processing, it has been utilized to unlearn undesirable sequences and identity-
specific knowledge (Maini et al., 2024; Jang et al., 2023). However, despite the growing attention
to privacy concerns in speech-related tasks (Tomashenko et al., 2022; Yoo et al., 2020), there have
been no proposed methods that can effectively unlearn the ability to generate speech in a specific
speaker’s voice.
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Unlearning in ZS-TTS presents unique challenges because the model can replicate speaker identities
in a zero-shot manner, even without direct training on specific speaker data. Therefore, traditional
unlearning approaches, which often rely on excluding data related to the forget speakers (i.e., Ex-
act Unlearning in Figure 1-top), fall short in effectively limiting a ZS-TTS model’s capability to
reproduce these voices. In addition, an ideal unlearned ZS-TTS model should avoid settling into
any specific voice style that could be traced back to the forget speakers’ identity. To achieve this,
the model needs to be trained to generate speech in random voice styles for forget speakers, using
aligned pairs of text and random voices.

To this end, this paper proposes the first machine unlearning framework for ZS-TTS, termed
Teacher-Guided Unlearning (TGU), which leverages the pre-trained teacher model as a guide to
generate speaker-randomized target outputs for the forget speakers (Figure 1-bottom). Unlike con-
ventional UL methods, TGU introduces randomness in voice styles when the model encounters
prompts related to the forget speakers, effectively guiding the model to unlearn these associations
and discouraging it from reproducing the forgotten voices. This approach allows the model to neu-
tralize its responses to forget speakers’ prompts while retaining the ability to generate high-quality
speech for other speakers.

To evaluate the effectiveness of this unlearning process, we also introduce the speaker-Zero Retrain
Forgetting (spk-ZRF) metric. Unlike conventional evaluation metrics that only compare perfor-
mance between forget and retain sets, spk-ZRF measures the degree of randomness in the generated
speaker identities when handling forget speaker prompts. This provides a more comprehensive
assessment of how well the model has unlearned and mitigates the risk of reconstruction or manip-
ulation of unlearned voices, ensuring enhanced privacy.

The main contributions are as follows:

• This paper is the first to address the challenge of implementing machine unlearning in ZS-
TTS, focusing on making the model ‘forget’ specific speaker identities while maintaining
its ability to perform accurate speech synthesis for retain speakers.

• We propose a novel framework, TGU, which guides the model to generate speech with
random voice styles for forget speakers, effectively reducing the ability to replicate their
identities.

• Plus, we introduce a new metric, spk-ZRF, to evaluate the effectiveness of unlearning by
measuring the degree of randomness in synthesized speaker identities for forget prompts.

2 RELATED WORKS

2.1 MACHINE UNLEARNING

Machine unlearning emerged as a process of making a model forget specific knowledge while main-
taining its overall performance (Bourtoule et al., 2021; Nguyen et al., 2022; Xu et al., 2024) as
privacy concerns over personal data grew, such as RTBF (Voigt & Von dem Bussche, 2017; Bertram
et al., 2019; Mirzasoleiman et al., 2017). Early MU techniques focused on adjusting the pre-trained
model’s parameters to remove the influence of specific data within the training set (Guo et al., 2019).
Thus, Exact Unlearning, a method of retraining the model without data to forget from scratch, was a
predominant golden standard of MU methods (Bourtoule et al., 2021; Yan et al., 2022; Chen et al.,
2022a; Brophy & Lowd, 2021). Approximate unlearning, a method that removes the impact of spe-
cific data without retraining, has gained prominence for its efficiency and proved particularly useful
for large-scale and generative models (Golatkar et al., 2020; Thudi et al., 2022; Chen et al., 2023;
Warnecke et al., 2021; Heng & Soh, 2024). Research in computer vision (CV) and natural language
processing (NLP) has recently focused on ensuring that generative models like GAN or Diffusion
do not generate specific identities, data, words, or phrases (Zhang et al., 2024; 2023; Gandikota
et al., 2023; Seo et al., 2024; Liu et al., 2024; Lu et al., 2022; Lynch et al., 2024). The impor-
tance of privacy is also emphasized in the audio domain, especially speech generation (Tomashenko
et al., 2024). While unlearning has been explored in natural language description generation through
concept-specific neuron pruning within the Audio Network Dissection (AND) framework (Wu et al.,
2024), its effectiveness for more complex audio generation tasks like ZS-TTS remains untested and
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Figure 1: An overview of ZS-TTS unlearning task and its objective. In a zero-shot setting, an
exactly unlearned model cannot be said to have truly unlearned the forget identity as it can still
generate voices unseen during training. TGU guides random generation when given forget identity
as a prompt to prevent mimicking, while retaining performances on remain identities. Note that
remain identities include speakers unseen during training set.

uncertain. Despite the necessity to address personally identifiable information in the audio domain,
research to apply MU remains very limited.

2.2 ZERO-SHOT TTS

Recently, there have been groundbreaking advancements in large-scale speech generative models,
allowing successful replication of a given voice with just a 3-second audio sample. VALL-E (Wang
et al., 2023), for example, uses an audio codec model like Encodec (Défossez et al., 2022) to rep-
resent speech information as discrete tokens, training an auto-regressive language model. Natural-
Speech 2 ((Shen et al., 2023)) utilizes a latent diffusion model to create a high-quality and robust
text-to-speech system in zero-shot settings. VoiceBox (Le et al., 2024) utilizes conditional flow
matching (Lipman et al., 2022) to perform tasks like zero-shot TTS, noise removal, and style trans-
fer. These approaches all rely on in-context learning, which enables the models to generalize effec-
tively to new voices not encountered during training. Our proposed method is built on the Voicebox
(Le et al., 2024) model which has reached the state of the art as a ZS-TTS model.

