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ABSTRACT

Time series forecasting is a critical task in various domains, including traffic, en-
ergy, and weather series forecasting. Recent research has explored the utiliza-
tion of MLPs, Transformers, and CNNs architectures for time series modeling,
delivering promising results. In this work, we take a step further by system-
atically studying the strengths and limitations of these methods and integrating
their capabilities to formulate a unified framework for time series forecasting
with a hybrid modeling approach. We introduce UniTS, a simple yet scalable
framework for temporal modeling that incorporates multiple feature learning tech-
niques. Moreover, prior research employed different hyperparameter configura-
tions in various temporal modeling approaches, which might causing unfair per-
formance comparisons. For instance, when predicting with the same forecasting
horizon, prior approaches might exhibit significant variations in lookback win-
dow lengths. In our study, we address this issue by validating and standardizing
parameters that can significantly impact performance, ensuring a more equitable
comparison of models across diverse datasets. UniTS achieves state-of-the-art
performance across various domains, and we conduct extensive experiments to
further evaluate its capabilities. Our results are fully reproducible, and the source
code for this work is available at https://anonymous.4open.science/
r/UniTS-8DA8/README.md.

1 INTRODUCTION

Time series forecasting task plays a pivotal role in our daily lives, influencing decisions ranging
from weather forecasting, energy consumption management, urban traffic forecasting to stock mar-
ket predictions (Barrera-Animas et al., 2022; Wang et al., 2023; Sezer et al., 2020; Shaikh et al.,
2022). Accurate predictions enable us to anticipate future trends, allocate resources efficiently,
and make informed choices. In the realm of machine learning, designing effective frameworks for
time series analysis is of paramount importance. These frameworks, being categorized into dis-
tinct types, are instrumental in extracting meaningful insights from temporal data. In this paper, we
group them into three primary categories: (1) Models use Linear layers only, represented by the in-
fluential model DLinear (Zeng et al., 2023); (2) Transformer-like models, exemplified by the model
PatchTST (Nie et al., 2022); (3) Models use Convolutional Neural Networks (CNNs), like MICN
and TimesNet (Wang et al., 2022; Wu et al., 2022).

It’s worth noting that these categories are not rigidly isolated but rather represent key approaches
within the broader landscape of time series analysis. To illustrate this point, let’s delve into two
examples: the Multilayer Perceptrons (MLPs) and CNNs. MLPs operates in a holistic fashion by
processing the entire series sequence through linear layers, granting access to global information.
Recently, DLinear (Zeng et al., 2023) has demonstrated that a single-layer linear network is suf-
ficient to train an accurate time series forecasting linear network, and the model’s performance is
significantly better than previous models that employed attention mechanisms and encoder-decoder
architectures (Zhou et al., 2021; 2022; Zeng et al., 2023; Wu et al., 2021). On the other hand, models
like MICN and TimesNet (Wang et al., 2022; Wu et al., 2022), employing CNNs, primarily focus on
extracting features from smaller partitions of the sequence using convolutional kernels with specific
lengths and strides. Beyond to these two types of models, Transformer models (Wu et al., 2021;
Zhou et al., 2021; 2022) have also been proposed for application in time series forecasting, with
PatchTST being a representative example (Nie et al., 2022). PatchTST’s prediction module includes
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a linear layer for the prediction projection similar to the DLinear. However, compared to DLinear,
which directly maps from input sequences to prediction sequences, PatchTST incorporates modules
such as attention layers, layer normalization, linear layers, and positional embeddings before the
linear mapping.

In summary, MLPs and Transformers handle global information effectively with a larger receptive
field, while CNNs focus on local features due to limited receptive field, indicating that they are not
entirely mutually exclusive. In general, single modeling design can lead to performance limitations.
For example, in previous experiments (Wu et al., 2022; Wang et al., 2022; Nie et al., 2022; Zeng
et al., 2023), shorter lookback windows favor CNNs over MLPs and Transformers, but as the window
size increases, CNNs struggle to capture complete sequences while the other models perform well.
This leads us to consider hybrid modeling approaches to combine the strengths of both. However,
another significant challenge lying in designing and validating time series forecasting models is the
difficulty of aligning experimental results of existing work, since prior studies employed different
hyperparameter configurations (Zhou et al., 2021; Wu et al., 2021; Wang et al., 2022; Zeng et al.,
2023; Nie et al., 2022; Wu et al., 2022). For instance, when predicting with the same forecasting
horizon, these approaches might exhibit significant variations in lookback window length, which
could be a crucial factor resulting in unfair performance comparisons. Nevertheless, our experiments
highlight the significance of comprehending the interplay between the lookback window length and
model performance.

Motivated by the aforementioned issues, in this work, we enhance our understanding of contem-
porary time series forecasting methods and their practical applicability. We compare representative
methods using MLPs, CNNs, and Transformers, addressing alignment issues by standardizing crit-
ical parameters for fair model comparisons across diverse datasets. We further introduce “UniTS”,
a novel time series hybrid modeling framework that integrates these methods. In summary, our
contributions are as follows:

1. We delve into an in-depth exploration of the significance of modules used in prior studies,
unveiling numerous insightful phenomena that inspire the design of temporal modeling for
time series forecasting.

2. We propose a simple, scalable, and integrated machine learning architecture that combines
multiple learning modes, providing a unified framework for time series analysis. The pro-
posed model achieves state-of-the-art performance across various datasets.

3. We address the issue of misalignment in previous work settings by validating and standard-
izing parameters that can significantly impact performance, thereby ensuring a more equi-
table comparison of models across diverse datasets. Additionally, we carried out network
architecture parameter search experiments under a limited search budget, highlighting the
research potential in network and parameter exploration for time series forecasting tasks.

2 RELATED WORK

The design of machine learning frameworks for time series analysis has garnered significant atten-
tion in recent years. In this section, we provide an overview of related work, categorizing existing
approaches and highlighting their key characteristics.

MLPs for Time Series Forecasting Employing linear layers is a fundamental approach to time
series forecasting (Zeng et al., 2023; Das et al., 2023; Xu et al., 2023; Li et al., 2023). The most
representative among these studies is the work of DLinear (Zeng et al., 2023), which purely relies
on linear transformations to extract temporal features. This approach allows for direct processing of
sequences through linear layers, granting access to global information.

CNNs for Time Series Forecasting CNNs have emerged as a powerful tool for time series anal-
ysis Sen et al. (2019); Hewage et al. (2020). Recently, models like MICN (Wang et al., 2022) and
TimesNet (Wu et al., 2022) exemplify the CNN-based approaches, which emphasize the extraction
of local features from smaller sequence partitions using convolutional kernels with specific lengths
and strides, showcasing excellent performance in forecasting tasks.
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Figure 1: An overview of the proposed framework “UniTS”, H l,N and Hg,N stand for the global
feature embeddings and local feature embeddings extracted from UniTS Module#N .

Transformers for Time Series Forecasting In recent years, Transformer-like models have gained
prominence in various domains (Vaswani et al., 2017; Radford et al., 2021; Han et al., 2022; Tou-
vron et al., 2023). A series of methods (Zhou et al., 2021; Wu et al., 2021; Zhou et al., 2022; Nie
et al., 2022) have extended the Transformer architecture to time series analysis. The Transformer
layer comprises components including attention layers, layer normalization, linear layers, and posi-
tional embeddings. Importantly, these components can be independently integrated into the network,
allowing for a flexible exploration of their impact on predictive performance.

3 HYBRID TEMPORAL MODELING FOR TIME SERIES FORECASTING

In this section, we first introduce the problem formulation throughout this paper. Then, we introduce
temporal modeling modules and techniques, and illustrate how we have utilize these methods to
construct a hybrid temporal modeling framework “UniTS”.

3.1 PROBLEM STATEMENT

Given a set of series with the same length of lookback window length, our objective is to utilize a
model to predict a multivariate time series of given prediction horizons. To clarify, we are tasked
with forecasting future data points in a multivariate time series based on historical observations.
Formally, we denote: C: The number of series, L: The length of lookback window length, T : The
length of the prediction horizons, Xi = {xi

1, · · · , xi
L}: The input time series sequence for the i-th

series, where i ∈ [1, C], Yi = {xi
L+1, · · · , xi

L+T }: The predicted time series for the i-th series.
For each time series sequence Xi in the dataset, we input it into the neural network model, which
consists of multiple layers of neurons, to obtain a prediction Ŷi, yielding a mapping: Ŷi = f(Xi).
Here, Ŷi represents the ground truth prediction for the i-th series, and f denotes the neural network
model that captures the underlying patterns and dependencies in the input time series Xi to generate
the forecasting values.

