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Abstract

We consider the problem of estimating a rank-1 signal corrupted by structured rota-
tionally invariant noise, and address the following question: how well do inference
algorithms perform when the noise statistics is unknown and hence Gaussian noise
is assumed? While the matched Bayes-optimal setting with unstructured noise is
well understood, the analysis of this mismatched problem is only at its premises. In
this paper, we make a step towards understanding the effect of the strong source
of mismatch which is the noise statistics. Our main technical contribution is the
rigorous analysis of a Bayes estimator and of an approximate message passing
(AMP) algorithm, both of which incorrectly assume a Gaussian setup. The first
result exploits the theory of spherical integrals and of low-rank matrix perturba-
tions; the idea behind the second one is to design and analyze an artificial AMP
which, by taking advantage of the flexibility in the denoisers, is able to “correct” the
mismatch. Armed with these sharp asymptotic characterizations, we unveil a rich
and often unexpected phenomenology. For example, despite AMP is in principle
designed to efficiently compute the Bayes estimator, the former is outperformed
by the latter in terms of mean-square error. We show that this performance gap is
due to an incorrect estimation of the signal norm. In fact, when the SNR is large
enough, the overlaps of the AMP and the Bayes estimator coincide, and they even
match those of optimal estimators taking into account the structure of the noise.

1 Introduction

The estimation of a low-rank matrix from noisy data is a central problem in machine learning, and it
appears, e.g., in sparse principal component analysis (PCA) [50, 88], community detection [1, 62],
and group synchronization [69]. In this paper, we consider the prototypical task of recovering a
symmetric rank-1 matrixXX⊺ from noisy observations of the form

Y =
√
λ∗
N

XX⊺ +Z ∈ RN×N . (1)

Here, λ∗ > 0 is the signal-to-noise ratio (SNR) which quantifies the signal strength, and Z ∈ RN×N is
a random matrix that captures the noise. A natural estimator ofX is given by the principal eigenvector
of Y . Its performance and, more generally, the behavior of the eigenvalues and eigenvectors of (1) has
been studied in exquisite detail in statistics [49, 68] and random matrix theory [7, 8, 21, 22, 26, 40,
52, 6]. Going beyond the spectral estimator given by the principal eigenvector, approximate message
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passing (AMP) constitutes a popular family of iterative algorithms. The reason for this popularity lies
in two especially attractive features: (i) AMP algorithms can be tailored to exploit knowledge on the
structure of the signal; and (ii) under suitable assumptions, their performance in the high-dimensional
limit is accurately tracked by a deterministic recursion known as state evolution [18, 24, 48]. Using
the state evolution machinery, it has been showed that AMP achieves Bayes-optimal performance
in some Gaussian models [29, 30, 61, 13], and a bold conjecture from statistical physics is that
AMP is optimal in the class of polynomial-time algorithms for a large class of inference problems
with random design. AMP algorithms have been recently considered for several practical scenarios,
including genetics [86], inpainting [66] and MRI image recovery [76].
A general class of noise models that has received attention in the literature is given by the family of
rotationally invariant matrices. This is much milder than requiring Z to be Gaussian: it only imposes
that the matrix of eigenvectors is uniformly random, and allows for an arbitrary spectrum. Hence, Z
can capture the complex correlation structure which often occurs in applications (e.g., recommender
systems [20] and bioinformatics [72]). However, estimating noise statistics from data is costly or, for
problems involving large-scale datasets (computational genomics is a paradigmatic example [36, 2]),
may be impossible. Thus, one natural idea is to simply assume Gaussian statistics for Z. The case in
whichZ is actually Gaussian has been thoroughly studied [53, 28, 55, 54, 12, 61]. Beyond Gaussianity,
a rapidly growing literature is focusing on rotationally invariant models assuming perfect knowledge
of the statistics of the structured matrix appearing in the problem (such as noise in inference, a
sensing, data, or coding matrix in regression tasks, weight matrices in neural networks, or a matrix
of interactions in spin glass models) [67, 23, 37, 38, 42, 65, 56, 57, 74, 78, 79, 16, 33, 66, 71, 47].
However, despite this impressive progress when the noise statistics is known, low-rank estimation
in a mismatched setting with partial to no knowledge of the statistics of the rotationally invariant
noise matrix remains poorly understood. The goal of this work is thus to shed light into the following
fundamental question:

Suppose that the noise statistics is unknown or unreacheable, and hence Gaussian noise is naively
assumed. What is the impact of this mismatch on the overall performance of inference methods?

1.1 Summary of contributions

In this paper, we provide rigorous performance guarantees for two inference methods which in-
correctly assume Gaussian noise statistics: a Bayes estimator, and an AMP algorithm. Then, by
exploiting these sharp analytical characterizations, we describe a number of surprising effects coming
from numerical simulations. Our main findings are detailed below.