3 METHOD

3.1 BACKGROUND : VOICEBOX

The VoiceBox (Le et al., 2024) is a large-scale, text-guided non-autoregressive (NAR) model for
multilingual speech generation and editing. It uses Conditional Flow Matching (CFM) to transform
an initial data distribution p0 (e.g., Gaussian) into the target speech p1 distribution over time t,
governed by the flow field ϕt. The neural network θ is trained to estimate the time-dependent
conditional vector field vt(w, y, xctx; θ), where w = (1− (1− σmin)t)x0 + tx, y indicates frame-
wise linguistic information, x is the original speech representation (e.g., mel-spectrogram), and
xctx = (1−m)⊙x represents the masked version of x with m as the applied mask. By conditioning
on xctx, VoiceBox learns speech style without requiring explicit labels. The evolution of x over time
is expressed as :

dϕt(x)

dt
= vt(ϕt(x), y, xctx); ϕ0(x) = x. (1)

Training minimizes the difference between the designated vector field ut(x|x1), which guides x
towards the target point x1, and the predicted vector field vt(w, y, xctx; θ), using the flow matching

3
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Figure 2: The training procedure for the forget set in (a) the naive SGU framework and (b) the
proposed TGU framework, along with (c) the training procedure for the remain set in both SGU and
TGU.

loss:
LCFM(θ) = Et,q(x1),pt(x|x1)

[
∥m⊙ ut(x|x1)− vt(w, y, xctx; θ)∥2

]
, (2)

where pt represents the probability path at time t, and q denotes the distribution of the target training
data. The Gaussian probability path pt(x|x1) = N (x|µt(x1), σt(x1)

2I) has a mean of µt(x1) =
tx1 and the standard deviation σt(x) = 1− (1− σmin)t. The resulting conditional flow is given by
ϕt(x|x1) = (1− (1− σmin)t)x+ tx1, which describes how x gradually transitions to x1 over time.

3.2 PROBLEM FORMULATION

As the first study to address the key idea of unlearning in ZS-TTS, we define the problem as follows.
Let S be the set of all speakers, and let DS refer to a dataset that comprises pairs of transcribed
speech (xs, y), where x is an audio prompt uttered by s ∈ S, and y is its corresponding transcription.
When (xs, y) is given as input to the original ZS-TTS model θ capable of replicating any given voice
style, the model generates synthesized speech:

θ(xs, y) ≈ x̂spk=s
y , (3)

where x̂spk=s
y refers to a speech x that delivers the given text y in the voice style of speaker s.

In the context of MU, S is divided into two distinct subsets: forget speaker set F , the set of speakers
the model is intended to forget, and remain speaker set R = S − F , the set of speakers the model
is intended to retain. As each speaker s belongs to either F or R, DS can also be divided into DF

and DR : DF includes all data pairs (xf , y) for speaker f ∈ F , and the remaining DR consists of
all data pairs (xr, y) for speaker r ∈ R.

Given θ pre-trained on DS , and the parameters of unlearned ZS-TTS model (θ−) should be trained
with the following twofold objective:

• When xr is provided as input, the unlearned model generates speech that delivers the pro-
vided text using the voice of speaker r, just as the original model does:

θ−(xr, y) ≈ x̂spk=r
y . (4)

That is, the quality of generating correct speech with respect to transcribed content, how-
ever, should be retained to meet the expectations of the pre-trained model.

4
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• Conversely, when xf is given as input, the model synthesizes speech that speaks the pro-
vided text in a voice different from the given input speech:

θ−(xf , y) ≈ x̂spk ̸=f
y . (5)

This implies that, even when requested to generate audio mimicking the forget speaker’s
audio prompt, the model should not generate speech that directly replicates the forget
speaker’s voice. Beyond simply avoiding the same voice style, the generated speech should
also avoid being fixed in a specific style that could lead to tracing back to the forget
speaker’s identity. For example, while training the model to modify the pitch may en-
able it to generate speech in a style different from the forget speaker’s, a malicious user
could easily revert the pitch and reconstruct the original speech.

3.3 PROPOSED APPROACH : TEACHER-GUIDED UNLEARNING

In line with the objectives outlined earlier, the synthesized output from an ideal unlearned ZS-TTS
model must not only diverge from replicating the forget speaker’s style but should also avoid being
fixed in any specific voice style. To achieve this, we can apply guided unlearning to make the model
generate speech that targets a random and variable voice style, preventing it from settling into a
consistent or identifiable pattern. However, to train the model to generate the given text y in a
random voice style, it requires a pair (xspk ̸=f , y), where the speech audio xspk ̸=f uttering y aligns
frame-wise with that of (xspk=f , y). Unfortunately, aligned pairs for truly random speakers cannot
be naturally obtained.

As an alternative, for speakers in the remain set DR, we can extract an aligned pair (xr, y), and
for speakers in the forget set, we can similarly extract (xf , yf ). Thus, a simple approach to tackle
this challenge would be to concatenate those two pairs as if they form a single sample, then mask
the xr part and set this as the target for generation (Figure 2-(a)). However, the issue with this
naive Sample-Guided Unlearning (SGU) is that masking can only be applied to the entirety of xr,
and not selectively in the middle of the concatenated speech. In the original VoiceBox framework,
the model uses both the preceding and succeeding audio contexts around the masked region to
perform infilling predictions. But in this case, the model would only have access to the unmasked
portion from the opposite side (xr) for infilling, which severely limits its ability to leverage both
contexts. Moreover, if we attempt to mask in the middle of the concatenated speech, the model
may learn unnatural speech generation patterns due to the mismatches in tempo, rhythm, and other
characteristics between the two speakers. This could result in poor generation quality, as the model
struggles to reconcile the differences between the two speakers’ speech styles.