3.2 PROPOSED FRAMEWORK

The overall framework of UniTS can be seen from Figure 1. Firstly, it will preproess the data. Then,
the preprocessed data is fed into both the global feature extractor and the local extractor. Finally, the
output embeddings will be concatenated and fed to a final projection layer to get the final prediction.

3.2.1 DATA PREPROCESSING

Data preprocessing is of critical importance in context of the temporal modeling for time series
forecasting (Wu et al., 2022; Zeng et al., 2023; Nie et al., 2022; Das et al., 2023; Wang et al., 2022).
Primarily, the data preprocessing process in the recent studies can be summarized into 3 parts: 1)
Series Decomposition; 2) Data patching, and 3) Instance Normalization.
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Series Decomposition Series decomposition was first employed in Autoformer (Wu et al., 2021),
which first employed a seasonal-trend decomposition step before each neural block. It is a conven-
tional technique in time series analysis aimed at enhancing the predictability of raw data. Specif-
ically, the vanilla series decomposition module utilizes a moving average kernel on the input se-
quence to extract the trend-cyclical component of the time series. The difference between the orig-
inal sequence and the extracted trend component is considered as the seasonal component. Such
design has been widely applied in the recent stuides (Wu et al., 2021; Zhou et al., 2022; Zeng et al.,
2023; Wang et al., 2022; Das et al., 2023), and showed its effectiveness in case studies. Built upon
the decomposition approach of Autoformer, FEDformer (Zhou et al., 2022) introduces a strategy in-
volving the mixture of experts to combine trend components extracted using moving average kernels
with varying kernel sizes. In subsequent work, as demonstrated in MICN (Wang et al., 2022), the
authors implemented a design that averages multiple kernel sizes within the decomposition module.
UniTS also incorporates a series decomposition module as a component of the model.

Patching Data patching is an potent strategy to mitigate computational complexity, particularly
in scenarios with an extensive lookback window or when handling voluminous datasets. Given an
input time series Xi, the data patching approach involves an initial partitioning into patches, with the
flexibility to configure them as either overlapping or non-overlapping. Let P denote the patch length,
and S represent the stride, defining the non-overlapping interval between consecutive patches. The
patching procedure generates a sequence of patches, XP

i ∈ RN×P , where N , the number of patches,
is computed as N = ⌊ (L−P )

S ⌋+2. In this context, S repetitions of the final value, denoted as xi
L ∈ R,

are appended to the end of the original sequence before patching. Leveraging patches enables a
reduction in the number of input tokens from L to approximately L/S. For temporal modeling
methods employing transformer or linear structures, this reduction signifies a quadratic decrease in
both memory usage and computational complexity of long sequence by a factor of S (Nie et al.,
2022).

Recent work PatchTST (Nie et al., 2022) and TimesNet (Wu et al., 2022) have used two different
data patching methods. PatchTST employs a predefined patch size for segmentation, while Times-
Net uses periodicity for selecting dominant frequency components in the frequency domain. By
obtaining the primary frequency components, it performs data patching of input sequence with their
corresponding periods. However, TimesNet’s approach requires sequential computations and oper-
ate Fourier transform computations for each batch, causing significantly higher computational com-
plexity. In consideration of the aforementioned factors, we adopt PatchTST’s patch segmentation
strategy for performance evaluation, which is simpler and more effective in experiments.

Instance Normalization Instance Normalization is a technique introduced to address the distri-
bution shift effect between training and testing data (Ulyanov et al., 2016; Kim et al., 2021), which
plays a pivotal role in our approach. This method involves the straightforward normalization of each
time series instance by subtracting the mean and dividing by the standard deviation. Essentially,
we apply this normalization to each time series before the patching process, and subsequently, the
mean and deviation are reintegrated into the output prediction. In this study, we also incorporate the
ReVIN method (Kim et al., 2021) to project the normalized batch samples into a learnable param-
eterized distribution. After patching and data instance normalization, the processed data would be
fed into global feature extractors and local feature extractors.

3.2.2 GLOBAL FEATURE EXTRACTION

For the global feature extractor, we follow the design used in DLinear (Zeng et al., 2023) by uti-
lizing a simple variant of the direct multi-step forecasting model (Chevillon, 2007). It constructs a
competitive baseline by employing only one linear layer for time series forecasting. In this work,
we first pass the patch through a linear preceding layer, as illustrated in the right bottom of Figure 1,
mapping each patch to d dimensions. Furthermore, stacking multiple linear layers here further pro-
vides a remedy for the potential underfitting issue in real-world scenarios, which might occur as a
consequence of a shallow structure. Moreover, the introduction of attention, position encoding, and
layernorm mechanisms can further transform it into a comprehensive transformer layer. We will
delve into a more detailed discussion of the impact of this structural design on performance in Sec-
tion 4.4. Subsequently, embeddings of all patches are concatenated, followed by passing through a
linear layer to obtain the final global latent embedding of dimension d.
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3.2.3 LOCAL FEATURE EXTRACTION

The main network architecture of the local feature extractor is CNNs, with each layer consisting
of serveral convolutional kernels of different scales tailored to model distinct temporal patterns by
utilizing various scale sizes. The local feature extractor module plays a pivotal role in capturing
the local features of the given sequence from a multi-scale view. To elaborate, the local feature
extraction module performs 1D convolution on patched sequence for downsampling. This process
can be represented as: [)hl,k

j,i = Conv1Dj(Padding(h
l,k−1
j,i )), where hl

j,i represents the local latent
embedding of series i within 1D convolution kernel k at layer l. The final local feature is obtained
by concatenating all the convolved features, represented as H l

i = Concat(h1,i, · · · , hK,i). Insipred
by (Wang et al., 2022), we can utilize multiple kernels to capture temporal patterns across various
scale sizes.

3.2.4 PREDICTION PROJECTION

Given the extracted global feature embeddings Hg = {Hg,1, · · · , Hg,N} and the local feature
embeddings {H l,1, · · · , H l,N}, we concatenate them and use a linear projection layer to get the
final prediction: Ŷi = Projection(Concat(Hg

i , H
l
i)).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets The performance evaluation of our experiments encompasses eight widely recognized
datasets including Weather, Traffic, Electricity, ILI, and four ETT datasets (ETTh1, ETTh2, ETTm1,
ETTm2). These datasets have served as prevalent benchmarks and are publicly accessible via the
work of (Wu et al., 2021). The summarization of dataset statistics can be found in Appendix A.1.

Baselines Our selection of state-of-the-art Transformer-based models for baselines includes
PatchTST Nie et al. (2022), FEDformer (Zhou et al., 2022), Autoformer Wu et al. (2021), and linear
model DLinear (Zeng et al., 2023). Additionally, we include two CNN-based models, MICN (Wang
et al., 2022) and TimesNet (Wu et al., 2022), and one RNN-based model: LSTNet (Lai et al., 2018).
Additionally, in Appendix 5, we have provided supplementary experimental results and performance
analyses for recent proposed models that have been demonstrated to be effective for time series pre-
diction. This includes TiDE (Das et al., 2023), N-BEATS (Oreshkin et al., 2019), N-HiTS (Challu
et al., 2023), SpaceTimeFormer (Grigsby et al., 2021), and RLinear/RMLP (Li et al., 2023).

Experiment Settings All models adhere to a consistent experimental setup, with prediction length
denoted as T , where T takes on values of 24, 36, 48, 60 for the ILI dataset and 96, 192, 336,
720 for other datasets, as specified in the previous works (Wu et al., 2021; Zhou et al., 2022; Nie
et al., 2022; Zeng et al., 2023). Notably, in work like (Wu et al., 2021; Zhou et al., 2021; 2022;
Wu et al., 2022), they use a fixed lookback window for performance evaluation. However, other
studies like (Wang et al., 2022; Zeng et al., 2023; Nie et al., 2022) finetunes the lookback horizon
as a hyperparameter for the performance evaluation. This distinction makes it difficult to directly
compare their performance, however, we believe that both of these settings are meaningful, and
the performance differences between different models in these two settings further prompt us to
consider how the lookback window length affects the model’s predictive performance. Therefore,
in the experiments conducted in this paper, we have designed two types of experiments based on the
distinction between these two settings: (i) Prediction performance without a constraint on lookback
window length; (ii) Prediction performance with a fixed lookback window length. For setting (i),
baseline results are collected by running experiments with six different lookback window lengths
L ∈ {36, 60, 84, 108} for ILI and L ∈ {96, 288, 384, 576, 640, 720} for the other five datasets.
The best results among these configurations are chosen as the performance metric. For setting (ii),
baseline results are obtained by running experiments with a fixed lookback window length. For the
evaluation of multivariate time series forecasting, we employ Mean Squared Error (MSE) and Mean
Absolute Error (MAE) as our metrics.
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Table 1: Multivariate long-term forecasting results are evaluated using prediction length T ∈
{24, 36, 48, 60} for the ILI dataset and T ∈ {96, 192, 336, 720} for other datasets. A lower MSE
or MAE indicates a better prediction. The best results are highlighted in bold, the second best is
underlined.

