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Abstract

Off-policy deep reinforcement learning algorithms like Soft Actor Critic (SAC)
have achieved state-of-the-art results in several high dimensional continuous control
tasks. Despite their success, they are prone to instability due to the deadly triad of
off-policy training, function approximation, and bootstrapping. Unstable training
of off-policy algorithms leads to sample-inefficient and sub-optimal asymptotic
performance, thus preventing their real-world deployment. To mitigate these issues,
previously proposed solutions have focused on advances like target networks to
alleviate instability and the introduction of twin critics to address overestimation
bias. However, these modifications fail to address the issue of noisy gradient esti-
mation with excessive variance, resulting in instability and slow convergence. Our
proposed method, Spectral Normalized Actor Critic (SNAC), regularizes the actor
and the critics using spectral normalization to systematically bound the gradient
norm. Spectral normalization constrains the magnitudes of the gradients resulting
in smoother actor-critics with robust and sample-efficient performance thus making
them suitable for deployment in stability-critical and compute-constrained applica-
tions. We present empirical results on several challenging reinforcement learning
benchmarks and extensive ablation studies to demonstrate the effectiveness of our
proposed method.

1 Introduction

Model-free reinforcement learning (RL) algorithms have achieved impressive results in various diffi-
cult tasks, such as games (Silver et al., 2017, 2018) and robotic control (Gu et al., 2017; Kalashnikov
et al., 2018). In some of the most challenging RL settings, high-dimensional continuous control
problems, off-policy actor-critic methods constitute some of the most successful approaches so far
(Lillicrap et al., 2016; Fujimoto et al., 2018; Haarnoja et al., 2018). A state-of-the-art (SOTA) member
of the off-policy RL family is Soft Actor Critic (SAC) (Haarnoja et al., 2018). SAC augments the
standard reinforcement learning objective of maximum reward with a maximum entropy objective
that allows it to learn policies that maximize both expected reward and policy entropy, aiding in explo-
ration. However, off-policy reinforcement leaning algorithms like SAC are known to be unstable and
sample inefficient, requiring millions of interactions with the environment to learn a well functioning
policy. The sample inefficient and unstable sub-optimal polices prevent their wider adoption and
deployment in stability-critical and resource-constrained applications.

Off-policy Reinforcement Leaning algorithms are known to be prone to instability due to the deadly
triad (Sutton and Barto, 2018; Van Hasselt et al., 2018), a combination of function approximation,
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off-policy learning, and bootstrapping. To address this issue, algorithms use a target network to
bootstrap. A pair of Q networks are used to estimate the Q values, overcoming overestimation bias.
The target update for learning is the minimum of the two Q networks. These modifications, however,
do not fully resolve the issues caused by the deadly triad. The use of function approximators, a finite
experience replay buffer and bootstrapping result in inaccurate gradient estimation with excessive
variance. The excessive variance then leads to off-policy RL algorithms converging to unstable,
sample inefficient, sub-optimal policies.

While the issue of excessive variance in gradient estimates has been well studied in policy-gradient
algorithms (policy-only architectures) (Sutton and Barto, 2018; Mnih et al., 2016; Schulman et al.,
2017) and Deep Q-learning (Zhao et al., 2019; Jia et al., 2020) (value function only), we focus
on off-policy actor-critic methods, which allows us to address this issue in both the policy and the
value function approximation. In particular, we analyse the SAC algorithm, as a representative
baseline, given its success in continuous control, and investigate spectral normalization as a variance
reduction technique. Spectral normalization has been originally proposed and extensively studied in
the context of Generative Adversarial Network (GAN) training (Yoshida and Miyato, 2017; Farnia
et al., 2018). In essence, this technique regularizes the weight matrix of the layers of the networks
to ensure a spectral norm of one, thus bounding the Lipschitz constant of the network. Controlling
the Lipschitz constant constrains the magnitudes of the gradients, which enforces smoothness and
stabilizes training. In SAC, spectral normalization regularises both the actor and the critic networks,
resulting in an approach we call Spectral Normalized Actor Critic (SNAC). Our contributions can be
summarized as follows:

1. We empirically demonstrate poor gradient estimates and dramatic instability in off-policy
actor critic algorithms.

2. We extensively evaluate the effectiveness of spectral normalization in the context of off-
policy actor critic RL for continuous control.