Theoretical results. (i) We give a closed-form expression for the mean-square error (MSE) of the
Bayes estimator which samples from the mismatched posterior (cf. Theorem 1). Under a certain
concentration assumption, we also present an asymptotic result on the overlap of such estimator. (ii)
We provide a state evolution analysis (cf. Theorem 2) for the Gaussian AMP algorithm which is
designed for Gaussian noise.

Numerical results. The mismatched Bayes and AMP estimators display surprising behaviors –
already for the case of a spherically distributed signal – and the two performance metrics (MSE and
overlap) exhibit a remarkably different phenomenology: (i) As for the MSE, the Gaussian AMP is
outperformed by the Bayes estimator. Here, the surprise comes from the fact that AMP algorithms
are, in principle, designed to sample from the posterior distribution (and this is often what happens in
the matched case). (ii) In contrast, when the SNR is large enough, the overlaps of the two mismatched
estimators coincide, and they even match the overlap of estimators which exploit the noise statistics,
namely the optimal spectral method which minimizes the MSE and the correct AMP designed in
[37]. (iii) Under certain conditions, the MSE of the mismatched Bayes estimator matches that of a
Gaussian spectral method with no information on the noise structure. (iv) The mismatched estimators
are outperformed – in terms of MSE – by the optimal spectral method and the correct AMP, whose
performance coincide. (v) Finally, the MSE curves of the Bayes and Gaussian spectral methods
exhibit a striking non-monotone behavior.

1.2 Related work

The impact of mismatch. Given the practical relevance of understanding the effect of mismatch
in statistical inference, a line of work has approached the issue from various angles. Regression being
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probably the most paradigmatic model of inference task, mismatch has been thoroughly studied in this
context. In information theory, the trend was initiated in [83, 85]. Studies for M-estimation and robust
statistics followed based on statistical mechanics approaches [3], on the analysis of approximate
message passing algorithms [25, 77, 32, 43], on Gordon’s convex min-max theorem [81, 80] and the
leave-one-out method [35, 34]. Concerning the analysis of Bayesian approaches to mismatched linear
regression, we refer to [27, 63, 75, 11] or [9] for a review.
In contrast, the problem studied in the present paper, namely low-rank matrix inference with mismatch,
has received attention only recently. It is clear that in some way, related questions were analyzed
in the aforementioned random matrix theory literature, although from a rather different perspective.
Concerning the precise issue of the performance degradation due to mismatch in Bayesian inference,
an exception (and inspiration for our work) is the recent paper [71]. However, the authors of [71]
focus on mismatch in the signal-to-noise ratio for the Gaussian noise setting; their results can thus be
recovered as a special case of the present ones. To the best of our knowledge, this is the first work
that considers mismatch in the noise statistics for low-rank matrix estimation.

Approximate message passing. AMP algorithms have been applied to a wide range of inference
problems. Examples include estimation in linear models [19, 18, 31], generalized linear models
[73, 13, 58, 59], and low-rank matrix recovery with Gaussian noise [17, 29, 41, 51, 55, 61], see also
the survey [39]. A general AMP iteration for rotationally invariant matrices has been recently analyzed
in [37, 87], and by providing suitable instances of this abstract iteration, AMP algorithms have been
developed for low-rank [37, 87, 60] and generalized linear models [82]. Furthermore, an AMP-based
method which uses the classical idea of empirical Bayes to reduce the high-dimensional noise in
PCA is proposed in [86], which also provides applications to genetics. However, the existing results
cannot be applied to the mismatched setting considered in this work, since the Gaussian AMP does
not contain the right Onsager corrections. In fact, the algorithm designer assumes Gaussian statistics
for the noise and, therefore, constructs an AMP algorithm with the Onsager correction suitable
for Gaussian noise. Finally, we remark that the performance of the Gaussian AMP is numerically
compared with that of the correct AMP (exploiting the knowledge of noise statistics) in [87]. Our
Theorem 2 provides rigorous foundations for such a comparison.

2 Setup of the problem

2.1 Random matrix theory preliminaries

We start with some useful notions of random matrix theory. Given a probability measure ρ of compact
support K ⊆ R, we let Hρ ∶ R/K ↦ R be the Hilbert transform of ρ: Hρ(z) ∶= ∫K ρ(dγ)(z − γ)

−1.
We define γ ∶= maxK, γ ∶= minK, h ∶= limz↓γHρ(z) and h ∶= limz↑γHρ(z), where the limits
exist due to the monotonicity of Hρ but may be infinite. As Hρ is a bijection between R/K and its
image (h,h)/{0}, its inverse exists and it is denoted by Kρ ∶ (h,h)/{0}↦ R/K. The R-transform
of ρ is Rρ ∶ (h,h)/{0} ↦ R/K given by Rρ(x) ∶= Kρ(x) − 1/x. The coefficients {κ̄k}k≥1 of the
Taylor series of Rρ are the free cumulants associated to ρ, i.e., Rρ(x) = ∑∞k=0 κ̄k+1xk, and they can
be computed from the moments of ρ, see e.g. Section 2.5 of [64]. Furthermore, R′

ρ(x) and H ′
ρ(z)

denote the derivatives of the R-transform and the Hilbert transform of ρ, respectively.