Models UniTS PatchTST DLinear TimesNet MICN Fedformer Autoformer LSTNet
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.365 0.390 0.370 0.399 0.384 0.399 0.384 0.400 0.391 0.420 0.376 0.419 0.435 0.446 1.044 0.773
192 0.396 0.411 0.412 0.418 0.412 0.420 0.430 0.445 0.430 0.453 0.420 0.448 0.456 0.457 1.217 0.832
336 0.414 0.426 0.422 0.440 0.443 0.448 0.479 0.460 0.439 0.458 0.459 0.465 0.486 0.487 1.259 0.841
720 0.418 0.435 0.447 0.453 0.501 0.490 0.513 0.489 0.485 0.502 0.506 0.507 0.515 0.517 1.271 0.838

E
T

T
h2

96 0.262 0.329 0.269 0.336 0.289 0.353 0.335 0.369 0.331 0.375 0.358 0.397 0.332 0.368 2.522 1.278
192 0.327 0.360 0.339 0.379 0.376 0.411 0.397 0.405 0.419 0.437 0.429 0.439 0.426 0.434 3.312 1.384
336 0.349 0.384 0.361 0.397 0.435 0.442 0.449 0.450 0.442 0.468 0.496 0.487 0.477 0.479 3.291 1.388
720 0.377 0.415 0.379 0.422 0.467 0.479 0.451 0.455 0.439 0.462 0.463 0.474 0.453 0.490 3.257 1.357

E
T

T
m

1 96 0.289 0.343 0.291 0.346 0.303 0.348 0.330 0.365 0.354 0.393 0.379 0.419 0.510 0.492 0.863 0.664
192 0.326 0.360 0.334 0.364 0.335 0.364 0.370 0.382 0.400 0.412 0.426 0.441 0.514 0.495 1.113 0.776
336 0.355 0.382 0.367 0.387 0.368 0.386 0.402 0.400 0.401 0.408 0.445 0.459 0.510 0.492 1.267 0.832
720 0.406 0.408 0.415 0.420 0.420 0.421 0.468 0.442 0.445 0.450 0.543 0.490 0.527 0.493 1.324 0.858

E
T

T
m

2 96 0.159 0.250 0.164 0.256 0.166 0.259 0.180 0.258 0.202 0.284 0.203 0.287 0.205 0.293 2.041 1.073
192 0.213 0.285 0.220 0.296 0.223 0.302 0.244 0.302 0.261 0.324 0.269 0.328 0.278 0.336 2.249 1.112
336 0.264 0.311 0.273 0.329 0.281 0.340 0.311 0.339 0.302 0.348 0.325 0.366 0.343 0.379 2.568 1.238
720 0.344 0.353 0.359 0.385 0.389 0.413 0.405 0.401 0.385 0.400 0.421 0.415 0.414 0.419 2.720 1.287

Tr
af

fic

96 0.355 0.243 0.360 0.249 0.398 0.269 0.573 0.302 0.515 0.307 0.587 0.366 0.597 0.371 0.843 0.453
192 0.365 0.251 0.381 0.256 0.412 0.284 0.601 0.333 0.535 0.314 0.604 0.373 0.607 0.382 0.847 0.453
336 0.380 0.260 0.394 0.264 0.420 0.291 0.615 0.338 0.526 0.310 0.621 0.383 0.623 0.387 0.853 0.455
720 0.417 0.279 0.427 0.282 0.454 0.307 0.628 0.345 0.569 0.321 0.626 0.382 0.639 0.395 1.500 0.805

E
le

ct
ri

ci
ty 96 0.130 0.221 0.130 0.222 0.140 0.237 0.167 0.271 0.191 0.303 0.193 0.308 0.196 0.313 0.375 0.437

192 0.146 0.241 0.148 0.248 0.158 0.254 0.184 0.285 0.199 0.306 0.201 0.315 0.211 0.324 0.442 0.473
336 0.159 0.256 0.163 0.259 0.174 0.276 0.197 0.298 0.215 0.321 0.214 0.329 0.214 0.327 0.439 0.473
720 0.195 0.292 0.197 0.294 0.208 0.313 0.218 0.315 0.221 0.326 0.246 0.355 0.236 0.342 0.980 0.814

W
ea

th
er 96 0.144 0.189 0.150 0.203 0.168 0.210 0.172 0.219 0.182 0.249 0.217 0.296 0.249 0.329 0.369 0.406

192 0.187 0.240 0.193 0.241 0.208 0.254 0.217 0.261 0.243 0.312 0.276 0.336 0.325 0.370 0.416 0.435
336 0.236 0.271 0.247 0.282 0.263 0.321 0.277 0.304 0.291 0.332 0.339 0.380 0.351 0.391 0.455 0.454
720 0.303 0.320 0.316 0.334 0.327 0.369 0.360 0.352 0.370 0.395 0.403 0.428 0.415 0.426 0.535 0.520

IL
I

24 1.393 0.768 1.319 0.754 2.215 1.081 2.120 0.924 2.729 1.134 3.228 1.260 2.906 1.182 5.914 1.734
36 1.456 0.794 1.579 0.870 1.963 0.963 1.955 0.917 2.451 1.001 2.679 1.080 2.585 1.038 6.631 1.845
48 1.548 0.800 1.553 0.815 2.130 1.024 2.209 0.931 2.350 1.027 2.622 1.078 3.024 1.145 6.736 1.857
60 1.498 0.797 1.470 0.788 2.368 1.096 2.001 0.925 2.518 1.056 2.847 1.144 2.761 1.114 6.870 1.879
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Figure 2: Multivariate long-term forecasting results are evaluated using prediction length T ∈
{96, 192, 336, 720} on ETTh1 with lookback window length L ∈ {96, 288, 384, 576, 640, 720}.

4.2 PREDICTION PERFORMANCE WITH FINETUNED LOOKBACK LENGTH

Table 1 provides an overall view analysis of the prediction performance across all datasets with
varying prediction lengths of all selected models with a finetuned lookback length, and our proposed
UniTS demonstrates consistent superiority over all baseline methods. For instance, when focusing
on the best-performing Transformer-based models, UniTS consistently achieves remarkable reduc-
tions in both MSE and MAE. Notably, in comparison to PatchTST, UniTS showcases a substantial
reduction in MSE and in MAE across different dataset scenarios. Additionally, when compared to
DLinear, UniTS consistently outperforms it, especially on datasets with complex patterns, such as
Weather, Traffic, Electricity, and the ILI dataset. These findings underscore the effectiveness and
robustness of UniTS as a forecasting model, making it a compelling choice for various multivariate
time series forecasting tasks. Next, we will delve into the details of the model and validate the impact
of each module on the model’s predictive performance, allowing for a more in-depth interpretation
of the outstanding performance displayed.
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Table 2: Multivariate long-term forecasting results with different model ablations, evaluated using
prediction length T ∈ {96, 192, 336, 720} on Traffic, Electricity, and Weather. IN: Instance Nor-
malization, LFE: Local Feature Extraction, GFE: Global Feature Extraction, PE: Position encoding,
TE, Temporal Embedding, Attention: Attention Layer, LN: Layer Normalization.