3. We present results on complex continuous control benchmarks (Todorov et al., 2012) and
ablation studies. The results show SNAC significantly outperforms SAC, especially on high-
dimensional tasks, with much higher sample efficiency and a highly stable and robust policy.
We demonstrate that reduced variance in gradient estimation leads to reduced variance in
performance with no additional fine-tuning required.

2 Background

We consider the standard reinforcement learning framework of a Markov Decision Process defined
by a tuple (S,A,P, r, γ) where S is state space, A is action space, P is the transition probability, r
is the reward function, and γ ∈ [0, 1] is the discount factor. The agent interacts with the environment
at discrete time steps. At each time step t, the agent in its current state st executes an action at in
the environment based on a policy π. The environment returns a reward rt, and the agent transitions
to the next state st+1. The goal of the agent is to learn the optimal policy π∗ that maximizes the
expected return E [

∑∞
t=0 γ

trt(st, at)].

2.1 Soft Actor Critic

The goal in standard reinforcement learning is to learn a policy π(at | st;ϕ) that maximizes the
expected long-term reward objective

∑
t E(st,at)∼ρπ [rt(st, at)]. SAC is an off-policy maximum-

entropy reinforcement learning (Ziebart, 2010) algorithm that augments the standard objective with
an entropy term:

π∗ = argmax
π

∑
t

E(st,at)∼ρπ [rt(st, at) + αH(· | st)] (6)

where α > 0 is a constant. The entropy term ensures that the policy maximizes its entropy along
with the reward at each state. Optimal policies are then learned using soft policy iteration. Soft policy
iteration learns optimal maximum-entropy policies by alternating between soft policy evaluation
and soft policy improvement. In the policy evaluation step, the parameters θ of the soft Q-function,
modeled as a neural network, are learned by minimizing the soft Bellman residual:

JQ(θ) = E(st,at∼B)[
1

2
(Qθ(st, at)− (rt(st, at) + γ E(st+1)∼pVθ̄(st+1)))

2], (7)
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Figure 1: Training dynamics of SAC and SNAC. Solid curves correspond to mean gradient estimates
and shaded region correspond to one standard deviation over five random seeds of Humanoid task.
Left : Top 3 columns correspond to the three layers of first Q network. Bottom 3 columns correspond
to the three layers of second Q network. Right : Top 2 columns correspond to the input and hidden
layer of actor network. Bottom 2 columns correspond to mean and log standard deviation of output
Gaussian policy. SAC has large gradient estimates with excessive noise. When spectral normalization
is applied (SNAC), the magnitudes of averaged gradient estimation is largely reduced and less
variability is observed.

Figure 2: Training dynamics of SAC and SNAC. Solid curves correspond to mean gradient norm and
shaded region correspond to one standard deviation over five random seeds of Humanoid task. Left :
Top 3 columns correspond to the the three layers of first Q network. Bottom 3 columns correspond to
the the three layers of second Q network. Right : Top 2 columns correspond to the input and hidden
layer of actor network. Bottom 2 columns correspond to mean and log standard deviation of output
Gaussian policy. SAC has large gradient norms. When spectral normalization is applied (SNAC), the
norms are bounded and less variable.

where B is experience buffer, Vθ̄(st) = Eat∼π[Qθ̄(st, at)− α log π(at | st)] and θ̄ are the delayed
parameters of the target soft Q-function. In the policy improvement step, the policy is updated by
minimizing the KL divergence:

Jπ(ϕ) = Est∼B

[
DKL

(
πϕ(· | st)

∥∥∥∥ exp( 1
αQθ(st, ·))
Zθ(st)

)]
(8)

where Zθ(st) is the partition function. The policy is modeled as a Gaussian distribution. The actor
network outputs the mean and log standard deviation of the Gaussian policy.