2.2 Model of mismatched low-rank matrix estimation

We consider the problem of estimating a rank-one informative spike XX⊺ corrupted by an ad-
ditive symmetric noise matrix Z ∈ RN×N from data Y generated as in (1). The scalar λ∗ ∈ R≥0
is the signal-to-noise ratio (SNR), and the noise Z can be decomposed as Z = OΣO⊺, where
Σ ∶= diag(γ1, . . . , γN) ∈ RN×N is a diagonal matrix containing the eigenvalues of Z and O
is some orthogonal matrix. We also denote by γN and γ

N
respectively max{γ1, . . . , γN} and

min{γ1, . . . , γN}. Similarly, νN and νN denote the largest and smallest eigenvalues of the data
matrix Y . Throughout the paper, the main technical assumption will be the following.

Assumption 1. The signalX has norm
√
N . The random noise matrix Z is rotationally invariant

and is independent of X . Moreover, the empirical measure N−1∑i≤N δγi of eigenvalues of Z
converges weakly towards a limiting measure ρ of compact support K ⊆ R. Finally, γN and γ

N
converge a.s. to γ = maxK and γ = minK, respectively.
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The noise matrix Z being rotationally invariant means that O is a random orthogonal matrix (i.e.,
sampled from the Haar measure) independent of Σ. Under Assumption 1, we have that νN and νN
converge a.s. to finite limits, which we denote by ν and ν, respectively. These have an explicit form in
terms of ρ and λ∗ given in [21, Theorem 2.1] and which we reproduce for convenience in Appendix A.
We remark that the assumption on the ground-truth signal is rather mild:X can have any distribution
over the sphere of radius

√
N , and it might even be deterministic. For example,X ∈ {−1,1}N could

be a uniform vector over the centred N -dimensional hyper-cube of sides 2
√
N .

For the analysis of the Bayes estimator, we require a second assumption on the asymptotic eigenvalue
distribution ρ. This ensures that the limit for the overlap of the spectral estimators with the signal is
continuous in the SNR, whenever a small additive Wigner noise of variance ε ≥ 0 is added to Y .

Assumption 2. Let ρε be the spectral density of the free convolution of ρ and a semicircle law of
radius 2ε ≥ 0. Let Hρε be the associated Hilbert transform and γε the rightmost point of the support
of ρε. Then, we assume that limz↓γεH

′
ρε(z) = −∞ for all ε ≥ 0.

For the definition of the free convolution and its link to random matrix theory, we refer the reader to
[4, 70]. We remark that Assumption 2 is satisfied by a wide class of random matrices. In particular,
by combining Theorem 2.2 of [10] with Proposition 2.4 of [21], it suffices that the support of the
limiting spectral measure ρ is (i) compact, (ii) connected, and (iii) it has a proper decay rate at its
edges (i.e., ρ is of Jacobi type), see Assumption 2.1 of [10]. These conditions can be easily checked
for many random matrix models, including the ones discussed in the examples of Section 4.
Note that, if ρ is the semicircle law of radius 2, the noise is asymptotically equal in distribution
to a standard Wigner matrix W with density ∼ exp(−N

4
TrW 2). As the elements of this type of

symmetric matrices are i.i.d. Gaussian, in this case we say that there is Gaussian noise. For other
limiting ρ, the elements of Z ≠W remain correlated and we say that there is structured noise. We
denote byW a sequence of standard Wigner matrices while we reserve Z for a generic sequence of
rotationally invariant matrices.

Sources of mismatch. In this paper, we consider what happens when there is a mismatch between
the true noise statistics and the assumptions on the noise statistics made in the inference algorithm. In
particular, we study the case in which the noise is assumed to be Gaussian. Gaussianity is in fact the
most standard assumption made when precise knowledge of the noise structure is lacking. We also
consider the case in which the SNR is estimated incorrectly, i.e., the statistician assumes that the data
is generated according to (

√
λ/N)XX⊺ +W , where λ ≠ λ∗ and λ∗ is the correct SNR present in

(1). Our goal is to quantify how these sources of ignorance affect the algorithmic performance.