Models UniTS - IN - LFE - GFE + PE + TE + Attention + LN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Tr
af

fic

96 0.355 0.243 0.390 0.261 0.365 0.254 0.488 0.320 0.360 0.245 0.357 0.244 0.370 0.259 0.358 0.244
192 0.365 0.251 0.402 0.275 0.372 0.256 0.503 0.323 0.369 0.247 0.371 0.255 0.377 0.260 0.369 0.255
336 0.380 0.260 0.412 0.283 0.388 0.263 0.518 0.329 0.383 0.263 0.384 0.264 0.394 0.265 0.384 0.263
720 0.417 0.279 0.430 0.291 0.425 0.289 0.526 0.325 0.425 0.284 0.420 0.285 0.435 0.291 0.424 0.284

E
le

ct
ri

ci
ty 96 0.130 0.221 0.141 0.237 0.132 0.223 0.188 0.290 0.133 0.225 0.132 0.223 0.135 0.228 0.133 0.224

192 0.146 0.241 0.151 0.246 0.146 0.242 0.195 0.295 0.150 0.247 0.148 0.243 0.153 0.250 0.147 0.243
336 0.159 0.256 0.165 0.263 0.167 0.265 0.207 0.312 0.161 0.258 0.161 0.257 0.164 0.261 0.161 0.260
720 0.195 0.292 0.197 0.295 0.203 0.302 0.215 0.318 0.200 0.296 0.199 0.296 0.205 0.306 0.201 0.300

W
ea

th
er 96 0.144 0.187 0.160 0.209 0.146 0.190 0.175 0.235 0.149 0.195 0.146 0.190 0.151 0.198 0.147 0.192

192 0.187 0.240 0.211 0.259 0.188 0.242 0.233 0.270 0.192 0.244 0.190 0.242 0.193 0.247 0.192 0.246
336 0.236 0.269 0.254 0.332 0.240 0.303 0.279 0.320 0.242 0.276 0.240 0.274 0.245 0.277 0.240 0.272
720 0.303 0.318 0.315 0.342 0.313 0.357 0.351 0.394 0.309 0.328 0.305 0.321 0.310 0.331 0.305 0.322

4.3 PREDICTION PERFORMANCE WITH SPECIFIED LOOKBACK LENGTH

Our experiments found the effect of lookback window length is rather evident and can not be ig-
nored. Figure 2 illustrates an example on the results of setting (ii) on dataset ETTh2. We can
see that the performance curve usually exhibits an upward trend with increasing lookback window
length. However, this performance gain is not indefinite and gradually plateaus, and in some cases,
declines. It highlights the critical role of lookback window length in shaping temporal modeling
performance, as well as the challenges posed by prolonged sequences in maintaining model effec-
tiveness. This phenomenon warrants a deeper understanding and analysis for long-term temporal
modeling and generalization. Notably, prior research often sidesteps this issue. Representative
works like Informer, Autoformer, and TimesNet frequently employ fixed lookback window length
for performance evaluation Zhou et al. (2021); Wu et al. (2021; 2022). Conversely, works such as
DLinear, PatchTST, and MICN finetune the lookback window length. This discrepancy in evalua-
tion practices introduces a degree of unfairness, as the lookback window length directly impacts the
model’s ultimate performance. Due to space constraints, we have provided additional experimental
results in Appendix A.5 regarding the performance of each model across various fixed lookback
window sizes.

4.4 IS TRANSFORMER-STYLE MODELING NECESSARY FOR TIME SERIES FORECASTING?

The discussion on whether Transformer (Vaswani et al., 2017) modeling is effective under the sce-
narios of time series forecasting have been existed for a time. The experiments with DLinear indicate
that remarkable predictive results can be achieved by combining only one linear layer, surpassing
the previous Transformer models. However, in subsequent work, PatchTST once again utilizes a
Transformer-based structure to model time-series sequences and achieves even better performance.
In this paper, we will continue to investigate whether the Transformer’s modeling approach gen-
uinely contributes to temporal modeling for time-series prediction. It’s worth noting that Recent
work Li et al. (2023) has suggested that, while PatchTST indeed outperforms the vanilla DLinear,
this gain may not necessarily come from the Transformer’s modeling approach but rather from their
instance normalization (IN) method. It shows that removing IN from PatchTST even leads to perfor-
mance lower than that of DLinear, and adding IN to DLinear makes its performance comparable to
PatchTST. In this paper, we employ ablation experiments to more directly assess which of the two,
Transformer and Linear networks, has the advantage in temporal modeling for time series forecast-
ing. That is, if we further extend the linear layer by incorporating mechanisms used Transformer
layers: attention layers, position encoding, and layer normalization, the resulting structure evolves
into a Transformer-like architecture. We briefly elaborate on this transformation by introducing
these additive modules:

Attention Layer Addition: Incorporating an attention mechanism introduces the capability for the
model to focus on different parts of the input sequence while making predictions. This is achieved
by calculating attention scores between different elements in the sequence. The attention operation
can be represented as follows: Given input sequence of series m after patching XP

m ∈ RN×P , where

7
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N is the patch number and P is the patch length, the attention mechanism computes a set of attention
scores Ai ∈ RN×N : Ai = Softmax(QiK

T
i /

√
dk), Qi, and Ki, are linear projections of Xm and

embeddings of intermediate layers with hidden size D, and dk is the dimension of the key vectors.

Position Encoding Addition: To account for the positional information of elements in the sequence,
position embeddings are added. These embeddings provide the model with knowledge of the order
or position of elements within the sequence. The position embedding PEi ∈ RL×D is added
element-wise to the input sequence hi: hiwith PE = hi + PEi. The position embeddings are often
pre-defined based on the position of elements in the sequence, details of position coding method can
be found at Appendix A.2.

Layer normalization Addition: It is applied to stabilize and standardize the activations within
each layer of the model. This helps improve training convergence and overall model performance.
The layer normalization can be represented as: hi = LayerNorm(hiwith PE). hi represents the layer-
normalized version of the input sequence with position embeddings.

Given that UniTS employs a hybrid modeling approach, we can further test the impact of above
modules by adding it to the vanilla linear global feature extractor. Table 2 presents our ablation
results on the Traffic, Electricity, and Weather datasets. It can be observed that, in all cases, the
model’s performance deteriorates after adding attention, which shows that the attention layer is
not essential for temporal modeling in time-series forecasting models. Moreover, Instance Nor-
malization (IN) significantly improves the model performance, indicating its crucial importance in
temporal modeling. Position encoding and temporal embedding is widely used in sequence model-
ing within attention mechanisms (Nie et al., 2022; Das et al., 2023), designed to provide positional
or temporal information to the model. However, our ablation experiments either revealed that in
certain scenarios, position encoding does not necessarily contribute to improved predictive perfor-
mance. This phenomenon can be attributed to the nature of the datasets. In cases where the inherent
temporal order of the data is evident and well-captured by other model components, the addition
of position encoding may introduce redundancy without a significant benefit. Furthermore, exces-
sive reliance on position encoding can lead to overfitting when the temporal patterns are adequately
captured by other model components. Based on our observations, we suggest that the inclusion of
position encoding should be carefully considered, especially when the temporal relationships within
the data are adequately captured by the model’s architecture. A more judicious approach to position
encoding can help streamline model complexity and maintain competitive predictive performance.
Regarding layer normalization, we found through experiments that it does not directly benefit the
model’s performance. We believe this is because time-series models often have relatively shallow
structures and fewer parameters, and they can achieve stable learning without the need for layer
normalization.

4.5 MODEL ANALYSIS

We further verify the efficacy of the modules used in UniTS by conducting ablations and hyperpa-
rameter tuning. Our validation of the model modules primarily focuses on two aspects: (i) Whether
the hybrid modeling approach can effectively enhance generalization across datasets; and (ii) How
the impact of the hyperparamters like lookback window length L on model performance.

How Hybrid Modeling Benefits Time Series Forecasting Our experiments delved into the ef-
fectiveness of hybrid feature extraction methods within our UniTS framework. We abalte the Global
Feature Extraction module (GFE) and Local Feature Extraction module (LFE) to evaluate the ef-
fectiveness of hybrid modeling. From the results in Table 2, we can observe that removing both
feature extraction modules leads to a decrease in model performance. Removing LFE results in an
average increase of 2.19% in MSE, while removing GFE leads to an average increase of 28.04% in
MSE. This indicates that the hybrid temporal modeling approach, which combines both modules,
is more advantageous compared to a single modeling approach. Additionally, it highlights the sig-
nificant importance of GFE for the model’s predictions. Our findings underscore the significance
of incorporating hybrid feature extractors in time series modeling, and showing the importance of
considering multi-scale feature extraction when designing predictive models. The results revealed
that combining global and local feature extraction strategies through hybrid modeling consistently
improved predictive performance across various datasets. This performance enhancement can be
attributed to the critical role of hybrid feature extraction in capturing intricate temporal patterns.