3 Noisy Gradient Estimation and Instability in Off-Policy Actor Critic

To understand how noisy gradient estimates destabilize off-policy actor critic algorithms like SAC,
we investigate the training dynamics of SAC. Unlike supervised learning, the off-policy RL training
procedure of SAC involves bootstrapping on the target network, which moderately improves stability,
but does not fully resolve the statistical estimation issues. The use of function approximators
constrains the representation capacity of SAC, further exacerbating gradient estimation. The off-
policy training also contributes to distortion in gradient estimation. Off-policy algorithms like
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SAC are implemented using Adam (Kingma and Ba, 2014) optimizer. Although Adam has shown
robust performance across tasks, it uses first-order gradient information, such as gradient magnitude
and gradient variance to update parameters. The use of large gradients estimated from off-policy
sample batch (replay buffer) as inputs destabilizes optimization in first-order algorithms and hurts
performance.

Figures 1 and 2 show the training dynamics of SAC. We train each algorithm with five different
random seeds. We calculate the average gradient and gradient norm of each layer every 1000
environment steps. Figure 1 shows the average gradient of each layer of the actor and the twin
critics during training on Humanoid task. Figure 2 show the corresponding gradient norms. The
solid curves correspond to the mean and the shaded region corresponds to one standard deviation
over the five trials. For SAC, training is highly unstable with large gradients and frequent spikes
throughout training of actor and the twin critics. The output layer of the two critics has large and
growing gradient norm. The large estimation variance of SAC in Figures 1 and 2 matches the wildly
oscillating policy and large variability in rewards in Figure 3.

4 Spectral Normalized Actor Critic (SNAC)

We start the description of our method by first defining Lipschitz continuity, which is a critical concept
in the method.

Definition 4.1. Given two metric spaces (X , dX ) and (Y, dY) consisting of a space and a distance
metric, a function f : X → Y is Lipschitz continuous if the Lipschitz constant K, defined as:

KdX ,dY (f) := sup
x1∈X ,x2∈Y

dY(f(x1), f(x2))

dX (x1, x2)

is finite.

Equivalently for a Lipschitz f :

∀x1
,∀x2

dY(f(x1), f(x2)) ≤ KdX (x1, x2).

The Lipschitz constant of a composition of functions is bounded by the product of their respective
constants:

∥f1 ◦ f2∥Lip≤ ∥f1∥Lip·∥f2∥Lip ,

where ∥f1∥Lip and |f2∥Lip are the Lipschitz constants of functions f1 and f2 respectively.

For a linear map g(x) = Wx with weight matrix W and input x, a 1- Lipschitz affine transformation
is given by ∥Wx∥p≤ ∥x∥p. This is equivalent to constraining the matrix p-norm to at most 1:

∥W∥p= sup
∥x∥p=1

∥Wx∥p.

An example of matrix norm is the spectral norm or matrix 2-norm. For the linear map g, the spectral
norm is:

σ(W) = max
x:x ̸=0

∥Wx∥2
∥x∥2

,

which is equivalent to largest singular value of the matrix W.

Since 1-Lipschitz functions are closed under composition, we can build a 1-Lipschitz neural network
by constraining the Lipschitz constant of all the layers and activation functions of the network to 1.
Most activation functions, e.g., ReLU and Tanh, are 1-Lipschitz (∥a∥Lip =1) when scaled. For linear
layers of the neural network, we can use spectral normalization to control the Lipschitz constant of a
layer by constraining the spectral norm of the layer. When applied to every layer gn of a network f
with N layers, spectral normalization bounds the Lipschitz constant of the network to 1:

∥f∥Lip≤ ∥g1∥Lip·∥a1∥Lip·∥g2∥Lip. . . ∥gN−1∥Lip·∥aN−1∥Lip·∥gN∥Lip=

n=N∏
n=1

∥g∥n=
n=N∏
n=1

σ(WSN )
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Our proposed approach, SNAC, built on SAC, adds spectral normalization to the hidden layers of
both the actor and the twin critics. Spectral normalization normalizes the spectral norm of weight
matrix W:

WSN =
W

σ(W)
,

so as to have a Lipschitz constraint of one ( σ(WSN ) = 1). Constraining the spectral norm of
hidden layer to one bounds the Lipschitz constant of the actor and the critic networks. Lipschitz
constant control the magnitude and variance of the gradients flowing through these networks. The
bounded gradients ensure smoother networks with bounded parameter updates. The smoother critics,
especially at the beginning of the training, hinder unrealistic Q-value estimates. The bounded value
estimates in combination with smoother actor lead to stabilized training and fast convergence of the
policy.

Although SNAC is built on top of SAC, since SAC is a representative baseline for continuous control
off-policy RL, our approach is algorithm-agnostic and can easily be extended to other existing
off-policy actor critic methods, such as DDPG and TD3. We provide pseudo-code for SNAC in the
Appendix, based on the original SAC implementation, alongside Pytorch code for reproducibility.

Figure 1 and 2 show the training dynamics of SNAC. Unlike SAC, SNAC achieves well-behaved
gradients. The gradient norms of all layers of actor and critics are bounded and decrease as training
progresses, leading to a stable result.

5 Experiments

To evaluate spectral normalisation as a variance reduction technique, we assess SNAC’s performance
on a suite of MuJoCo continuous control tasks (Todorov et al., 2012). We use the original set of tasks
without any modifications, applying the same hyperparameters as the original implementation of
SAC (Haarnoja et al., 2018), and compare the results using author-provided implementations. The
temperature hyperparameter is fixed to α = 0.2, and the gradient step is fixed to 1 for SNAC. We
train each algorithm with 5 different random seeds and perform 10 evaluation rollouts every 1000
environment steps. All experiments were conducted on an NVIDIA GTX 1050 Ti GPU.

Env SNAC SAC Welch t-test Wilcoxon Rank Test

Statistic p-value Statistic p-value

Hopper 3260.2± 46.5 2980.6± 546.1 -9.2 < 0.001 0 < 0.001
Walker2d 5428.6 ± 169.7 5524.9± 726.9 1.9 0.063 325.0 < 0.001
HalfCheetah 15212.8 ± 697.3 14263.0 ± 608.1 34.7 < 0.001 1 < 0.001
Ant 6716.6 ± 225.41 4911.7 ± 1638.6 -35.5 < 0.001 0 < 0.001
Humanoid 7765.1 ± 256.42 5701.4 ± 1286.0 -30.9 < 0.001 35.0 < 0.001

Table 1: Comparison of algorithms across tasks from the MujoCo benchmark after 3M timesteps.
We compare SNAC with baseline SAC. By using spectral normalization, SNAC learns an extremely
stable policy and achieves statistically significant decrease in variance. The stable policy helps SNAC
outperform SAC.

5.1 Comparative Evaluation

Figure 3 shows the learning curves of our algorithm and the baseline on complex tasks. SNAC
achieves significantly stable learning curves on all tasks. In contrast, SAC is highly unstable with
wildly oscillating curves on all tasks except HalfCheetah-v2. We performed two-tailed Welch’s t-test
(Welch, 1947) to determine whether final performance of SAC and SNAC is statistically significantly
different. We also performed Wilcoxon Sign-Ranked test (Wilcoxon, 1945) to analyze the effect of
spectral normalization on variance.