2.3 Three classes of inference procedures for PCA

Mismatched Bayes estimator. The statistician assumes Gaussian noise and that the signalX has
no specific structure, i.e., it is uniformly distributed on the N -dimensional sphere SN−1(

√
N). The

mismatched posterior distribution reads, using the Gaussian log-likelihood −N
4

Tr(Y −
√
λ
N
xx⊺)2,

Pmis(dx ∣ Y ) = 1

ZN(Y )
exp (

√
λ

2
⟨x,Y x⟩)µN(dx), (2)

where ZN(Y ) is the normalization constant and µN is the uniform measure over SN−1(
√
N). In

case the signalX lies on the sphere (by Assumption 1) but is not uniformly distributed on it, then
this leads to a third source of mismatch. However, the MSE formula of Theorem 1 does not depend
on it; e.g. ifX ∈ {−1,1}N the error remains the same. The origin of this is the uniformly spherical
prior used in the posterior (2) which is the most uninformative one.
The Bayes estimators we analyze are obtained as the posterior means

Mmis(Y ) ∶= ∫ xx⊺Pmis(dx ∣ Y ), (3)

which may not be practical to compute. Notice that, if the noise is Wigner, then the likelihood exp(⋯)
in (2) is correct. This Bayes-optimal case has already been rigorously characterized (see, for example,
[12, 14, 54]), and it will serve us as a base case for comparison with our mismatched setting.
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The performance of a sequence of estimators MN(Y ) ∈ RN×N of the spikeXX⊺ is quantified via
the asymptotic mean-square error (MSE):

MSE(M) ∶= lim
N→+∞

1

2N2
E∥XX⊺ −MN(Y )∥2F, (4)

where ∥ ⋅ ∥2F denotes the Frobenius norm and E the expectation over the spikeXX⊺ and the noise
Z. We also consider another performance measure which is insensitive to the norm of an estimator x̂
ofX , namely, the rescaled overlap:

Overlap(x̂) ∶= lim
N→+∞

∣⟨X, x̂(Y )⟩∣
∥x̂(Y )∥ ⋅ ∥X∥

, (5)

where ∥X∥ =
√
N due to the spherical constraint. This alignment measure is sometimes also

referred to as cosine distance. For both AMP and spectral estimators, this overlap will almost
surely be deterministic. If the norm of the estimator vanishes, by convention we fix the overlap
to zero. Note that the definition (5) is not meaningful for the Bayes case. In fact, if one defines
x̂mis ∶= ∫ xPmis(dx ∣ Y ), then this quantity is zero by sign symmetry (±x have the same posterior
weight). Thus, the correct definition of the overlap for the mismatched Bayes estimator is

Overlapmis ∶= lim
N→+∞

( 1

N

1

∥Mmis(Y )∥F ∫
Pmis(dx ∣ Y )⟨X,x⟩2)

1/2
, (6)

while for the “one-shot” AMP and spectral estimators we use the former definition (5).

Approximate message passing. We remark that, as opposed to our analysis of the Bayes estimator,
the state evolution characterization of AMP (Theorem 2) does not require X to be uniformly
distributed on SN−1(

√
N). The AMP analysis can accomodate more generic (potentially mismatched)

prior distributions and, in fact, AMP algorithms are well equipped to exploit structure in the signal.
For simplicity, we assume to have access to an initialization x̂1 ∈ RN , which is independent of the
noise Z and has a strictly positive correlation withX , i.e.,

(X, x̂1) W2Ð→ (X, x̂1), E[X x̂1] ∶= ε > 0, E[x̂21] ≤ 1, (7)

where (X, x̂1) W2Ð→ (X, x̂1) denotes convergence of the joint empirical distribution of (X, x̂1) to
the random variable (X, x̂1) in Wasserstein-2 (W2) distance. Then, for t ≥ 1 the AMP iteration reads

xt = Y x̂t − βtx̂t−1, x̂t+1 = ht+1(xt), (8)

where we assume that x̂0 = 0. Here, the function ht+1 ∶ R→ R is applied component-wise, and it can
be chosen in order to exploit prior information about the signal; β1 = 0 and, for t ≥ 2, βt = ⟨h′t(xt−1)⟩,
where h′t denotes the derivative of ht. The AMP estimator ofX is x̂t, and the one of the spikeXX⊺
is M t

AMP = x̂t(x̂t)⊺. We refer to this algorithm as Gaussian AMP, since this is the AMP that is
implemented for Gaussian noise (and known SNR). For a discussion on how (8) can be derived, we
refer the interested reader to the review [39]. We note that the initialization (7) is impractical and
one can design AMP iterations which are initialized with the eigenvector vN of the data matrix Y
associated to the largest eigenvalue νN , see [61, 60, 87]. We are also able to provide a state evolution
result for the Gaussian AMP with spectral initialization, and this is discussed in Appendix C.4.