8



Under review as a conference paper at ICLR 2024

0.001
0.005

0.0080.01 0.05 0.1

Learning Rate

0.30

0.30

0.31

0.32

96 288 384 576 640 720
Lookback Window Size

0.30

0.32

0.34
Weather, Prediction Length 720

Figure 3: Results with different hyperparamter
selections with learning rate and lookback win-
dow length, the y axis is MSE, a lower MSE in-
dicates a better prediction.

Good Hyperparameters Make a Good
Neural Forecaster Numerous studies have
proposed various neural network architec-
tures for multivariate time series forecasting.
As we dicussed above, one prevailing issue lie in
these works is the lack of standardized param-
eter design, leading to potential unfair compar-
isons and evaluations. Take the DLinear model
for example. (Li et al., 2023) shows that DLinear
can achieve comparable or even superior perfor-
mance to PatchTST by adopting similar normal-
ization strategies (ReVIN) (Kim et al., 2021),
akin to those used in the PatchTST framework.
Our experiments have shed light on this aspect. Traffic Weather ETTh1

L 96 720 96 720 96 720
BO 0.368 0.434 0.151 0.310 0.375 0.430

Random 0.385 0.485 0.160 0.330 0.397 0.475
Oracle 0.355 0.417 0.144 0.303 0.365 0.418

Table 3: Hyperparameter search results with differ-
ent search strategies.

We demonstrate that carefully chosen param-
eters is of critical importance for a good neu-
ral forecasting model. In addition, Figure 3
provides a simple example of how the learn-
ing rate and lookback window length have a
profound impact the UniTS’s forecasting performance. It is evident that the choice of these two pa-
rameters plays a crucial role in determining the final performance of the model. To further evaluate
the importance of hyperparameter selection in time series models. We conducted a comprehensive
parameter exploration experiments on hyperpameters including learning rate, the use of lookback
window length, learning rate, and hidden size, e.t.c.. Due to limited computational resources, we
predefined a parameter space for UniTS, and the results can be found at Appendix A.6.

To further evaluate the important of parameter search of time series forecasting model, we employed
three different parameter search methods: (1) Random: Using randomly selected parameter settings
as the final model results; (2) BO: Bayesian Optimization-based parameter search method (Snoek
et al., 2012); (3) Oracle: Utilizing Grid Search for the optimal results. Even though we manually
constrained the parameter search space, we were able to keep (3) within the computational budget
range available to us, despite the exponential increase in search difficulty with the number of pa-
rameters. Table 3 presents the results of the parameter search experiments. For each prediction task,
the random search is the average of 20 search runs, while Bayesian search consists of 20 search
iterations. It can be observed that compared to the random strategy, the Bayesian search strategy
yields parameters that, on average, reduce the MSE by 7.51%. However, there is still a noticeable
gap in performance compared to the parameters obtained through grid search for achieving optimal
performance. This underscores the significance of designing efficient parameter search capabilities
for time-series prediction models, which remains an area worth investigating. In all, we explored
the utility of these modules and clarified how their selection impacts the overall model. Thus, this
brings attention to the complexity introduced by parameter selection, a frequently overlooked issue
in existing literature. Notably, in prior studies, model performance often resulted from manual se-
lection within a given architecture. We delve into the intricacies of parameter selection and training
costs in Appendix A.4, demonstrating that UniTS achieves a stable and effective prediction model
with a limited computational budget.

5 CONCLUSION

In summary, our work contributes to the advancement of time series modeling with comprehen-
sive experiments and offers a powerful and flexible framework for researchers and practitioners in
the field. Our exploration has shed light on the critical roles of individual modules within these
frameworks, uncovering valuable insights for the design of effective temporal prediction models.
By decoupling of modules in previous works and a more refined performance analysis, we also
have introduced a versatile and simple machine learning framework UniTS for temporal modeling
for time series forecasting, bridging the gap between various learning paradigms. Through rigor-
ous experimentats, we have demonstrated the superior performance of our proposed across diverse
datasets. We provide comprehensive ablation experiments that enriches our understanding of the
intricate relationship between model components.
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A APPENDIX

A.1 DATASET STATISTICS

In this study, we use 8 widely-used multivariate datasets for forecasting performance evaluation. We
provide an overview of the experimental datasets as follows:

1. ETT1 dataset comprises four sub-datasets: ETTh1, ETTh2, ETTm1, and ETTm2, collected
from electricity transformers at intervals of 1 hour and 15 minutes, respectively, spanning
from July 2016 to July 2018.

1https://github.com/zhouhaoyi/ETDataset
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2. The Electricity2 dataset includes hourly records of electricity consumption from 321 cus-
tomers, spanning from 2012 to 2014.

3. Traffic3 dataset contains data from the California Department of Transportation, provid-
ing hourly road occupancy rates measured by various sensors on San Francisco Bay area
freeways.

4. Weather4 dataset consists of 21 meteorological indicators, recorded at 10-minute intervals
throughout the entire year of 2020.

5. ILI5 dataset records weekly data on influenza-like illness (ILI) patients from the Centers
for Disease Control and Prevention of the United States, covering the period from 2002 to
2021.

Table 4 summarizes the details of the used datasets

Dataset Length Series Number Record Frequency
ETTh 17420 8 1 hour
ETTm 69680 8 15 minutes

Electricity 26304 322 1 hour
Traffic 17544 863 1 hour

Weather 52696 22 10 minutes
ILI 966 8 7 days

Table 4: Dataset Statistics.

A.2 MODELS, HYPERPARAMETERS, AND REPRODUCIBILITY

We provide detailed description of the experimental setup for a easy reproducibility in this section.

A.2.1 IMPLEMENTATION DETAILS ON UNITS

Our approach is trained using the L2 loss and employs the ADAM optimizer. The batch size is
configured to be 32 for Traffic and Electricity datasets and 16 for others. The number of decompose
module is set to 1, and the layer number of global feature extractor and local feature extractor is 1.
The patch length and stride is set to 16 and 4 for ETT datasets and weather dataset. For Traffic and
Electricity dataset, it’s set to 32 and 8. We employ early stopping during training, which terminates
the process after 5 epochs if there is no improvement in loss on the validation set. We evaluate our
model using mean square error (MSE) and mean absolute error (MAE) as metrics. All experiments
are conducted 3 times with distinct random seeds, implemented in PyTorch. All the experiments are
conducted on 5 Azure virtual machines each with 4 NVIDIA RTX V100 16GB GPU.

Position Encoding Sequence Position Embedding (PE) is a fundamental component in many
sequence-to-sequence models, including Transformer-based architectures. The basic idea behind
Sequence Position Embedding is to add position-specific information to the input data, allowing the
model to discern not only the content but also the location of each element in the sequence.

Mathematically, Sequence Position Embedding is commonly represented as follows:

PE(pos,2i) = sin
( pos

100002i/d

)
PE(pos,2i+1) = cos

( pos

100002i/d

)
Here, PE(pos,2i) and PE(pos,2i+1) represent the position embeddings for a given position pos and
dimension 2i and 2i + 1 respectively. The function sin and cos introduce oscillatory patterns that
are designed to capture different positional information.

2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3https://pems.dot.ca.gov/
4https://www.bgc-jena.mpg.de/wetter/
5https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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These position embeddings are added to the input sequence elements element-wise, enriching the
input representation with positional context. This allows the model to take into account the sequence
order during its computations, which is particularly valuable for tasks where the order of elements
carries significance, such as language understanding and time series forecasting.

A.2.2 IMPLEMENTATION DETAILS ON BASELINE MODELS

In the experimental section of this paper, for the selection of the optimal lookback window size,
we referred to the reported results from PatchTST (Nie et al., 2022). They conducted fine-tuning
experiments for a given L ∈ {24, 48, 96, 192, 336, 720}. However, since the original experiments in
TimesNet and MICN used a fixed input sequence length of 96 for predictions, we re-ran these two
models in this experimental setting.

For the experiments with a fixed lookback window size, we utilized the results from TimesNet (Wu
et al., 2022) and MICN (Wang et al., 2022). However, since PatchTST and DLinear did not pro-
vide experimental results with the same lookback window size as TimesNet (L = 96), and as shown
in Figure 2, we aimed to compare several groups of experiments with gradually increasing look-
back window size, L ∈ {96, 288, 384, 576, 720}. We conducted experiments for TimesNet, MICN,
PatchTST, DLinear, and UniTS in this context. To ensure a fair comparison, all baseline models
and UniTS were trained using the optimal hyperparameters found through grid search for the fixed
lookback window size scenario.