To address this, we propose a machine unlearning method for ZS-TTS, named Teacher-Guided Un-
learning (TGU), where we generate text-speech aligned target samples using the pre-trained teacher
model itself to guide the unlearning process effectively. Specifically, we suggest utilizing the fact
that when θ is conditioned solely on y, it generates speech with linguistic content based on y, but
the resulting voice style varies depending on the initialization of x0, i.e., Gaussian noise, leading
to the synthesis of different voice styles. Using θ(y) as target guidance thus assures that at each
initialization, the model generates varying voice styles, reducing the risk of reproducing identifiable
information on forget speaker’s voice:

θ−(xf , y) ≈ θ(y). (6)

As Figure 2-(b) illustrates, when a pair of speech and text, xf and y, is provided as input, the pre-
trained model θ first generates speech conditioned only on the textual features y. This generated
sample x̄ is then used as the target sample that the model θ− should produce when xf and y are
given as conditions. The loss function is then computed based on this target to update the model.
Note that parameters of θ− are initialized with those of θ.

LCFM-forget(θ
−) = Et,q(x1),pt(xf |x1)

[
|m⊙ ut(x|x̄)− vt(w

f , y, xf
ctx; θ

−)|2
]
, (7)

where x̄ = θ(y) and wf = (1− (1− σmin)t)x0 + tx̄.

In addition to ensuring effective forgetting of the target speaker, it is important to maintain the
original ZS-TTS performance for speakers other than the forget speaker. To achieve this, we utilize

5
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the remain set Dr, which excludes the forget speaker from the original training dataset. As depicted
in Figure 2-(c), when the xr is provided as its input, the θ− is trained with the same objective as the
original θ, specifically through the use of the CFM Loss :

LCFM-remain(θ
−) = Et,q(x1),pt(xr|x1)

[
∥m⊙ ut(x|xr

1)− vt(w
r, y, xr

ctx; θ
−)∥2

]
, (8)

where wr is same operation as w.

Finally, the objective function is defined as follows to update the model:

Ltotal = λLCFM-remain + (1− λ)LCFM-forget, (9)

where λ is set to 0.2, a hyper-parameter that controls the weighting between the losses.

3.4 PROPOSED METRIC: SPK-ZRF

Conventionally, evaluation methods on MU such as completeness (Wang et al., 2024), JS-
divergence, activation distance and layer-wise distance merely compare the performance gap be-
tween forget and remain set. However, a model exhibiting consistent patterns on the forget set
is not necessarily well unlearned, as these patterns can be exploited to reverse-engineer the forget
speaker’s voice. Therefore, such evaluations can be misleading, and an appropriate metric should
assess the extent to which the model exhibits random behaviors when generating speech for the
forget set. Epistemic Uncertainty, another existing metric in unlearning domain evaluates how little
information about the forget set is present in model parameters (Becker & Liebig, 2022). However,
applying this method is not suitable when representations in model layers contain deeply entangled
information. A low Epistemic Uncertainity in ZS-TTS models cannot indicate that the model has
forgotten speaker-specific information instead of performance of audible speech generation. To this
end, we suggest a novel metric to evaluate randomness in synthesized speech’s speaker identity
named speaker-Zero Retrain Forgetting metric (spk-ZRF), a metric that evaluates the degree of ran-
dom behavior of speech generation isolated from speech generative performance, inspired by Zero
Retrain Forgetting metric (Chundawat et al., 2023).

Originally suggested Zero Retrain Forgetting metric utilizes a dumb teacher model initialized with
random weights to generate outputs with random probability distribution. In the case of ZS-TTS
unlearning, this is not directly applicable as we aim to randomize only on forget voices’ character-
istics, not the overall generated content. Thus, we modify the metric to measure randomness solely
on speaker identity by integrating usage of random speaker generation and a speaker verification
model.

To evaluate an unlearned model θ− on a given a test dataset DS = {(xs
yi
, yi)}ni=1, we generate two

comparable speech for each i-th sample (xs
yi
, yi) : θ−(xs

i , yi) and θ(yi). Across n samples, each
θ(yi) will synthesize a random speaker’s identity, forming a random probability distribution. To
obtain this random probability distribution, speaker embeddings sθ(xs

i ,yi) and sθ(yi) are extracted
using a same speaker verification model. Each embedding is converted into a probability distribution
with the softmax function, and the Jensen-Shannon divergence (JSD) (Lin, 2006) between each pair
of speaker embeddings is calculated as follows:

JSDi = 0.5×DKL
(
Softmax(sθ(xs

i ,yi)) ∥ Mi

)
+ 0.5×DKL

(
Softmax(sθ(yi)) ∥ Mi

)
, (10)

where
Mi =

1

2

(
P (sθ(xs

i ,yi)) + P (sθ(yi))
)
. (11)

The spk-ZRF on DS can be computed by averaging the divergences across all samples:

spk-ZRF = 1− 1

n

n∑
i=1

JSDi. (12)

A spk-ZRF closer to 1 would illustrate the distribution of speaker identities generated by θ− being
nearly as random as those generated by θ without an audio prompt. Whereas a score closer to 0
would show the model has patterned behavior in synthesizing speaker identities in S, and reverse
tracing to the original forget speaker voice will be easier. Details of implementations are elaborated
in 4.2.
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Table 1: Quantitative results on LibriSpeech test-clean evaluation set (-R) and the forget evaluation
set (-F). LL and LH indicate LibriLight and LibriHeavy, respectively. ⋄ refers to the reported value
in the original paper. ”-” refers to unavailable values.

Methods Data Finetune steps WER-R↓ SIM-R↑ WER-F↓ SIM-F↓
Ground Truth - - 2.2 - 2.5 -

Original⋄ LL - 1.9 0.662 - -
Original LH - 2.1 0.649 2.1 0.708

Exact Unlearning LH - 2.3 0.643 2.2 0.687
Fine Tuning LH 145 K 2.2 0.658 2.3 0.675

NG LH 9.5 K 6.1 0.437 5.0 0.402
KL LH 32.5 K 5.2 0.408 47.2 0.179

SGU (naı̈ve) LH 145 K 2.6 0.523 2.5 0.194
TGU (proposed) LH 145 K 2.5 0.631 2.4 0.169

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

Dataset. We trained the original VoiceBox model on LibriHeavy(Kang et al., 2024), a speech corpus
consisting of 50,000 hours of data. LibriHeavy is derived from LibriLight(Kahn et al., 2020) and
comprises English speech from 6,736 speakers, with accompanying transcriptions for each audio
sample. For the forget set, we randomly selected 10 speakers from the LibriHeavy corpus, each
having an average of 20 minutes of speech audio. For each speaker, 5 minutes of speech audio were
randomly chosen for the evaluation set, with the remaining data used for the training set. To evaluate
zero-shot performance, we used unseen LibriSpeech test-clean set Panayotov et al. (2015). Please
refer to Appendix B for further detailed information.

