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ABSTRACT

Vision-language-action models (VLAs) in autonomous driving, which focus on
3D scene understanding and motion planning, confront a fundamental modal-
ity gap: pretrained only on image-text corpora, they inherently lack native 3D
spatial comprehension. This limitation either yields coarse-grained textual in-
terpretations of the driving scene or necessitates the integration of computation-
ally expensive, auxiliary 3D modules. In this work, we challenge this prevail-
ing convention by introducing ImageDriver, a novel VLA framework that cir-
cumvents the dependency on 3D data. It reformulates scene understanding and
planning by recasting them as 2D object detection and 2D trajectory prediction
tasks, executed directly on the image plane. By leveraging the intrinsic multi-
modal grounding of Vision-Language Models (VLMs), our method achieves a
four-step pipeline: egocentric consistent perception, geometrically grounded rea-
soning, high-level meta-action prediction, and trajectory prediction, all in a fully
differentiable and low-latency manner. We propose a two-stage knowledge-seeded
policy optimization paradigm, which first fine-tunes ImageDriver on a multi-task
mixed dataset to learn driving knowledge. To holistically optimize the agent’s
reasoning and decision-making, we further employ the Group Relative Policy Op-
timization (GRPO) algorithm to enforce end-to-end policy coherence across the
complete VLA pipeline, from perception to planning. The superiority and versa-
tility of our method are fully demonstrated by achieving state-of-the-art or com-
petitive performance across detection, meta-action and trajectory prediction tasks.

1 INTRODUCTION

The emergence of Vision-Language Models (VLMs) (Achiam et al., 2024; Bai et al., 2025) has sig-
nificantly advanced the end-to-end autonomous driving paradigm. In contrast to conventional meth-
ods (Hu et al., 2023; Jiang et al., 2023; Chen et al., 2024) that train perception and policy modules
from scratch on driving data only, Vision-Language-Action Models (VLAs) (Jiang et al., 2025; Chi
et al., 2025; Zheng et al., 2025), which build upon VLMs pretrained on web-scale data, integrate
perception (vision), high-level reasoning (language), and decision-making (action and trajectory)
abilities, thus promising superior generalization and a more nuanced understanding of complex sce-
narios.

However, the prevailing VLA paradigm confronts a fundamental modality gap. Current powerful
VLMs are typically pretrained on vast corpora of images and text, which grounds their “understand-
ing” firmly in the 2D image plane. Consequently, they lack the native 3D spatial comprehension
that is conventionally considered essential for safe and precise vehicle control. To bridge this gap,
current approaches have bifurcated into two suboptimal strategies, as shown in Fig. 1. The first re-
lies on the VLA to generate coarse-grained textual interpretations of the driving scene (Jiang et al.,
2025; Chi et al., 2025; Yuan et al., 2025), e.g., “There are many vehicles to my left”, which lack the
geometric precision required for accurate motion planning. The second, more common approach
involves integrating auxiliary modules such as vision-based 3D object detectors or Bird’s-Eye-View
(BEV) converters to supply the requisite spatial information (Wang et al., 2025; Zheng et al., 2025).
While functional, this integration is computationally expensive, increases system latency, and cre-
ates a complex, often brittle interface between the core language model and the specialized 3D
perception components.
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In this work, we challenge the prevailing convention that explicit 3D perception and prediction are
prerequisites for end-to-end autonomous driving. We introduce ImageDriver, a VLA that circum-
vents the dependency on 3D data and 3D-aware models. Our key insight is that a feasible and safe
2D trajectory on the image plane should also be feasible and safe in the corresponding 3D space.
ImageDriver employs a four-step pipeline that encompasses perception, reasoning, meta-action pre-
diction, and planning. As shown in Figure 1, in the perception stage, our model takes its native
multi-modal ability to ground its understanding by identifying and localizing all relevant traffic par-
ticipants, e.g., vehicles, pedestrians, and cyclists, as 2D bounding boxes directly on the egocentric
consistent input image. These perceptual outputs are not merely coordinates; they form the factual
basis for the subsequent reasoning stage. Here, the model leverages its vast pretrained knowledge
to analyze the spatial relationships and implied dynamics of the detected objects, culminating in a
high-level, interpretable meta-action. This action, such as “FORWARD, DECELERATE”, repre-
sents the model’s strategic driving intent. Finally, this strategic command guides the planning stage,
which translates the abstract goal into a concrete and precise 2D trajectory on the image plane for the
ego-vehicle to execute. This approach elegantly leverages the intrinsic strength of Vision-Language
Models (VLMs) in multi-modal grounding, allowing the model to reason about and act upon the
rich visual information it was originally trained on.

User: You are an autonomous driving agent and your task is to 
drive safely. Output the pixel coordinates of the vehicle over 
the next 3 seconds. Speed: 5.78 m/s. Forward Acceleration: -
0.92 m/s^2. Leftward acceleration: -0.15 m/s^2.

VLA: <description>There are many vehicles to my left, and there is another vehicle in 
the distance directly in front of me.</description> <think>To avoid a collision, I will 
stop.</think> <answer> (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0) </answer>

(a) Coarse Textual Description 

VLA: <description> I find the several cars: [3D bounding boxes detected by 3D tool or 
integrated 3D encoder].</description> <think> I will keep forward but decelerate as 
there are many cars in the front.</think> <answer> [2.67, -0.08], [5.56, -0.20], [8.34, -
0.48], [11.42, -0.79], [14.59, -1.20], [17.72, -1.69] </answer>

(b) High-Latency 3D Tool Call

VLA: <perception>[{‘bbox_2d’: [363, 239, 402, 274] , ‘label’: ‘car’} , …]</perception> 
<think>The car at [363, 239, 402, 274] is directly ahead and appears close, so I need 
to reduce speed to maintain a safe following distance.</think> <action> FORWARD, 
DECELERATE</action> <answer> [399, 424], [395, 340], [392, 313], [391, 300], [390, 
293], [390, 288] </answer>

(c)Our Drive on Image

Vision & Language Prompt

Figure 1: VLAs for autonomous driving. (a) Describing
and reasoning with coarse-grained text, (b) Employing 3D
tools or modules for perception and reasoning, (c) Our Im-
ageDriver perceives, thinks, and drives on images.

