
Learning from Uncertain Data: From Possible Worlds
to Possible Models

Jiongli Zhu1 Su Feng2 Boris Glavic3 Babak Salimi1

1University of California, San Diego 2Nanjing Tech University 3University of Illinois, Chicago

Abstract

We introduce an efficient method for learning linear models from uncertain data,
where uncertainty is represented as a set of possible variations in the data, leading
to predictive multiplicity. Our approach leverages abstract interpretation and zono-
topes, a type of convex polytope, to compactly represent these dataset variations,
enabling the symbolic execution of gradient descent on all possible worlds simul-
taneously. We develop techniques to ensure that this process converges to a fixed
point and derive closed-form solutions for this fixed point. Our method provides
sound over-approximations of all possible optimal models and viable prediction
ranges. We demonstrate the effectiveness of our approach through theoretical and
empirical analysis, highlighting its potential to reason about model and prediction
uncertainty due to data quality issues in training data.

1 Introduction

This paper addresses the challenges of learning from uncertain datasets by employing the framework
of possible world semantics, a well-established concept in AI and database theory [59, 23, 41, 28].
In this approach, uncertainty in a dataset D is conceptualized through a collection of possible
datasets {D1,D2, . . .}, each representing a potential state of the real world, reflecting variations
due to missing entries, errors, inconsistencies, and biases. Given this framework and a learning
algorithm, our objective is to construct a set of models {f1, f2, . . .}, where each model fi is trained
on a corresponding potential dataset Di. This method, that we implement in a system called
ZORRO (ZOnotope-based Robustness Analysis for Regression with Over-approximations), allows
for a thorough evaluation of how data uncertainties affect the robustness, reliability, and fairness of
models in predictive modeling and statistical inference, particularly in scenarios where the ground
truth is unidentifiable, necessitating consideration of all possible dataset variations.

While the framework of possible world semantics is essential for modeling dataset uncertainties, it
poses significant challenges due to the potentially infinite number of scenarios each dataset might
represent. Exploring every possibility and training a model for each is impractical. The concept
of model multiplicity, which highlights situations where models with similar accuracy differ in
individual predictions, has gained traction [7, 42], yet it primarily focuses on competing models
without addressing the full range of dataset variations. Similarly, dataset multiplicity introduced
in [47] recognizes data variations due to uncertainty but [47] only proposed a solution for linear
models with label errors. Our approach expands these ideas by using possible world semantics to
systematically manage uncertainty across all features and labels, thus creating a comprehensive
framework for evaluating model robustness amid data uncertainties.

To address the challenges of learning from uncertain datasets, we employ the method of abstract
interpretation [13]. Utilizing zonotopes—a type of convex polytope well-suited for compactly
representing high-dimensional data spaces [74, 4]—we over-approximate the set of all possible
dataset variations. This framework allows for the simultaneous symbolic execution of gradient descent
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across all possible datasets, compactly over-approximating all possible optimal model parameters as a
zonotope. We demonstrate that for linear regression with ℓ2 regularization (Ridge), our method admits
a non-trivial closed-form solution. The zonotope representation of model parameters enables efficient
inference, facilitating reasoning about the range of possible predictions or of specific parameters.

Contributions. The key contributions of this research are:

1. We introduce an abstract gradient descent algorithm for learning linear regression models from
uncertain data. This method over-approximates data variations using zonotopes and symbolically
executes gradient descent on all possible datasets concurrently. We define and prove the existence
of a fixed point that soundly over-approximates all potential models.

2. Symbolic execution generates intractable polynomial zonotopes for gradients due to non-linear
terms and monomial growth that is exponential in the number of iterations. We use linearization
and order reduction to compactly over-approximate these polynomial zonotopes using linear
zonotopes at each step, introducing an efficient version of abstract gradient descent.

3. The efficient version, however, does not guarantee a fixed point for arbitrary order reduction
techniques. To address this, we develop advanced order reduction techniques that ensure fixed
points and provide a non-trivial closed-form solution for these fixed points in ridge regression.

4. We implement our approach in a system called ZORRO and use it to evaluate the impact of data
uncertainty on linear regression models. Our empirical results and analytical solutions validate
the effectiveness of our approach, demonstrating its efficacy in computing prediction ranges and
verifying robustness.

Related Work. Predictive multiplicity has shown that a single dataset can produce multiple op-
timally fitted models due to variations in training processes [8, 11, 44, 66, 69, 9, 15, 71, 42] or
modifications to training parameters such as random seeds, data ordering, and hyperparameters. For
predictive multiplicity due to missing data, Khosravi et al.[34] address the issue using a probabilistic
method that computes expected predictions for all possible imputations. Our approach can be seen
as an extreme case of multiple imputation [62, 61], where we consider all possible data variations
rather than just a few plausible scenarios. Meyer et al. [47] recently introduced the concept of dataset
multiplicity, using possible world semantics to model how uncertain, biased, or noisy training data
can lead to predictive multiplicity. However, their focus is on uncertainty in training labels, and they
use interval arithmetic for over-approximation of prediction intervals for linear regression. In contrast,
our approach handles arbitrary uncertainty in features and labels during both training and testing
using zonotope-based learning for over-approximation of prediction ranges and model parameters.
We show that interval arithmetic fails to provide tight prediction ranges even for uncertainty in labels.

Our work is broadly related to robust model learning, which ensures robustness against data quality
issues such as attacks [31, 76, 70, 60, 55, 52, 29]. Distributional robustness [6, 53, 65] studies
model reliability against varying data distributions, while robust statistics [19, 18] examines model
performance under outliers or data errors. Our approach provides exact provable robustness guarantees
by exploring the entire range of models under extreme dataset variations, which is crucial for
individual-level predictions and reasoning about the robustness of specific parameters.

Our work is also related to robustness certification, which certifies ML models’ robustness against
data perturbations and uncertainties [27, 68, 50]. These efforts mainly focus on test-time robustness,
validating predictions for inputs in the vicinity of a test sample. In contrast, we address training-time
robustness, considering the effects of possible datasets on training models. Closest to our approach is
the work by Meyer et al. [46] for decision trees and Karlas et al. [33] for nearest neighbor classifiers.
We use zonotopes to over-approximate prediction ranges for linear regression, generating robustness
certificates. While zonotopes have been used for test-time robustness [49, 20, 22, 51], our work is the
first to apply zonotopes for training-time robustness for an iterative learning algorithm.

Approaches for uncertainty quantification (UQ) aim to understand the range of outcomes a model
may produce using Bayesian methods, ensembling, conformal prediction, and bootstrapping [54,
43, 35, 17, 16]. UQ focuses on epistemic and aleatoric uncertainty, stemming from insufficient data,
noisy data, or uncertainty about the model parameters, and does not account for uncertainty due to
systematic data quality issues, such as non-random data errors or missing values [25], which induce
a multiplicity of possible datasets. In this case, UQ methods might underestimate the uncertainty
as they rely on critical assumptions. Bayesian methods, for instance, require correctly specified
priors to accurately model uncertainty, often failing under conditions with unknown or erroneous
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priors [73, 67, 72], while conformal prediction (CP) assumes data exchangeability—a condition that
breaks down when data errors are systematic [21, 75]. In contrast, our approach addresses this distinct
challenge by computing sound over-approximations that guarantee complete coverage of potential
predictions across all variations of the dataset. This sound coverage is essential in high-stakes settings
such as evaluating the robustness of predictive models for medical use.

2 Notation, Problem Formulation and Background

Denote a training dataset D = (X,y) with X = [x1 · · · xn]
T ∈ Rn×d as the matrix of features,

and y = [y1 · · · yn]
T ∈ Rn as the corresponding ground truth labels. Let f(x;w) be a model

parameterized by w ∈ Rp that maps an input data point to a label. A learning algorithm A maps
a training dataset D to the parameters of the trained model, w∗ = A(D). Given a test dataset
Xtest ∈ Rn×d, for any test sample x from Xtest, the function f computes a prediction ŷ = f(x;w∗).

2.1 Learning Possible Models from Possible Worlds

We use possible world semantics to represent the uncertainty in a dataset D.
Definition 2.1 (Possible Datasets). Given an uncertain dataset D, the uncertainty in D can be
represented by a set of possible datasets D⊙: D⊙ = {D1,D2, . . .}.

Each dataset Di ∈ D⊙ is a "possible world", i.e., a hypothetical variation of the dataset D that could
potentially exist in the real world based on our knowledge about the uncertainty in D.
Example 2.2. Consider an e-commerce dataset D where some product price is missing, meaning the
exact price is unknown. Using possible world semantics, we represent this uncertainty with a set of
possible datasets D⊙, each containing a possible clean price, which could be obtained from prices
of the same items on the market.

In App. D, we discuss construction methods for common data quality issues. Our goal is to efficiently
construct the set of all possible models from uncertain data and understand their behavior in making
predictions.
Definition 2.3 (Possible Models and Prediction Range). Given a set of possible datasets D⊙

associated with an uncertain dataset D, the possible models, denoted f⊙, are obtained by applying
the learning algorithm A to each training dataset Di within D⊙ to obtain the set of all possible
optimal model parameters w⊙∗, i.e.,

w⊙∗ = {w∗
i | w∗

i = A(Di),Di ∈ D⊙}
For a test data point x, the viable prediction range V (x) is defined as the interval between the least
upper bound and the greatest lower bound of the outputs produced by all models in f⊙, i.e.,

V (x) =

[
inf

w∗∈w⊙∗
f(x,w∗), sup

w∗∈w⊙∗
f(x,w∗)

]
This prediction range quantifies the minimum and maximum predictions that can be expected for x,
highlighting the variability in model outputs due to differences in the training data. Our framework
supports uncertainty in training and test data. We discuss test data uncertainty in App. F.3.

2.2 Sound Approximation of Possible Models with Abstract Interpretation

The set of all possible datasets associated with uncertain data can be intractable. We use abstract
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interpretation [12] to over-approximate sets of elements of a
concrete domain D (the training data and model weights) with
elements from an abstract domain D♯. Specifically, we use the
abstract domain of zonotopes, a type of convex polytope, to
over-approximate the possible datasets D⊙ using a zonotope
D♯ that has a compact symbolic representation. Instead of
applying the learning algorithm A to each possible dataset to
compute all possible optimal model parameters w⊙∗, we develop an abstract learning algorithm
A♯ that operates directly on the abstract domain of zonotopes. Given D♯, A♯ generates a zonotope
w♯ = A♯(D♯) that over-approximates w⊙∗ (demonstrated in the graph on the right). Intuitively, this
represents the symbolic execution of the learning algorithm across all possible datasets simultaneously.
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Definition 2.4 (Abstract Domain). Let D be a concrete domain. An abstract domain for D is a set D♯

paired with two functions:

Abstraction α : P(D) → D♯ Concretization γ : D♯ → P(D)
which satisfy the following condition for any subset S ⊆ D: γ (α(S)) ⊇ S. Two abstract elements d1
and d2 are equivalent, written as d1 ≃♯ d2, if γ (d1) = γ (d2).

Def. 2.4 ensures that the abstract element α(S) associated with a set S through application of
the abstraction function α encodes an over-approximation of S. We will use an abstract element
D♯ = α(D⊙) to over-approximate the possible worlds of an uncertain training dataset D⊙. We
discuss abstraction functions α for specific types of training data uncertainty in App. D.
Definition 2.5 (Abstract Transformer). Consider a function F : D1 → D2 on concrete domains D1

and D2. An abstract transformer F ♯ : D1
♯ → D2

♯ over-approximates F in the abstract domain:

∀S ∈ P(D) : γ
(
F ♯(α(S))

)
⊇ F (S)

An abstract transformer is exact (does not loose precision) if ∀d ∈ D♯ : γ
(
F ♯(d)

)
= F (γ (d)).

Importantly, (exact) abstract transformers compose (see App. B.2, Prop. B.1) and, thus, we can
construct an abstract transformer for complex functions from simpler parts.

To over-approximate the set of possible model parameters w⊙∗, we will develop an abstract trans-
former A♯ for the learning algorithm A to get γ

(
A♯(D♯)

)
⊇ w⊙∗.

Symbolic Abstract Domains and Zonotopes. We consider a symbolic abstract domain Ψ of
vectors and matrices (marked with ·♯) with elements that are polynomials ψ over variables E = {ϵi}.
The concretization of a polynomial ψ is the result of evaluating ψ on all assignments e : E → [−1, 1],
encoded as vectors [−1, 1]| E |: γ (ψ) = {ψ(e) | e ∈ [−1, 1]| E |}. We lift concretization to vectors
and matrices through point-wise application. Such an object z♯ is typically referred to as a polynomial
zonotope or zonotope if all symbolic expressions are linear (see App. C.2). The concretization of z♯

is: γ
(
z♯
)
=
{
z♯(e) | e ∈ [−1, 1]| E |}.

3 Exact Abstract Transformers for Learning Linear Models

Given an uncertain training dataset D⊙, we aim to over-approximate the set of possible optimal
linear models w⊙∗ = {w∗

1 ,w
∗
2 , . . .}, where w∗

i ∈ Rp represents the optimal parameters of a linear
model trained on Di ∈ D⊙. These optimal parameters are the fixed point of the sequence {wk

i }∞k=0

generated by: wk+1
i = Φ(wk

i ) where the operator Φ : Rp → Rp captures one step of gradient
descent, i.e., Φ(w) = w − η∇L(w), for a learning rate η and a loss function L(w) [57].

In the abstract domain, we use the zonotope representations D♯ and w♯ to abstract the possible
datasets D⊙ and the set of possible model weights w⊙∗. While it is theoretically possible to compute
symbolic expressions for the standard closed form solution for linear regression, this can result in
large expressions that contain fractions with polynomial numerators and denominators and, thus,
computing prediction intervals based on such expressions is computationally infeasible (see App. L).
Instead, we over-approximate the optimal parameters using an abstract operator Φ♯

exact : w
♯ → w♯

that generates a sequence of abstract elements {w♯ k}∞k=0:

w♯ k+1 = Φ♯
exact(w

♯ k),

where the abstract operator Φ♯
exact given by Φ♯

exact(w
♯) = w♯ − η∇L(w♯) captures one gradient

descent step in the abstract domain. Specifically, for any loss function L whose gradient ∇L consists
of linear or polynomial expressions, such as the mean squared error (MSE) loss, Φ♯

exact is an exact
abstract transformer. This follows from the existence of exact abstract transformers for addition and
multiplication over polynomial zonotopes [37] and the fact that abstract transformers compose (see
App. E, Prop. B.1 and Prop. E.1).

Proposition 3.1. The abstract gradient descent operator Φ♯
exact is an exact abstract transformer for

the concrete gradient descent operator Φ. Formally, for any abstract w♯,

γ
(
Φ♯

exact(w
♯)
)
= Φ(γ

(
w♯
)
),
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Unfortunately, the sequence {w♯ k}∞k=0 does not have a fixed point as the highest-order symbolic
terms in w♯ k are multiplied with symbolic terms in the gradient. Thus, w♯ k+1 = Φ♯

exact(w
♯ k) has

terms of higher orders than any term in w♯ k. To identify when the abstract model weights represent
all fixed points in the concrete domain, we define abstract fixed points using concretization.
Definition 3.2 (Fixed Point of Abstract Gradient Descent). An abstract model weight w♯ ∗ is a fixed
point for an abstract transformer F ♯ for the gradient descent operator Φ if,

γ
(
w♯ ∗,D♯

)
= γ

(
F ♯(w♯ ∗),D♯

)
.

Here, γ (·, ·) denotes the joint concretization of w♯ ∗ and D♯ (see App. C.2 for more details).

Any abstract fixed point w♯ ∗ over-approximates all possible optimal model weights w⊙∗.

Proposition 3.3. Consider an abstract transformer F ♯ for the gradient descent operator Φ. Let w♯ ∗

be a fixed point according to Def. 3.2. Then it holds that γ
(
w♯ ∗) ⊇ w⊙∗.