Baseline Methods. We applied four different approximate machine unlearning methods to the
VoiceBox (Le et al., 2024) First, the Exact Unlearning method involves training a new model from
scratch using only the DR. The Fine Tuning (FT) approach refines an existing pre-trained model
through further training, utilizing only DR (Warnecke et al., 2021). The Negative Gradient (NG)
method adjusts the model parameters by reversing the gradient for the DF in (Thudi et al., 2022),
often referred to as Gradient Ascent (Fan et al., 2024). The selective Kullback-Libeler divergence
(KL) method applied in (Li et al., 2024; Chen & Yang, 2023) implements the pre-trained model
as a teacher and maximizes the KL divergence between predicted outputs when a forget speaker’s
sample is input, while minimizing for remain speakers.

Model Configuration. As previously mentioned, we applied both baseline machine unlearning
methods and the proposed method to VoiceBox (Le et al., 2024), using the same configuration.
Please refer to Appendix B for more details on the training and inference settings for each baseline
method, the proposed method, the duration predictor, and the vocoder.

Evaluation Metric. For quantitative evaluation, we used three metrics: Word Error Rate (WER),
Speaker Similarity (SIM), and the proposed spk-ZRF method. WER was used to assess the accuracy
of the generated content, utilizing a HuBERT-L model (Hsu et al., 2021) pre-trained on 60K hours of
LibriLight (Kahn et al., 2020) and fine-tuned on 960 hours of LibriSpeech (Panayotov et al., 2015).
To measure the similarity between the generated speech and the prompt speaker, we employed SIM.
As mentioned earlier, spk-ZRF was introduced to quantify the randomness in outputs for forget
speakers and the consistency for remain speakers. Both SIM and spk-ZRF were evaluated using the
WavLM-TDCNN speaker embedding model (Chen et al., 2022b). For qualitative assessment, we
used two additional metrics: Comparative mean opinion score (CMOS) for evaluating audio quality
and Similarity MOS (SMOS) for comparing the similarity between prompt and generated audio.

7
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4.2 QUANTITATIVE EVALUATION

4.2.1 CORRECTNESS AND SPEAKER SIMILARITY

Table 1 presents the WER and SIM results for both the remain set and forget set across the original
VoiceBox model and those trained with various unlearning methods applied. As introduced in Sec-
tion 3.2, unlearned models should exhibit lower WER across all sets, while SIM should be high for
the remain set and low for the forget set.

The Exact Unlearning and Fine Tuning (FT) methods exhibit performance comparable to the orig-
inal model across both evaluation sets. These methods either completely exclude the forget set
during training or focus additional training on the remain set. This suggests that simply excluding
forget speakers from training is insufficient to protect voice style privacy, as the ZS-TTS model still
effectively replicates the speech style of unseen speakers.

For the NG method, training had to be limited to 9.5K steps to prevent instability, as the gradient for
the forget set became unbounded during extended training, causing the model to fail. Even with this
adjustment, the NG method performes poorly, showing high WER and low SIM scores on both sets,
likely due to the entanglement between speaker style and linguistic content in the VoiceBox training
process, which makes it challenging for this method to disentangle the two aspects effectively.

Among all methods evaluated, TGU consistently achieves the best results, aligning most closely
with our unlearning objectives. The SIM scores for the forget set with TGU fall within the range
of 0.169, which corresponds closely to the similarity scores observed between actual audio samples
from different speakers, demonstrating that TGU effectively generates voices distinct from the forget
speaker prompts. While SGU also exhibits some level of success in reducing similarity for the forget
set, it is significantly less effective than TGU, especially in maintaining performance on the remain
set. Notably, TGU maintaines an average SIM score of 0.631 for the remain set, showing only a
2.8% decrease compared to the original model, indicating a high level of retention for the original
speaker identity’s style. In contrast, SGU suffers a substantial drop of 21%, demonstrating that
it struggles to preserve the model’s ability to replicate the prompt speaker’s voice. For detailed
information on the ground truth SIM values, refer to Appendix C.

In terms of WER, both TGU and SGU achieve results comparable to the original model, indicating
that they do not compromise the correctness of speech generation. However, TGU outperforms SGU
overall, proving to be the most effective unlearning method by balancing the dual goals of forgetting
specific speaker identities while retaining the capability to generate high-quality speech for retain
speakers. We also provide extensive experiments to measure model robustness in Appendix G.

4.2.2 RANDOMNESS

Table 2 represents spk-ZRF results conducted on remain set and forget set across the original Voice-
box model and four unlearned models that were finetuned using the forget set. To grasp a truly
unlearned model’s behavior, randomness on data with no knowledge of, the goal is to exhibit high
spk-ZRF on forget set while performing similar to original model on the remain set. It should be
recognized that a spk-ZRF too low on the remain set is not ideal, as it means the model simply has
learned to act in a consistent way. An unlearned model should generate outputs with similar distri-
bution as the pretrained model across the remain set, while generating very random across the forget
set.

Interpreting spk-ZRF alongside Table 1, we can notice behaviors of NG and KL fail to truly unlearn
the forget set. While low SIM-F scores can be misleading, spk-ZRF successfully functions to depict
that NG and KL both show very low scores in randomness. A spk-ZRF lower than the original model
implies that when unlearned using NG and KL methods, the model fails to act in a way an unlearned
model should. Rather, the model is simply responding with a same overfitted behavior - generating
with no preservation of linguistic knowledge. This aligns with our analysis previously made, models
unlearned with NG and KL fail to penalize only on the speaker identity, causing overall poor model
performance.