Observing Table 1, SNAC outperforms SAC on high dimensional tasks like Ant-v2 (action space
dimensionality: 8, state space dimensionality: 111) and Humanoid-v2 (action space dimensional-
ity: 17, state space dimensionality: 376), achieving state-of-the-art final performance and sample
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Figure 3: Learning curves of SAC and SNAC. Solid curves correspond to mean returns and shaded
region correspond to minimum and maximum returns over five random seeds. SNAC outperforms
SAC, especially on high dimensional tasks. The learning curve of SNAC are highly stable with
statistically significant decrease in variance compared to SAC.

efficiency on Humanoid-v2. On low-dimensional tasks like HalfCheetah-v2 (action space dimension-
ality: 6, state space dimensionality: 17) and Hopper-v2 (action space dimensionality: 3, state space
dimensionality: 11), SNAC also performs better than SAC. Walker-2d (action space dimensionality:
6, state space dimensionality: 17) is a highly unstable environment. As a result, SNAC traded off
marginal performance gains for stability, but the difference in performance is statistically insignificant
as shown by Welch’s t-test for Walker-2d. In the highly unstable Hopper task, SNAC also prioritizes
stability, but since the environment is simple enough, SNAC ultimately converges and achieves a
better result than the baseline in less than one million steps. Overall, SNAC achieves a statistically
significant decrease in variance across most tasks, as shown by Wilcoxon Ranked Test, except for the
highly stable HalfCheetah environment.

5.2 Ablation Studies

SNAC with spectral normalization on a single hidden layer outperforms SAC on multiple tasks
and achieves state-of-the-art results on high-dimensional problems. We next investigate if better
performance can be achieved with larger networks having spectral normalization applied to different
layers.

5.2.1 Effect of Spectral Normalization on Different Layers

In the original implementation of SNAC, we applied spectral normalization to the single hidden layer
of the actor and the twin critics. We next investigate the effect of spectral normalization on different
layers of the neural networks by implementing SNAC with two hidden layers ( SNAC_2). We use
Python list indexing to specify layer number. The output layer is specified by index -1 and index -2
stands for the penultimate layer. We apply spectral normalization to the output layer (SNAC_2[-1]),
to the hidden layer closer to the output layer (SNAC_2[-2]), to the hidden layer closer to the input
layer (SNAC_2[-3]) and to both the hidden layers (SNAC_2[-3, -2]).

Figure 4 shows the learning curves for SAC, SNAC and the different implementations of SNAC_2 on
Humanoid-v2 and Walker2d-v2 tasks. All versions of SNAC_2 learn a reasonably performant policy
faster than SAC and SNAC. However, except for SNAC_2[-3,-2], all implementations of SNAC_2
have poorer asymptotic performance compared to SNAC. SNAC_2[-3,-2] with spectral normalization
on both hidden layers greatly outperform other implementations. From Table 2 we can conclude that,
for small-sized networks, constraining all hidden layers of actor and critics improves performance.

6



5.2.2 Spectral Normalization and Deeper Networks

Computer vision and natural language processing tasks have been shown to greatly benefit from larger
and deeper networks, with deeper networks learning more generalizable representations. In contrast,
RL often relies on smaller networks. Deeper networks in RL are known to be highly unstable with
performance deteriorating drastically with depth. The inability of RL neural networks to leverage
size and depth has been well studied (Sinha et al., 2020; Andrychowicz et al., 2020; Bjorck et al.,
2021). We investigate the effect of spectral normalization on deeper networks in the RL context.

Algorithm Humanoid Walker2d
SAC 5701.4 ± 1286.0 5524.9 ± 726.9
SNAC 7765.1 ± 256.42 5428.6 ± 169.7
SNAC-2[-1] 7571.8 ± 312.5 5325.7 ± 233.5
SNAC_2[-2] 7761.3 ± 161.3 5384.9 ± 479.1
SNAC_2[-3] 7552.0 ± 179.5 5214.3 ± 243.4
SNAC_2[-3,-2] 8390.4 ± 187.1 5560.1 ± 204.6

Table 2: Comparison of algorithms on Humanoid and Walker2d tasks from the MujoCo benchmark.
We compare implementations of SNAC with spectral normalization on different layers. SNAC_2 has
two hidden layers. All implementations of SNAC_2 achieve similar asymptotic performance except
SNAC_2[-3,-2]. SNAC_2[-3,-2] outperforms all algorithms.