Spectral estimators. Finally, we consider spectral estimators of the form C vNv
⊺
N , where vN is

the unit-norm eigenvector associated to the largest eigenvalue νN(Y ) and C > 0 is a scaling constant
taking into account the spectrum of the data matrix. The asymptotic description of vN and νN for
additive and multiplicative low-rank perturbations of rotationally invariant matrices has been obtained
in [21, 22, 6]. In particular, by Theorem 2.2 of [22], the squared overlap ⟨X,vN ⟩2/N converges a.s.
to a constant C(ρ, λ∗), whose explicit expression is recalled in Appendix A. We study two variants:
● The optimal spectral estimator (OptSpec) is given by MOS ∶= COSvNv

⊺
N , where COS(ρ, λ∗) ∶=

C(ρ, λ∗) is the optimal scaling that minimizes the MSE.
● The Gaussian mismatched spectral estimator (GauSpec) is given by MGS ∶= CGSvNv

⊺
N , where

CGS is the optimal scaling if the noise was Gaussian and the SNR was equal to λ > 0. By letting ρSC
be the standard semi-circle law, we have CGS(λ) ∶= C(ρSC, λ) = 1 − 1/λ.

For both OptSpec and GauSpec, the estimator of X is given by x̂GS = x̂OS = x̂Spec ∶=
√
N vN .

Notice that, while OptSpec requires knowing exactly the statistics of the noise and the SNR, GauSpec
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represents the spectral estimator that would be used by a statistician who assumes the noise to be
Gaussian and the SNR λ (instead of λ∗). An application of Theorem 2.2 in [22] gives that

MSE(MOS) =
1

2
(1 −C2(ρ, λ∗)), and MSE(MGS) =

1

2
(1 + (1 − 1/λ)2 − 2(1 − 1/λ)C(ρ, λ∗)).

Furthermore, the respective overlaps coincide and are given by
√
COS. Note that MSE(MGS) =

MSE(MOS) + 1
2
(C(ρ, λ∗) − (1 − 1/λ))2. Thus, as expected, we have MSE(MOS) ≤ MSE(MGS).

We also remark that, as the noise matrix is rotationally invariant, both the MSE and the overlap of the
spectral estimators do not depend on the ground-truth signal distribution.

3 Main results: performance of inference algorithms

3.1 Mismatched Bayes estimator

Consider the following functions of λ,λ∗ > 0 and of the asymptotic spectral noise density ρ:

M(λ,λ∗) ∶= (1 − 1√
λλ∗

)(1 − 1

λ∗
R′
ρ(

1√
λ∗

))1(h
√
λ∗ ≥ 1 ∩ λλ∗ > 1),

Q(λ,λ∗) ∶= (1 − 1√
λλ∗

)
2

1(h
√
λ∗ ≥ 1 ∩ λλ∗ > 1) + (1 − h√

λ
)
2

1(h
√
λ∗ < 1 ∩

√
λ > h),

(9)

where 1(E) stands for the indicator function of the event E. The idea is that Q(λ,λ∗) and M(λ,λ∗)
represent the squared norm of the mismatched Bayes estimator and its inner product with the signal,
respectively. This leads to our main result on the mismatched Bayes MSE, which is stated below.
Theorem 1 (Performance of mismatched Bayes estimator). Consider a spiked model (1). Let As-
sumptions 1 and 2 hold. Then, the MSE of the mismatched Bayes estimator (3) is given by

MSE(Mmis) =
1

2
(1 +Q(λ,λ∗) − 2M(λ,λ∗)). (10)

As a consequence of the auxiliary lemmas used in the proof of Theorem 1 and presented in Ap-
pendix B, we have that N−2 ∫ Pmis(dx ∣ Y )⟨X,x⟩2 converges almost surely to M(λ,λ∗). Further-
more, for noise matrices regularized by arbitrarily small Wigner matrices, by using similar techniques
as in [15] we can prove that ∥Mmis∥F/N converges almost surely to Q1/2(λ,λ∗). We conjecture that
this convergence holds even without the Wigner regularization. By assuming this conjecture, we have
the following almost sure convergence result for the overlap:

Overlapmis =
M1/2(λ,λ∗)
Q1/4(λ,λ∗)

, (11)

which holds whenever the denominator is non-zero. When comparing the overlaps of different
methods in Section 4, we will use (11) for the mismatched Bayes estimator.
Let us highlight the following property of the MSE (10) when there is no mismatch in the SNR:

If λ = λ∗ and h ≥ 1, then MSE(Mmis) = MSE(MGS). (12)
However, in general MSE(Mmis) and MSE(MGS) differ. E.g., when the assumed SNR λ is different
from the real one λ∗, the norm of Mmis incorporates information about λ∗ while the one for MGS

only depends on λ. Finally, we note that, from a statistical view-point, Assumption 1 can be replaced
by the following:X is uniformly distributed on SN−1(

√
N) and is independent of Z, which may be

a generic symmetric matrix with converging empirical spectral density.