As we demonstrate in App. F.3, w♯ ∗ can also be used to compute prediction ranges. In general, an
abstract fixed point is not guaranteed to exist for every abstract transformer for Φ. While Φ♯

exact
as defined above has a fixed point (see Prop. F.1 in the appendix), two significant barriers remain.
First, the representation size of the polynomial zonotope w♯ i for abstract model parameters grows
exponentially in i, the number of the steps of abstract gradient descent. Additionally, testing for
convergence is challenging, as checking for containment is already NP-hard for linear zonotopes [39].

4 Efficient Sound Approximation for Learning Linear Models

In this section, we present an efficient abstract gradient descent method for ridge regression that
guarantees a fixed point and addresses the exponential growth of generated abstract model parameters.
The core idea is to use the linearization and order reduction techniques introduced in the following to
deal with intractable polynomial zonotopes. We develop a specific order reduction technique that
admits a fixed point and enables us to find a closed-form solution for the fixed point.

4.1 Gradient Descent With Order Reduction

A linearization operator L maps a polynomial zonotope z♯ to a linear zonotope ℓ♯ that
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over-approximates z♯: γ
(
L(z♯)

)
⊇ γ

(
z♯
)
. An order reduction operator R takes

a linear zonotope ℓ♯ as input and returns another linear zonotope ℓ♯ of reduced
order (representation size) such that: γ

(
R(ℓ♯)

)
⊇ γ

(
ℓ♯
)
. Specific linearization and

order reduction operators are discussed in App. G. The graph on the right shows
the progression of the zonotope of parameters toward a fixed point from a random
initialization by applying 200 iterations of the following abstract gradient descent
operator Φ♯. The number inside each zonotope indicates its corresponding iteration.
After 200 iterations the resulting zonotope is close to a fixed point shown in red and computed using
techniques we introduce in the following. This operator first linearizes the gradient zonotope using L,
subtracts it from the current abstract model parameters w♯, and then reduces the order of the resulting
zonotope using R:

Φ♯(w♯) = R
(
w♯ − L

(
η∇L(w♯)

))
, (1)

This operator is an abstract transformer for the gradient descent operator (Prop. H.1). While each
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step can be computed efficiently by bounding the order of the resulting zono-
tope, Φ♯ may not always converge to a fixed point. The graph on the left
illustrates a real example where, despite the existence of a zonotope contain-
ing all optimal possible parameters (shown again in red), abstract gradient
descent with linearization and order reduction keeps diverging, generating
larger and larger zonotopes due to over-approximation error. In the following,

we develop an order reduction operator that ensures abstract gradient descent with linearization
converges to a fixed point for linear regression with ℓ2 regularization. Additionally, we derive a
closed-form solution for this fixed point. The red dotted zonotope in the graphs represents the fixed
point generated by our method.
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Decomposition of Gradients. A core idea in our approach is to decompose the abstract dataset
into real and symbolic parts and use an order reduction operator that allows for the decomposition of
the abstract gradient descent operator into components processing the real and symbolic parts in a
specific evaluation order. Specifically, we observe that the components of the abstract training dataset
D♯ = (X♯,y♯) can be decomposed into a sum of a real part (without error symbols) and a symbolic
part (containing only symbolic terms). Furthermore, the abstract model weight w♯ produced by Φ♯

can be decomposed as shown below. wR is the real part of the zonotope and does not contain any
error symbols, w♯

D contains only symbolic terms with error symbols that also occur in D♯, and w♯
N

contains only symbolic terms introduced by linearization and order reduction, hence does not contain
any error symbols from D♯ since these methods introduce fresh symbols.

X♯ = XR +X♯
S , y♯ = yR + y♯

S w♯ = wR +w♯
D +w♯

N

The key observation that enables our approach is that one step of abstract gradient descent can now
be decomposed into three components:

Φ♯(w♯) = ΦR(wR) + Φ♯
D(wR,w

♯
D) + Φ♯

N (wR,w
♯
D,w

♯
N ) (2)

where

ΦR(wR) = wR − η ·
(
2

n
(XR

TXRwR −XR
TyR) + 2λwR

)
Φ♯

D(wR,w
♯
D) = w♯

D − η ·
(
(2λI +

2

n
XR

TXR)w
♯
D +

2

n
(XR

TX♯
S +X♯

S

T
XR)wR − 2

n
X♯

SyR − 2

n
XR

Ty♯
S

)
Φ♯

N (wR,w
♯
D,w

♯
N ) = R

(
w♯

N − η ·

(
(2λI +

2

n
XR

TXR)w
♯
N

+ L
( 2
n

(
(XR

TX♯
S +X♯

S

T
XR)(w

♯
D +w♯

N ) +X♯
S

T
X♯

S(wR +w♯
D +w♯

N )−X♯
S

T
y♯
S

))))
wR

w♯
D

w♯
N

ΦR(wR)

Φ♯
D(wR,w♯

D)

Φ♯
N (wR,w♯

D,w♯
N )

ΦR(wR), the real part updater, only relies on and updates wR, the
real part of the abstract weight, and coincides with the abstract gradient
operator Φ on the real part of abstract weights. Φ♯

D(wR,w
♯
D), the

symbolic data-dependent updater, which is a function of w♯
D itself and

wR, updates w♯
D based on some linear terms and consists of symbols that come from the abstract

dataset D♯ and does not include any non-linear terms; hence applying this does not generate higher-
order terms, so the output is a linear zonotope, and no linearization is needed. Additionally, no
order reduction is needed since the number of error symbols remains constant. Φ♯

N (wR,w
♯
D,w

♯
N ),

the symbolic data-independent updater, is a function of w♯
N itself, w♯

D, and wR. It consists of the
non-linear terms in the gradient, hence performs linearization to over-approximate higher-order terms
and performs order reduction to reduce the number of error symbols, which would otherwise grow
exponentially with the number of iterations. Therefore, it generates the updated w♯

N as a linear
zonotope that does not share any symbol with D♯, i.e., only consists of fresh symbols introduced by
linearization and order reduction. See Appendix I for formal statements and proofs for this section.

Proposition 4.1. Any abstract model weights w♯ ∗ = w∗
R + w♯ ∗

D + w♯ ∗
N is a fixed point for the

abstract gradient descent operator Φ♯ if the following conditions are satisfied:

w∗
R = ΦR(w

∗
R), w♯ ∗

D = Φ♯
D(w∗

R,w
♯ ∗
D ) w♯ ∗

N ≃♯ Φ
♯
N (w∗

R,w
♯ ∗
D w♯ ∗

N ) (3)

Algorithm 1: Abstract Learning

Input: abstract dataset D♯, learning rate η,
regularization coeff. λ, transformation A
w∗

R ← closedFormReal(D♯, λ)

w♯ ∗
D ← closedFormSymb(D♯, λ,w∗

R)

Ξ← genNonDataEq(D♯, λ, η,w∗
R,w

♯ ∗
D )

w♯ ∗
N ← solveFixedPointEq(Ξ, λ, η)

w♯ ∗ ← w∗
R +w♯ ∗

D +w♯ ∗
N

return w♯ ∗

We summarize the fixed point construction process in
Alg. 1. The algorithm takes as input an abstract dataset
D♯, a learning rate η, a regularization coefficient λ,
and a transformation matrix A. The construction or-
der is: first w∗

R, then w♯ ∗
D , and finally w♯ ∗

N , each step
building on the previous results. Closed-form solu-
tions for w∗

R and w♯ ∗
D exist, as detailed in Lem. I.4.

The fixed point of ΦR matches the fixed point of gra-
dient descent on the real part of the abstract data, in-
dependent of other parts. Given w∗

R, w♯ ∗
D is obtained
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by solving a system of linear equations from Eq. (3), ensuring zonotope containment by equalizing
the coefficients of the same error symbols, which is a sufficient condition for zonotope equivalence.
This involves solving a system of m equations, where m is the number of error symbols in D♯.

Projection	A

Interval	
Hull

Interval	Hull

Inverse

Projecti
on	A

-1

Line
ariz

atio
n

Transformation-based
Interval	Hull

Polynomial
Zonotope

To construct w♯ ∗
N in Eq. (3), which involves zonotope equiv-

alence, we encounter a challenge because the RHS and LHS
have different error symbols, making symbolic enforcement
of equivalence inapplicable. We exploit the properties of
the order reduction operator to create a system of linear
equations whose solution yields a fixed point for Φ♯

N . Re-
call that this component uses linearization to handle non-linear terms and applies order reduction
to efficiently manage the order of the resulting linear zonotope. As shown on the right side, the
order reduction operator in Φ♯

N utilizes a transformation matrix A to project the higher-order linear
zonotope into a new space and then over-approximates it using an interval hull—a zonotope that is a
box enclosing the input higher-order zonotope in the projected space—and finally projects this box
back into the original space using A−1. The core idea of transformation-based order reduction [38]
is that interval hulls provide a better over-approximation in the projected space, where the shape of
the input zonotope is closer to a box than in the original space, as shown in the graph on the right.

Φ!
# 𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥𝑥 ≃# 𝑥𝑥𝑥𝑥𝑥

𝑤!∗
(known)

𝑤##∗
(known)

𝑤%#∗
(unknown)

𝑘 !

𝑘
"

𝑘 !

𝑘
" At a fixed point, the input and output interval hulls of Φ♯

N

should be equivalent in the projected space. This equiv-
alence can be effectively enforced by checking for equal
edge lengths along each dimension, which is sufficient for

two interval hulls to be equivalent. This translates to a system of k equations, where k is the number of
model parameters, hence can be done efficiently. We show that this system of equations is guaranteed
to have a solution. We are now ready to state our main technical result.
Theorem 4.2 (Correctness of Alg. 1). Given a set of possible training datasets D⊙ associated with
uncertain data D, and an appropriate abstraction function α in the zonotope abstract domain, and
given a regularization coefficient λ, Alg. 1, when provided with D♯ = α(D⊙) as input, computes
abstract model parameters w♯ ∗ such that:

γ
(
w♯ ∗) ⊇ w⊙∗,

where w⊙∗ denotes the set of all optimal model parameters corresponding to D⊙ for linear regression
with ℓ2 regularization with regularization coefficient λ.

5 Experiments

We implement ZORRO using SymPy [45], a Python library for symbolic computations and evaluate
the system on two key applications: (1) computing prediction ranges and robustness certification for
linear models trained on uncertain data, and (2) robustness of model weights for causal inference using
linear models as a case study. We also measured the performance of ZORRO under varying conditions,
including varying the degree of training data uncertainty. All our experiments are performed on a
single machine with an Apple M1 chip, 8 cores, and 16 GB RAM. Experiments are repeated 5 times
with different random seeds, and we report the mean (error bars denote 3σ). The code is shared at
https://github.com/lodino/Zorro.

Datasets, Baselines, and Metrics. For robustness verification we use regression tasks: for
MPG [58] (392 instances) we predict fuel consumption based on car features (cylinders, horse-
power, weight); for Insurance [30] (1338 instances) we predict medical insurance charges based
on demographics (age, gender, BMI), habits (smoking), and geographical features. We use a 80:20
train-test split and inject random errors to the training data varying (i) the Uncertain Data Percentage,
the percentage of instances that have uncertain features / labels, and (ii) the Uncertainty Radius, the
difference between the minimum and maximum possible value of an uncertain feature expressed as a
fraction of the feature’s domain. There is no direct baseline capturing prediction ranges for learning
linear regression models from uncertain data. Most existing works in robustness certification focuses
on test-time robustness (cf. Sec. 1). The exception is [47], which only supports uncertainty in labels
using interval arithmetic. We compare ZORRO against this approach for robustness certification, re-
ferred to as MEYER in the following, only for training label uncertainty. For robustness verification,
a prediction is robust if the size of the prediction interval is smaller than a given threshold. We use

7

https://github.com/lodino/Zorro


0.0 2.5 5.0 7.5 10.0
0.0

0.5

1.0

Ro
bu

st
ne

ss
 R

at
io Uncertainty Radius: 5 %

0.0 2.5 5.0 7.5 10.0
0.0

0.5

1.0
Uncertainty Radius: 10 %

0.0 2.5 5.0 7.5 10.0
0.0

0.5

1.0
Uncertainty Radius: 15 %

0.0 2.5 5.0 7.5 10.0
0.0

0.5

1.0
Uncertainty Radius: 20 %

Uncertain Data Percentage (%) ZORRO Meyer et al.
(a) Robustness verification with uncertain labels (MPG data).

0.0 2.5 5.0 7.5 10.0
0.0

0.5

1.0

Ro
bu

st
ne

ss
 R

at
io Uncertainty Radius: 4 %

0.0 2.5 5.0 7.5 10.0
0.0

0.5

1.0
Uncertainty Radius: 6 %

0.0 2.5 5.0 7.5 10.0
0.0

0.5

1.0
Uncertainty Radius: 8 %

0.0 2.5 5.0 7.5 10.0
0.0

0.5

1.0
Uncertainty Radius: 10 %

Uncertain Data Percentage (%) ZORRO Meyer et al.
(b) Robustness verification with uncertain labels (Insurance data).

0.0 2.5 5.0 7.5 10.0
0.0

0.5

1.0

Ro
bu

st
ne

ss
 R

at
io Uncertainty Radius: 6 %

0.0 2.5 5.0 7.5 10.0
0.0

0.5

1.0
Uncertainty Radius: 8 %

0.0 2.5 5.0 7.5 10.0
0.0

0.5

1.0
Uncertainty Radius: 10 %

0.0 2.5 5.0 7.5 10.0
0.0

0.5

1.0
Uncertainty Radius: 12 %

Uncertain Data Percentage (%) ZORRO
(c) Robustness verification with uncertain features on MPG data.

Figure 1: Robustness verification on using intervals (MEYER [47]) and zonotopes (ZORRO).

the robustness ratio which is the fraction of the test data receiving robust predictions as a metric in all
robustness verification experiments. The robustness threshold is set to 5% of the label range for the
MPG data, and 0.8% of the label range for the Insurance data. Additionally, we assess the worst-case
test loss using certain test data and uncertain model weights trained from uncertain training data.

5.1 Robustness Verification

Prediction Robustness (Uncertain Labels). Fig. 1(a)(b) compares ZORRO with the baseline
MEYER [47] on a setting where only training labels suffer from uncertainty. We vary the uncertainty
radius and uncertain data percentage. As both systems provide sound over-approximations of
prediction ranges, they may underestimate a model’s robustness. As shown, ZORRO consistently
certifies significantly higher robustness ratios than MEYER. This is due to the fact that MEYER uses
interval-arithmetic which ignores the correlation between model weights in different dimensions
and between the training labels and the weights, leading to overly conservative prediction ranges.
Specifically, for higher uncertainty radius values, MEYER fails to certify robustness for most of the
data while ZORRO still can certify robustness for 100% of the instances.

Prediction Robustness (Uncertain Features). We also evaluate the impact of training feature
uncertainty (not supported by MEYER). Specifically, we introduce uncertainty into the vehicle weight
column for the MPG dataset. As shown in Fig. 1(c), uncertainty in the features results in relatively
less robust predictions compared to uncertain labels for a similar uncertainty radius (Fig. 1(a)). This
is primarily because uncertain features result in more high-order terms in the closed form solution
than uncertain labels which in turn leads to larger over-approximation errors during linearization.

In all experiments the standard deviation of the robustness ratio, calculated by repeating experiments
with different random seeds, is large when the average robustness ratio is close to 0.5. This is
because when the uncertain data percentage is low, the model will be robust no matter which training
instances are selected to be uncertain. Likewise, when the uncertain data percentage is high, then
most predictions will be uncertain no matter which training data points are uncertain.