Regarding TimesNet (Wu et al., 2022), due to its frequent Fourier transform calculations and the
use of serial computation in its implementation, the extensive time overhead made it exceedingly
difficult to explore the desired lookback window sizes comprehensively. One feasible solution is to
reduce the hyperparamter search space for TimesNet. However, reducing the search space would
result in an unfair comparison, leading us to conclude that reliable TimesNet results cannot be pro-
vided in this setting. Consequently, its performance in this context is not mentioned in this paper.
We used the original official code repository of TimesNet6, DLinear7, PatchTST8, and MICN9, to
generate corresponding experimental results.

It is worth noting that, recently, TiDE was proposed as a linear temporal prediction model that
combines temporal embedding and encoder-decoder structures (Das et al., 2023). However, as of
the writing of this work, the official code for this work has not been released. Based on the original
paper’s description, we attempted to implement this method but did not successfully reproduce the
results as described in the work. Out of caution, we did not include the experimental results of this
method in our discussions. Information regarding our implementation of this method and its results
can be found in our provided code repository at https://anonymous.4open.science/r/
UniTS-8DA8/README.md.

A.3 FURTHER EXPERIMENTAL RESULTS WITH ADDITIONAL BASELINES

We provide further experimental results compared with baselines, including RMLP and RLinear (Li
et al., 2023). RMLP corresponds to a single-layer linear network utilizing ReVIN, while RLinear
employs a two-layer linear network with ReVIN. Additionally, we compare against N-BEATS (Ore-
shkin et al., 2019) and N-HiTS (Challu et al., 2023), both utilizing a scalable linear structure with a
residual architecture. The SpaceTimeFormer (STF) (Grigsby et al., 2021) is a long-term time series
prediction model incorporating context embedding and attention structures. For N-BEATS, N-HiTS,
and SpaceTimeFormer, we conducted a search over network depths ranging from 1 to 4 layers. The
hidden size was explored within the range of 16, 32, and 64. The final results can be seen from
Table 5. We can observe that both RMLP and RLinear achieve excellent performance, consistent
with the observations in this study: the use of the ReVIN (Kim et al., 2021) method effectively
enhances the predictive performance of the model on the dataset employed in this paper. In con-
trast, the performance of N-HiTS and N-BEATS, which do not utilize ReVIN, is relatively poorer.
Additionally, SpaceTimeFormer, employing attention and context embedding, exhibits slightly infe-

6https://github.com/thuml/TimesNet
7https://github.com/vivva/DLinear
8https://github.com/yuqinie98/PatchTST/
9https://github.com/wanghq21/MICN/
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Table 5: Multivariate long-term forecasting results evaluated using prediction length T ∈
{96, 192, 336, 720}. A lower MSE or MAE indicates a better prediction. The best results are high-
lighted in bold.

Models UniTS RMLP RLinear N-BEATS N-HiTS TiDE STF
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.365 0.390 0.368 0.395 0.365 0.391 0.384 0.400 0.391 0.420 0.376 0.398 0.387 0.405
192 0.396 0.411 0.405 0.417 0.412 0.420 0.430 0.445 0.430 0.453 0.420 0.432 0.445 0.433
336 0.414 0.426 0.425 0.439 0.439 0.443 0.479 0.460 0.439 0.458 0.437 0.456 0.465 0.447
720 0.418 0.435 0.430 0.448 0.501 0.490 0.513 0.489 0.485 0.502 0.450 0.461 0.488 0.508

E
T

T
h2

96 0.262 0.329 0.270 0.335 0.263 0.331 0.335 0.369 0.331 0.375 0.278 0.340 0.290 0.349
192 0.327 0.360 0.339 0.379 0.330 0.362 0.397 0.405 0.419 0.437 0.350 0.389 0.365 0.399
336 0.349 0.384 0.363 0.393 0.358 0.385 0.449 0.450 0.442 0.468 0.375 0.417 0.382 0.426
720 0.377 0.415 0.379 0.422 0.382 0.423 0.451 0.455 0.439 0.462 0.385 0.430 0.398 0.408

E
T

T
m

1 96 0.289 0.343 0.299 0.347 0.301 0.349 0.330 0.365 0.344 0.372 0.307 0.351 0.318 0.357
192 0.326 0.360 0.333 0.362 0.334 0.364 0.370 0.382 0.375 0.388 0.342 0.365 0.347 0.374
336 0.355 0.382 0.369 0.388 0.370 0.390 0.402 0.400 0.401 0.404 0.378 0.396 0.409 0.411
720 0.406 0.408 0.416 0.415 0.420 0.418 0.453 0.461 0.447 0.458 0.433 0.439 0.461 0.467

E
T

T
m

2 96 0.159 0.250 0.164 0.253 0.161 0.252 0.180 0.258 0.185 0.264 0.168 0.256 0.175 0.265
192 0.213 0.285 0.221 0.290 0.215 0.287 0.244 0.302 0.251 0.309 0.225 0.293 0.231 0.296
336 0.264 0.311 0.281 0.323 0.273 0.319 0.311 0.339 0.306 0.338 0.287 0.328 0.295 0.233
720 0.344 0.353 0.369 0.371 0.362 0.366 0.389 0.401 0.385 0.400 0.375 0.378 0.380 0.402

Tr
af

fic

96 0.355 0.243 0.367 0.254 0.369 0.256 0.373 0.258 0.375 0.259 0.373 0.260 0.378 0.265
192 0.365 0.251 0.377 0.258 0.382 0.265 0.409 0.277 0.415 0.283 0.406 0.280 0.418 0.285
336 0.380 0.260 0.391 0.269 0.398 0.278 0.425 0.287 0.419 0.290 0.430 0.296 0.443 0.301
720 0.417 0.279 0.432 0.287 0.441 0.300 0.468 0.312 0.472 0.316 0.447 0.303 0.465 0.310

E
le

ct
ri

ci
ty 96 0.130 0.221 0.139 0.233 0.140 0.234 0.167 0.271 0.171 0.274 0.143 0.236 0.146 0.242

192 0.146 0.241 0.150 0.247 0.149 0.249 0.184 0.285 0.189 0.289 0.152 0.250 0.157 0.254
336 0.159 0.256 0.161 0.260 0.168 0.269 0.197 0.298 0.205 0.301 0.170 0.273 0.179 0.267
720 0.195 0.292 0.199 0.298 0.202 0.304 0.218 0.315 0.221 0.326 0.205 0.309 0.213 0.304

W
ea

th
er 96 0.144 0.189 0.149 0.197 0.162 0.211 0.172 0.219 0.182 0.233 0.170 0.217 0.185 0.237

192 0.187 0.240 0.193 0.246 0.203 0.252 0.217 0.261 0.223 0.265 0.209 0.256 0.226 0.267
336 0.236 0.271 0.240 0.273 0.251 0.287 0.277 0.304 0.281 0.332 0.258 0.294 0.284 0.275
720 0.303 0.320 0.314 0.334 0.323 0.342 0.356 0.370 0.360 0.375 0.332 0.352 0.358 0.376

IL
I

24 1.393 0.768 1.678 0.812 1.891 0.855 2.012 0.933 2.168 0.956 2.087 0.905 1.796 0.947
36 1.456 0.794 1.620 0.831 1.523 0.873 1.955 0.876 1.980 0.871 1.678 0.870 2.215 0.978
48 1.548 0.800 1.957 0.885 1.678 0.831 1.931 0.918 2.344 0.959 1.802 0.883 2.058 1.012
60 1.498 0.797 1.855 0.864 1.776 0.894 2.332 0.943 2.071 0.976 1.756 0.891 2.199 0.930

Table 6: Training Cost v.s. Params.
Model UniTS PatchTST DLinear TimesNet MICN Autoformer

Training Cost/Epoch (Seconds) 3.908 6.972 2.790 10.135 7.72 19.58
Params (Million) 0.209 1.124 0.021 4.831 1.127 4.715

rior performance compared to other methods, aligning with other experimental observations in this
paper: the use of attention and context embedding can impact model performance.

A.4 COMPLEXITY ANALYSIS

The discussions within our paper introduce a novel method aimed at disentangling previously in-
terconnected modules within various temporal models. We delve into the utility of these modules
and elucidate how their selection impacts the overall model. This thrusts parameter selection, often
overlooked in existing literature, into the spotlight as an unavoidable concern. Notably, the per-
formance of previously discussed models has frequently relied on manual selection within a given
architecture, making it a pivotal focus in our paper.