Sketch of the proof of Theorem 1. The goal is to evaluate the asymptotic values of E∥Mmis∥2F
and trE[MmisXX

⊺], from which both the MSE and the mean overlap of the Bayes estimator can be
obtained. Our strategy is to first compute the log-moment generating function fmis of the mismatched
Bayes model. Then, the above quantities of interest can be accessed by taking derivatives of fmis

with respect to appropriate parameters. However, as the noise in the inference model is not Gaussian,
E∥Mmis∥2F cannot be computed in the standard way using an “I-MMSE” type of formula [46] (like it
is done, e.g., in [71]). To address this issue, we introduce a generalized model for which the noise
matrix is given by the original one plus an independent Wigner matrix multiplied by a small parameter
ε. We then compute the log-moment generating function of this generalized model using the theory of
low-rank perturbations of rotationally invariant random matrices [21] and of the low-rank spherical
integral [45]. Finally, the desired results are obtained by a limiting argument in ε→ 0.
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3.2 Approximate message passing

Our main result is a characterization of the iterates (8) in the high-dimensional limit. We show that
the joint empirical distribution of (x1, . . . ,xt, x̂1, . . . , x̂t+1) converges (in W2) to the random vector
(x1, . . . , xt, x̂1, . . . , x̂t+1). The law of the random vector (x1, . . . , xt, x̂1, . . . , x̂t+1) is captured by
a deterministic state evolution (SE) recursion, which can be expressed via a sequence of vectors
µt = (µ1, . . . , µt) and matrices Σt,∆t,Bt ∈ Rt×t defined as follows. We start with the initialization

µ1 =
√
λ∗ε, Σ1 = κ̄2E[x̂21], ∆1 = E[x̂21], B1 = κ̄1, (13)

where λ∗ is the true SNR (see (1)), and {κ̄k}k≥1 are the free cumulants associated to the asymptotic
spectral measure of the noise ρ. For t ≥ 1, given µt,Σt,∆t,Bt, let

{(z1, . . . , zt) ∼ N (0,Σt) and independent of (X, x̂1),
xt = zt + µtX − β̄tx̂t−1 +∑ti=1(Bt)t,ix̂i, x̂t+1 = ht+1(xt),

(14)

where we have defined x̂0 = 0, β̄1 = 0, and for t ≥ 2, β̄t = E[h′t(xt−1)]. Then, the parameter µt+1 is

µt+1 =
√
λ∗E[X x̂t+1]. (15)

Next, we compute the matrices ∆t+1 andBt+1 as

{ (∆t+1)i,j = E[x̂i x̂j], 1 ≤ i, j ≤ t + 1,

Bt+1 = ∑tj=0 κ̄j+1Φ̄
j
t+1 where (Φ̄t+1)i,j = 0 if i ≤ j, and (Φ̄t+1)i,j = E[∂j x̂i] if i > j, (16)

where ∂j x̂i denotes the partial derivative ∂zjhi(zi−1 + µi−1X − β̄i−1x̂i−2 + ∑i−1k=1(Bt)i−1,kx̂k)).
Finally, we define the covariance matrix Σt+1 as

Σt+1 =
2t

∑
j=0

κ̄j+2Θ
(j)
t+1, with Θ

(j)
t+1 =

j

∑
i=0

(Φ̄t+1)i∆t+1(Φ̄⊺
t+1)j−i. (17)

Note that the t × t top left sub-matrices of Σt+1,∆t+1 and Bt+1 are given by Σt,∆t and Bt. At
this point, we are ready to state our state evolution characterization of the AMP algorithm (8).
The result is presented in terms of pseudo-Lipschitz test functions. A function ψ ∶ Rm → R is
pseudo-Lipschitz of order 2, i.e., ψ ∈ PL(2), if there is a constant C > 0 such that ∥ψ(x) − ψ(y)∥ ≤
C(1 + ∥x∥ + ∥y∥)∥x − y∥. We also make the following assumption on the functions {ht+1}t≥1.
Assumption 3. The function ht+1 ∶ R→ R is Lipschitz, and the partial derivatives

∂zkht+1(zt + µtX − β̄tx̂t−1 +
t

∑
k=1

(Bt)t,kx̂k)

are continuous on a set of probability 1, under the laws of (z1 . . . , zt) and (x̂1, . . . , x̂t) given in (14).

This requirement covers most practically relevant choices of ht+1 (e.g., soft-thresholding or ReLU),
and it is rather standard in the AMP literature, see e.g. [39, 60, 82, 87].
Theorem 2 (State evolution of Gaussian AMP). Consider a spiked model (1) and the AMP algorithm
(8) initialized as in (7). Let Assumptions 1 and 3 hold, and let ψ ∶ R2t+2 → R be any pseudo-Lipschitz
functions of order 2. Then, for each t ≥ 1, we almost surely have that, as N → +∞,

1

N

N

∑
i=1
ψ((x1)i, . . . , (xt)i, (x̂1)i, . . . , (x̂t+1)i, (X)i)→ Eψ(x1, . . . , xt, x̂1, . . . , x̂t+1, X), (18)

where the random variables on the right are defined in (14).