Parameter Robustness. Next, we apply ZORRO for robustness certification of parameters in linear
regression models, crucial for statistical estimation and causal analysis. We compare the ground
truth coefficients for a treatment variable with the results obtained by ZORRO and through KNN
imputation on a dataset with injected missing data. Fig. 2 shows the treatment variable coefficient and
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Figure 3: Range of the loss, through enumeration of all possible worlds (GT) and ZORRO.

the regression model’s intercept. The intercept captures the baseline level of the outcome variable
when all predictors are zero, highlighting how baseline values can shift under uncertainty. While the
model trained after KNN imputation sometimes correctly identifies the directionality of the treatment
effect, this is not always the case as shown in Fig. 2(b). This highlights the needs for techniques like
ZORRO which guarantee that the true treatment effect is within certain bounds.

5.2 Solution Quality with Varying Uncertainty and Hyperparameters

We evaluate ZORRO’s effectiveness by testing the tightness of the over-approximation and the
accuracy of possible models. Specifically, we examine how the over-approximation quality and
worst-case loss are influenced by the level of data uncertainty and the regularization coefficient.

Varying Data Uncertainty. To evaluate how specific characteristics of the data affect the effec-
tiveness of ZORRO, we injected errors into real datasets, varying uncertain data percentage and
uncertainty range. We compare ZORRO with the ground truth range of the loss computed by enu-
merating all possible worlds (GT). The results shown in Fig. 3(a) demonstrate that ZORRO tightly
over-approximates the ground truth loss range, especially for smaller uncertainty radius values. As
uncertainty increases, the over-approximation gap widens due to the increased coefficient of higher-
order terms in the gradient, which are linearized, leading to higher linearization errors. As shown in
Fig. 3(b), the tightness of ZORRO’s over-approximation is not affected by the dimension of the data.

Effect of Regularization. We investigate the impact of the regularization coefficient on the ro-
bustness of predictions and the worst-case loss of possible models. Following a similar approach
to Sec. 5.1, we introduce uncertainty in both features and labels in the MPG dataset and use zonotopes
with varying levels of uncertainty to over-approximate the training data uncertainty. The results,
shown in Fig. 4, indicate that a higher regularization coefficient leads to more robust predictions, as
regularization tends to "compress" all possible model weights towards the origin. Interestingly, the
worst-case loss shows that λ = 0 is not optimal across all scenarios, especially when the fraction
uncertain instances is high. Instead, a small, positive λ (e.g., 0.02 or 0.025) generally yields the best
worst-case losses. Combining these results, the optimal regularization coefficient should enhance
robustness (i.e., a higher robustness ratio) while maintaining an acceptable worst-case loss. Therefore,
the regularization coefficient should be tuned based on a validation dataset to achieve a small range
of accurate possible models.

6 Conclusions, limitations and broader impacts

We introduce an approach for propagating uncertainty through model training and inference for linear
models. Given an abstract uncertain training dataset that over-approximates the possible worlds
of a training dataset, we develop abstract interpretation techniques to over-approximate the set of
possible models and inference results for this set of models using zonotopes. This is challenging,
as we need to compute fixed points of gradient descent in the abstract domain. Our main technical
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Figure 4: Varying regularization coefficient λ: Robustness ratio (green) and worst-case test loss (red).

contribution is the development of closed-form solutions for such fixed points that can be solved
efficiently. Our techniques efficiently over-approximate models and inference for several use cases,
including robustness verification, uncertainty management in causal reasoning, and improving the
interpretability and reliability of predictions and inferences. This framework can be particularly
valuable in critical applications where data quality and robustness are paramount. While we propose
an effective method for abstract learning of linear models, extending our approach to more complex
models is challenging. Non-linear models, such as neural networks, would require more advanced
linearization and order reduction techniques, as well as parallelization, to manage the increased
complexity of the involved symbolic operations. In addition, adapting our method to a broader classes
of models through efficiently approximating the fixed points remains a challenging and promising
future direction.
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A Linear Regression and Ridge Regression

In this section, we review standard loss functions for linear regression, specifically mean squared
error (MSE) and the loss function used in ridge regression. can be trained via either the closed-form
solution or gradient descent. Specifically, the closed-form solution requires computing the inversion
of the covariance matrix, while the gradient descent only involves matrix addition and multiplication.
Since the linear regression model is convex, gradient descent is guaranteed to converge to the global
optimum.

Suppose we have a training data D = (X,y) with n i.i.d. samples , where the feature matrix
X = [x1 · · · xn]

T ∈ Rn×d, and the labels y = [y1, · · · , yn]T ∈ Rn. Given an input x and
the model weight w, the prediction of the linear regression model ŷ = wTx (the bias term can be
integrated into w, corresponding to an added column in X with constant 1’s).

Loss Functions The mean squared error (MSE) loss on D is defined as shown below.

L(X,y,w) =
1

n

n∑
i=1

(y′i − yi)
2 =

1

n

n∑
i=1

(wTxi − yi)
2 =

1

n
(Xw − y)T (Xw − y). (4)

In practice, regularization terms, e.g., based on the lp-norm of the model parameters, are often added
to the original MSE loss to prevent overfitting by penalizing large weights. Using l2-regularization
with a regularization coefficient λ which determines the strength of regularization is often called
ridge regression. The loss function for ridge regression is:

L(X,y,w) =
1

n
(Xw − y)T (Xw − y) + λ ·wTw. (5)

Gradient Descent for Linear Regression Due to the convexity of linear models, the locally optimal
point, which can be obtained by gradient descent with an appropriate learning rate η, is globally
optimal. In gradient descent, the model weights w are iteratively updated (with some learning rate η)
towards the reverse direction of the gradient ∂L(X,y,w)

∂w . Thus, for ridge regression:

∂L(X,y,w)

∂w
=

2

n
(XTXw −XTy) + 2λw. (6)

Thus, one step of gradient descent Φ is:

wi+1 = wi − η
2

n
(XTXw −XTy) + 2λw (7)

Closed-form Solution for Linear Regression The convex nature of linear models ensures that the
optimal weight w = w∗, which minimizes the loss L(X,y,w), can be computed by establishing
∂L(X,y,w)

∂w = 0:

∂L(X,y,w∗)

∂w∗ =
2

n
(XTXw∗ −XTy) + 2λw∗ = 0

⇒ XTy = (XTX + λnI)w∗

⇒ w∗ = (XTX + λnI)−1XTy

(8)

B Background on Abstract Interpretation

Abstract interpretation [13] is a technique for over-approximating the results of computations over a
set of inputs. This is achieved by associating sets of elements of a concrete domain D with elements
from an abstract domain D♯. In this context, various abstract domains are employed: interval domains
represent variables as ranges of possible values [13], octagon domains allow for constraints between
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pairs of variables within a specific bound [48], and polynomial zonotopes which represent convex
polytopes using polynomial constraints [14]. Abstract interpretation, while originally designed
for static program analysis such as strictness analysis, has also found applications in wide range
of other domains including reachability analysis [1, 5, 2, 10, 36, 4], robustness verification for
neural networks [32, 64], learning robust models by providing bounds on the loss for a set of
inputs [51, 63, 49, 22], and many others.

We now state some important, but well-known, facts about abstract transformers that we utilize in our
derivations.

B.1 Abstract Transformers

In Def. 2.5, we presented the standard definition of abstract transformers as functions over abstract
domains that over-approximate the application of functions in the concrete domains to sets of elements.
To clarify the connection between abstract transformers and possible world semantics observe that
both take a concrete function F : D → D′ and lift it to sets of inputs S ∈ P(D) through point-wise
applications:

F (S) = {F (e) | e ∈ S}
Thus, abstract interpretation is a natural fit for over-approximating PWS by over-approximating sets
of possible worlds using abstract elements and then over-approximates computations with PWS for a
function F using abstract transformers for such a function.

B.2 Abstract Transformers Compose

Importantly, abstract transformers compose. This enables us to decompose a complex computation
into simpler operations and build an abstract transformer for the computation by composing abstract
transformations for these simpler operations.
Proposition B.1 (Abstract Transformers Compose). Consider (exact) abstract transformers f ♯ and
g♯ for functions f and g, then g♯ ◦ f ♯ is an (exact) abstract transformer for g ◦ f .

C Symbolic and Standard Representation of Zonotopes

We now provide a more detailed account of the correspondence between the symbolic and standard
geometric representation of zonotopes and polynomial zonotopes and discuss why matrices and sets
of symbolic matrices as used in our abstract domain can equivalently be thought of as (polynomial)
zonotopes.

C.1 Symbolic vs. Geometric Representation

We defined zonotopes z♯ as vectors Ψd where Ψ denotes polynomials over variables (called error
symbols) E . The concretization of such a symbolic representation of a zonotope is the set of vectors
in Rd that can be derived from z♯ by assigning values from [−1, 1] to each variable ϵ ∈ E . We encode
such variable assignments as vectors [−1, 1]| E |.
Definition C.1 (Polynomial zonotopes - Symbolic Representation). A d-dimensional polynomial
zonotope is a vector z♯ ∈ Ψd [10]. Let m = | E |. The concretization of z♯ is defined as:

γ
(
z♯
)
=
{
z♯(e) | e ∈ [−1, 1]| E |

}
A common measure of the representation size of a zonotope is its order. The order of a d-dimensional
(polynomial) z♯ in symbolic representation is the total number of distinct monomials in z♯ divided
by d:

ORD(z♯) =
#M(z♯)

d
where #M(ψ) denotes the cardinality of the set of distinct monomials in polynomial ψ.

A more common way to represent d-dimensional zonotopes is by fixing a set S of monomials over E
and writing the zonotope as a central point c ∈ Rd and a sum of generator vectors gi ∈ Rd multiplied
with the monomials from S . The generator vector gi assigns a coefficient to monomial S[i] for each
of the d dimensions.
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Definition C.2 (Polynomial zonotopes - Geometric Representation). The geometric representation of
a d-dimensional polynomial zonotope is a sum of a center point c ∈ Rd and the monomials over error
symbols in E from a set S multiplied by coefficients encoded in set of generator vectors gi ∈ Rd:

z♯ = c+

|S|∑
i=1

giS[i]

For the geometric representation, the order of a d-dimensional (polynomial) z♯ over monomials S is
defined as:

ORD(z♯) =
|S|
d

Note that the order of the symbolic and geometric representation of a zonotope are the same. As an
example consider the 4-dimensional polynomial zonotope z♯ shown in symbolic representation (left)
and standard representation (right).

1 + 1ϵ2
3 + 1ϵ1

2ϵ2ϵ3
4 + 2ϵ2

3 + 2ϵ1
2ϵ2ϵ3

0 + 2ϵ2
3 + 3ϵ1

2ϵ2ϵ3
2 + 1ϵ2

3 + 4ϵ1
2ϵ2ϵ3


140
2


︸︷︷︸

c

+

122
1


︸︷︷︸
g1

· ϵ32︸︷︷︸
S[1]

+

123
4


︸︷︷︸
g2

· ϵ12ϵ2ϵ3︸ ︷︷ ︸
S[2]

C.2 Symbolic Matrices and Sets of Symbolic Matrices

We use matrices over symbolic expressions and sets of heterogeneous abstract matrices to represent
the state of a computation and allow matrices from such a set to share variables to encode relationships
between the elements of such matrices. The semantics we associate with such a set is that of a joint
concretization. For S♯ = {Mi

♯}, we define:

γ
(
S♯
)
= {Mi

♯(e) | Mi
♯ ∈ S♯ ∧ e ∈ [−1, 1]n}

zonotopes encode convex sets of points in Rd. We can think of a symbolic matrix M ♯ ∈ Ψn×m

as a n ·m-dimensional polynomial zonotope. Similarly, a set of symbolic matrices S♯ = {Mi
♯ ∈

Rni×mi} can be thought of as a l-dimensional polynomial zonotope Rl where l =
∑

i ni ·mi. If
every symbolic expression in a matrix or set of matrices is a linear combination of error symbols (an
affine form), then such objects can equivalently be represented as zonotopes.

For instance, below on the left we show a zonotope matrix W ♯ (all expressions are linear) and two
possible worlds in its concretization (for assignments [−1,−1] and [0, 0.5]).

W ♯ =

[
ϵ1 + 3 ϵ2
15 22ϵ1

]
W ♯

([
−1
−1

])
=

[
2 −1
15 −22

]
W ♯

([
0
0.5

])
=

[
3 0.5
15 11

]
C.3 Abstract Training Data and Model Weights

Using possible world semantics to compute all possible model weights w⊙∗ given a set of possible
training datasets D⊙, there will be a natural correspondence between a model weight w ∈ w⊙∗

and the dataset D ∈ D⊙ from which is was derived. When training in the abstract domain such
correlations can be preserved by sharing error symbols between the abstract training data D♯ and
corresponding model weights w♯. When such sharing occurs, then it is critical to reason about the
joint concretization when determining whether an abstract fixed point as been achieved. Testing
equivalence (equal concretization) of w♯ alone can lead to false positives, as w♯

1 ≃♯ w♯
2 does

not in general imply (D♯,w♯
1) ≃♯ (D♯,w♯

2). This is due to the fact that a particular concrete
model weight w ∈ γ

(
w♯

1

)
= γ

(
w♯

2

)
may be associated with different datasets in (D♯,w♯

1)

and D♯,w♯
2) because of shared error symbols between D♯ and the abstract model weights. Thus,
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concretization equivalence between model weights only does not imply equivalent results after
application of a gradient decent step.

To further illustrate this consider, two pairs of abstract model weights w♯
1 and w♯

2.

(
w♯

1 =

[
2 + 2ϵ1
3 + ϵ2

]
,D♯ =

[
ϵ1
5

])
(
w♯

2 =

[
2 + 2ϵ3
3 + ϵ2

]
,D♯ =

[
ϵ1
5

])
The only difference between w♯

1 and w♯
2 is that w♯

1 shares a variable (ϵ1) with D♯ while w♯
2 does

not. Observe that γ
(
w♯

1

)
= γ

(
w♯

2

)
. However, applying a step of gradient decent to w♯

1 and w♯
2

may lead to abstract models that are not equivalent. For sake of this example, consider a hypothetical
gradient operator Φ♯

dummy that subtracts the data from the current model weight.

(
Φ♯

dummy(w
♯
1) =

[
2 + ϵ1
−2 + ϵ2

]
,D♯ =

[
ϵ1
5

])
(
Φ♯

dummy(w
♯
2) =

[
2 + 2ϵ3 − ϵ1
−2 + ϵ2

]
,D♯ =

[
ϵ1
5

])
Note that Φ♯

dummy(w
♯
1) ̸≃♯ Φ

♯
dummy(w

♯
2). Thus, even if two abstract model weights have equal

concretization this does not guarantee that a fixed point has been reached when also taking the data
into account. This is important as otherwise it is not possible that the abstract model weights contain
all possible optimal model weights w⊙∗. Instead, we need to consider the joint concretization of
model weight and data, s.t. if γ

(
S♯

1

)
= γ

(
S♯

2

)
then concretization equivalence is guaranteed to

hold for all subsequent iterations.

D Examples Of Training Data Uncertainty and Abstraction

In this section, we discuss several causes of training (and test) data uncertainty, how to encode them
as possible worlds, and abstraction functions for approximating such uncertainty in our symbolic
model.

D.1 Measurement Uncertainty

Sensors typically have some measurement uncertainty. If the measurement error ϵ is know, e.g.,
provided by the instrument manufacturer or estimated through repeated measurements and calibration,
then for a set of sensor readings used in training D = {(xi, yi)}, then each possible world in D⊙ is
derived from D by replacing values xi[j] with values in xi[j]± ϵ.

D.2 Missing Values and Imputation

Consider a training dataset D where some of the features are missing for some of the datapoints
in D. If each feature Xi’s domain is an interval [li, ui] and assuming that missing values can be
represented as independent random variables, then the set of possible worlds of the training data D⊙

are all training datasets that can be derived from D by replacing each missing value in a feature Xi

with a value from [li, ui].

We can use an abstraction function αmissing that represents each missing value as an interval [li, ui].
In the symbolic representation, this is encoded as the central point of the interval of an error symbol ϵ
with a coefficient half of the interval’s length. We associate a separate error symbol with each missing
value. For D ∈ Rn×m, we define αmissing for i ∈ [1, n] and j ∈ [1,m] as:

αmissing(Dij) =

{
uj+lj

2 +
uj−lj

2 ϵi,j if Dij = ⊥
Dij otherwise
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For instance, consider the training dataset D ∈ R3×2 shown below where ⊥ denotes a missing value.