To facilitate this pipeline, we cu-
rated a dataset for Reasoning with
bounding boxes, named nuScenes-
RB-9k dataset from nuScenes (Cae-
sar et al., 2020), a meticulously
annotated collection featuring the
geometrically-grounded planning ra-
tionales between 2D detection and
high-level meta-actions, to train the
model’s reasoning capabilities ex-
plicitly. To holistically optimize
the agent’s behavior, we employ
a two-stage knowledge-seeded pol-
icy optimization training paradigm,
including supervised fine-tuning on
a multi-task mixed dataset, and
reinforcement learning using the
Group Relative Policy Optimization
(GRPO) (Shao et al., 2024b) algo-
rithm. This training strategy enforces
end-to-end policy coherence across
the complete VLA pipeline, ensuring
that all components, from perception
to planning, are jointly optimized.

To sum up, the key contributions
of this work are as follows: (1)
We propose a novel end-to-end VLA
for autonomous driving, named Im-
ageDriver, which uniquely reframes
the entire driving task onto the 2D image plane. (2) We introduce “geometrically-grounded rea-
soning”, which thinks with detected 2D bounding boxes and curated the nuScenes-RB-9k dataset
to support it. (3) We employ a two-stage knowledge-seeded policy optimization training strategy
combining supervised fine-tuning (SFT) with GRPO for knowledge acquisition and incentivization.

Extensive experimental results demonstrate that our ImageDriver is not a compromise but a powerful
alternative. It achieves state-of-the-art or highly competitive performance across the distinct tasks
of detection, meta-action prediction, and trajectory prediction. These results validate the superiority
and versatility of our approach, presenting a more efficient, elegant, and computationally streamlined
path toward building intelligent and capable autonomous driving systems.
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2 RELATED WORK

2.1 VISION-LANGUAGE MODELS

The success of large language models (LLMs) (Yenduri et al., 2023; Brown et al., 2020; Touvron
et al., 2023) has catalyzed the development of vision-language models (VLMs) (Radford et al.,
2021; Zhu et al., 2023; Chu et al., 2023), which integrate visual and textual data for richer mul-
timodal representations. Pioneering work like CLIP (Radford et al., 2021) aligns image and text
features from separate encoders, enabling zero-shot prediction of correct image-text pairs. Building
on these foundations, many contemporary VLMs—such as LLaVA (Liu et al., 2023)—conduct vi-
sual instruction tuning to acquire the multimodal instruction-following ability by learning a vision-
language projector. wen2.5VL (Bai et al., 2025) and InternVL-3 (Zhu et al., 2025), in particular,
employ native multimodal frameworks instead of CLIP to achieve superior multimodal understand-
ing and grounding, enabling complex capabilities such as open-world object localization. More
recently, DeepSeek-R1 (Guo et al., 2025) enhances the reasoning abilities of LLMs and VLMs by
applying Group Reward Policy Optimization (GRPO) (Shao et al., 2024b) with simple, rule-based
rewards. In this paper, we leverage the intrinsic multimodal grounding capabilities of VLMs, which
are learned from web-scale data, for autonomous driving, and incentivize the reasoning ability of
VLMs for more robust and safe driving.

2.2 AUTONOMOUS DRIVING

Autonomous driving has recently transitioned from traditional modular pipelines, i.e., perception,
motion prediction, and planning, toward end-to-end learning-based paradigms (Hu et al., 2023; Jiang
et al., 2023; Sun et al., 2024). UniAD (Hu et al., 2023) pioneered the integration of all sub-tasks
into a cascaded framework, yielding substantial improvements over modular baselines. Subsequent
works (Jiang et al., 2023; Ye et al., 2023; Chen et al., 2024) adopt bird’s-eye view representations
and generate planning trajectories through multi-stage interaction modeling. With the advent of
vision-language models (VLMs), researchers have increasingly leveraged large language models
(LLMs) and VLMs to enhance perception, reasoning, and decision-making. For instance, several
approaches (Xu et al., 2024; Shao et al., 2024a) incorporate pretrained LLMs to produce driving ac-
tions accompanied by interpretable textual rationales. DriveVLM (Tian et al., 2024) introduces spe-
cialized reasoning modules for improved situational understanding, while DriveMM (Huang et al.,
2024) processes multi-view video and image streams to enhance generalization in vehicle control.
DriveMLM (Wang et al., 2023b) further extends this line by integrating a behavior-planning module
that generates optimal driving decisions with explicit rationales. DriveMoE Yang et al. (2025), built
on the embodied AI framework π0 Black et al. (2024), introduces Action-MoE by training routing
networks to dynamically activate expert modules for diverse driving behaviors. OmniDrive (Wang
et al., 2025) replaced the CLIP visual encoder with a 3D visual encoder to generate object and
map-related tokens, which are input to LLama (Touvron et al., 2023) for the final driving trajectory.
OpenDriveVLA Zhou et al. (2025a) proposes an agent–environment–ego interaction paradigm for
precise trajectory planning, while AutoVLA Zhou et al. (2025b) directly predicts semantic reason-
ing and trajectory plans from visual observations and language prompts. DriveAgent-R1 (Zheng
et al., 2025), AutoDrive-R2, and FutureSightDrive Zeng et al. (2025) employed GRPO and generate
reasoning CoT to incentivize reasoning and self-reflection capacity for VLA.

3 METHOD

3.1 JUSTIFICATION

The central premise of our ImageDriver is that planning directly in the 2D image plane can serve as
a valid and sufficient proxy for planning in 3D world space. This simplification is grounded in the
geometric principles of perspective projection, which preserve critical properties related to trajectory
feasibility and interaction safety. This section provides the theoretical justification for this approach.