Directly addressing this issue presents challenges on two fronts: first, the exhaustive exploration of
all possibilities for each model is unfeasible; second, a parameter search in a predefined space may
introduce human bias, potentially leading to unfair comparisons. Despite these challenges, based on
real-world dataset performance, we propose a comparative method within limited scenarios. In prac-
tical terms, the most effective time series prediction models tend to avoid overly complex network
structures or high-dimensional parameters. Through our experiments, we have observed a negative
impact on performance when structures are overly complex and parameterized.

From the perspective of the dataset used and the models employed in this paper, if our goal is to find
an optimal model, we can define a search space. In actual experiments, we found that for almost all
models, we only need to search within a relatively small hidden size and a shallow network range.
Therefore, for all models, the number of times they select optimal network parameters is relatively

14
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Table 7: Multivariate long-term forecasting results evaluated using a fixed lookback horizon
(L = 96).

Models UniTS PatchTST DLinear TimesNet MICN Fedformer Autoformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Tr
af

fic
96 0.574 0.341 0.590 0.367 0.650 0.396 0.593 0.321 0.575 0.344 0.587 0.366 0.597 0.371

192 0.557 0.334 0.595 0.368 0.598 0.370 0.617 0.336 0.580 0.349 0.604 0.373 0.607 0.382
336 0.566 0.331 0.603 0.370 0.605 0.373 0.629 0.336 0.583 0.345 0.621 0.383 0.623 0.387
720 0.582 0.348 0.599 0.368 0.645 0.394 0.640 0.350 0.601 0.363 0.626 0.382 0.639 0.395

W
ea

th
er 96 0.168 0.219 0.174 0.221 0.196 0.255 0.172 0.220 0.183 0.250 0.217 0.296 0.249 0.329

192 0.210 0.259 0.222 0.264 0.237 0.296 0.219 0.261 0.246 0.317 0.276 0.336 0.325 0.370
336 0.274 0.321 0.277 0.339 0.283 0.335 0.280 0.306 0.293 0.335 0.339 0.380 0.351 0.391
720 0.348 0.385 0.361 0.367 0.403 0.428 0.365 0.359 0.373 0.399 0.403 0.428 0.415 0.426

E
le

ct
ri

ci
ty 96 0.160 0.255 0.165 0.265 0.197 0.282 0.168 0.272 0.193 0.308 0.193 0.308 0.201 0.317

192 0.180 0.278 0.186 0.291 0.196 0.285 0.184 0.289 0.200 0.308 0.201 0.315 0.222 0.334
336 0.194 0.281 0.202 0.300 0.209 0.301 0.198 0.300 0.219 0.328 0.214 0.329 0.231 0.338
720 0.210 0.304 0.215 0.317 0.245 0.333 0.220 0.320 0.224 0.332 0.246 0.355 0.254 0.361

E
T

T
h1

96 0.376 0.390 0.386 0.402 0.386 0.400 0.384 0.402 0.398 0.427 0.376 0.419 0.449 0.459
192 0.417 0.445 0.440 0.438 0.437 0.432 0.436 0.429 0.430 0.453 0.420 0.448 0.500 0.482
336 0.440 0.462 0.484 0.462 0.481 0.459 0.491 0.469 0.439 0.460 0.459 0.465 0.521 0.496
720 0.470 0.480 0.492 0.497 0.519 0.516 0.521 0.500 0.491 0.509 0.506 0.507 0.514 0.512

E
T

T
h2

96 0.284 0.350 0.285 0.352 0.333 0.387 0.340 0.374 0.332 0.377 0.358 0.397 0.346 0.388
192 0.368 0.402 0.369 0.404 0.477 0.476 0.402 0.414 0.422 0.441 0.429 0.439 0.456 0.452
336 0.411 0.465 0.412 0.468 0.594 0.541 0.452 0.452 0.447 0.474 0.496 0.487 0.482 0.486
720 0.415 0.479 0.421 0.485 0.831 0.657 0.462 0.468 0.442 0.467 0.463 0.474 0.515 0.511

E
T

T
m

1 96 0.323 0.355 0.328 0.361 0.345 0.372 0.338 0.375 0.360 0.399 0.379 0.419 0.505 0.475
192 0.368 0.402 0.368 0.403 0.380 0.389 0.374 0.387 0.402 0.426 0.426 0.441 0.553 0.496
336 0.400 0.381 0.411 0.465 0.413 0.413 0.410 0.411 0.403 0.437 0.445 0.459 0.621 0.537
720 0.415 0.416 0.467 0.550 0.474 0.453 0.478 0.450 0.459 0.464 0.543 0.490 0.671 0.516

E
T

T
m

2 96 0.172 0.231 0.178 0.246 0.193 0.292 0.187 0.267 0.203 0.287 0.203 0.287 0.255 0.339
192 0.232 0.279 0.245 0.302 0.284 0.362 0.249 0.309 0.262 0.326 0.269 0.328 0.281 0.340
336 0.297 0.373 0.304 0.350 0.369 0.427 0.321 0.351 0.305 0.353 0.325 0.366 0.339 0.372
720 0.391 0.408 0.403 0.415 0.554 0.522 0.408 0.403 0.389 0.407 0.421 0.415 0.433 0.432

small. From this perspective, in cases where the search space difference is not significant, in terms
of computational complexity, the cost of parameter search mainly comes from the training cost of
each parameter configuration, which can be further quantified by the training cost per epoch for
each model. Therefore, based on this, we provide an example of the per epoch training cost for
each model on the ETTh1 dataset in Table 6. In addition, to more comprehensively evaluate the
spatial complexity of each model, we also provide the number of model parameters searched on the
ETTh1 dataset. It can be observed that due to its simple and effective performance, DLinear exhibits
the highest efficiency in terms of spatial complexity and inference time. In contrast, models using
attention mechanisms typically require more parameters and longer inference times. In comparison,
our proposed UniTS model maintains excellent performance while ensuring stable and efficient
training efficiency and relatively low spatial occupation.

It is essential to acknowledge that the provided comparison is not flawless and does not claim ab-
solute fairness. Nevertheless, we have demonstrated that this search method is simple and feasible
within our existing knowledge. Within a limited time cost, using the proposed structure, we can
train models that consistently achieve effective time series prediction performance. Furthermore,
we would like to emphasize that certain existing works, by coupling numerous modules, have over-
looked discussions on the search space. This oversight renders their comparisons highly unfair, as
some models may adopt longer lookback window sizes, introducing bias into the comparison of
effects. In our paper, when comparing the performance of the proposed models, we have designed
experiments not only to address this gap in the comparison approach but also to explore the potential
of further designing a search method within an effective parameter space. This aims to construct a
more robust and effective temporal prediction model by integrating existing time series prediction
modules.

A.5 FULL FORECASTING PERFORMANCE WITH FIXED LOOKBACK WINDOW LENGTHS

We provide a full forecasting performance with lookback window size, L = 96, L = 384, and L = 720
for UniTS, PatchTST, DLinear, Timesnet, MICN, Fedformer and Autoformer, which can be seen
through Table 7, Table 8, and Table 9.
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Table 8: Multivariate long-term forecasting results evaluated using a fixed lookback horizon
(L = 384).

Models UniTS PatchTST DLinear TimesNet MICN Fedformer Autoformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Tr
af

fic

96 0.374 0.257 0.387 0.259 0.395 0.269 0.587 0.365 0.520 0.331 0.591 0.367 0.601 0.368
192 0.388 0.263 0.398 0.268 0.404 0.267 0.609 0.372 0.547 0.339 0.608 0.371 0.609 0.370
336 0.410 0.281 0.421 0.285 0.425 0.284 0.618 0.373 0.530 0.335 0.627 0.378 0.627 0.375
720 0.429 0.287 0.438 0.295 0.446 0.303 0.621 0.373 0.571 0.352 0.645 0.383 0.641 0.386

W
ea

th
er 96 0.145 0.190 0.151 0.203 0.154 0.208 0.182 0.247 0.185 0.251 0.217 0.265 0.251 0.305

192 0.188 0.240 0.194 0.247 0.204 0.263 0.237 0.275 0.251 0.297 0.280 0.313 0.326 0.361
336 0.237 0.273 0.257 0.301 0.266 0.311 0.297 0.331 0.301 0.330 0.343 0.371 0.358 0.395
720 0.305 0.334 0.324 0.358 0.338 0.370 0.361 0.382 0.372 0.397 0.409 0.423 0.421 0.428

E
le

ct
ri

ci
ty 96 0.132 0.225 0.141 0.237 0.158 0.255 0.170 0.275 0.192 0.297 0.195 0.295 0.201 0.314