Figure 4: Learning curves of SAC and implementations of SNAC with spectral normalization on
different layers. Solid curves correspond to mean returns and the shaded region corresponds to
minimum and maximum returns over five random seeds. SNAC_2[-3,-2] with constraints on both
hidden layers outperforms other implementations.

Figure 5 shows the learning curves for SNAC with one, two (SNAC_2) and four (SNAC_4) hidden
layers. We have applied normalization to all the hidden layers of each implementation. SNAC_2 has
the best asymptotic performance among different implementations of SNAC. SNAC_4 quickly learns
meaningful behaviour and is more sample efficient and stable than the the other two implementations
during the early part of the training (500k steps). However, the implementation is unable to leverage its
early performance with the learning curve plateauing in the later half of the training and approaching
performance of SNAC. Bjorck et al. (2021) propose that smoothing with SN improves performance
when using multiple hidden layer MLPs. We, on the other hand, find that naively using SN with
deeper MLPs does not work. The above contrast in results could be due to Bjorck et al. (2021)
conducting ablation on simpler tasks, like pendulum, hopper, walker, cheetah, thus overestimating
the role of SN in performance increase with deeper networks.

Figure 6 shows the gradients for the first and last layers of actors and critics of SNAC implementations
with different depths. Unlike Gogianu et al. (2021), all implementations of SNAC have statistically
indistinguishable average gradient and variance throughout the training of the critic networks. How-
ever, the average gradients of the policy network for SNAC_4 are smaller than those of SNAC and
SNAC_2. The small gradients are the result of strong regularization, especially at the beginning of
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Figure 5: Learning curves of SAC and implementations of SNAC with spectral normalization on
increasing number of hidden layers. Solid curves correspond to mean returns and the shaded region
corresponds to minimum and maximum returns over five random seeds. SNAC_2 with constraints on
both hidden layers outperforms other implementations. Deeper network like SNAC_4 quickly learns
a more performant and stable policy. However, it is unable to leverage its early performance with the
learning curve plateauing and performing worse than SNAC_2.

Figure 6: Training dynamics of SAC and different implementations of SNAC. Solid curves correspond
to mean gradient and shaded region correspond to one standard deviation over five random seeds of
Humanoid task. Left : Top 2 columns correspond to the the first and last layers of first Q network.
Bottom 2 columns correspond to the the first and last layers of second Q network. Right : The three
columns correspond to the input layer, mean and log standard deviation layer of output Gaussian
policy (actor). All implementations of SNAC have statistically indistinguishable average gradient
and variance throughout the training of the critic networks. However, the average gradients of the
policy network for SNAC_4 are smaller than the those for SNAC and SNAC_2.

the training. Constraining all the hidden layers of the deeper actor network of SNAC_4 makes the
network extremely smooth and significantly reduces the magnitudes of the gradients. As a result, the
Gaussian policy becomes too concentrated too early in the training causing under-exploration. The
under-exploration leads the actor to never sample actions that may improve performance and instead
converges to a sub-optimal policy. Relaxing the constraint and applying spectral normalization to few
layers instead of all layers of deeper actor networks, would perhaps lead to a better trade-off between
stability and performance.

5.3 Spectral Normalization and Over-estimation Bias

We next investigate whether spectral normalization is enough to mitigate overestimation bias in
off-policy actor critic networks. Off-policy RL algorithms are known to suffer from consistent over
estimation bias especially at the early stage of learning. Typical off-policy algorithms apply the
max operator over the TD estimates of action value functions. But these estimators are prone to
estimation errors (Thrun and Schwartz, 1993) which can arise due to noisy environments, use of
function approximators or presence of any kind of stochasticity. Taking the maximum of these
noisy action value estimates results in positively biased Q-value estimates leading to instability and
sub-optimal policies.