Trajectory Feasibility For short-term motion planning, the road surface ahead of the ego-vehicle
can be accurately approximated as a local plane. Based on that, we find that a 3D plane and its 2D
image are related by a homography, i.e., a bijective projective transformation. This bijective map-
ping provides a strong theoretical guarantee: every point on the 3D drivable road plane corresponds

3
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1. Driving Knowledge 
Seeding 

Perception:
Q: Output the bounding boxes of 

traffic participants.
A: <perception> [{‘bbox_2d': [285, 

232, 341, 273], 'label’: 
'car’}, …]</perception>

Meta-Action:
Q: Output the planning 

meta-action.
A: <action> FORWARD,

ACCELERATE </action>

Planning:
Q: Output the 2D trajectory for

next 3 seconds
A: <answer>[399, 424], [395, 340], [392, 

313], [391, 300], [390, 293], [390, 
288]</answer>

2. Policy Optimization

Integrated Control:
Q: Output the perception results, 

meta-action and 2D trajectory.
A: <perception>…</perception> <action> … 

</action> <answer>[399, 424], …
</answer>

Egocentric Consistent 
input image

Mixed-Task Dataset and Multi-Task Supervised Fine-tuning 

Geometrically-Grounded Reasoning:
Q: Output the perception results, think 
     with these objects, and accordingly 
      output meta-action and 2D trajectory.
A: <perception>[{‘bbox_2d’: [363, 239,

402, 274] , ‘label’: ‘car’}, …]</perception>
    <think>The car at [363, 239, 402, 274] 

is directly ahead and appears close, so I 
need to reduce speed to maintain a safe 
following distance.</think> <action> 

     FORWARD, DECELERATE</action>
     <answer> [399, 424], [395, 340], [392, 

313], [391, 300], [390, 293], 
[390, 288] </answer>

Q: Output the perception results, think 
with these objects, and correspondingly 
output meta-action and 2D trajectory.

Knowledge-Seeded 
Vision-Language Model

Responses ! <perception>…
<think>…

<action>…
<answer>…
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Figure 2: Training pipeline of ImageDriver. We propose a knowledge-seeded policy optimization
training process. The first stage introduces nuScenes-RB-9k and uses a multi-task mixed dataset to
seed driving knowledge into the model by SFT. The second stage utilizes GRPO on the complete
VLA pipeline to holistically optimize the agent’s behavior.

to a unique, predictable point on its 2D image projection, and vice versa. Therefore, a continuous
and smooth trajectory planned on the 2D drivable surface is guaranteed to map to a continuous and
smooth trajectory on the 3D road plane. While the real world contains non-planar surfaces (e.g.,
hills, banking), the local planarity assumption is a cornerstone of many validated approaches in au-
tonomous driving and holds true for the vast majority of immediate planning scenarios. This ensures
that a trajectory deemed feasible in 2D is also physically plausible in 3D.

Interaction Safety The safety of our paradigm is justified by an analogy to Configuration Space
(C-Space) planning in robotics. We treat the 2D image plane as a simplified C-space, where the 2D
bounding boxes of other vehicles act as Image-Space Obstacles (I-Space Obstacles). These I-Space
Obstacles form a conservative superset of the actual projected 3D collision risks. This provides a
strong safety guarantee: because a 3D collision must cause a 2D projection overlap, a trajectory that
avoids all I-Space Obstacles is guaranteed to be collision-free. This approach also naturally handles
occlusion. Since an I-Space Obstacle from occlusion is indistinguishable from one indicating a real
collision threat, our model learns a conservative, risk-averse policy by avoiding all such regions.

3.2 KNOWLEDGE-SEEDED POLICY OPTIMIZATION

We present the Knowledge-Seeded Policy Optimization training paradigm of our ImageDriver for
end-to-end autonomous driving. As illustrated in Fig. 2, we perform supervised fine-tuning to seed
driving knowledge into the base model at stage 1 (Section 3.2.1) on a multi-task mixed dataset.
Then, we employ GRPO on the complete VLA pipeline, including perception, reasoning, meta-
action, and trajectory prediction to incentivize the agent’s reasoning ability and holistically optimize
its behavior.

3.2.1 STAGE 1: FOUNDATIONAL KNOWLEDGE SEEDING VIA SFT

The initial stage consists of supervised fine-tuning (SFT), a form of imitation learning designed to
seed the VLA with a foundational driving policy. To this end, we train the model on a comprehen-
sive, multi-task mixed dataset meticulously structured to address several key learning objectives:

Perception We use 2D projected object detection data to preserve the model’s pre-trained visual
grounding abilities and mitigate catastrophic forgetting. To generate 2D bounding box labels, we
follow common practice (Wang et al., 2023a; Tang et al., 2024) and project the ground-truth 3D
annotations from the nuScenes dataset onto the corresponding 2D camera image planes. Please
refer to the Appendix A.2 for more details.
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Meta-Action Prediction We use meta-action prediction data to develop an understanding of high-
level driving intentions. Following the methodology of AlphaDrive (Jiang et al., 2025), we abstract
the continuous ground-truth trajectories from the nuScenes dataset (Caesar et al., 2020) into a dis-
crete set of high-level, interpretable meta-actions. Each meta-action A comprises both a lateral and
a longitudinal component, denoted as Alat and Alon, which are derived based on the trajectory’s ter-
minal state. For lateral action derivation, we define three lateral commands: TURN LEFT, TURN
RIGHT, and FORWARD. The determination is based on the final lateral displacement of the ego-
vehicle’s planned trajectory. Specifically, if the trajectory’s terminal point has a lateral displacement
exceeding τlat to the left of the initial position, Alat is labeled TURN LEFT. If the lateral displacement
exceeds τlat to the right, it is labeled TURN RIGHT. Otherwise, it is categorized as FORWARD. For
longitudinal action Alon, we define four commands: ACCELERATE, DECELERATE, KEEP, and
STOP. These are determined by the trajectory’s final displacement and velocity. If the trajectory’s
terminal point is within a 0.1-meter longitudinal distance of the initial position and the final veloc-
ity is near zero, Alon is classified as STOP. For non-stop trajectories, we compare the next-second
velocity to the initial velocity. Alon is labeled ACCELERATE or DECELERATE if the velocity in-
creases or decreases, respectively, by more than a predefined threshold τvel. If the change in velocity
is within this threshold, Alon is labeled KEEP. We empirically set τlat = 2.0 m and τvel = 0.1 m/s.