D =

(
3 ⊥
1 6
⊥ 9

)

Assuming that both features have a domain [0, 10], we get:

αmissing(D) =

(
3 5 + 5ϵ1,2
1 6

5 + 5ϵ3,1 9

)

If the independence assumption on missing values holds, then γ (αmissing(D)) = D⊙. If the
independence assumption does not hold, then D⊙ would be a subset of the worlds described above
and αmissing(D) is a still a valid abstraction function, albeit an over-approximating one:

γ (αmissing(D)) ⊇ D⊙

Imputation If we make the stronger assumption the unknown ground truth value corresponding to
a missing value is in a set of estimations {a1, . . . , am} returned by a set of imputation methods, then
we can use [min({ai}),max({ai})] instead of [li, ui].

Training Label Uncertainty The abstract transformer αmissing can also be used if training data
labels are missing.

E Abstract Transformers for Zonotopes

In this section we introduce (exact) abstract transformers for (polynomial) zonotopes that have been
introduced in related work and discuss their computation complexity and the space requirements
for the output zonotope z♯ in terms of its order ORD(z♯) (see Sec. 2.2). Kochdumper et al. [37,
Table 1] shows an overview of which operations are exact for linear and polynomial zonotopes (and
other set representations). Relevant to for our purpose is that exact transformers exist for polynomial
zonotopes for all operations used in the learning algorithms for linear models we consider.

Proposition E.1 (Exact Transformers for Polynomial Zonotopes). There exist exact abstract trans-
formers for scalar addition and multiplication as well as for matrix addition and multiplication for
polynomial zonotopes [3]. There exist exact transformers for scalar addition and matrix addition for
zonotopes. Abstract transformers for multiplication and matrix multiplication for zonotopes exist, but
are not exact.

We present the details of these operations in the following.

E.1 Arithmetic Operations

Addition. Scalar and matrix addition are exact in both zonotopes and polynomial zonotopes. Given
two matrix (polynomial) zonotopes V ♯ and W ♯ in Ψn×m, their addition Z♯ = V ♯ +W ♯ is defined
by adding entries. For each i ∈ [1, n] and j ∈ [1,m]:

Z♯
ij = V ♯

ij +W ♯
ij

The order of Z♯ is the sum of the orders of V ♯ and W ♯:

ORD(Z♯) = ORD(V ♯) + ORD(W ♯)

Scalar multiplication. Multiplying a (polynomial) zonotope matrix W ♯ with a scalar c is exact
using the abstract transformer ·poly defined below. We simply multiply each entry in the matrix by
c.For each i ∈ [1, n] and j ∈ [1,m]:

(c ·poly W ♯)ij = c ·W ♯
ij
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Multiplication with a scalar abstract value d ∈ Ψ is exact for polynomial zonotope matrices, but
increases the order of the input zonotope:

ORD(d ·W ) = ORD(d) · ORD(W )

Here we define the order of a scalar abstract value d ∈ Ψ to be the number of monomials in the
representation of d. For a linear zonotope W , d ·W ♯

ij is in general not linear as it contains higher-
order terms. Thus, matrix multiplication for linear zonotopes requires application of linearization
(see App. G):

d ·Lin W = L(d ·poly W )

Matrix multiplication. Matrix multiplication is defined using scalar multiplication and addition.
As discussed above, addition is exact for both linear and polynomial zonotopes. However, scalar
multiplication of symbolic expressions is only exact for polynomial zonotopes, but requires lineariza-
tion and, thus, over-approximation, for linear zonotopes. That is, matrix multiplication is exact for
polynomial zonotopes only. Consider two matrices V ♯ ∈ Ψn×m and V ♯ ∈ Ψm×k, then matrix mul-
tiplication is defined as usual, but using abstract transformers for scalar addition and multiplication.
Each symbolic entry in the matrix V ♯ ·W ♯ is a sum of m elements, each the multiplication of one
entry of V ♯ with one entry of W ♯. Thus,

ORD(V ♯ ·W ♯) = m · ORD(V ♯) · ORD(W ♯)

For linear zonotopes, we have to again apply linearization to make sure that the output is a linear
zonotope.

F Abstract Transformers for Gradient Descent

F.1 Abstract Fixed Points Over-Approximate Possible Fixed Points

Proof of Prop. 3.3. Initially, we will assume that w♯ j is computed through repeated application
of F ♯. Let n be the smallest number such that w♯ ∗ = w♯ n = F ♯(w♯ n−1,D♯) for iteration with
abstract transformer F ♯. As F ♯ is an abstract transformer for Φ and abstract transformers compose
(Prop. B.1), we know that for every Di ∈ D⊙ and n ∈ N, we have (wn

i ,Di) ∈ γ
(
w♯ n,D♯

)
. To

prove the claim it is sufficient to show that for every such Di we have (w∗
i ,Di) ∈ γ

(
w♯ n,D♯

)
.

WLOG consider some Di ∈ D⊙ and (wn
i ,Di) ∈ γ

(
w♯ n,D♯

)
. Let m ∈ N be the smallest

number such that w∗
i = wm

j . If m ≤ n, then based on the fact that F ♯ is an abstract transformer
(over-approximates Φ), the result holds as (wn

i ,Di) ∈ γ
(
w♯ n,D♯

)
. Now consider the case where

m > n. We will show through induction that for all j ∈ [n+ 1,m], (wj
i ,Di) ∈ γ

(
w♯ n,D♯

)
and,

thus (w∗
i ,Di) ∈ γ

(
w♯ n,D♯

)
.

Induction start. For j = n the result trivially holds based on the definition of abstract fixed points.

Induction step. Assume that (wj
i ,Di) ∈ γ

(
w♯ n,D♯

)
for j ∈ [n,m− 1], we have to show that this

implies that (wj+1
i ,Di) ∈ γ

(
w♯ n,D♯

)
. By definition, we have

wj+1
i = Φ(wj

i )

As F ♯ is an abstract transformer for Φ, we have, (wj+1
i ,Di) ∈ γ

(
w♯ n+1,D♯

)
. Now based

on the fact that w♯ n is an abstract fixed point according to Def. 3.2 and, thus, γ
(
w♯ n,D♯

)
⊇

γ
(
w♯ n+1,D♯

)
, it follows that (wj+1

i ,Di) ∈ γ
(
w♯ n,D♯

)
.

So far we have demonstrated that a fixed point w♯ ∗ that appears in the iteration sequence {w♯ j}∞j=0

contains all optimal model weights w⊙∗. We now prove the stronger result that as long as w♯ ∗

fulfills the condition of Def. 3.2, no matter it is the result of an iteration sequence using F ♯ or
not, its concretization encloses w⊙∗. Consider one Di ∈ γ

(
D♯
)

and as above let w∗
i denote its

optimal model weight. We will demonstrate that (w∗
i ,Di) ∈ γ

(
w♯ ∗,D♯

)
. First note that given that

gradient descent for linear models is convex, for any initial model weight w0
i , the sequence {wj

i }∞j=0

converges to w∗
i . Specifically, let w denote the model weight such that (w,Di) ∈ γ

(
w♯ ∗,D♯

)
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and let ni denote the smallest integer such that wni
i = w∗

i for the sequence generated starting from
w0

i = w. However, now we can apply the same proof by induction shown above to demonstrate that
(wni

i ,Di) ∈ γ
(
w♯ ∗,D♯

)
. This concludes the proof.

F.2 Exact Abstract Transformer for Gradient Descent

In this section we show that the abstract transformer for gradient descent introduced in sec. 3 has a
fixed point.

Proposition F.1. The abstract gradient descent operator Φ♯ has a fixed point w♯ ∗.

Proof of Prop. F.1. The existence of a fixed point is implied by the fact that Φ♯ is an exact abstract
transformer of the concrete gradient descent operator Φ. Consider γ

(
w♯ 0,D♯

)
= {(w0

i ,Di)}. Let
ni be the smallest integer such that wni

i = w∗
i and let n = maxi ni, i.e., at iteration n, the concrete

model weights have converged in every possible world in the concretization of (w♯ 0,D♯). As Φ♯ is
an exact abstract transformer, we can show by induction that γ

(
w♯ j ,D♯

)
= {(wj

i ,Di)} for any j.
As all computations in the concretization have converged at n, we know that wn+1

i = Φ(wn
i ) = wn

i

and, thus, {(wn
i ,Di)} = {(wn+1

i ,Di)}. As Φ♯ is exact, we get the desired result: γ
(
w♯ n,D♯

)
=

{(wn
i ,Di)} = {(wn+1

i ,Di)} = γ
(
w♯ n+1,D♯

)
.

F.3 Prediction with Abstract Model Weight Fixed Points

We now discuss how to use the abstract model weights w♯ ∗ returned by our abstract transformer for
learning linear models during inference to over-approximate the possible set of predictions for a test
data point. We start by discussing test data that is not uncertain and then extend the discussion to the
case where the test data is also uncertain.

Deterministic Test Data For now let us assume that the test data is not uncertain. The following
corollary then enables us to use abstract gradient descent for inference and for over-approximating
the prediction ranges.

Corollary F.2. Let fw(x) denote the linear model for parameters w. Given an incomplete training
dataset D associated with a set of possible worlds D⊙, the prediction range V (x) for a test data
point x can be over-approximated by:

V ♯(x) =

[
min

w∈γ(w♯ ∗)
fw(x), max

w∈γ(w♯ ∗)
fw(x)

]
,

where w♯ ∗ is the fixed point of the abstract gradient descent operator Φ♯ applied to D♯ = α(D⊙),
the abstract representation of D⊙ in the zonotope domain.

The prediction returned by a linear model with parameters w for a data point x is wTx. As x does
not contain any symbolic term this is the sum of linear terms multiplied by constants, i.e., the result is
a 1-dimensional linear zonotope which is a linear expression of the form:

c0 +

m∑
i=1

ciϵi

where ci ∈ R and ϵi ∈ E . The minimum and maximum value of a 1-d linear zonotope can be
determined efficiently as shown below:[

c0 −
m∑
i=1

|ci|, c0 +
m∑
i=1

|ci|

]

Uncertain Test Data In Sec. 2 we modeled uncertainty in the training data as sets of possible
worlds D⊙. As mentioned in that section, our techniques also supports uncertain test data, i.e., both
the training and test data may be uncertain.
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In the most general case, the training and test data may be correlated.1 We model this as a set of
possible worlds (D⊙,Xtest

⊙) where each world is a pair of a training dataset Di and a test dataset
Xtesti:

(D,Xtest)
⊙
= {(D1,Xtest1), . . . , (Dm,Xtestm)}

If training and test data are independent, then we can specify their worlds separately ( D⊙ and
Xtest

⊙) and assume the worlds of (D,Xtest)
⊙ to be their cross product. Uncertainty propagation for

inference then requires us to compute the set of possible predictions:

y⊙ = {f(Xtesti) | ∃(Di,Xtesti) ∈ (D,Xtest)
⊙
: fi = A(Di)}

For inference in the abstract domain we first have to select an appropriate abstraction function for
the test data, e.g., using the same abstraction function α we use for the training data. The only
difference to the case discussed above is that a test data point is now also an abstract element x♯ and
the prediction w♯x♯ is a polynomial zonotope as it contains higher order terms that are the result of
multiplying linear terms. To efficiently determine the minimum and maximum we can, e.g., employ
linearization to map the polynomial zonotope into a linear one and apply the solution described above
for finding the minimum and maximum of a linear zonotope.

G Linearization and Order Reduction Techniques

G.1 Linearization

The purpose of linearization is to over-approximate an input polynomial zonotope with a linear
zonotope.
Definition G.1 (Linearization Operator L). A linearization operator L maps a polynomial zonotope
z♯ to a linear zonotope ℓ♯. It replaces high-order polynomial terms with new error symbols, ensuring
that all expressions are linear while maintaining an over-approximation:

γ
(
L(z♯)

)
⊇ γ

(
z♯
)
.

During inference, computing the prediction intervals using the linear zonotope representation can
be done efficiently with linear programming. However, more importantly, in our construction of
abstract fixed points we use a specific order reduction technique that requires prior linearization in
each gradient descent step to enforce the existence of a fixed point. For a d-dimensional polynomial
zonotope z♯ with a set of monomials S:

z♯ = c+

|S|∑
i=1

giS[i],

we have its linearization:

L(z♯) = c+
∑
i∈σl

giS[i]︸ ︷︷ ︸
Linear monomials

+
∑
i ̸∈σl

giϵ
′
i︸ ︷︷ ︸

Replaced with linear monomials

where σl denotes the set of indices of all linear terms in z♯. Here, the third part over-approximates
each high-order term in z♯ by replacing it with a new error symbol.

G.2 Order Reduction Operators

Order reduction operators are used to reduce the representation size of a zonotope. That is, an order
reduction operator takes as input a linear zonotope ℓ♯ and return a linear zonotope of smaller order

1Note that this does not necessarily imply a violation of the i.i.d. assumption. For instance, consider a dataset
with a textual feature race that is first translated into a categorical feature that is then one-hot encoded into
multiple binary attributes. If we are uncertain about the meaning of a particular value of the original attribute,
then this leads to a correlation between the uncertainty of both datasets as the interpretation of this value affects
all data points with that particular value in the race feature before preprocessing.
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(smaller representation size) that over-approximates ℓ♯. For linear zonotopes this means that order
reduction operators reduce the number of distinct error symbols that occur in a zonotope by merging
error symbols.

Definition G.2 (Order Reduction Operator R). An order reduction operator R takes a linear
zonotope ℓ♯ as input and returns another linear zonotope of reduced order:

γ
(
R(ℓ♯)

)
⊇ γ

(
ℓ♯
)

ORD(R(ℓ♯)) < ORD(ℓ♯)

We now present details about two commonly adopted order reduction techniques: Interval Hull
(IH) and transformation-based Interval Hull (TIH) in App. G. In this section, we use the geometric
representation of zonotopes (see Def. C.2). Note that for a linear zonotope, each S[i] consists of a
single error term ϵi. Thus, we can write such a zonotope ℓ♯ as:

ℓ♯ = c+

|S|∑
i=1

giϵi

IH merges a selected subset δs of the error symbols of a zonotope and their corresponding generator
vectors. For a d-dimensional zonotope ℓ♯:

RIH(δs, ℓ
♯) = RIH

δs, c+ |S|∑
i=1

giϵi

 = c+
∑
i̸∈δs

giϵi︸ ︷︷ ︸
Retained error symbols

+


(∑

i∈δs
|gi[1]|

)
ϵ′1

...(∑
i∈δs

|gi[d]|
)
ϵ′d


︸ ︷︷ ︸

Over-approximated with d-dimensional box

The selected terms δs are merged into a d-dimensional box described by d new error symbols
{ϵ′1, · · · , ϵ′d}. We will drop δs if all error symbols of the input zonotope are selected.

The error symbols getting merged (δs) are often determined based on some heuristic, e.g., symbols
with lowest coefficients. TIH RTIH first projects the zonotope to another space using an invertible
linear transformation matrix A ∈ Rd×d, then applies IH, and finally projects the resulting zonotope
back with A−1. IH is a special case of TIH where A = I .

RTIH(δs,A, z
♯) = A−1RIH(Az♯).

Intuitively, the purpose of the linear transformation A is to project the zonotope to a space where its
shape is closer to a box, to reduce the loss of precision brought by order reduction [2, 38]. One of
the most widely used TIH is PCA-based order reduction, whose transformation is obtained from the
PCA of the set of all generator vectors of the input zonotope [38, 51].