Algorithms like SAC employ a pair of critics to mitigate over-estimation bias. The target update
for learning is the minimum of the two Q functions. Taking the minimum prevents introduction
of additional overestimation over the standard Q-learning target. To study the effect of spectral
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normalization on overestimation bias, we implemented SAC with just one Q network and spectral
normalization. We call this architecture SNAC_One. To evaluate SNAC_One, we measure its
performance on Walker2d and Humanoid environments. Table 3 shows comparison of SNAC_One
with SNAC and SAC. SNAC_One performs worse than SNAC and SAC on all tasks and is highly
unstable compared to them. The ablative study provides further evidence that spectral normalization
primarily targets noisy gradients to stabilize training.

Algorithm Humanoid Walker2d
SAC 5701.4 ± 1286.0 5524.9 ± 726.9
SNAC 7765.1 ± 256.42 5428.6 ± 169.7
SNAC_One 4524.8 ± 1312.2 4391.5 ± 618.4

Table 3: Comparison of algorithms on Humanoid and Walker2d tasks from the MujoCo benchmark.
We compare SNAC_One (SNAC with one Q network) with SNAC and SAC. SNAC_One performs
worse than SAC and SNAC on both tasks.

6 Related Work

6.1 Stabilized Q-learning

Over the past few years, several algorithms have been proposed to address instability in Q learning.
TD3 and SAC mitigate the overestimation bias by using twin critics. Softmax Deep Double Determin-
istic Policy Gradients (SD2) (Pan et al., 2020), Optimistic Actor Critic (OAC) (Ciosek et al., 2019),
Truncated Quantile Critics (TQC) (Kuznetsov et al., 2020), Bagged Critic for Continuous control
(BC3) (Bawa and Ramos, 2021) reduce overestimation bias. SUNRISE (Lee et al., 2021) uses an
ensemble-based weighted Bellman backups to estimate Q-values, and upper confidence bounds for
efficient exploration. Cautious Actor Critic (CAC) (Zhu et al., 2021) combines a conservative actor
with a conservative critic to address the oscillating performance of off-policy learning. Crossnorm
(Bhatt et al., 2019) uses a mixture of on- and off-policy transitions to mitigate divergence and to
improve returns in deep off-policy learning without requiring target networks. Our approach, in
contrast, targets noisy gradients to stabilize training.

6.1.1 Spectral Normalization

Spectral Normalization has been widely studied in the context of Generative Adversarial Network
(GAN) training and stabilization (Yoshida and Miyato, 2017; Farnia et al., 2018; Gouk et al., 2021;
Lin et al., 2021). SVD parameterization has also been used to stabilize training in RNNs (Zhang et al.,
2018). Asadi et al. (2018) studied the impact of Lipschitz continuity in the context of model based
reinforcement learning. Yu et al. (2020) used spectral normalization to improve uncertainty estimates
in offline model based reinforcement learning setting. Gogianu et al. (2021) showed performance
improvement in Categorical-DQN due to spectral normalization and its effect on the optimisation
dynamics. Bjorck et al. (2021) showed increased stability in SAC with Transformer-inspired (Vaswani
et al., 2017) architectures with residual connections, layer normalization and spectral normalization.
Our paper, in contrast investigates the effectiveness and limitations of spectral normalization in the
context of off-policy actor critic algorithms with conventional multi-layer perceptron architectures.

7 Conclusion

In this paper, we investigated the issue of noisy gradient estimation in off-policy actor critic algorithms
and proposed spectral normalization based variance reduction. Our proposed approach, SNAC,
outperforms state-of-the-art on high dimensional continuous control tasks. Even with deeper networks,
SNAC continues to be extremely stable throughout training and quickly learns a performant policy.
However, constraining all hidden layers of deep actor networks negatively affects the asymptotic
performance with SNAC failing to leverage the expressive power of deeper networks. We hypothesize
that relaxing the constraint on actor networks would lead to a better trade-off between stability
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and performance. In addition, fine-tuning the Lipschitz constant or implementing a scheduler for
Lipschitz constant would enable use of deeper networks.

In the future, we would like to investigate advantages of the spectral normalization technique from a
theoretical perspective. We would also like to adapt other variance reduction techniques from GANs
and the policy gradient literature which can help mitigate noisy gradients in deeper off-policy RL
algorithms.
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