Planning We use 2D trajectory data to hone precise, low-level motion planning skills. The 2D
trajectory annotation is obtained using the same projection procedure as perception. Please refer to
the Appendix A.2 for more details.

Integrated Control We employ three-step perception-action-planning sequences to foster multi-
task learning and establish the causal link between observation and execution.

Geometrically-Grounded Reasoning In contrast to disciplines like mathematics and the formal
sciences, which benefit from abundant, high-quality data for training reasoning capabilities, the
nuanced decision-making process in autonomous driving is inherently difficult to capture. Further-
more, the manual annotation of such complex planning rationales is prohibitively expensive. Previ-
ous work (Wang et al., 2025; Chi et al., 2025; Jiang et al., 2025) has leveraged VLMs to generate
Chain-of-Thought (CoT) data. However, these methods typically yield coarse-grained textual inter-
pretations of the scene, resulting in ambiguous references to the objects in the image, while the ge-
ometric precision is essential for robust reasoning and motion planning. To address this deficiency,
we introduce Geometrically-Grounded Reasoning and generate perception-planning rationales by
distilling from advanced VLMs. Our approach prompts the Qwen-VL-Max model with a structured
input comprising the ground-truth driving action A, the vehicle’s ego-state, and the 2D bounding
boxes B2D of surrounding agents. The model is tasked with generating a concise, causal reasoning
process that logically connects the perceived environment to the given action. Finally, the gener-
ated rationales undergo a rigorous manual verification and filtering process, yielding a high-quality
dataset consisting of 9k planning-centric reasoning data, named nuScenes-RB-9k. Please refer to the
Appendix A.3 for more details. We use the four-step sequences from our nuScenes-RB-9k dataset
to bootstrap the model’s explicit reasoning faculties. Through the SFT stage, the model possesses a
strong behavioral prior and can perform basic driving tasks in a manner consistent with the expert
data.

3.2.2 STAGE 2: POLICY OPTIMIZATION VIA RL

Building upon the SFT-initialized model, this phase employs the Group Relative Policy Optimiza-
tion (GRPO) (Shao et al., 2024b) algorithm to incentivize the VLA’s higher-level reasoning and
decision-making faculties. Different from conventional RL methods that depend on critic networks
for value function approximation, GRPO introduces a mechanism based on the pairwise comparison
of multiple candidate responses. This strategic shift away from an explicit value function not only
simplifies the overall architecture but also reduces the computational demands of the training phase
(Please see Appendix A.4). It commences by generating a set of G distinct candidate responses,
denoted as O = {o1, . . . , oG}, for a given input prompt q by sampling from the current policy.
Specifically, we apply several rule-based reward functions to assess the response quality across the
complete VLA output, from perception to planning:

Format Reward Rfmt is designed to enforce a strict and hierarchical output structure. It consists of
three parts: (1) Base structural reward of 1.0 is granted if the generated responses in the form:
"<perception>2D bounding boxes here</perception> <think>thinking

5
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Table 1: Comparison on nuScenes object detection. * indicates sourced from (Tang et al., 2024).
Best mAP within each category are in bold.

Method 2D/3D mAP Car Truck C.V. Bus Trailer Barrier Motor. Bicycle Ped. T.C.

VLM-Based 3D Driving Specialists

OmniDrive-ViT 3D 40.7 57.5 36.4 15.9 40.3 16.5 47.2 41.3 45.7 59.0 57.3

Specialized 2D Object Detector

StreamPETR* 2D 46.5 - - - - - - - - - -
MV2D* 2D 52.3 - - - - - - - - - -
DeformableDETR* 2D 50.2 - - - - - - - - - -
SimPB* 2D 54.1 - - - - - - - - - -

ImageDriver 2D 54.2 66.3 62.3 34.6 78.4 36.2 56.2 56.3 58.1 46.2 47.0

with bounding boxes here</think> <action>predicting meta-action
here</action> <answer>2D trajectory here</answer>", otherwise 0. (2) Per-
ception format reward ensures each bounding box in <perception> tags in in the format
{"bbox 2d": [x 1, y 1, x 2, y 2]}. (3) Trajectory format reward of 1.0 is allocated
for trajectory completeness and consistency, i.e., the planned path described within the ¡answer¿ tag
must consist of exactly six trajectory points for the next 3 seconds at 0.5 interval.

Perception Reward Rpercep We follow previous work (Liu et al., 2025) and use Intersection over
Union (IoU)-based reward. Specifically, a reward of 1 is granted if the IoU between the predicted
and ground-truth bounding boxes exceeds a threshold of 0.5, and 0 otherwise. For multi-object, we
use the Hungarian algorithm to find the matched bounding boxes and compute the mean IoU reward
as the final perception reward.

Meta-Action Reward Raction To evaluate the accuracy of the predicted high-level meta-action, we
compute a reward based on the F1-score, which provides a harmonic mean of precision and recall
between the predicted action and the ground-truth action set.

Trajectory Reward Rtraj We propose a L1 reward Rtraj-2D to prioritizes 2D trajectory adherence.
Specifically, a reward of 1 is allocated if the L1 distance between the predicted and ground-truth 2D
trajectory point is less than 10 pixels, 0 otherwise. Moreover, we re-project the 2D trajectory to the
road plane in 3D space and calculate a sigmoid L2 reward as Rtraj-3D = 2e−w

1+e−w , where w is the L2
distance between the re-projected predicted and ground-truth 3D trajectories.