Order Reduction for PTIME Zonotope Training With linearization, the number of error symbols
in the model weights zonotope w♯ still grows exponentially with rate O(p2), leading to exponential
time complexity for gradient descent. We can overcome this challenge through order reduction, which
enforces the maximum number of terms in the symbolic expressions of model weights zonotopes [38].
Note that for a linear zonotope, each S[i] consists of a single error term ϵi. Thus, we can write such a
zonotope ℓ♯ as:

ℓ♯ = c+

|S|∑
i=1

giϵi

Order reduction R reduces the order (representation size) of a linear zonotope ℓ♯. This is achieved by
merging error symbols in S, while ensuring that the result over-approximation the input zonotope,
i.e.,

γ
(
R(ℓ♯)

)
⊇ γ

(
ℓ♯
)
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Two commonly adopted order reduction approaches [38] are Interval Hull (IH), denoted as RIH ,
and Transformation-based Interval Hull (TIH), denoted as RTIH [2, 38, 64]. Specifically, IH merges
a set of error symbols δs ⊆ {ϵi} and their corresponding generator vectors (here δk = {ϵi} − δs):

RIH(z♯) = RIH

c+

|S|∑
i=1

giS[i]

 = c+
∑
i∈δk

giS[i] + diag(
∑
i∈δs

|gi[1]|, · · · ,
∑
i∈δs

|gi[d]|)

ϵ
′
1
...
ϵ′d


The selected terms δs are merged into a d-dimensional box described by d new error symbols
{ϵ′1, · · · , ϵ′d}. The error symbols getting merged (δs) are often determined based on some heuris-
tic [38], e.g., the symbols with lowest coefficients. Similar to IH, TIH also merges error terms using
IH, but in some projected space. TIH first projects the zonotope to another space using an invertible
linear transformation matrix A ∈ Rd×d, then conducts IH, and finally projects the resulting zonotope
back into the original space with A−1:

RTIH(z♯) = A−1RIH(Az♯).

Intuitively, the linear transformation A aims to project the zonotope to a space where its shape is
closer to a box, to reduce the loss of precision brought by order reduction [2, 38]. One of the most
widely used TIH is PCA-based order reduction, whose transformation is obtained from the PCA of
all generator vectors [38, 51].

H Efficient Abstract Gradient Descent with Order Reduction

As mentioned in sec. 4.1, to address the tractability issues with abstract gradient descent, we employ
two key techniques: linearization and order reduction. We employ linearization at each step of
gradient descent to ensure that the resulting abstract representation of model parameters remains a
linear zonotope.

Given a linearization operator L and order reduction operator R, we construct an abstract gradient
descent operator, Φ♯:

Φ♯(w♯) = R
(
w♯ − L

(
η∇L(w♯)

))
, (9)

which ensures that the abstract representation size remains bounded while providing efficient over-
approximation. This operator is an abstract transformer for the concrete gradient descent operator.
Proposition H.1. For any linearization L and order reduction R, the abstract gradient descent Φ♯ is
an abstract transformer for the concrete gradient descent operator Φ. Formally, for any abstract w♯,

γ
(
Φ♯(w♯)

)
⊇ Φ(γ

(
w♯
)
),

.

Proof. Given that abstract transformers compose (Prop. B.1), we can decompose Φ into separate steps
and construct an abstract transformer for Φ by composing abstract transformers for the individual
steps. We can inject identity functions anywhere into the computation without changing its result. Let
ident represent an identify function of an appropriate type and F ♯ be the abstract operator resulting
from injecting identity functions as shown below, then:

F ♯(w♯) = ident
(
w♯ − ident

(
η∇L(w♯)

))
= w♯ −

(
η∇L(w♯)

)
= Φ♯

exact(w
♯)

Since Φ♯
exact is an abstract transformer for Φ, so is F ♯. Now observe that both L and R are abstract

transformers for ident as
γ
(
L(w♯)

)
⊇ γ

(
w♯
)
= ident(γ

(
w♯
)
)

Thus, Φ♯ is an abstract transformer for Φ.

Note that Prop. 3.3 then implies that a fixed point w♯ ∗ for Φ♯is an over-approximation of all possible
model weights w⊙∗:

γ
(
w♯ ∗) ⊇ w⊙∗
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H.1 Abstract Gradient Descent With Order Reduction And Fixed Points

While Φ♯ ensures that every step of gradient descent can be computed efficiently as we bound the
order of the resulting zonotope in each step, this operator typically does not have a fixed point and
even if it does, we still would have to solve an NP-hard problem [39] to detected that we have
converged. The reason for the lack of a fixed point is that both linearization and order reduction
results in over-approximation and the over-approximation error may grow in each iteration. Recall
that we did show a real example of where this operator diverges in Sec. 4.1.

I An Efficient Approximate Abstract Transformer for Ridge Regression

In this section and the next section we present the proof of our main technical result: Thm. 4.2.
Recall that Thm. 4.2 states that Alg. 1 computes abstract model parameters w♯ ∗ that are a fixed
point for the abstract transformer Φ♯using a closed form solution. Because Φ♯was shown to be an
abstract transformer for gradient decent this then implies that w♯ ∗ over-approximates all possible
model weights w⊙∗. We start by presenting additional details of the decomposition we employ to
force a fixed points, formally prove that the condition on w♯ ∗ from Prop. 4.1 is a sufficient for w♯ ∗

being a fixed point for Φ♯, and then develop a closed form solution that requires solving a system of
linear equations. For w♯

N , the parts of the abstract model weights that exclusively contains symbols
that do not appear in the abstract training dataset D♯, the equation system only has a solution if the
regularization coefficient λ is larger then or equal to a constant β that depends on D♯. Based on our
experience and extensive experimental evaluation, we typically have β = 0, i.e., the closed form
solution exists for any regularization coefficient λ. Nonetheless, we present a technique for achieving
any desired β ≥ 0 by splitting zonotopes into smaller parts with lower β, computing fixed points for
each split individually, and merging the final result. These techniques will be presented in app. J.

I.1 Decomposing Fixed Point Equations For Abstract Gradient Descent

We now present additional details about our decomposition of the gradient from Sec. 4.1 for linear
regression with ℓ2 regularization (ridge regression). The loss function L for ridge regression an ℓ2
penalty, is given by:

L(X,y,w) =
1

n
(Xw − y)T (Xw − y) + λ ·wTw,

where λ is the regularization coefficient (see App. A for details).

Recall that we observed that an abstract model weight zonotope w♯ can be decomposed into parts that
can be dealt with separately in the sense that we will show that a sufficient condition for achieving a
fixed point w♯ ∗ is that each component has a fixed point. Given an abstract training dataset D♯, we
use X♯ and y♯ to denote its feature matrix and labels. We decompose them into real (concrete) and
symbolic components:

X♯ = XR +X♯
S

y♯ = yR + y♯
S

where XR ∈ Rn×d and yR ∈ Rn represent the real centers of zonotopes X♯ and y♯, while
X♯

S ∈ Λn×d and y♯
S ∈ Λn contain the symbolic terms.

Similarly, we decompose the abstract model weights at iteration i into real and symbolic components:

w♯ i = wi
R +w♯ i

S ,

where wi
R ∈ Rd represents the real center, and w♯ i

S ∈ Λd contains the symbolic terms. The symbolic
terms are further decomposed into those containing data symbols (w♯ i

D ), i.e., symbols that are shared
with D♯, and those introduced via linearization and order reduction in linear abstract gradient descent
(w♯ i

N ), i.e., that do not appear in D♯.

w♯ i
S = w♯ i

D +w♯ i
N .
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Accordingly, we decompose the abstract gradient presented in Eq. (9) into several distinct components:
real numbers (GR), linear symbolic expressions that share symbols with D♯ (GD

L ), linear symbolic
expressions that do not share symbols with D♯ (GN

L ), and high-order symbolic expressions (GH ).
Using the loss function for ridge regression (see Eq. (5) in App. A):

Φ♯(w♯) = R
(
w♯ − L

(
η∇L(w♯)

))
= R

(
w♯ − ηL

( 2

n
(X♯TX♯w♯ −X♯Ty♯) + 2λw♯

))
= R

(
wR +w♯

D +w♯
N − ηL

( 2

n

(
(XR +X♯

S)
T (XR +X♯

S)(wR +w♯
D +w♯

N )

− (XR +X♯
S)

T (yR + y♯
S)
)
+ 2λ(wR +w♯

D +w♯
N )

)) (10)

= R
(
wR − η · GR +w♯

D − η · GDL +w♯
N − η · GNL − η · L(GH)

)
(11)

where

GR =
2

n
(XR

TXRwR −XR
TyR) + 2λwR (12)

GD
L = (2λI +

2

n
XR

TXR)w
♯
D +

2

n
(XR

TX♯
S +X♯

S

T
XR)wR − 2

n
X♯

SyR − 2

n
XR

Ty♯
S (13)

GN
L = (2λI +

2

n
XR

TXR)w
♯
N (14)

GH =
2

n

(
(XR

TX♯
S +X♯

S

T
XR)(w

♯
D +w♯

N ) +X♯
S

T
X♯

S(wR +w♯
D +w♯

N )−X♯
S

T
y♯
S

)
(15)

In Eq. (10) we substitute definitions which are further expanded in Eq. (11) using new notation for
rearranged parts of the gradient (Eq. (12) to (15)). Furthermore, in this step we also use the fact
that linearization only affects higher order terms and GH is the only component of the gradient with
non-linear terms. Now consider the relationship of Eq. (12) to (15) to

Enforcing Fixed Points With Parameterized Order Reduction. We now introduce an order
reduction operator RA that is a specific type of TIH (see App. G) which only merges non-data symbols
and is parameterized by its transformation matrix A, identify a sufficient condition for achieving
an abstract fixed point for gradient descent with this order reduction operator, and demonstrate that
the fixed point exists for any coefficient λ of l2-regularization that is larger than a data-dependent
constant β. Furthermore, we show how such a fixed point w♯ ∗ can be computed using closed form
solutions for wR, w♯

D and w♯
N .

Recall from App. G that the TIH order reduction operator RTIH(δs,A) is parameterized by δs (the
set of error symbols to merge) and a transformation matrix A. Consider the input to order reduction
as shown in Eq. (10).We use ED to denote the error symbols that this input shares with the data (that
occur in D♯) and EN to denote those that only occur in the input to order reduction. Then we define
RA = RTIH(EN ,A), i.e., we only merge symbols that are not shared with the data to ensure that
the correspondence between model weights and possible worlds is preserved by letting w♯ share
symbols in linear expressions with D♯. The linear part that does not share symbols with D♯ has
O(p2q) monomials (where p = | ED | and q is the number of error symbols in w♯). Now expanding
the definition of abstract gradient descent with order reduction using RA as the order reduction
operator (for some given transformation matrix A), we get:

Φ♯
(L,RA)(w

♯) = RA(wR − ηGR +w♯
D − ηGD

L +w♯
N − η(GN

L + L(GH))) (16)

= wR − ηGR +w♯
D − ηGD

L +RA(w♯
N − η(GN

L + L(GH))) (17)

= wR − ηGR︸ ︷︷ ︸
ΦR(wR)

+ w♯
D − ηGD

L︸ ︷︷ ︸
Φ♯

D(wR,w♯
D)

+A−1
(
RIH(A(w♯

N − η(GN
L + L(GH))))

)︸ ︷︷ ︸
Φ♯

N (wR,w♯
D,w♯

N )

(18)

Eq. (18) shows the components of Φ♯
(L,RA)(w

♯) and related them to the notation ΦR(wR),

Φ♯
D(wR,w

♯
D), and Φ♯

N (wR,w
♯
D,w

♯
N ) we introduced in Eq. (2). Specifically, ΦR(wR) =

(wR − ηGR) does not contain any error symbols and, thus, corresponds to the real number part
of the updated model weight. Similarly, Φ♯

D(wR,w
♯
D) = (w♯

D − ηGD
L ) only contains linear

symbolic expression with symbols that are from D♯. The remaining part, Φ♯
N (wR,w

♯
D,w

♯
N ) =
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A
(
RIH(A−1(w♯

N − η(GN
L + L(GH))))

)
does not share symbols with D♯, as it consists of new

symbols generated from order reduction.

I.2 Constructing Fixed Points For Abstract Gradient Descent

Having defined Φ♯
(L,RA) which was denoted by Φ♯

(L,R) in app. H, we are now ready to state the first
part of our main technical result: under some mild assumptions on λ being larger than some data-
dependent constant β, Φ♯

(L,RA) has a fixed point and, importantly, this fixed point can be computed
efficiently. In practice, we often have β = 0. However, if this is not the case, we demonstrate later
that at the cost of reduced computational efficiency we can reduce β by splitting D♯ into several
zonotopes and solving the problem independently for each zonotope as we will details in App. J.

Theorem I.1 (Existence of Abstract Fixed Points). Consider an abstract training dataset D♯. There
exists a constant β specific to D♯ such that Φ♯

(L,RA) has a fixed point for any λ ≥ β.

In the remainder of this section, we prove Thm. I.1 by demonstrating how to construct such a
fixed point efficiently. We start by identifying a sufficient condition for w♯ ∗ to be a fixed point,
then demonstrate that the problem of finding a w♯ ∗ that fulfills this sufficient condition can be
decomposed based on our decomposition w♯ ∗ = w∗

R +w♯ ∗
D +w♯ ∗

N presented earlier. Specifically,
certain components are independent of other components suggesting an evaluation order where
we find a fixed point for one component treating the previously computed fixed points for other
components as constants. Then we proceed to prove closed form solutions for w∗

R and for w♯ ∗
D given

w∗
R. Finally, given w∗

R and w♯ ∗
D we construct a system of equations whose solution gives a fixed

point for w♯ ∗
N and demonstrate that this system of equations has a closed form solution for any λ ≥ β.

A Sufficient Condition for Abstract Fixed Points. Recall from Def. 3.2 that the fixed point w♯ ∗

must satisfy γ
(
w♯ ∗,D♯

)
⊇ γ

(
Φ♯

(L,RA)(w
♯ ∗),D♯

)
. We now present a sufficient condition for this

to hold. Intuitively this condition requires the invariance of different components of Φ♯
(L,RA)(w

♯)

when doing joint concretization with D♯.