Evaluated on randomness, SGU and TGU both show increased randomness across the forget set,
while maintaining lower spk-ZRF across the random set. It can be acknowledged that both methods
respond to the forget set with significant randomness in generation of speaker voices, while retain-
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Table 2: spk-ZRF results on LibriSpeech test-clean evaluation set (-R) and the forget evaluation
set (-F). The result of ANOVA test on JSD, which was averaged to calculate spk-ZRF, indicated
significant differences in spk-ZRF across remain set (F (4, 768) = 116.31, p < 0.0001) and forget
set (F (4, 1188) = 807.97, p < 0.0001) among models.

Methods spk-ZRF-R spk-ZRF-F↑
Original 0.857 0.846

NG 0.840 0.842
KL 0.838 0.810

SGU (naı̈ve) 0.860 0.866
TGU (proposed) 0.857 0.871

Table 3: Qualitative results on Librispeech test-clean evaluation set (-R) and the forget evaluation
set (-F).

Methods CMOS-R↑ CMOS-F↑ SMOS-R↑ SMOS-F↓
Ground Truth 1.00 ± 0.26 0.22 ± 0.29 3.70 ± 0.70 3.89 ± 0.69

Original 0.00 ± 0.00 0.00 ± 0.00 4.47 ± 0.38 4.44 ± 0.36

SGU (naı̈ve) -0.15 ± 0.27 -0.53 ± 0.28 3.12 ± 0.83 1.45 ± 0.31
TGU (proposed) -0.02 ± 0.19 -0.45 ± 0.23 4.67 ± 0.26 1.28 ± 0.24

ing knowledge across the remain set. TGU outperforms all other methods on spk-ZRF-F, exerting
random speaker identities across the forget set. It also outperforms SGU, which shows increased
randomness across the remain set by 0.003 compared to the original model. While NG is lower on
spk-ZRF across the remain set, TGU retains randomness similar to the original model.

4.3 QUALITATIVE EVALUATION

4.3.1 HUMAN SUBJECTIVE EVALUATION

Table 3 presents the qualitative results for TGU and SGU. To compare the speech quality after ap-
plying machine unlearning methods, we evaluated SGU and TGU using CMOS, with the original
VoiceBox as the baseline. The results show that TGU generates speech quality more similar to the
original VoiceBox compared to SGU, demonstrating TGU’s ability to better preserve high-quality
speech generation. In terms of SMOS, TGU also outperforms SGU by generating voice styles for re-
main speakers that are more similar to the prompt speech. For forget samples, TGU produces voices
that are more distinct from the prompt, effectively limiting the replication of the forget speaker’s
voice style. These results indicate that TGU not only more effectively restricts the model’s ability
to mimic forget speakers but also better preserves the original performance of the ZS-TTS system.
Refer to F for subjective evaluation settings and participant demographics.

4.3.2 VISUALIZATION

We visualize the results of TGU and SGU using t-SNE, focusing on the model outputs for eight
speakers selected from each sets. The speaker embedding vectors of the generated outputs were
used for this analysis. Figure 3 presents the t-SNE results for both methods. For the forget set,
SGU and TGU both show that the embedding vectors of the generated speech are scattered and
intermixed, regardless of the prompt used. This suggests that both unlearning methods effectively
limit the ZS-TTS system’s ability to replicate the forget speakers’ voices. In contrast, for the remain
set, TGU demonstrates strong clustering between the actual speaker embeddings and the embeddings
of the generated speech, showing consistent results for each speaker. However, SGU fails to achieve
the same degree of clustering, with some embedding vectors intermixing rather than forming tight
clusters. This indicates that, compared to SGU, TGU better preserves the performance of the original
ZS-TTS system, providing more consistent results for the remain set.
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Figure 3: t-SNE analysis for remain and forget sets. Samples from the same speaker are represented
with the same color, where circles with ‘ A’ indicate actual speaker embeddings and crosses with
‘ G’ represent the embeddings of the model-generated speech.

5 LIMITATIONS

We applied machine unlearning to ZS-TTS, showing its effectiveness in restricting voice replication.
Despite the TGU unlearned model showing effective unlearning, performance drops exist. Overall,
TGU increases WER in both remain set and forget set. It can be inferred that introducing randomness
compromises model’s abilities in generating correct and audible content. We also evaluated model’s
performance across general tasks of ZS-TTS to evaluate how implementing randomness may affect
overall performance in Appendix H. We believe this is due to removal of speaker identities and
implementation of random behavior in model’s knowledge. Works that aim to preserve model’s
zero-shot capabilities and diversity should be pursued in future research of unlearning in ZS-TTS.

Moreover, as the number of forget speaker increases, the model’s overall performance declines sig-
nificantly. Ideally, effective machine unlearning should be achievable in a zero-shot or few-shot
manner, particularly in scenarios where access to the original training dataset is limited. However,
both the baseline methods and TGU rely on partial of the original training data to maintain ZS-TTS
performance while limiting the ability to replicate forget speakers.