By using Definition 6.7 and Theorem 6.8 of [84], one readily obtains that (18) is equivalent to
the convergence of (x1, . . . ,xt, x̂1, . . . , x̂t+1,X) to (x1, . . . , xt, x̂1, . . . , x̂t+1,X) in W2 distance.
Applying (18) to the pseudo-Lipschitz functions ψ(x̂t+1,X) = (x̂t+1 −X)2, ψ(x̂t+1,X) = x̂t+1 ⋅X
and ψ(x̂t+1,X) = (x̂t+1)2, we obtain a high-dimensional characterization of the AMP performance.
Corollary 1. Consider the setting of Theorem 2. Then, for each t ≥ 1, we almost surely have that

MSE(M t
AMP) ∶= lim

N→+∞
1

2N2
E∥XX⊺ − x̂t(x̂t)⊺∥2F = 1

2
(1 − 2 (E[x̂t ⋅X])2 + (E[(x̂t)2])2),

Overlap(x̂t) ∶= lim
N→+∞

∣⟨X, x̂t⟩∣
∥x̂t∥ ⋅ ∥X∥

= ∣E[x̂t ⋅X]∣√
E[(x̂t)2]

.
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Sketch of the proof of Theorem 2. The key insight is to exploit the flexibility given by the
denoisers of the abstract AMP iteration [87] to “correct” the mismatch. These denoisers are denoted
by {h̃t}t≥2 (see (33) and (34) in Appendix C.1) and they serve solely as a proof technique, hence
they do not have an impact on the practicality of the algorithm; in contrast, the denoisers {ht}t≥2 (see
(8)) can be chosen by the algorithm designer to take advantage of the information available about the
signal. Thus, we can design an auxiliary AMP such that (i) it admits a state evolution characterization,
and (ii) its iterates are close to (8). This requires the delicate induction argument in Appendix C: in
Appendix C.1, we define the auxiliary AMP; in Appendix C.2, we prove a state evolution result for it;
in Appendix C.3, we show by induction that (i) the state evolution parameters of the auxiliary AMP
coincide with those defined in this section, and (ii) the iterates of the auxiliary AMP are close (in `2
norm) to the iterates of the AMP (8), thus concluding the proof of Theorem 2.

4 Numerical results and discussion

In all experiments, the density ρ of the eigenvalues of the noise has unit variance and the distribution
of the ground-truth signal is uniform on the sphere of radius

√
N . For the sake of simplicity, we

decouple the effect of the mismatch in (i) the noise statistics and (ii) the SNR. More specifically, in
the first two examples, we set λ = λ∗, so that only mismatch in the noise statistics is present; and in
the last example, the noise is Gaussian, so that there is only SNR mismatch. Additional results when
Z is the free convolution of Rademacher and semicircle spectra are reported in Appendix D.3.

Models of mismatch. (a) Marcenko-Pastur spectrum. An example of non-symmetric density is
the Marcenko-Pastur law ρ(x) =

√
x(4 − x)/(2πx)1(x ∈ [0,4]). The R-transform is Rρ(x) =

1/(1 − x), and the results are displayed in Fig. 1a (the same formulas apply if the law is centered).

(b) Uniform spectrum. We let ρ be the uniform distribution U[−
√

3,
√

3]. In this case, we have
Rρ(x) =

√
3/ tanh(

√
3x) − 1/x, and the results are in Fig. 1b.

(c) Wigner matrix/semicircle spectrum with mismatched SNR. We consider a Gaussian noise matrix
W (as assumed by the statistician), but with mismatched SNR by setting λ = 4λ∗, see Fig. 1c.
We remark that Assumption 1 is verified for all models. Furthermore, in all the three cases, the support
of ρ is a single non-empty interval. Hence, Theorem 2.2 of [10] and Proposition 2.4 of [21] can be
used to show that Assumption 2 holds.

Inference algorithms and set-up. The estimators of the spike XX⊺ are compared in terms of
the MSE (4) (plots on the left). The AMP and spectral estimators of X are compared in terms of
the overlap (5), and the Bayes estimator of X in terms of the overlap (6) (plots on the right). We
evaluate those formulas at N = 8000 for the various algorithms, and in the N → +∞ limit for the
theoretical predictions. The correct AMP (together with its own SE) is in red. This AMP is correct in
the sense that the statistician is aware of the noise statistics and, thus, incorporates the right Onsager
corrections. The form of the correct AMP and the corresponding state evolution are readily obtained
from the results in [37, 87] and, for the reader’s convenience, they are recalled in Appendix D.1. As
non-linearities, we use the posterior-mean denoising functions of Section 5.1 in [87], and we estimate
the SE parameters consistently from data (see Appendix D.2). The Gaussian AMP (together with its
own SE) is in blue. This is the AMP algorithm (8), which is chosen when the noise statistics or the
SNR are unknown (as it would be optimal for Gaussian noise and known SNR). Its state evolution
is given by Theorem 2. As non-linearities {ht+1}t≥1, we use again the posterior-mean denoising
functions, and estimate consistently the state evolution parameters from data (see Appendix D.2). We
note that the denoisers of the Gaussian AMP depend only on a single iterate, while the denoisers of
the correct AMP incorporate all the past iterates. In contrast, the state evolution parameters of the
Gaussian AMP at time t depend on all the past, in order to correct for the mismatch. The mismatched
Bayes estimator is plotted in green. Its MSE and overlap are given by (10) and (11), respectively.
The optimal spectral estimator (OptSpec) is plotted in black, and the Gaussian mismatched spectral
estimator (GauSpec) is plotted in yellow in Fig. 1a and 1c (where it differs from Bayes) or in green
in Fig. 1b (where it coincides with Bayes). The performance measures of both variants of spectral
estimators are given at the end of Section 2.3. Each experiment is repeated for 10 independent runs.
We report the average and error bars at 1 standard deviation.