Proposition I.2. If an abstract model weight w♯ ∗ = w∗
R +w♯ ∗

D +w♯ ∗
N satisfies the following three

conditions, then it is an abstract fixed point of the abstract gradient descent operator Φ♯
(L,RA):

w∗
R = w∗

R − ηGR (19)

w♯ ∗
D = w♯ ∗

D − ηGD
L (20)

w♯ ∗
N ≃♯ RA

(
w♯

N − η(GN
L + L(GH))

)
. (21)

Proof. Consider the definition of an abstract fixed point w♯ ∗ (Def. 3.2 applied to Φ♯
(L,RA)

)
:

γ
(
w♯ ∗,D♯

)
⊇ γ

(
Φ♯

(L,RA)(w
♯ ∗),D♯

)
This can certainly be achieved if

w♯ ∗,D♯ ≃♯ Φ
♯
(L,RA)(w

♯ ∗),D♯

This requires equal joint concretization of the fixed point the pairs (w♯ ∗,D♯) and
(Φ♯

(L,RA)(w
♯ ∗),D♯). To understand the need for joint concretization here note that certain model

weights wpaired with certain datasets D in the joint concretization. If we would only consider
equivalence of the abstract model weight, two zonotopes w♯ and w♯′ may be equivalent w♯ ≃♯ w

♯′,

but pair a particular model weight w ∈ γ
(
w♯
)
= γ

(
w♯′
)

with different datasets D1 ∈ γ
(
D♯
)

and

D2 ∈ γ
(
D♯
)
. Thus, it is possible that w♯ ≃♯ Φ

♯
(L,RA)(w

♯) holds but γ
(
w♯
)
= γ

(
w♯′
)

does not

contain all model weights from w⊙∗.
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First observe that requiring equality of abstract elements is a stricter condition than equivalence wrt.
≃♯ as

w♯
1 = w♯

2 ⇒ w♯
1 ≃♯ w

♯
2

Also note that w♯
D is the only component of w♯ ∗ that contains symbols. Thus, requiring equality

in Eq. (20) is sufficient for ensuring equivalent join concretization with D♯ as long as Eq. (19) and
Eq. (21) also hold. Furthermore, Eq. (19) and Eq. (20) imply:

GR = 0 GD
L = 0

Expanding w♯ ∗ = w∗
R +w♯ ∗

D +w♯ ∗
N and substituting into Eq. (18) we get

Φ♯
(L,RA)(w

♯ ∗) = w∗
R − ηGR +w♯ ∗

D − ηGD
L +RA

(
w♯ ∗

N − η(GN
L + L(GH))

)
= w∗

R +w♯ ∗
D +RA

(
w♯ ∗

N − η(GN
L + L(GH))

)
Thus, using Eq. (21) and the fact that w♯

N does not share any symbols with D♯, we get the desired
result:

(19) ∧ (20) ∧w♯ ∗
N ≃♯ RA

(
w♯

N − η(GN
L + L(GH))

)
⇒ (w♯ ∗,D♯) ≃♯ (Φ

♯
(L,RA)(w

♯ ∗),D♯)

Independence of Fixed Point Components. Recall that we observed that some components of the
gradient depend only on some components of w♯ ∗. Specifically, GR only depends on w∗

R and GD
L

only depends on w∗
R and w♯ ∗

D . This implies that we can find a fixed point by first computing w∗
R,

then finding w♯ ∗
D treating w∗

R as a constant, and finally determine w♯ ∗
N treating both w∗

R and w♯ ∗
D as

a constant.
Lemma I.3 (Independence of Fixed Point Components). The following independence relationships
hold:

(i) GR does not depend on w♯ ∗
D nor w♯ ∗

N (ii) GD
L does not depend on w♯ ∗

N

Proof. The definition of GR is shown in Eq. (12). The only component of w♯ ∗ that appears in the
definition of GR is w∗

R. Thus, the equations defining w∗
R only depend on w∗

R and are independent of
w♯ ∗

D and w♯ ∗
N . Using a similar argument we can show that GD

L does not depend on w♯ ∗
N .

Closed Form Solutions for Real And Linear Data Components of Abstract Model Weights.
Before explaining how to determine w♯ ∗

N , utilizing the lemma above we derive closed form solutions
for w∗

R and w♯ ∗
D .

Lemma I.4 (Closed Form Solutions for w∗
R and w♯ ∗

D ). Given D♯, w∗
R as defined below fulfills

Eq. (19)

w∗
R = (XR

TXR + λnI)−1XR
TyR (22)

Given D♯ and w∗
R, w♯ ∗

D as defined below fulfills Eq. (20).

w♯ ∗
D = (XR

TXR + λnI)−1
(
X♯

SyR +XR
Ty♯

S − (XR
TX♯

S +X♯
S

T
XR)w

∗
R

)
(23)

Proof. Fixed Point for w∗
R. Substituting the definition of GR from Eq. (12) into Eq. (21):

w∗
R = w∗

R − η ·
( 2
n
(XR

TXRw
∗
R −XR

TyR) + 2λw∗
R

)
⇔2η

n
·
(
XR

TXRw
∗
R −XR

TyR + λnw∗
R

)
= 0

⇔XR
TXRw

∗
R −XR

TyR + λnw∗
R = 0 (η > 0)

⇔(XR
TXR + λnI)w∗

R = XR
TyR

⇔w∗
R = (XR

TXR + λnI)−1XR
TyR (24)
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The last step relies on the fact that XR
TXR + λnI is invertible which is guaranteed for λ >

0 [26]. Note that, as expected since the fixed point equation for w∗
R does not contain any symbolic

expressions, the closed form for w∗
R is equal to the well-known closed form for ridge regression.

Fixed Point for w♯ ∗
D . Note that given the independence of w∗

R from w♯ ∗
D , we can assume that w∗

R has

been determined using the closed form solution shown above. Thus, we can treat w∗
R as a constant in

the following derivation. We start by substituting the definition or Eq. (13) into Eq. (20).

w♯ ∗
D = w♯ ∗

D − η
(
(2λI +

2

n
XR

TXR)w
♯ ∗
D +

2

n
(XR

TX♯
S +X♯

S

T
XR)w

∗
R

− 2

n
(X♯

SyR +XR
Ty♯

S)
)

⇔0 =
2η

n

(
(XR

TXR + λnI)w♯ ∗
D + (XR

TX♯
S +X♯

S

T
XR)w

∗
R −X♯

SyR −XR
Ty♯

S

)
⇔0 = (λnI +XR

TXR)w
♯ ∗
D + (XR

TX♯
S +X♯

S

T
XR)w

∗
R −X♯

SyR −XR
Ty♯

S (η > 0)

⇔(λnI +XR
TXR)w

♯ ∗
D = −

(
(XR

TX♯
S +X♯

S

T
XR)w

∗
R −X♯

SyR −XR
Ty♯

S

)
⇔w♯ ∗

D = (XR
TXR + λnI)−1

(
X♯

SyR +XR
Ty♯

S − (XR
TX♯

S +X♯
S

T
XR)w

∗
R

)
(25)

Note that matrix inversion is applied to (XR
TXR + λnI) which does not contain any symbolic

terms and as discussed above this matrix is guaranteed to be invertible.

Analysis of the Fixed Point Equations for w♯ ∗
N . Using the closed form solutions established

in Lem. I.4, we can compute w∗
R and w♯ ∗

D fulfilling Eq. (19) and Eq. (20). In the remainder of
this subsection we show how to compute a solution w♯ ∗

N to Eq. (21) for a given λ ≥ β (regular-
ization coefficient), i.e., we prove Thm. I.1 that postulated the existence of such fixed points w♯ ∗

constructively.

To find a fixed point w♯ ∗
N , we are searching for an abstract model weight that fulfills Eq. (21):

w♯ ∗
N ≃♯ RA

(
w♯

N − η(GN
L + L(GH))

)
(26)

This implies that w♯ ∗
N needs to be equivalent to the result of RA on some input zonotope w♯

N −
η(GN

L + L(GH). Recall the definition of RA for a linear input zonotope ℓ♯:

RA(ℓ♯) = A−1RIH(Aℓ♯) (27)

Note that RA applies RIH to all error symbols in its input. Thus, RIH(·) is a d-dimensional box in
the projected space into which the input ℓ♯ is mapped into by A. Furthermore, as w♯

N−η(GN
L +L(GH)

does only contain symbolic terms, the interval hull (the box computed by RIH ) is centered at 0.

Lemma I.5. Any solution w♯
N of Eq. (26) is equivalent to the image of a box b♯ centered at 0

produced by A−1, i.e.,
w♯

N ≃♯ A
−1b♯

Proof. IH does not change the center of a zonotope and A is a linear map. Now observe that all
terms in Eq. (14) and (15) are symbolic (contain error symbols). Thus, the RHS of Eq. (26) that is the
input to order reduction is a zonotope with center 0.

A linear zonotope that is a box in d-dimensional space with center 0 is, up to equivalence, uniquely
determined by the diameter of the box in each dimension. That is, if we use ki ≥ 0 to denote the
diameter of the box in the ith dimension and k ∈ Rd to denote the vector of these elements, then we
can write any such zonotope b♯ as:

b♯ =

k1ϵ1...
kdϵd

 =

k1 · · · 0
...

. . .
...

0 · · · kd


ϵ1...
ϵd

 = diag{k}

ϵ1...
ϵd
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Combining Eq. (26) with Eq. (27), we know that w♯
N is a zonotope that is equivalent to the image of

A−1 on a box b♯ parameterized by k. We will only consider solutions of this form:2

w♯ ∗
N = A−1diag{k}

ϵ1...
ϵd

 =

d∑
i=1

kiaiϵi (28)

where a1, · · · ,ad are the column vectors of A−1. As the naming of error symbols is irrelevant,
finding a solution to Eq. (26) now amounts to finding a vector k as the error symbols are now treated
as fixed.

Now we can substitute the formula for w♯ ∗
N from Eq. (28) into the RHS of Eq. (26) as shown below.

Recall from app. G.2 that IH merges different error symbols by adding up the absolute values of their
coefficients. For the ith dimension, each kj will appear with a certain coefficient. For some terms,
the symbolic expression for the ith dimension may contain error symbols that do not have any kl in
their coefficients. Thus, without considering for now the precise values for each coefficient we know
that the box produced by IH in the RHS is of the form shown below where C ∈ Rd×d is a matrix
with non-negative entries ci,j ≥ 0 (at position (i, j)), and c0 ∈ Rd is a vector with non-negative
elements ci,0 ≥ 0 (at dimension i). Intuitively, ci,j is the coefficient of kj in the ith dimension and
ci,0 is the sum of the coefficients of error symbols that do not have any kj in their coefficients (e.g.,
the fresh symbols introduced by linearization). Note since IH does calculate coefficients of the error
symbols in the output as a sum of absolute values, we know that all entries of C and c0 are positive.
Furthermore, recall that we assumed that kj ≥ 0.

RA(w♯
N − η(GN

L + L(GH))) = A−1RIH(A(w♯
N − η(GN

L + L(GH))))

= A−1


(c1,0 +

∑d
j=1 c1,jkj)ϵ

′
1

...
(cd,0 +

∑d
j=1 cd,jkj)ϵ

′
d

 = A−1diag{c0 +Ck}

ϵ
′
1
...
ϵ′d

 . (29)

Substituting the LHS and RHS of Eq. (21) with Eq. (28) and (29), we get:

A−1diag{k}

ϵ1...
ϵd

 ≃♯ A
−1diag{c0 +Ck}

ϵ
′
1
...
ϵ′d


⇔diag{k}

ϵ1...
ϵd

 ≃♯ diag{c0 +Ck}

ϵ
′
1
...
ϵ′d

 (30)

⇔k = c0 +Ck (31)
⇔(I −C)k = c0 s.t. k ≽ 0 (32)

⇔(1− ci,i)ki −
d∑

j=1
j ̸=i

(ci,jkj) = ci,0 s.t. ki ≥ 0 ∀i ∈ [1, d] (33)

Intuitively, the equivalence of boxes from Eq. (30) is equivalent to the equality of their diameters
which yields Eq. (31). Therefore, any k ∈ Rd satisfying Eq. (31) gives us a fixed point w♯ ∗

N . In
Eq. (32) we make explicit our assumption that ki ≥ 0 and finally in Eq. (33) we write Eq. (32) as a
system of linear equations.

2This does not restrict the possible concretization of any such zonotope we can achieve. As A is invertible,
A−1 has full rank and thus, its column vectors a1, · · · ,ad form a basis of a vector space. Given A−1, the
concretization of a zonotope of this form is uniquely determined by k (recall that we assume that all ki are
positive).
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Existence of a Closed Form Solution for the Fixed Point Equations for w♯ ∗
N What remains to be

shown to prove Thm. I.1 is that Eq. (33) is guaranteed to have a solution. For that we will investigate
the structure of C and c0. Recall that the matrix C and c0 are obtained from IH order reduction on
input (see Eq. (29))

A(w♯
N − η(GN

L + L(GH))).

w♯ ∗
N and GN

L share the same set of symbols, while they do not share any error symbols with L(GH),
as linearization always generates new error symbols. This implies that the terms of A(w♯

N − ηGN
L )

and −ηAL(GH) will not cancel out. In other words, they contribute separately to the diameter k of
the merged box produced by IH. Therefore, we will look into their contributions separately.

For A(w♯
N − ηGN

L ), we substitute the definitions of GN
L and w♯ ∗

N to get:

A(w♯
N − ηGN

L ) = A
(
(1− 2ηλ)I − 2η

n
XR

TXR

)
w♯

N (34)

= A

(
(1− 2ηλ)I − 2η

n
XR

TXR

)
A−1

k1ϵ1...
kdϵd

 (expand w♯
N )

= A

(
A(1− 2ηλ)A−1 − 2η

n
AXR

TXRA
−1

)
A−1

k1ϵ1...
kdϵd


(I = AA−1 and XR

TXR = AXR
TXRA

−1)

=

(
A(1− 2ηλ)A−1 − 2η

n
AXR

TXRA
−1

)k1ϵ1...
kdϵd

 (35)

This contributes
(
|1− 2ηλ− 2η

n qi,i|ki +
2η
n

∑d
j=1
j ̸=i

|qi,j |kj
)

to the diameter of the merged box along

dimension i, where qi,j is the element in AXR
TXRA

−1 at position (i, j). By choosing a small

learning rate η to let 1 − 2ηλ − 2η
n qi,i ≥ 0 the contribution is equal to

(
(1 − 2ηλ − 2η

n qi,i)ki +

2η
n

∑d
j=1
j ̸=i

|qi,j |kj
)

. From Eq. (34) it is obvious that this component has a shared term w♯ ∗
N containing

k and as w♯ ∗
N is centered at 0, we know that this component has only symbolic terms. This in turn

implies that this component only contributes to the coefficient matrix C and does not contribute to
the constant part c0 of the system of linear equations.

Now consider the other component

−ηAL(GH) (36)

=− ηAL

(
2

n

(
(XR

TX♯
S +X♯

S

T
XR)(w

♯
D +w♯

N ) +X♯
S

T
X♯

S(wR +w♯
D +w♯

N )−X♯
S

T
y♯
S

))

=− ηAL

 2

n

(
(XR

TX♯
S +X♯

S

T
XR +X♯

S

T
X♯

S)w
♯
N︸ ︷︷ ︸

contributes to C

+ (XR
TX♯

S +X♯
S

T
XR)w

♯
D +X♯

S

T
X♯

S(wR +w♯
D)−X♯

S

T
y♯
S︸ ︷︷ ︸

contributes to c0

)
(37)

Note that the first part of the equation is the only part that contains w♯
N which in turn contains

the variables k for which we want to solve. As every element of this part of the equation contains
some ki it only contributes to C. In contrast the second part of the equation does not contain
any variable ki and, thus, is the only part of both components that contribute to c0. Let us use
2η
n C′k to denote the matrix of coefficients that is the sum of absolute values of coefficients of

31



2
n (XR

TX♯
S +X♯

S

T
XR +X♯

S

T
X♯

S)w
♯
N that will be projected by A stemming from the first part

of the equation in the expanded version of L(GH). We use c′i,j ≥ 0 to denote the element of C ′ at
(i, j). As mentioned before this is the only part of this component that contains terms containing
unknowns ki. We use c′0 to denote the contribution from the second part of Eq. (37) towards the
output of linearization L. Then based on the fact that the second part of this component is the only
part of both components that contributes to c0, we know that the whole contribution of the component
from Eq. (36) towards C + c0 is:

ηc′0 +
2η

n
C ′k (38)

In summary, the system of linear equations from Eq. (33) can be written as:(
2ηλ+

2η

n
qi,i −

2η

n
c′i,i

)
ki −

2η

n

d∑
j=1
j ̸=i

(|qi,j |+ c′i,j)kj = ηci,0 s.t. ki ≥ 0 ∀i ∈ [1, d]

⇔(λn+ qi,i − c′i,i)ki −
d∑

j=1
j ̸=i

(|qi,j |+ c′i,j)kj =
n

2
ci,0 s.t. ki ≥ 0 ∀i ∈ [1, d]. (39)

In the expanded system of linear equations, the diagonal elements of the coefficient matrix are
(λn+ qi,i − c′i,i), while the off-diagonal elements are −(|qi,j |+ c′i,j).

Lemma I.6. If for all i ∈ [1, d],

(λn+ qi,i − c′i,i) ≥
d∑

j=1
j ̸=i

(|qi,j |+ c′i,j),

then the system of linear equations from Eq. (39) has a solution.