6 CONCLUSION

In this paper, we applied and analyzed machine unlearning techniques for the first time in the context
of Zero-Shot Text-to-Speech (ZS-TTS). Unlike in other generative AI domains, simply removing a
speaker’s data during training is insufficient to protect the privacy of the speaker’s voice style in
ZS-TTS. This highlights the need for techniques like machine unlearning to address this issue. Ad-
ditionally, we proposed a novel framework called Teacher-Guided Unlearning (TGU). By leveraging
a pre-trained model to guide the unlearning process, TGU effectively limits the model’s ability to
replicate the voices of forget speakers while maintaining the performance of the original ZS-TTS
system. Our experiments showed that TGU results in only a 2.6% decrease in speaker similarity
(SIM) for remain speakers, while maintaining competitive WER scores compared to the original
model. Furthermore, to assess the model’s ability to generate random voices for forget speakers
and prevent reverse engineering attacks that could reveal a speaker’s identity, we introduced a new
metric, spk-ZRF. This metric evaluates the degree to which the unlearned model generates speech
independently of the forget speaker, thus enhancing privacy protection.
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A DATASET DETAILS

For the training set, we utilized the LibriHeavy dataset (Kang et al. (2024)), which contains approx-
imately 50,000 hours of speech from 7,000 speakers. To create the forget set, 10 speakers were
randomly selected from the dataset. To avoid any bias in speaker selection, we first analyzed the
distribution of audio duration per speaker in the LibriHeavy dataset. The lower and upper quar-
tiles of audio duration per speaker were 440 seconds and 4,603 seconds, respectively. We randomly
sampled 10 speakers whose audio durations fell within this range. For each selected speaker, ap-
proximately 300 seconds of audio was randomly chosen as the evaluation set, while the remaining
audio was designated for the unlearning training set. The selected speakers are: 789, 1166, 3912,
5983, 6821, 7199, 8866, 9437, 9794, and 10666.

To evaluate the performance of the existing ZS-TTS model, specifically its ability to replicate the
voices of unseen speakers, we used the LibriSpeech test-clean set ((Panayotov et al., 2015)). It is
important to note that there is no overlap between the speakers in the LibriSpeech test-clean set and
those in LibriHeavy (Kang et al. (2024)). Following the experimental setup outlined in the original
VoiceBox paper (Le et al. (2024); Wang et al. (2023)), for both the forget and remain evaluation
sets, a different sample from the same speaker was randomly selected, and a 3-second segment was
cropped to be used as a prompt.
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B IMPLEMENTATION DETAILS

B.1 DATA PREPROCESSING

Speech is represented using an 80-dimensional log Mel spectrogram. The audio, sampled at 16 kHz,
has its Mel spectral features extracted at 100 Hz. A 1024-point short-time Fourier transform (STFT)
is applied with a 10 ms hop size and a 40 ms analysis window. A Hann windowing function is then
used, followed by an 80-dimensional Mel filter with a cutoff frequency of 8 kHz. We used the Mon-
treal Forced Aligner (MFA) (McAuliffe et al., 2017) to phonemize and force-align the transcripts,
utilizing the MFA phone set, a modified version of the International Phonetic Alphabet (IPA), while
also applying word position prefixes.

B.2 DURATION PREDICTOR AND VOCODER

We used the regression version of duration predictor proposed in Le et al. (2024). The duration
predictor has a similar model structure to the audio model, but with 8 Transformer layers, 8 attention
heads, and 512/2048 embedding/FFN dimensions. It is trained for 600K steps. The Adam optimizer
was employed with a peak learning rate of 1e-4, linearly warmed up over the first 5K steps and
decayed afterward. HiFi-GAN (Kong et al., 2020), trained on the LibriHeavy (Kang et al., 2024)
English speech dataset, is employed to convert the spectrogram into a time-domain waveform.

B.3 MODEL CONFIGURATIONS

The audio feature generator is based on a vanilla Transformer (Vaswani, 2017), enhanced with U-Net
style residual connections, convolutional positional embeddings (Baevski et al., 2020), and AliBi
positional encoding (Press et al., 2021). This model has 24 Transformer layers, 16 attention heads,
and an embedding/feed-forward network (FFN) dimension of 1024/4096, with skip connections
implemented in the U-Net style.

B.4 PRETRAINING

Following Le et al. (2024), we trained the original Voice model for 500K steps. Each mini-batch
consisted of 75-second audio segments, and the Adam optimizer was employed with a peak learning
rate of 1e-4, linearly warmed up over the first 5K steps and decayed afterward. All training was
conducted using mixed precision with FP16.

B.5 TEACHER-GUIDED UNLEARNING

The Teacher-Guided Unlearning (TGU) model was trained for 145 K steps. Each mini-batch in-
cluded 75-second audio segments. The Adam optimizer was employed with a peak learning rate of
1e-4, which was linearly warmed up during the first 5 K steps and subsequently decayed throughout
the remainder of the training. To facilitate the unlearning process, samples from the forget set xf

were randomly selected with a 20% probability in each mini-batch.

B.6 SAMPLE-GUIDED UNLEARNING

To apply SGU in the ZS-TTS system, we set up the training process such that when a forget sample
xf is provided, a random retain sample xr is selected as the target for training. To train VoiceBox,
both speech data and aligned text segments are required. However, as discussed in Section 3.3, it
is not naturally feasible to collect utterances from different speakers that share the same alignment.
To address this, the SGU training was set up as follows: Let yf and yr represent the corresponding
text segments for xf and xr, respectively. We generated a mask corresponding to the length of xr,
training the model to predict xr based on this masked input. The text segments yf and yr were
concatenated along the time axis and used as input, with the same process applied to the other input
components, such as wf and wr.

During the training phase, the model was fine-tuned for 145K steps using the same configuration
as TGU. Additionally, forget samples xf and remain samples xr were selected and trained in a 2:8
ratio.
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B.7 EXACT UNLEARNING & FINE-TUNING

The Exact Unlearning method was trained with the same configuration as the pretraining, except that
only the dataset Dr was used. Similarly, the Fine Tuning (FT) method involved additional training
for 145K steps, exclusively using the dataset Dr.

B.8 NEGATIVE GRADIENT

Implementation of Negative Gradient (NG) method follows that of (Thudi et al., 2022). On the
pre-trained VoiceBox model, we provide only the samples from the forget speaker set F . The loss
is inverted to counteract loss minimization previously occurred in the pre-trained model’s weights.
Given that approaches based on reversing the gradient often suffer from low model performance and
unstable training, we searched for learning rate with best evaluation score {1e-5, 1e-6, 1e-7, 1e-8}.
For evaluation, we use the checkpoint of 9.5K fine-tuned with Adam optimizer with a peak learning
rate of 1e-8, linearly warmed up over first 5K steps and decayed after.