192 0.149 0.245 0.162 0.268 0.173 0.279 0.185 0.286 0.203 0.306 0.204 0.302 0.223 0.327
336 0.168 0.274 0.179 0.283 0.203 0.302 0.203 0.303 0.215 0.324 0.215 0.311 0.231 0.336
720 0.204 0.302 0.210 0.310 0.214 0.315 0.227 0.330 0.223 0.329 0.246 0.353 0.256 0.367

E
T

T
h1

96 0.368 0.395 0.373 0.400 0.386 0.406 0.391 0.403 0.398 0.423 0.380 0.428 0.441 0.453
192 0.402 0.418 0.409 0.430 0.418 0.430 0.435 0.449 0.435 0.450 0.423 0.454 0.458 0.460
336 0.423 0.439 0.430 0.444 0.445 0.451 0.489 0.478 0.448 0.466 0.461 0.468 0.485 0.499
720 0.425 0.442 0.450 0.455 0.508 0.492 0.523 0.502 0.490 0.508 0.510 0.515 0.523 0.525

E
T

T
h2

96 0.268 0.337 0.275 0.342 0.295 0.355 0.345 0.377 0.335 0.380 0.360 0.401 0.346 0.374
192 0.328 0.363 0.340 0.383 0.388 0.428 0.410 0.413 0.423 0.438 0.435 0.451 0.443 0.447
336 0.349 0.385 0.361 0.398 0.437 0.450 0.455 0.460 0.451 0.473 0.501 0.508 0.482 0.480
720 0.380 0.420 0.386 0.427 0.470 0.485 0.470 0.464 0.443 0.469 0.478 0.485 0.468 0.502

E
T

T
m

1 96 0.289 0.350 0.297 0.350 0.304 0.355 0.343 0.372 0.360 0.399 0.386 0.428 0.513 0.512
192 0.328 0.367 0.341 0.369 0.337 0.368 0.381 0.395 0.413 0.418 0.430 0.443 0.517 0.520
336 0.362 0.383 0.371 0.398 0.370 0.388 0.411 0.418 0.417 0.415 0.453 0.470 0.523 0.527
720 0.410 0.415 0.425 0.433 0.424 0.429 0.483 0.468 0.460 0.458 0.557 0.501 0.548 0.537

E
T

T
m

2 96 0.162 0.253 0.164 0.258 0.171 0.268 0.190 0.264 0.210 0.288 0.205 0.291 0.210 0.302
192 0.216 0.290 0.225 0.303 0.233 0.306 0.250 0.305 0.273 0.327 0.276 0.343 0.285 0.346
336 0.267 0.316 0.279 0.334 0.297 0.348 0.333 0.346 0.325 0.359 0.331 0.374 0.350 0.398
720 0.353 0.360 0.362 0.388 0.390 0.416 0.419 0.410 0.399 0.407 0.427 0.420 0.416 0.426

Table 9: Multivariate long-term forecasting results evaluated using a fixed lookback horizon
(L = 720).

Models UniTS PatchTST DLinear TimesNet MICN Fedformer Autoformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Tr
af

fic

96 0.376 0.258 0.393 0.267 0.395 0.270 0.588 0.370 0.524 0.336 0.592 0.370 0.605 0.371
192 0.390 0.263 0.408 0.275 0.412 0.278 0.611 0.375 0.550 0.343 0.610 0.375 0.609 0.377
336 0.413 0.284 0.427 0.291 0.433 0.295 0.620 0.378 0.542 0.338 0.632 0.391 0.630 0.378
720 0.431 0.260 0.442 0.299 0.450 0.304 0.624 0.377 0.575 0.358 0.649 0.386 0.635 0.391

W
ea

th
er 96 0.148 0.193 0.157 0.209 0.162 0.211 0.186 0.249 0.191 0.258 0.220 0.271 0.256 0.307

192 0.190 0.240 0.198 0.254 0.201 0.267 0.239 0.277 0.260 0.301 0.285 0.318 0.324 0.369
336 0.240 0.276 0.265 0.309 0.268 0.315 0.300 0.334 0.305 0.332 0.349 0.377 0.361 0.402
720 0.309 0.337 0.331 0.363 0.344 0.370 0.365 0.383 0.375 0.402 0.413 0.429 0.424 0.435

E
le

ct
ri

ci
ty 96 0.135 0.229 0.148 0.242 0.161 0.259 0.173 0.282 0.192 0.300 0.196 0.300 0.199 0.322

192 0.150 0.249 0.166 0.273 0.179 0.286 0.187 0.289 0.203 0.306 0.208 0.304 0.228 0.331
336 0.170 0.280 0.186 0.290 0.207 0.308 0.206 0.306 0.215 0.324 0.223 0.315 0.235 0.342
720 0.207 0.308 0.216 0.313 0.218 0.319 0.230 0.331 0.223 0.329 0.255 0.365 0.260 0.370

E
T

T
h1

96 0.371 0.401 0.380 0.412 0.391 0.411 0.395 0.408 0.398 0.423 0.384 0.433 0.447 0.459
192 0.404 0.423 0.418 0.436 0.419 0.432 0.440 0.451 0.435 0.450 0.427 0.460 0.459 0.467
336 0.424 0.441 0.437 0.448 0.451 0.456 0.494 0.479 0.448 0.466 0.465 0.471 0.492 0.503
720 0.428 0.445 0.455 0.461 0.513 0.498 0.528 0.510 0.490 0.508 0.513 0.519 0.528 0.528

E
T

T
h2

96 0.274 0.341 0.282 0.345 0.297 0.360 0.348 0.380 0.335 0.380 0.368 0.410 0.348 0.376
192 0.333 0.371 0.346 0.389 0.391 0.432 0.414 0.417 0.423 0.438 0.442 0.457 0.449 0.452
336 0.353 0.393 0.370 0.405 0.443 0.455 0.456 0.461 0.451 0.473 0.505 0.510 0.487 0.489
720 0.383 0.428 0.391 0.428 0.472 0.488 0.477 0.470 0.443 0.469 0.478 0.486 0.473 0.505

E
T

T
m

1 96 0.294 0.360 0.302 0.367 0.305 0.357 0.351 0.386 0.360 0.399 0.390 0.434 0.519 0.514
192 0.335 0.370 0.344 0.375 0.340 0.368 0.385 0.401 0.413 0.418 0.432 0.453 0.524 0.526
336 0.370 0.387 0.378 0.403 0.379 0.404 0.421 0.425 0.417 0.415 0.455 0.451 0.528 0.531
720 0.417 0.426 0.426 0.438 0.426 0.432 0.494 0.470 0.460 0.458 0.562 0.505 0.551 0.540

E
T

T
m

2 96 0.170 0.265 0.178 0.272 0.180 0.274 0.195 0.270 0.210 0.288 0.208 0.297 0.225 0.306
192 0.222 0.298 0.230 0.307 0.233 0.307 0.257 0.318 0.273 0.327 0.284 0.351 0.290 0.352
336 0.271 0.318 0.284 0.340 0.299 0.350 0.343 0.361 0.325 0.359 0.335 0.385 0.359 0.400
720 0.359 0.365 0.371 0.392 0.396 0.420 0.427 0.419 0.399 0.407 0.433 0.431 0.436 0.433
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A.6 FURTHER RESULTS ON PARAMAETER SEARCH ON ETT BENCHMARK

In addition to the learning rate and sequence length parameters mentioned in the main text, we also
conducted sensitivity analysis on the UniTS model with respect to parameters such as decompose
kernel size, hidden size on ETT datasets and weather dataset10. The final results are illustated in
Figure 4, Figure 5, Figure 6, and Figure 7.
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Figure 4: Performance with different parameter settings, T = 96

A.7 SEARCH SPACE FOR THE HYPERPARAMTER SEARCH EXPERIMENT

The search space for the Hyperparamter Search Experiment is shown in 10.
Parameter Name Search Space

Lookback window size [96, 288, 384, 576, 720]
Learning Rate [1e-5, 1e-4, 5e-4, 8e-4, 1e-3, 5e-3, 8e-3, 0.01, 0.05]
Hidden Size [16,32,64]

Use LFE [0, 1]
Decompose Kernel Size [13,25,51,75]

Table 10: Hyperparamter Search Space.

10Due to limited computational resources, the results we have published are temporarily unable to cover the
entire dataset, baseline models, and more extensive parameter searches at higher densities.
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Figure 5: Performance with different parameter settings, T = 192
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Figure 6: Performance with different parameter settings, T = 336.
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Figure 7: Performance with different parameter settings, T = 720.
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