A rich and surprising phenomenology. (i) An intriguing phenomenon is that, in terms of MSE,
the Gaussian AMP does not perform as well as the mismatched Bayes estimator. This effect occurs
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(c) Wigner matrix/semicircle spectrum with mismatched SNR λ = 4λ∗.

Figure 1: MSE (on the left) and overlap (on the right), as a function of the true SNR λ∗ in three
mismatched settings.

in all our settings, and it is surprising as the Gaussian AMP (8) is precisely designed to efficiently
compute the Bayes estimator (3). In the Bayes-optimal case, it does so (outside of its computational
gap) [12]. However, if there is a mismatch, AMP does not compute the (mismatched) posterior mean.
This finding adds to the already existing evidence [5] that AMP is poorly understood, and studying
the fundamental reasons behind this behavior is an exciting avenue for future research.
(ii) By comparing MSE2 and overlap curves, we understand that the discrepancy between Gaussian
AMP and Bayes comes from an incorrect estimation of the signal norm. In fact, at large enough
SNR, the overlaps of Bayes and Gaussian AMP match, and they even coincide with the overlaps of
optimal algorithms (correct AMP and OptSpec), which exploit knowledge about the noise structure.
Understanding the origin of the MSE discrepancy (namely, a wrong estimate of the signal length) can
potentially lead to procedures which correct for this effect and, hence, reduce the MSE.
(iii) When there is no SNR mismatch and h̄ ≥ 1 (cf. (12)), the MSEs of the Bayes and Gaussian
spectral estimators match (see Fig. 1b). Both have no information about the noise structure and about
the signal distribution. Yet, this equality is remarkable given that the spectral estimator is the solution
of an optimization problem (it is a “zero temperature” estimator in physics parlance), while the Bayes

2The MSE is constructed from the norm E∥M(Y )∥2F and the inner product trE[M(Y )XX⊺].
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estimator aims at computing the mean of a certain posterior distribution (it is a “finite temperature”
estimator).
(iv) All mismatched estimators are outperformed by the optimal spectral method and the correct AMP.
Both these algorithms take advantage of the noise statistics and achieve the same MSE. This suggests
that the two estimators are Bayes-optimal. We remark that solving this conjecture would require
understanding the information-theoretic limits of low-rank estimation with structured noise.
(v) Finally, a striking phenomenon – first observed in [71] – is that the Bayes and Gaussian spectral
MSE curves may be non-decreasing with the true SNR λ∗, see Figs. 1a and 1c. Going beyond the
analysis in [71], we remark that, for large enough SNR, all estimators yield the same overlap and
therefore all “point in the correct direction” given by the leading eigenvector, see also part (ii) of this
discussion. This links the initial MSE increase to a wrong estimation of the signal’s norm, due to an
over-confidence in the data quality (recall that the assumed SNR λ is equal to 4λ∗ in Fig. 1c).
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(b) Did you describe the limitations of your work? [Yes] Our model assumptions are clearly
explained in Assumptions 1, 2 and 3. To obtain the overlap of the mismatched Bayes
estimator, we make a conjecture on the convergence of ∣∣Mmis∣∣F/N (see the discussion
right after the statement of Theorem 1).
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not see direct paths to applications with negative societal impacts.
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2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] Our model
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of the mismatched Bayes estimator, we make a conjecture on the convergence of
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(b) Did you include complete proofs of all theoretical results? [Yes] Proof sketches are
included right after the corresponding statements. The full proofs of Theorem 1 and 2
are in Appendices B and C, respectively.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] In Section 4,
we describe the experimental setup containing the instructions to reproduce the results
of Figure 1 (and of Figure 2 contained in Appendix D.3 as well). Additional details are
given in Appendices D.1 and D.2. The code that implements the various algorithms is
included in the supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] All details of the experimental setup are described in Section 4
and in Appendices D.1 and D.2.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Each experiment is repeated for 10 independent runs, and
we report the average together with the confidence interval at 1 standard deviation.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A] We did not perform large scale
experiments that required to specify this type of details.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A] We are not using

existing assets or curating/releasing new assets.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] We did not use crowdsourcing or conducted research with human
subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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