The final reward is the weighted sum of the above reward terms:

Racc = λfmt ·Rfmt + λpercep ·Rpercep + λaction ·Raction + λtraj ·Rtraj . (1)

3.3 EGOCENTRIC CONSISTENCY

Prevailing Vision-Language-Action (VLA) models often process a multi-view image collage, which
typically arranges front and back camera feeds into separate rows. However, we contend that this
composition introduces a significant egocentric inconsistency. For instance, a lane marking that
appears as a left-turn arrow in the back-view image geometrically corresponds to a right-turn lane
from the ego-vehicle’s perspective, resulting in a counterintuitive and potentially misleading repre-
sentation for robust perception and spatial reasoning. To address this issue, we propose a simple
yet effective modification to the image collage construction: rotating the back view by 180 degrees
prior to the vertical concatenation, as shown in Figure 1&2. The rationale for this transformation
is twofold: (1) It corrects the egocentric inconsistency and establishes a coherent egocentric coordi-
nate for accurate spatial reasoning and planning. (2) The vertical flip inherent in this rotation aligns
the road surface visible at the bottom of the front view with the road surface at the top of the now-
inverted back view, generating a visually continuous road plane across the entire image collage. As a
result, the vehicle’s path, both historical and projected, can be represented as a smooth and unbroken
trajectory that flows seamlessly from the back view to the front view. This holistic representation
simplifies the learning problem, providing the model with a more intuitive and contiguous basis for
comprehending and predicting driving intentions.
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Table 2: High-level meta-action prediction F1 score on the nuScenes dataset. † indicates trained on
nuScenes. Best and second best results within each category are respectively in bold and underlined.

Method Lateral (F1) ↑ Longitudinal (F1) ↑
forward left right keep acc. dec. stop

Qwen2.5VL-7B 64.67 24.15 30.85 40.73 55.14 51.41 41.82

Qwen2.5VL-7B† 94.46 63.00 67.01 57.62 74.35 77.10 75.00

ImageDriver 96.82 75.51 75.71 61.23 81.76 80.19 81.80
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Figure 3: Visualization of 2D trajectories across Qwen2.5-VL-7B, OmniDrive, and our ImageDriver
on the nuScenes validation dataset. The predicted and ground-truth trajectories are depicted in blue
and green, respectively.

4 EXPERIMENTS

4.1 IMPLEMENTATION AND METRICS

We use Qwen2.5-VL-3B and 7B, a powerful open-source VLM, as the base model for ImageDriveer.
Training and inference are conducted on 8 A800 GPUs. The maximum pixels is configured as
720,000. For SFT, i.e., stage 1, we fine-tune the model for 2 epochs on the mixed dataset in a
multi-task manner to seed the model with knowledge about perception, reasoning, high-level meta-
action making, and 2D trajectory prediction. During Stage 2, reinforcement learning, we fine-tune
the model trained by SFT using GRPO to incentivize the reasoning ability of the trained policy.
The number of completions, i.e., G is set to 8. For perception evaluation, we report the mAP for
2D object detection. Since no confidence is assigned to the bounding boxes B̂2D output by VLMs,
we set all the confidences to 1. For meta-action prediction, we use the F1-score for all lateral and
longitudinal meta-action classes. For planning evaluation, we employ the L2 distance (in meters)
between the predicted and ground-truth trajectories, and we report the displacement error at future
horizons of 1s, 2s, and 3s, along with the average error. Additionally, following BEV-Planner (Li
et al., 2024), the Collision Rate and Intersection Rate with the road boundary are adopted to evaluate
the safety of the planning.

4.2 VISUALIZATION

Figure 3 presents a qualitative comparison of our method against other approaches on the nuScenes
dataset. Notably, Qwen2.5-VL-7B struggles to generate accurate predictions, exhibiting significant
trajectory deviations, particularly in turning scenarios. Although OmniDrive demonstrates better
performance, its trajectories are often overly aggressive, with predicted speeds substantially ex-
ceeding the ground truth. In contrast, our method, ImageDriver, consistently generates reliable and
conservative plans that closely align with the ground truth, as explained in Section 3.1.
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4.3 MAIN RESULTS

Perception We first evaluate the perception capability of ImageDriver in Tab. 1. Notably, few VLM-
based autonomous driving methods report object detection metrics, with OmniDrive being the only
exception. OmniDrive replaces the original CLIP (Radford et al., 2021) backbone in LLava Liu
et al. (2023) with the 3D vision encoder of SteamPETR (Wang et al., 2023a), which is trained via a
detection proxy task. However, its mAP is substantially lower than that of SteamPETR (62.0), likely
due to multi-task interference. In contrast, our VLA model achieves state-of-the-art performance,
even compared to specialized 2D object detectors trained on nuScenes (Wang et al., 2023a;c; Zhu
et al.; Tang et al., 2024), despite not being explicitly optimized for 2D object detection.

Table 3: Open-loop trajectory prediction L2 errors (m) on
the nuScenes dataset. (where 1, 2 and 3 indicate sourced
from (Qiao et al., 2025), (Xing et al., 2025) and (Hwang
et al., 2024)). Best results within each category are in bold.

Method L2 Error (m) ↓
1s 2s 3s Avg.