B.9 SELECTIVE KULLBACK-LEIBLER DIVERGENCE

Numerous studies have adopted a loss function that focuses on utilizing a teacher-student framework
with selective Kullback-Leibler divergence loss (Li et al., 2024; Chen & Yang, 2023). We implement
this loss so the student model is fine-tuned to maximize KL-divergence between teacher and student
output when xf is given as input, and minimize when xr is given :

LKL = λDKL(θ(x
r, yr)∥θ−(xr, yr))− (1− λ)DKL(θ(x

f , yf )∥θ−(xf , yf )) (13)

where λ is a hyper-parameter between 0 and 1 to balance the trade-off. Similar to NG, unbounded
reverted loss on KL-divergence is prone to low model performance. We searched for learning rate
with best evaluation score from {1e-5, 1e-6, 1e-7, 1e-8}, and λ from {0.5, 0.8}. For evaluation,
we use the checkpoint of 32.5K fine-tuned with Adam optimizer with a peak learning rate of 1e-8,
following warm up and decay of previous methods using λ = 0.5.

B.10 INFERENCE CONFIGURATIONS

During inference, classifier-free guidance (CFG, Ho & Salimans (2022); Le et al. (2024)) was ap-
plied as follows:

v̂t(w, x, y; θ) = (1 + α) · vt(w, xctx, y; θ)− α · vt(w; θ) (14)

where α is fixed at 0.7, as specified in the original paper. Refer to Appendix E for information on
the impact of α.

We utilized the torchdiffeq package (Chen, 2018), which offers both fixed and adaptive step
ODE solvers, using the default midpoint solver. The number of function evaluations (NFEs) was
fixed at 32 for both the evaluation stage and the generation of x̄ in the proposed method.
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C SPEAKER SIMILARITY IN REAL SAMPLES

Figure 4: Boxplot of speaker similarity on same speaker’s and different speakers’ audio. Each are
evaluated with 100 pairs of random speech audio in LibriSpeech test-clean subset.

From the LibriSpeech dataset, we make extensive analysis to get a grip of actual speaker similarity
scores between pairs of audios from the same speaker, and that consisting of different speakers.
For the same speaker SIM, we retrieved random 100 pairs of audio, each pair comprised of different
audio from random speaker. For the different speakers SIM, we retrieved random 100 pairs of audio,
with each pair comprised of audio from different speakers.

As shown in Figure 4, audio with same speaker’s voice return SIM with 0.66 as mean, 0.57 and 0.76
each being lower and upper quartiles. With different speakers, mean of SIM is 0.09, lower and upper
quartiles are 0.02 and 0.17.
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D QUANTITATIVE RESULTS OVER THE TRAINING PROCESS

(a) WER-R (b) WER-F

(c) SIM-R (d) SIM-F

Figure 5: Quantitative results for TGU and SGU across different training stages. The top row shows
the WER for both methods, while the bottom row displays the SIM results at each stage of the
training process.

E IMPACT OF α

In the CFG used during inference, vt(w; θ) does not incorporate linguistic information y or the
surrounding audio context xctx, making it relevant to our formulation. To assess the impact of CFG
on unlearning, we experimented with different values of α. Table 4 presents the results of these
experiments.

According to the results, when α is set to 0, removing the influence of vt(w; θ), the model showed
the highest SIM-F value, indicating increased reliance on xctx. On the other hand, when α was set
to 0.3 or higher, the model consistently produced lower SIM-F values.

Table 4: Quantitative results based on the alpha value of CFG during the TGU inference process

WER-R↓ SIM-R↑ WER-F↓ SIM-F↓
α = 0.0 3.4 0.552 2.6 0.265
α = 0.3 2.6 0.583 2.3 0.198
α = 0.7 2.4 0.631 2.4 0.169
α = 1.0 2.5 0.629 2.4 0.187

F QUALITATIVE EVALUATION

Table 5 and Table 6 present the instructions used for evaluating CMOS and SMOS in the qualitative
assessment. Both the CMOS and SMOS evaluations were conducted with 25 participants.
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Table 5: Comparative mean opinion score (CMOS) Instruction

Introduction
Your task is to evaluate how the quality of two speech recordings compares,
using the Comparative mean opinion score (CMOS) scale.

Task Instructions
In this task, you will hear two samples of speech recordings, one from each system.
The purpose of this test is to evaluate the difference in quality between the two files.
Specifically, you should assess the quality and intelligibility of each file in terms of
its overall sound quality and the amount of mumbling and unclear phrases in the recording.

You should give a score according to the following scale: -3 (System 2 is much worse)
-2 (System 2 is worse)
-1 (System 2 is slightly worse)
0 (No difference)
1 (System 2 is slightly better)
2 (System 2 is better)
3 (System 2 is much better)

Table 6: Similarity mean opinion score (SMOS) Instruction

Introduction
Your task is to evaluate how similar the two speech recordings sound in terms of
the speaker’s voice.

Task Instructions
In this task you will hear two samples of speech recordings.
The purpose of this test is to evaluate the similarity of the speaker’s voice between
the two files.
You should focus on the similarity of the speaker,
speaking style, acoustic conditions, background noise, etc.

You should give a score according to the following scale:
5 (Very Similar)
4 (Similar)
3 (Neutral)
2 (Not very similar)
1 (Not similar at all)

F.1 DEMOGRAPHICS OF HUMAN EVALUATORS

To assess the quality of synthesized speech, we conducted quantitative evaluation with total of 25
participants. Participants were recruited for individuals physically and cognitively capable of normal
activities with ages between 20 and 45 years with high proficiency in English. Recruitment and study
procedures were conducted with participants’ informed consent. Additionally, all participants were
general listeners with no prior expertise in audio or speech synthesis.