Proof. When this condition holds, the coefficient matrix of this system of linear equations is diag-
onally dominant. Also considering all diagonal elements are non-negative ((λn + qi,i − c′i,i) ≥∑d

j=1
j ̸=i

(|qi,j |+ c′i,j) ≥ 0) and all off-diagonal elements are non-positive, the coefficient matrix is

an M-matrix3. For any M-matrix M , the inverse M−1 exists and is has all non-negative entries.
Furthermore, for any system of linear equations represented as matrix equation Mx = b where x
are the variables of the equation system, M−1b is a solution. As our matrix I −C is an M-matrix,
we know that its inverse exists and has only positive entries and we can compute a solution k as:

k = (I −C)−1c0

Given that all elements ci,0 are positive and that (I −C)−1 is positive, the solution k for Eq. (39) is
also positive.

The correctness of Thm. I.1 follows immediately based on the sufficient condition for the existence
of solution stated in Lem. I.6, .

Corollary I.7 (Proof of Thm. I.1). Given an input abstract training dataset D♯, let β =
1
n maxi

(∑d
j=1
j ̸=i

(|qi,j |+ c′i,j)+ c
′
i,i− qi,i

)
For any regularization coefficient λ ≥ β, we can compute

an abstract fixed point w♯ ∗ for the model weights according to Def. 3.2.

Proof. To find an abstract fixed point of the model weights

w♯ ∗ = w∗
R +w♯ ∗

D +w♯ ∗
N

3There are over 40 sufficient conditions for a matrix to be an M-matrix [56]. The one we use here requires
that the matrix fulfills two conditions: (1) all off-diagonal elements are non-positive, and (2) each diagonal
element is no less than the sum of absolute values of the off-diagonal elements at the same row (also known as
diagonally dominant).
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that fulfills the sufficient condition for an abstract fixed point from Prop. I.2, we first use the
closed form solutions from Lem. I.4 to compute w∗

R and then using w∗
R compute w♯ ∗

D . These
are guaranteed to fulfill the first two conditions of Prop. I.2. As the regularization coefficient
λ ≥ β = 1

n maxi
(∑d

j=1
j ̸=i

(|qi,j |+ c′i,j) + c′i,i − qi,i
)
, the condition from Lem. I.6 holds. Thus,

the linear system of equations for a w♯ ∗
N that fulfills the last condition of Prop. I.2 has a solution

that we can compute using any techniques for solving a system of linear equation. It follows that
w♯ ∗ = w∗

R +w♯ ∗
D +w♯ ∗

N fulfills all conditions of Prop. I.2 and is an abstract fixed point according
to Def. 3.2.

J Weakening the Requirements on Regularization

The existence of a fixed point w♯ ∗ as postulated in Thm. I.1 only holds for sufficiently large
regularization λ ≥ β where β depends on D♯. The majority of real world examples without
multicolinearity in the real part of the training data that we have investigated have β = 0. However,
we still provide a technique to reduce β if the need should arise at the cost of increasing the runtime
of our approach. Specifically, we will make use of splitting [2] which divides an input zonotope into
multiple zonotopes of smaller expand. We apply splitting to D♯, then compute the fixed point for
each zonotope in the result of splitting, and finally combine these fixed point using a join operation
for zonotopes that over-approximates the union of the concretizations of two zonotopes (allows us to
merge multiple zonotope such that the merged zonotope has a concretization that over-approximates
the concretizations of all of the inputs). We will demonstrate that this approach enables us to reduce
β to any value ≥ 0. Intuitively, this works because we can reduce the extend of the input zonotope
for the fixed point computation to the extend necessary to ensure β = 0. Albeit in worst-case this can
require a splitting operator that generates a number of zonotopes that is exponential in the dimension.

J.1 Splitting and Join for zonotopes

Intuitively, a splitting operator divides an input zonotope into two or more zonotopes such that the
union of their concretization is the same as the concretization of the input zonotope.
Definition J.1 (Split Operator). An operator S that maps a zonotope ℓ♯ to a set of zonotopes
{ℓ♯1, · · · , ℓ♯m} is for any input zonotope ℓ♯ we have:

S(ℓ♯) = {ℓ♯1, · · · , ℓ♯m} s.t.
⋃
i

γ
(
ℓ♯i

)
= γ

(
ℓ♯
)
.

As an example of a split operator consider the binary split (2-split) at dimension i denoted by S2,i

that splits the input zonotope into two parts by scaling the ith generator gi by 1
2 and shifting the

center of the zonotope by 1
2gi (− 1

2gi):

S2,i(ℓ
♯) =

{
ℓ♯1, ℓ

♯
2

}
=
{
c+

∑
j

gjϵj︸ ︷︷ ︸
ϵi∈[−1,0]

other ϵj∈[−1,1]

, c+
∑
j

gjϵj︸ ︷︷ ︸
ϵi∈[0,1]

other ϵj∈[−1,1]

}

=
{
c− 1

2
gi +

1

2
giϵi +

∑
j ̸=i

gjϵj , c+
1

2
gi +

1

2
giϵi +

∑
j ̸=i

gjϵj

}
(40)

As γ
(
ℓ♯1

)
∪ γ

(
ℓ♯2

)
= γ

(
ℓ♯
)
, S2,i(·) is a split operator according to Def. J.1. We can generalize

2-split to an (m, i)-split Sm,i that divides the zonotope evenly into m parts along the ith dimension.
We will call the composition of (m, i)-splits across all dimensions as a µ-split. Given µ = 1

m for
m ∈ N as input, the effect of the µ-split Sµ is the generators of each zonotope in the result of splitting
are the generators of the input zonotope scaled by µ. Thus, µ-splitting allows us to downscale the
generators of a zonotope. For a d-dimensional zonotope and µ = 1

m , Sµ returns dm zonotopes.

Definition J.2 (µ-split). For d-dimensional zonotopes and µ = 1
m for m ∈ N, the µ-split Sµ is

defined as:
Sm,d ◦ . . . ◦ Sm,1
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where the (m, i)-split Sm,i is defined as shown below and the application of a split operator to a set
of zonotopes is defined as applying the split operator to every element in the set.

Sm,i(ℓ
♯) = {ℓ♯i}mj=1

for

ℓ♯j = c+
−m+ 2j − 1

m
gi +

1

m
giϵi +

∑
j ̸=i

gjϵj

For example, S2(1 + ϵ1) = {0.5 + 0.5ϵ1, 1.5 + 0.5ϵ1}. It is easy to see that Sµ is indeed a split
according to Def. J.1.
Proposition J.3 (Sµ is a Split Operator). Sµ is a split operator for any µ = 1

m were m ∈ N.

Next we introduce join operators for zonotopes and then demonstrate that for any abstract transformer
F ♯ for a function F , we can construct another abstract transformer for F by (i) splitting the input
zonotope using some split operator S, (ii) applying F ♯ separately on each zonotope returned by the
split, and (iii) merge the results using a join that we introduce next.4

Definition J.4 (Join). An operator ⊔ is a join for zonotopes if it over-approximates union of con-
cretization. That is, for any set S♯ of zonotopes:

γ
(⊔

S♯
)
⊇

⋃
z♯∈S♯

γ
(
z♯
)
.

Several join operators have been proposed for zonotopes, e.g., [24]. Next we establish that new
abstract transformers can be constructed by wrapping existing transformers with split and join. This
ensures that our approach of combining our abstract fixed point calculation with splitting yields valid
fixed points.
Lemma J.5 (Abstract Transformers Are Sound on Splits). Consider a zonotope z♯ and let F ♯ be an
abstract transformer for a function F . Furthermore, let ⊔ be a join operator, S be a split operator,
and let S(ℓ♯) = {ℓ♯1, . . . , ℓ♯m}. Then, FS,⊔

♯ = ⊔ ◦ F ♯ ◦ S is an abstract transformer for F .

Proof. We have to show that
γ
(
FS,⊔

♯(ℓ♯)
)
⊇ F (γ

(
ℓ♯
)
).

We have

F (γ
(
ℓ♯
)
)

=F (
⋃

ℓ♯′∈S(ℓ♯)

γ
(
ℓ♯

′)
) (Def. J.1 for S)

=F (

m⋃
i=1

γ
(
ℓ♯i
)
)

=

m⋃
i=1

F (γ
(
ℓ♯i
)
) (function application on sets of concrete elements is point-wise application)

⊆
m⋃
i=1

γ
(
F ♯(ℓ♯i)

)
(F ♯ is an abstract transformer)

⊆γ

(
m⊔
i=1

F ♯(ℓ♯i)

)
(γ
(
z♯
1 ⊔ z♯

2

)
⊇ γ

(
z♯
1

)
∪ γ

(
z♯
2

)
)

=γ
(
FS,⊔

♯(ℓ♯)
)

4Technically, join is normally defined as an over-approximation of the least upper bound of two abstract
elements wrt. a partial order of the abstract domain. We order abstract elements based on set inclusion of their
concretizations here and only define join regarding to this partial order.

34



J.2 Weakening Regularization Requirements

Equipped with the µ-split and a join operator, we are ready to analyze how the introduction of a
µ-split can be used to achieve an arbitrarily small β. Given the input data D♯, the learning rate η ≥ β,
the regularization coefficient λ, the transformation matrix A, we use Γ(D♯, η, λ,A) to denote the
function that computes the fixed point w♯ ∗

S for these inputs using the process outlined in Corollary I.7.
From Lem. J.5 follows that ΓSµ,⊔ is an abstract transformer for gradient descent and, thus, according
to Prop. 3.3 over-approximates w⊙∗

Next, we show that given an abstract training dataset D♯ and a desired regularization coefficient
λtarget, we can find a value of µ such that the abstract fixed point construction with µ-splitting
computes a fixed point. Recall that Γ can construct a fixed point if λ ≥ β where β is a constant that
depends on D♯. We will show that by choosing µ carefully, we can achieve β ≤ λtarget for each
zonotope in the result of the split and, thus, Γ will return a valid fixed point for each zonotope in the
split result.
Lemma J.6. For any abstract training dataset D♯ and desired regularization coefficient λ, there
exists m ∈ N such that for µ = 1

m , ΓSµ,⊔ returns a fixed point w♯ ∗.

Proof. Consider an abstract training dataset D♯ = (X♯,y♯) with X♯ = XR+X♯
S . WLOG consider

a single abstract training dataset D♯
i in the result of µ-split on D♯:

D♯
i ∈ Sµ(D

♯)

We will show that using the regularization coefficient λ, we can find µ such that the precondition
λ ≥ β for Γ to compute a fixed point holds. Then applying Lem. J.5 we get the desired result.

First observe that since D♯
i is in the result of µ-splitting, we know that it has the following shape

where the symbolic component X♯
S is scaled by µ and the real component XRi of D♯

i typically
differs from X♯ as µ-splitting changes the center of the zonotope.

X♯
i = XRi + µX♯

S

Recall that 2η
n C′k denotes the matrix of coefficients that is the sum of absolute values of coefficients

of 2
nA(XR

TX♯
S +X♯

S

T
XR +X♯

S

T
X♯

S)w
♯
N . Plugging in the definition of X♯

i from above, we get
a matrix 2η

n C′k that is the sum of absolute values of coefficients of

2

n
A(XRi

TµX♯
S + µX♯

S

T
XRi + µX♯

S

T
µX♯

S)w
♯
N (41)

=
2

n
A(µXRi

TX♯
S + µX♯

S

T
XRi + µ2X♯

S

T
X♯

S)A
−1

k1ϵ1...
kdϵd

 (42)

=
( 2µ

n
A(XRi

TX♯
S +X♯

S

T
XRi)A

−1︸ ︷︷ ︸
contributes to c1i,j

+
2µ2

n
A(X♯

S

T
X♯

S)A
−1︸ ︷︷ ︸

contributes to c2i,j

)k1ϵ1...
kdϵd

 . (43)

Recall that c′i,j denotes entry of C ′ at row i and column j. Here, X♯
S

T
X♯

S has higher order than

(XR
TX♯

S + X♯
S

T
XR), thus their terms will not cancel out. Therefore, we can decompose the

contribution to c′i,j into the above two parts, denoted as

c′i,j = c1i,j + c2i,j .

Given scalar µ, let
c′µ = max

u,v
c′u,v

i.e., c′µ denotes the largest entry c′i,j in D♯
i.
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Let i and j such that c′µ = c′i,j , we have:

c′µ = µc1i,j + µ2c2i,j ≤ µc1i,j + µc2i,j = µc′max,

where c′max is a constant that is equal to the maximum c′i,j before scaling X♯
S through µ-splitting.

Next, we prove the lemma for a specific transformation A = V T during order reduction derived
through singular value decomposition (SVD). Using SVD, we can decompose the covariance matrix
XR

T
i XRi of the real number part of features XRi as shown below

XR
T
i XRi = V ΣV T .

For A = V T , and using the fact that V is a rotation in SVD which implies V −1 = V T , we get:

AXR
T
i XRiA

−1

=A(V ΣV T )A−1

=V T (V ΣV T )V T−1

=(V −1V )Σ(V −1V −1−1
)

=Σ

Thus, the matrix AXR
T
i XRiA

−1 = Σ is a diagonal matrix, meaning that all off-diagonal elements
of it (|qi,j | for all (i ̸= j) in Corollary I.7) are zero. In addition, the diagonal element Σ[i, i] (qi,i in
Corollary I.7) is the ith eigenvalue of the covariance matrix XR

T
i XRi, which must be positive when

assuming no multicolinearity.

To sum up, β from Corollary I.7 can be re-written as:

β =
1

n
max

i

(
c′i,i +

d∑
j=1
j ̸=i

(|qi,j |+ c′i,j)− qi,i
)

(44)

≤ 1

n
max

i

(
c′µ +

d∑
j=1
j ̸=i

c′µ − qi,i
)

(45)

≤ 1

n
max

i

(
µc′max +

d∑
j=1
j ̸=i

µc′max − qi,i
)

(46)

=
1

n
max

i

(
dµc′max − qi,i

)
=

1

n
dµc′max − 1

n
min
i
(qi,i) (47)

where 1
n mini(qi,i) is a positive constant. Therefore, when setting µ =

mini(qi,i)
dc′max

> 0, we have
β ≤ 1

ndµc
′
max − 1

n mini(qi,i) = 0.

K An Approximate Abstract Transformer for Ridge Regression

Alg. 2 is the detailed version of Alg. 1 we presented in the main paper. Like Alg. 1, Alg. 2 takes as
input an abstract dataset D♯ that over-approximates D⊙, a learning rate η, a regularization coefficient
λ, and a transformation matrix A used for order reduction (e.g., the SVD-based transformation
discussed in App. J.2). In Line 1, we first use function constructFPEquations to compute fixed
points for w∗

R and w♯
D using the closed form solution from Lem. I.4 and construct the equation

system Ξ for w♯ ∗
N (Eq. (39)). Furthermore, this function also computes the threshold β on the

regularization coefficient for this system of equations to have a solution. If β is smaller or equal to
the desired regularization coefficient λ (Line 10), then we solve the linear equations Ξ (Line 11) and
then returns the fixpoint w♯ ∗. Otherwise, we determine a sufficiently small splitting factor µ that
ensures that β ≤ λ for each w♯

i in the result of the split (Line 3), compute the fixed point for each
such w♯

i (Lines 6 and 8), and merge these fixed points using join to compute the final result (Line 9).
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Algorithm 2: Constructing a Fixed Point for Abstract Gradient Descent

Input: abstract dataset D♯ = (X♯,y♯), learning rate η, Regularization coefficient λ, transformation matrix
A

Output: abstract fixed point w♯ ∗

1 w∗
R,w

♯ ∗
D ,Ξ, β ← constructFPequations(D♯, λ, η)

2 if β > λ then // Is splitting necessary?
3 µ← determineNumSplits(Ξ, λ)
4 {D♯

i}mi=1 ← Sµ(D
♯) // Apply µ-splitting

5 for D♯
i ∈ {D♯

i}mi=1 do // Construct FP for each D♯
i in the split

6 w∗
R,w

♯ ∗
D ,Ξ, β ← constructFPequations(D♯

i, λ, η)

7 w♯ ∗
N ← solveFixedPointEquations(Ξ, λ, η)

8 w♯
i ← w∗

R +w♯ ∗
D +w♯ ∗

N

9 return
⊔m

i=1 w
♯
i // Merge FPs using Join

10 else // No splitting required
11 w♯ ∗

N ← solveFixedPointEquations(Ξ, λ, η)
12 w♯ ∗ ← w∗

R +w♯ ∗
D +w♯ ∗

N

13 return w♯ ∗

14 def constructFPEquations(D♯, λ, η):
15 w∗

R ← evalClosedFormReal(D♯, λ) // Eq. (22)
16 w♯ ∗

D ← evalClosedFormSymbolic(D♯, λ,w∗
R) // Eq. (23)

17 Ξ← constructNonDataFixedPointEquations(D♯, λ, η,w∗
R,w

♯ ∗
D ) // Eq. (39)

18 β ← determineMinRegularization(Ξ)
19 return w∗

R, w♯ ∗
D , Ξ, β

L Infeasibility of Symbolically Evaluating the Closed-form Solution for Ridge
Regression

In this section, we demonstrate why evaluating the closed-form solution for linear regression with
MSE is not feasible. It produces symbolic expressions with many variables and large symbolic
terms (their representation size) that include the fractions with denominators and enumerators that
are polynomial expressions. Apart from the size of these expressions, computing viable prediction
intervals from such a symbolic representation of model weights is computationally hard. We use
MSE loss for simplicity, but the same arguments also apply to ridge regression.