Open-source Generalist VLMs

LLaVA-1.6-Mistral-7B2 1.49 3.38 4.09 2.98
Llama-3.2-11B-Vision-Instruct2 1.54 3.31 3.91 2.92
Qwen2-VL-7B-Instruct2 1.45 3.21 3.76 2.81
DeepSeek-VL2-16B1 0.66 1.68 2.92 1.75
DeepSeek-VL2-28B1 0.37 1.35 2.96 1.56
LLaMA-3.2-11B-Vision-Instruct1 0.52 1.42 2.68 1.54
LLaMA-3.2-90B-Vision-Instruct1 0.66 1.71 3.01 1.79
Qwen-2.5-VL-7B-Instruct1 0.46 1.33 2.55 1.45

Training-based Driving Specialists

UniAD3 0.42 0.64 0.91 0.66
VAD3 0.17 0.34 0.60 0.37
BEV-Planner3 0.16 0.32 0.57 0.35
Ego-MLP3* 0.15 0.32 0.59 0.35

Ours and Key Competitors (Specialized Driving VLAs)

DriveVLM3 0.18 0.34 0.68 0.40
OmniDrive3 0.14 0.29 0.55 0.33
DriveVLM-Dual3 0.15 0.29 0.48 0.31
EMMA (random init) 3 0.15 0.33 0.63 0.37
EMMA 3 0.14 0.29 0.54 0.32
EMMA+3 0.13 0.27 0.48 0.29
Imprompt-VLA 0.13 0.27 0.53 0.30
AutoDrive-R² 7B 0.13 0.19 0.25 0.19

ImageDriver 0.17 0.36 0.66 0.40

Meta-Action The performance of
ImageDriver on meta-action predic-
tion is detailed in Table 2. Our model
demonstrates superior performance
across all lateral (Path) and longitu-
dinal (Speed) action categories when
evaluated by the F1-score. Com-
pared to the base Qwen2.5VL-7B
model, our Supervised Fine-Tuning
stage (Qwen2.5VL-7B†) provides a
dramatic performance uplift, particu-
larly for turning maneuvers where the
‘left’ F1 score improves from 24.15
to 63.00. Building on this strong
foundation, ImageDriver achieves the
highest scores in every category, such
as 96.82 for ‘forward’, 75.51 for
‘left’ turns, and 81.76 for ‘accelera-
tion’. This comprehensive superior-
ity underscores the effectiveness of
our proposed training methodology.

Trajectory Prediction In the open-
loop trajectory prediction task, as
detailed in Table 3, ImageDriver
achieves a competitive average L2 er-
ror of 0.40m. While this significantly
surpasses general-purpose VLMs, it
does not reach the state-of-the-art
precision of specialized models like
AutoDrive-R2 (0.19m). This discrep-
ancy is an anticipated consequence
of our Driving on Image paradigm,
which directly predicts trajectories as
pixel coordinates in the 2D image.
The precision of this approach is in-
herently constrained by the coarse
feature maps produced by computationally efficient large vision models, which often have high
downsampling ratios (e.g., 28x). This quantization introduces a lower bound on the achievable ac-
curacy when the 2D pixel predictions are back-projected into the 3D world. Thus, our model’s
performance represents a trade-off between the benefits of a holistic, image-based reasoning system
and the precision limits imposed by the underlying vision encoder’s resolution. The safety and fea-
sibility of the planned trajectories are evaluated in Table 5, where ImageDriver consistently achieves
state-of-the-art or best-in-class performance. For the Collision Rate, ImageDriver records the low-
est average error of all methods at 0.26%, matching the best specialist models. This underscores its
superior ability to maintain safe distances from other agents. For Intersection Rate, which measures
trajectory feasibility with respect to the drivable area, ImageDriver again shows strong results. It ob-
tains the best average rate (1.77%) among its VLA-based peers. This comprehensive performance
in safety-critical metrics validates the effectiveness of our model’s decision-making process.
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4.4 ABLATION STUDY

Knowledge-Seeded Policy Optimization To validate our two-stage Knowledge-Seeded Policy Op-
timization (KSPO) strategy, we conducted an ablation study (Table 4) by training variants with only
Supervised Fine-Tuning (SFT) or Reinforcement Learning (RL). We find that while both methods
provide performance gains, the SFT-only variant surpasses the RL-only model. This suggests that
RL, on its own, is inefficient at navigating the vast search space of our task’s structured, multi-step
reasoning process (perception → reasoning → meta-action → planning). SFT is therefore essential
for ”seeding” the model with a coherent policy and a foundational understanding of the required
causal chain. The superior performance of the complete ImageDriver model, which combines both
stages, confirms that our hybrid approach is critical: SFT provides the necessary knowledge foun-
dation, which RL then effectively refines to achieve optimal results.

Table 4: Ablation studies of trajectory planning
L2 errors on the nuScenes dataset to validate each
proposed component.

Method L2 Error (m) ↓
1s 2s 3s Avg.

Qwen2.5-VL-7B 0.52 1.46 3.78 1.92
Qwen2.5-VL-7B + SFT 0.21 0.41 0.76 0.46
Qwen2.5-VL-7B + RL 0.23 0.43 0.82 0.49

w/o. Mixed Data 0.18 0.39 0.72 0.43
w/o. Ego. Cons. 0.20 0.45 0.84 0.50

w/o. Rtraj-2D 0.17 0.38 0.70 0.42
w/o. Rtraj-3D 0.18 0.40 0.75 0.44
w/o. Rpercep 0.17 0.37 0.69 0.41
w/o. Raction 0.18 0.39 0.68 0.40

ImageDriver 0.17 0.36 0.66 0.40

Supervised Fine-Tuning During the SFT
stage, we train the base model, Qwen2.5-
VL-7B, on a mixed dataset, which includes
data from 2D object detection, reasoning with
bounding boxes, meta-action prediction, and
trajectory prediction. Moreover, to ensure the
model’s correct understanding and reasoning,
the training images are concatenated in an ego-
centric consistent way. The ablation study fur-
ther investigates the contributions of our mixed
dataset and multi-task training, as well as the
effect of ego-consistent image input. Exclud-
ing the mixed-task training dataset and training
on the proposed nuScenes-RB-9k (‘w/o. Mixed
Data’) results in a performance degradation, in-
creasing the average L2 error to 0.43m. More
significantly, removing our proposed egocentric
consistent input (‘w/o. Ego. Cons.’) leads to a
substantial drop in accuracy, with the error rising to 0.50m. We owe this to the inconsistent ego-
camera representation and discontinuous trajectory. This finding highlights the critical role of a
geometrically consistent input for precise trajectory planning.