F.2 EVALUATION CONDITIONS

All participants completed a brief instructive session with an evaluator to familiarize themselves
with the evaluation criteria. Evaluation was conducted in a quiet enclosed environment with the
same listening device and volume levels, under the instructions of 5 and 6. Each evaluation took less
than 10 minutes.
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Figure 6: Scatter plot of model’s generated outputs on remain speakers that have similar timbres
with forget speakers. The x-axis represents the maximum SIM score between a remain sample with
any forget sample. The y-axis represents the similarity between the remain sample (used as audio
prompt) and the TGU-generated speech. The red dashed line indicates average similarity for all
remain samples in the evaluation set.

G EXPERIMENT ON UNLEARNING ROBUSTNESS

While Table 1 shows TGU has effectively unlearned in overall, we go through extensive experiments
to evaluate unlearning robustness. Figure 6 illustrates how TGU unlearned model behaves on remain
speaker audio prompt with high similarity scores with a forget speaker.

To evaluate TGU’s robustness in handling remain speakers with high similarity to forget speakers,
we identified remain samples that exhibited highest speaker similarity (SIM) scores with any forget
sample. These remain samples were used as audio prompts to generate speech with TGU unlearned
model. Then, we measured the similarity between the remain sample prompt and the generated
output. The results are visualized on 6. A Pearson correlation analysis was conducted to assess the
relationship between the similarity of remain samples to forget speakers (x-axis) and the similarity
of remain samples to TGU-generated speech (y-axis). Obtained statistic is 0.1396 while the p-value
is 0.0003. This indicates a weak positive correlation with statistical significance, meaning that TGU
generated speech is generally independent of the remain samples’ similarity to forget speakers. Had
the model not been robust and mistreated remain samples as forget speaker samples, there would
have been a strong negative correlation. Additionally, we found that on remain samples with high
similarities with forget speakers (maximum SIM with forget speakers (x-axis) greater than 0.4), the
mean of TGU-generated speech similarity (y-axis) is 0.593. This highlights TGU’s robustness in
handling remain speaker prompts, even when they closely resemble forget speakers.

H EXPERIMENT ON GENERAL TASKS

To provide deeper insights on how TGU unlearning may affect model performances on general tasks
where ZS-TTS is used, we experiment the original model and TGU on transient noise removal.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 7: Transient noise removal results on LibriSpeech test-clean set

Methods WER↓ SIM↑
Clean speech 4.3 0.689
Noisy speech 47.9 0.213

Original 2.4 0.666
TGU (proposed) 2.5 0.641

Table 8: Diverse speech sampling results on LibriSpeech test-other evaluation set

Methods WER↓ FSD↓
Ground truth 4.5 164.4

Original 8.0 170.2
TGU (proposed) 7.9 177.8

H.1 TRANSIENT NOISE REMOVAL

ZS-TTS can be applied in tasks where editing is required to remove undesired noise in speech
datasets. To prevent having to go through repetitive and inefficient recording to obtain clean speech,
ZS-TTS can generate clean audio for the noisy segment. We follow experimental settings of (Le
et al., 2024) to analyze how TGU unlearned model performs on the task of transient noise removal.

From LibriSpeech test-clean dataset samples of durations 4 to 10 seconds, we construct noise at a
-10dB signal-to-noise ratio over half of each sample’s duration. Table 7 suggests that TGU provides
comparable performances to that of the original model. While seemingly low, diminished model
performances on transient noise removal is present relatively to the original model. We suggest that
this is a trade-off from successful unlearning. While the model has unlearned to generate voice
characteristics of the forget dataset, smaller knowledge-base and implemented randomness could
have affected its reconstructing abilities.

H.2 DIVERSE SPEECH SAMPLING

Being able to generate diverse speech is also an important feature of ZS-TTS models as it ensures
realistic and high-quality speech that resembles natural distributions. This is necessary in applica-
tions such as speech synthesis or generating training data for speech related tasks (e.g., Automatic
Speech Recognition). The diversity of generated speech samples is measured with Fréchet Speech
Distance (FSD) as suggested in (Le et al., 2024). From generated speech samples, we extracted
self-supervised features using 6th layer representation of wav2vec 2.0 (Baevski et al., 2020). The
features were reduced to 128 dimensions with principle component analysis and used to calculate
the similarity of distributions with real speech. High FSD indicates lower quality and minimal di-
versity, while low FSD refers to high quality and more diversity. For this experiment, α is set to 0 to
ensure more diversity. Ground truth FSD is obtained by partitioning the LibriSpeech test-other set
into half while ensuring equal distribution of data per speaker across both subsets

Experimental results in Table 8 show that FSD increases in TGU unlearned model. Because this task
does not require input audio prompts, diverse speech sampling relies relatively heavier on datasets
used to train the model. Implementing machine unlearning and thus inducing forgetting of specific
speakers causes a trade-off in model’s diversity. Meanwhile, it is noticeable that TGU achieves
a lower WER in this case. We can infer that TGU obtains robustness in relatively noisy dataset
comparable to the Original model.
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I INFERENCE SAMPLES

Figures 7 and 8 show the Mel-spectrograms for the ground truth, original VoiceBox, SGU, and TGU
inference results on forget speaker samples. These figures represent samples from speakers 789 and
6821, respectively. The ground truth Mel-spectrogram corresponds to the audio where the same
speaker as the prompt reads the same transcription.

(a) Ground Truth

(b) Original

(c) SGU Sample 1

(d) SGU Sample 2

(e) TGU Sample 1

(f) TGU Sample 2

Figure 7: Mel-Spectrogram Comparisons: GT, Original, SGU Samples, and TGU Samples for the
forget speaker 789
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(a) Ground Truth

(b) Original

(c) SGU Sample 1

(d) SGU Sample 2

(e) TGU Sample 1

(f) TGU Sample 2

Figure 8: Mel-Spectrogram Comparisons: GT, Original, SGU Samples, and TGU Samples for the
forget speaker 6821
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