We illustrate the issues using a randomly-generated toy dataset with 10 samples and 3 uncertain data
cells in the third column (corresponding to 3 error symbols ϵ0, ϵ1, ϵ2)5:

X♯ =



1.0 1.6 1.3ϵ0 + 1.4
1.0 0.8 1.5
1.0 −1.7 −1.9
1.0 −0.57 1.1
1.0 −0.39 0.36
1.0 0.035 1.2
1.0 −0.34 −0.73
1.0 0.038 0.3ϵ1 + 0.44
1.0 1.5 1.2ϵ2 + 1.3
1.0 −0.98 −0.66


y♯ =



4.6
−1.5
0.39
−5.7
−3.0
−3.6
−0.44
0.46
2.2
−3.0



5The first column of X♯ consisting of 1’s corresponds to the bias term or the intercept term in the weights.
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Then, symbolically evaluating the closed-form solution for linear regression with MSE loss, we
obtain the symbolic expression representing all possible model weights:

w♯ ∗ = (X♯TX♯)−1X♯Ty♯

=



1.5·106ϵ20+8.7·104ϵ0ϵ1−4.5·105ϵ0ϵ2−1.2·106ϵ0+9.2·104ϵ21+4.0·103ϵ1ϵ2−2.4·105ϵ1+1.0·106ϵ22−2.1·106ϵ2−1.8·106
−1.1·106ϵ20+8.4·104ϵ0ϵ1+1.1·106ϵ0ϵ2+1.1·106ϵ0−8.3·104ϵ21+7.7·104ϵ1ϵ2+6.1·103ϵ1−9.9·105ϵ22+9.5·105ϵ2−4.0·106
−9.5·104ϵ20+2.3·104ϵ0ϵ1+2.6·105ϵ0ϵ2+2.3·105ϵ0−1.4·104ϵ21+2.0·104ϵ1ϵ2+3.6·104ϵ1−1.4·105ϵ22−6.0·102ϵ2−1.8·106
−1.1·105ϵ20+8.4·103ϵ0ϵ1+1.1·105ϵ0ϵ2+1.1·105ϵ0−8.3·103ϵ21+7.7·103ϵ1ϵ2+6.1·102ϵ1−9.9·104ϵ22+9.5·104ϵ2−4.0·105

−3.7·103ϵ0−4.1·102ϵ1−9.2·102ϵ2+1.3·104
−1.1·103ϵ20+84.0ϵ0ϵ1+1.1·103ϵ0ϵ2+1.1·103ϵ0−83.0ϵ21+77.0ϵ1ϵ2+6.1ϵ1−9.9·102ϵ22+9.5·102ϵ2−4.0·103


.

Next, we consider one test sample xt = [1,−1, 1] and apply this closed-form model weight expres-
sion to infer its prediction range V ♯(xt) (cf. Corollary F.2). With merely 3 uncertain data points in
the training data, the prediction of this test data point

ŷt =w♯ ∗xt

=− 3.7·103ϵ0+4.1·102ϵ1+9.2·102ϵ2−1.3·104

−1.1·103ϵ20+84.0ϵ0ϵ1+1.1·103ϵ0ϵ2+1.1·103ϵ0−83.0ϵ21+77.0ϵ1ϵ2+6.1ϵ1−9.9·102ϵ22+9.5·102ϵ2−4.0·103

+
9.5·104ϵ20−2.3·104ϵ0ϵ1−2.6·105ϵ0ϵ2−2.3·105ϵ0+1.4·104ϵ21−2.0·104ϵ1ϵ2−3.6·104ϵ1+1.4·105ϵ22+6.0·102ϵ2+1.8·106

−1.1·105ϵ20+8.4·103ϵ0ϵ1+1.1·105ϵ0ϵ2+1.1·105ϵ0−8.3·103ϵ21+7.7·103ϵ1ϵ2+6.1·102ϵ1−9.9·104ϵ22+9.5·104ϵ2−4.0·105

+
1.5·106ϵ20+8.7·104ϵ0ϵ1−4.5·105ϵ0ϵ2−1.2·106ϵ0+9.2·104ϵ21+4.0·103ϵ1ϵ2−2.4·105ϵ1+1.0·106ϵ22−2.1·106ϵ2−1.8·106

−1.1·106ϵ20+8.4·104ϵ0ϵ1+1.1·106ϵ0ϵ2+1.1·106ϵ0−8.3·104ϵ21+7.7·104ϵ1ϵ2+6.1·103ϵ1−9.9·105ϵ22+9.5·105ϵ2−4.0·106

(48)

already consists of fractions of complex polynomial expressions. Finding the viable prediction range
for this data point, i.e. the minimum and maximum possible prediction for the point across all models
in the concretization of the symbolic expression, using this expression is infeasible, as it is harder
than finding an extrema for multivariate polynomials under linear constraints6, which is known to be
NP-hard. In practice, expressions will be significantly larger as they will involve more error symbols.
Assume each column has p uncertain cells, and q is the number of uncertain labels, the number
of distinct monomials is O(pdd2dq), where d is the number of dimensions, and the d in exponents
mainly comes from the matrix inversion when computing the determinant.

In summary, the symbolic expressions obtained from symbolically evaluating the closed-form solution
for linear regression are not suitable for representing the space of possible model weights.

M Additional Experiments

M.1 Robustness Verification Additional Results

For a better comparison with MEYER [47], we use heatmaps to visualize the robustness ratios
averaged over 5 repeated experiments with different random seeds. In App. M.1, ZORRO exhibits
much less yellow regions (representing higher uncertainty) compared to MEYER. Especially when
the uncertainty is high (bottom-right part), there are many cases that ZORRO returns high robustness
ratio but MEYER does not. Recall that both approach gives sound over-approaximation of prediction
robustness, thus the robustness ratios returned by both are lower bounds of the ground truth prediction
robustness ratio. Therefore, the aforementioned cases correspond to highly robust ground truth (no
less than the result of ZORRO), where ZORRO gives tight over-approximations but MEYER does not.

M.2 Micro Benchmark

We use range of loss as the metric to measure the quality (tightness) of uncertain training result.
range of loss for samples are calculated by max loss - min loss across all sampled results. Loss range
for symbolic representations are calculated my measuring the range of the interval concretization
of the loss function result. Notice that samplings return a subset of all possible result which has no
soundness guarantees, as a result, produces an under-approximation of the loss range. The symbolic
fixed point approach produces an over-approximated loss range. We take 1,000 (1k) and 10,000 (10k)
samples from all possible worlds as under approximations to the concrete range when number of
possible worlds are to large to compute the ground truth range.

6The expression is a sum of fractions in which both numerator and denominators are multivariate polynomial
expressions. The range [−1, 1] for each error symbol can be formulated as linear constraints over the input
space.

38



0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Percentage of Uncertain Data

0.05

0.1

0.15

0.2

0.25Un
ce

rta
in

 R
ad

iu
s (

%
) 100 100 100 97.2 92.5 80.8 67.5 60.2 49.8 40.5

100 98.2 89.0 64.5 45.0 26.5 17.2 11.8 7.2 4.8

100 88.5 57.5 32.0 18.0 6.8 3.5 1.2 0 0

97.5 68.2 35.2 15.5 6.0 1.0 0 0 0 0

94.8 49.8 20.8 5.8 1.5 0 0 0 0 0

Meyer et al.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Percentage of Uncertain Data

0.05

0.1

0.15

0.2

0.25Un
ce

rta
in

 R
ad

iu
s (

%
) 100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 98.8

100 100 100 100 100 100 99.2 97.7 93.5 87.0

100 100 100 100 100 98.2 93.5 87.2 79.0 66.5

ZORRO

0

20

40

60

80

100

Ro
bu

st
ne

ss
 R

at
io

 (%
)

(a) Mpg

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Percentage of Uncertain Data

0.02

0.04

0.06

0.08Un
ce

rta
in

 R
ad

iu
s (

%
) 100 100 100 100 100 100 99.9 99.1 96.3 87.5

100 100 100 99.1 86.0 62.0 36.3 21.7 14.3 9.7

100 100 95.9 64.7 27.5 14.3 8.0 4.0 1.9 0.4

100 99.0 61.9 23.1 9.3 4.0 0.9 0.4 0 0

Meyer et al.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Percentage of Uncertain Data

0.02

0.04

0.06

0.08Un
ce

rta
in

 R
ad

iu
s (

%
) 100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 99.9 99.6 98.4 94.9 88.3

100 100 100 99.9 99.3 93.8 83.7 66.7 46.0 28.3

100 100 99.9 98.0 86.6 65.3 39.6 21.1 10.7 2.7

ZORRO

0

20

40

60

80

100

Ro
bu

st
ne

ss
 R

at
io

 (%
)

(b) Insurance

Figure 5: Robustness verification under label errors using intervals (MEYER) or zonotopes (ZORRO).
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Figure 6: Fixed point versus samplings

Varying ratio of tuples contains uncertain data Figure 6a shows the loss range results while
updating the ratio of uncertain rows from 0.01 to 0.12. ZORRO has a tight range considering all
samples are under approximations of ground truth range especially in . As uncertainty increases, the
over-approximation gap widens due to the increased coefficient of higher order terms in the gradient,
which are linearized, leading to higher linearization errors.

Increasing uncertainty radius Figure 6b shows the result by increasing the radius of uncertain
data (imputation results) by multiplier of 0.06 to 0.44 where 0.06 means the range for each uncertain
data is increased by 6%. Similar to amount of uncertainty,

Varying dimensions Figure 6c Shows the result by change number of dimensions to the training
data. Result indicates tightness of ZORRO ’s over-approximation is not affected by the dimension of
the data.

Figure 7 added sampling result to Figure 3 shows additionally that sampling result is an under
approximation of the ground truth result.

M.3 Additional Experiments on Varying Regularization Coefficients

Fig. 8 shows the effect of varying regularization coefficients on the worst-case loss and prediction
robustness ratio. To avoid much overlapping in the plots, we used one standard deviation as the error
bar. Similar to the conclusions in Sec. 5.2, λ = 0 is often not the optimal regularization coefficient in
terms of accuracy or robustness. In fact, a small, positive λ could result in higher accuracy and better
robustness, and this optimal λ varies across different settings. In general, higher data uncertainty
requires higher λ, which coincides with the intuition of using regularization in traditional settings of
linear regressions, which aims to mitigate the effect of data noises or errors.
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Figure 7: The range of losses obtained by enumerating all possible worlds (GT), sampling 1000
possible worlds (1k), and ZORRO.
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Figure 8: Results with uncertain training labels.

Figure 9: Robustness ratio (red y-axis) and worst-case test loss (green y-axis) vs. regularization
coefficient λ (x-axis), with varying percentages of uncertain labels.

M.4 Comparing with Bayesian Regression

We ran empirical evaluations to demonstrate how data quality issues pose challenges for Bayesian
linear regression (implemented with torchbnn [40]), making them inapplicable to our setting. Using
the setting from the third plot in Fig 1c, where the uncertain data percentage is set to 10%, we tested
Bayesian linear regression on different possible worlds using two methods: impute-and-predict and
sampling from possible worlds. The results show that the prediction intervals generated by Bayesian
methods do not cover the ground truth prediction, i.e., the prediction by the model trained on the
ground truth training data. In contrast, our approach guarantees 100% coverage across all cases.

Uncertain kNN Imputation (k=5) kNN Imputation (k=10) Multiple Imputation Zorro
Radius (%) Coverage (%) Avg. Intv. Coverage (%) Avg. Intv. Coverage (%) Avg. Intv. Coverage (%) Avg. Intv.
2.5 48.8 0.157 42.5 0.153 46.3 0.176 100 0.183
5 48.8 0.181 40 0.153 37.5 0.176 100 0.506
7.5 38.8 0.157 37.5 0.154 35 0.176 100 1.107
10 36.3 0.157 31.3 0.154 32.5 0.176 100 2.387

Table 1: Bayesian approach on imputed data.

Uncertain Possible World 1 Possible World 2 Possible World 3 Zorro
Radius (%) Coverage (%) Avg. Intv. Coverage (%) Avg. Intv. Coverage (%) Avg. Intv. Coverage (%) Avg. Intv.
2.5 38.75 0.151 40 0.154 55 0.176 100 0.183
5 30 0.158 40 0.154 37.5 0.176 100 0.506
7.5 42.5 0.161 38.8 0.155 31.3 0.155 100 1.107
10 57.5 0.351 31.3 0.169 27.5 0.163 100 2.387

Table 2: Bayesian approach on sampled possible worlds.

M.5 Varying Robustness Threshold

Different practical applications may differ in how much uncertainty they are willing to tolerate, thus
leading to varying choices of robustness thresholds. To account for this in the experiments, we
selected both a low threshold (0.5% for the insurance data) and a high threshold (5% for the MPG
data). As presented in Fig 10, we also explored other thresholds, which did not impact the trends
significantly: Zorro can consistently certify a larger fraction of the test data points than the baseline
due to its use of the more expressive zonotope domain.
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Figure 10: Varying robustness threshold from 0.4% to 2.4% with fixed uncertainty radius 6%

M.6 Varying Uncertain Feature

The variability of trained models will depend on the correlation that features with uncertainty have
with the label, which then also affects our over-approximation of this set. As a rule of thumb, model
variability will increase with the correlation between the uncertain feature and the labels, leading
to less robust predictions. We conducted an additional experiment using the MPG dataset, focusing
on the feature “acceleration,” which has relatively low correlation with the label. Unlike the feature
“weight” (Fig. 1c), where the robustness drops when the uncertainty radius is 10%, the robustness for
“acceleration” starts to drop only when the uncertainty radius is increased to 16%. The result shown
in Fig 11 indicates that features with lower predictive power have less impact on the robustness of a
model compared to features that are highly correlated with the label.
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Figure 11: Robustness verification with errors in feature "acceleration".

M.7 Runtime of ZORRO

We evaluated the runtimes for computing the closed-form solution on the MPG dataset, varying
the numbers of uncertain data points, in Fig 12. With the same number of uncertainty data points,
uncertain features lead to more complex computations of covariance matrices, and result in higher
runtimes compared to label uncertainty, where the covariance matrix remains real-valued.
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Figure 12: ZORRO runtimes on MPG data.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We state our contributions and scope in Sec. 1.

Guidelines:
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the experiment settings in detail in Sec. 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We repeat experiments with different random seeds and show the mean and
standard deviation in the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the sufficient information on the computer resources in Sec. 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed the NeurIPS Code of Ethics and make sure the paper conforms
with it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts of our technique in Sec. 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper has no such risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We credit all existing assests used in the paper, and include the license
information in the reference.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide documentations for the released anonymized code (Sec. 5).

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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