Reinforcement Learning We dissect the contributions of each component within our composite
reward function used during the Reinforcement Learning (RL) stage. As shown in Table 5, individ-
ually ablating trajectory reward Rtraj (including Rtraj-2D and Rtraj-3D), IoU-based perception reward
Rpercep and action reward, and each leads to a discernible increase in the average L2 error, rising to
0.42m, 0.44m, 0.41m, and 0.41m respectively. This confirms that these components all positively
contribute to the final planning accuracy. And the most important Reward is Rtraj-3D. We believe this
is because 3D L2-based Rtraj-3D make a great alignment with the evlautaion metric, i.e., L2 error.
Among the reward components, the 3D trajectory reward, Rtraj-3D, proves to be the most impactful.
We attribute its significance to the direct alignment between its formulation, which is based on 3D
L2 distance, and the final evaluation metric of L2 error.

5 CONCLUSION

In this work, we introduce ImageDriver, a novel VLA that challenges the reliance on computation-
ally expensive 3D data in autonomous driving. By reformulating scene understanding and planning
as 2D tasks executed directly on the image plane, our model circumvents the modality gap inher-
ent in many VLAs. This is enabled by the Knowledge-Seeded Policy Optimization paradigm that
uses SFT to seed foundational knowledge, then RL to refine strategic reasoning. Our experiments
demonstrate the efficacy of this approach, with ImageDriver achieving state-of-the-art or competitive
performance across perception, meta-action prediction, and planning. While our approach excels in
safety and high-level reasoning, we acknowledge a trade-off in its fine-grained trajectory precision,
which is constrained by the vision encoder’s resolution. Future work will focus on mitigating this
bottleneck and extending the framework to more complex, long-horizon scenarios.
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6 ETHICS STATEMENT

This research adheres to the ethical guidelines of the ICLR community. Our work focuses on de-
veloping decision-making and planning methods for autonomous vehicles and does not involve the
collection of new, sensitive personal information or data that may compromise individual privacy.

All data used in this study is derived from the nuScenes dataset, a publicly available benchmark
that has been released under an appropriate license for research purposes. The dataset creators have
already taken steps to anonymize data, such as blurring faces and license plates. Our custom-curated
nuScenes-DoI-9k dataset consists only of new annotations and rationales overlaid on this existing
public data. We have carefully ensured full compliance with the dataset’s usage policies.

Potential societal impacts of our work are twofold. On the positive side, our method may advance the
state-of-the-art in autonomous driving, potentially improving road safety, transportation efficiency,
and accessibility. On the negative side, as with any autonomous agent research, there exists the risk
of model failure leading to accidents, as well as the potential for misuse of the underlying technology
in surveillance or military applications. We acknowledge these risks and emphasize that our work is
intended solely for academic research and beneficial civilian applications.

No new human subjects, personally identifiable information (PII), or harmful synthetic content were
involved in this study. We believe the ethical risks of this work are minimal and have been appropri-
ately managed.

7 REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our results, in accordance with established
machine learning research guidelines.

• Code and Data Release: We will release our core implementation code upon publication.
Crucially, we will also release the full annotation files for our nuScenes-DoI-9k dataset,
along with the scripts used for data processing and generation, to allow the community to
build upon our work.

• Datasets: The base dataset used in our experiments, nuScenes, is publicly available and can
be accessed from its official source.

• Hyperparameters: We provide complete details of our ImageDriver’s hyperparameters
(including learning rates, batch sizes, optimizers, training epochs, and reward function
weights for both the SFT and RL stages) in the Appendix.

• Architecture and Model Details: Detailed descriptions of our ImageDriver architecture,
which is based on the Qwen2.5-VL-7B model, are reported in the Method section.

• Computational Environment: All experiments were conducted on NVIDIA A800 GPUs.
We report key computational statistics, including model size, in the experimental section to
facilitate comparison.

We believe these measures are sufficient for independent researchers to reproduce and verify our
results fully.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, we utilized a large language model (LLM), specifically
Google’s Gemini, as a writing assistant. The model was employed to aid in refining, polishing,
and improving the clarity and academic tone of the text based on the authors’ directives and content.
The core scientific contributions—including the initial concepts, experimental design, implemen-
tation, and the final analysis and interpretation of results—are exclusively the work of the human
authors. The LLM was not used to generate novel scientific insights, formulate hypotheses, or con-
duct experiments. All text and suggestions provided by the LLM were critically reviewed, edited,
and verified by the authors to ensure they accurately represent our own work and findings. The
ultimate responsibility for the scientific integrity, correctness, and all claims made in this paper rests
entirely with the authors.

A.2 DETAILS ABOUT DATASET CURATION

2D annotation generation This process leverages the provided sensor calibration and vehicle pose
data to transform 3D coordinates from the global frame to the 2D pixel frame for each camera.
For each point Plidar = (x, y, z) in 3D bounding box corners set Clidar or trajectory waypoint set
Tlidar (including history and future trajectory) in the LiDAR coordinate system, we augment it to
P̃lidar = (x, y, z, 1), which is then transformed to a image point Pimg = (u, v) using:

Pimg = (u, v) = (
u′

d′
,
v′

d′
)

P′img = (u′, v′, d′) = K ·Tcam←egoc ·Tegoc←egol ·Tegol←lidar · P̃lidar,

(2)

with transforms: Tegol←lidar from LiDAR to the ego frame of LiDAR, Tegoc←egol from ego frame
of LiDAR to that of camera, K from camera to image plane. d′ is the depth in the image coordinate
system. Therefore, we can obtain the projected 2D corners C2D of the 3D box corners and the T2D.

Owing to perspective distortion, the projected vertices C2D do not typically form an axis-aligned
rectangle. The final 2D bounding box is therefore derived by first computing the convex hull of the
projected 2D points. This polygonal hull is subsequently clipped against the image canvas bound-
aries and formulated as H = {H = (u, v)}8. The axis-aligned 2D bounding box, denoted B2D, is
then defined by the extrema of the resulting vertices in H, i.e.,

B2D = (min(u),min(v),max(u),max(v)). (3)

Moreover, we observe that the 3D waypoints that are physically proximate to the ego-vehicle and
have depth d′ near 0 cannot be validly projected onto the image plane due to the perspective division
by depth in Eq. 2. To maintain a complete trajectory representation, we represent these unprojectable
waypoints in the final 2D trajectory T2D using dedicated special tokens.

In this way, we obtain the 2D bounding boxes B2D and trajectory points T2D. Note that the history
3D waypoints are typically projected on the back view, and the future points are on the front view.

A.3 PROMPTS TO GENERATE GEOMETRICALLY-GROUNDED PLANNING RATIONALES

The prompt to generate geometrically-grounded planning rationales is given in Figure 5

A.4 GRPO ALGORITHM FOR RL

To quantify the relative quality of all responses given the rewards {R1, . . . , RG}, GRPO normalizes
these rewards by subtracting the group mean and dividing by the standard deviation. then, the
advantage for each response can be calculated as:

Ai =
Ri − mean({Ri}Gi=1)

std({Ri}Gi=1)
, (4)
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where Ai is the relative advantage of the i-th answer. Then a regularization term is incorporated in
the optimization objective function to ensure the updated policy πθ remains close to the old reference
policy πref. This is achieved by adding a KL-divergence term DKL(· ∥ ·) to the loss function:

JGRPO(θ) = Eq∼P (Q),{oi}Ni=1∼πθold
(O|q)[

G∑
i=1

πθ(oi | q)
πθold(oi | q)

· Ai − βDKL(πθ ∥πref)

]
,

(5)

where β acts as a hyperparameter to balance the trade-off between exploration and old policy during
optimization.

A.5 MORE IMPLEMENTATION DETAILS

Our training methodology consists of two distinct stages: Supervised Fine-Tuning (SFT) followed
by Reinforcement Learning (RL).

Stage 1: Supervised Fine-Tuning (SFT). The model is fine-tuned for 2 epochs using a comprehen-
sive, mixed-task dataset. We employ the AdamW optimizer with a peak learning rate of 5.0× 10−6

and a cosine decay schedule. To accommodate large batch sizes, we use a per-device batch size of
2 with 8 gradient accumulation steps, resulting in an effective batch size of 16 per device. Input
images are processed to a maximum resolution of 720,000 pixels, and training is conducted with
bfloat16 mixed-precision.

Stage 2: Reinforcement Learning (RL). Building on the SFT checkpoint, the model is further
optimized for 1 epoch using the Group Relative Policy Optimization (GRPO) algorithm. The policy
is updated with a learning rate of 1 × 10−6 and a global batch size of 16. To regularize the policy
update and prevent catastrophic forgetting of the SFT-learned behaviors, we apply a KL-divergence
penalty with a coefficient of 1×10−2. During training, we sample 8 responses per prompt to estimate
the policy gradient. The reward weight is all set to 1.

A.6 VISUALIZATION OF PERCEPTION

The visualization of 2D object detection of our ImageDriver is shown in Figure 4.

Figure 4: Visualization of 2D object detection of our ImageDriver on the nuScenes validation
dataset.

A.7 COLLISION AND INTERSECTION

The collision rate with other driving agents and the intersection rate with the boundary of the drivable
surface are given in Table 5.
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Table 5: Collision rate and intersection rate with the road of trajectory prediction on the nuScenes
dataset. Best results are in bold.

Method Collision (%) ↓ Intersection (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

Training-based Driving Specialists

UniAD 0.02 0.25 0.84 0.37 0.20 1.33 3.24 1.59
VAD 0.04 0.27 0.67 0.33 0.21 2.13 5.06 2.47
Ego-MLP 0.00 0.27 0.85 0.37 0.27 2.52 6.60 2.93
BEV-Planner 0.00 0.29 0.73 0.34 0.35 2.62 6.51 3.16

Training-based Driving Specialists

OmniDrive 0.00 0.13 0.78 0.30 0.56 2.48 5.96 3.00

ImageDriver 0.00 0.11 0.66 0.26 0.50 1.58 3.24 1.77

PROMPT_FORMAT = """
You are the decision-making AI for an autonomous vehicle. You are analyzing a composite image created by 
stitching a front-facing camera view with a vertically-flipped rear-facing camera view.

Current Speed: {speed} m/s

The traffic participants in the front view have been detected:
{perception}

Your Task:
Your determined driving decision is to "{action}". Given the current speed and the list of participants, identify 
only the key objects in the front view whose presence and position directly force this decision. For each selected 
object, provide a brief explanation of its impact.

Key Spatial Context:
To accurately judge the position of other vehicles, use the following reference points and rules. In the standard 
bounding box format [x1, y1, x2, y2], the x-coordinates (x1, x2) represent the horizontal position on the image.
1. The top half of the image (area where y < 448) represents the FRONT VIEW. Objects here are in front of your 
vehicle.
2. The bottom half of the image (area where y > 448) represents the REAR VIEW. Objects here are behind your 
vehicle.
3. The center of your current lane, directly in front of your vehicle, corresponds to the horizontal coordinate 
x=392.
4. Calculate an object's horizontal center using (x1 + x2) / 2.
5. If an object's horizontal center is near 392, it is likely in your direct path.
6. If its horizontal center is significantly lower than 392, it is to your left.
7. If its horizontal center is significantly higher than 392, it is to your right.

Important constraints:
1. Present your analysis as a real-time thought process.
2. Please strictly DO NOT include "{action}" in your response to avoid confusion and leakage. For example, do 
not say, "Based on the instruction to decelerate, I conclude..."
3. Keep the explanation concise.
"""

Figure 5: Prompt to generate geometrically-grounded planning rationales.
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