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ABSTRACT

Multi-objective multi-agent reinforcement learning (MOMARL) problems fre-
quently arise in real world applications (e.g., path planning for robots) but have
not been explored well. To find Pareto-optimum is NP-hard, and thus some multi-
objective algorithms have emerged recently to provide Pareto-stationary solution
centrally, managed by a single agent. Yet, they cannot deal with MOMARL prob-
lem, as the dimension of global state-action (s,a) grows exponentially with the
number of spatially distributed agents. To tackle this issue, we design a novel
graph-truncated Q-function approximation method for each agent i, which does
not require the global state-action (s,a) but only the neighborhood state-action
(sNκi , aNκi ) of its κ-hop neighbors. To further reduce the dimension to state-
action (sNκi , ai) with only local action, we further develop a concept of action-
averagedQ-function and establish the equivalence between using graph-truncated
Q-function and action-averaged Q-function for policy gradient approximation.
Accordingly, we develop a distributed scalable algorithm with linear function ap-
proximation and prove that it successfully converges Pareto-stationary solution at
rate O(1/T ) that is inversely proportional to time domain T . Finally, we run sim-
ulations in a robot path planning environment and show our algorithm converges
to greater multi-objective values as compared to the latest MORL algorithm, and
performs close to the central optimum with much shorter running time.

1 INTRODUCTION

As real-world applications become increasingly complex, multi-objective optimization problems are
becoming more prevalent. For example, in the e-commerce domain (Weck et al., 2022; Xu et al.,
2024), platforms aim for product recommendations that are not only clickable and purchasable but
also engaging enough to encourage user sharing and collection. This scenario involves optimiz-
ing multiple objectives, including the click-through rate, purchase rate, and collection rate of the
products. For such scenarios involving multiple optimization objectives, the traditional setting of a
single reward structure in the reinforcement learning (RL) framework (Sutton & Barto, 1998) is ob-
viously insufficient to describe. Therefore, it is necessary to establish multi-objective RL (MORL)
problems.

Different from the rapid development of traditional RL (Grondman et al, 2012; Zhang et al, 2021),
the research in MORL (Ge et al., 2022; Stamenkovic et al, 2022) is still in its infancy to address the
potential conflicts between multiple objectives. One common approach to solving MORL problem
involves assigning weights to different objectives and transforming the multi-objective problem into
a single-objective problem (Blondin & Hale, 2020). However, this approach has the limitation of
assuming known objective weights, which can restrict its applicability. In the MORL problems, a
more appropriate and relevant metric is to find a Pareto-optimal solution for all objectives, where
no objective can be unilaterally improved without sacrificing another. As many real-world MORL
problems are typically non-convex, finding the Pareto-optimal solution is NP-hard (Yang et al.,
2024).

To address the NP-hard nature of non-convex MORL problems, Pareto-stationary solutions (a neces-
sary condition for Pareto optimality) are employed (Sener & Koltun, 2018). For the MORL problems
with continuous action space, (Chen et al., 2021) proposed an actor-critic MORL algorithm based
on the deterministic policy-gradient (Silver et al., 2014). More generally, for the MORL problem
with non-continuous action space, a unified multi-objective actor-critic algorithmic framework was
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proposed for both discounted and average reward settings in (Zhou et al., 2024), where the update
of stochastic policy parameters employs the multi-gradient descent method in (Désidéri, 2012).

The aforementioned methods are all directed towards addressing the MORL problem in a central-
ized setting or for a single agent. However, practical applications of MORL problems often involve
multi-agents. For instance, teams of robots need to decide themselves how to explore distinct regions
by simultaneously minimizing energy consumption and travel time. In comparison to the MORL
problem with single-agent, the multi-objective multi-agent problem (MOMARL) is more intricate
as it encompasses not only potential conflicts among different objectives but also interactions be-
tween the distributed agents with limited communication. An intuitive approach to the MOMARL
problem is to consider it as a MORL problem with a single agent, where the state and action are rep-
resented by the joint states and joint actions of all agents, respectively. However, as the number of
agents increases, the size of their joint state-action space will exponentially grow. This characteristic
renders the current algorithms used for solving MORL problems with a single agent in (Chen et al.,
2021; Zhou et al., 2024) unsuitable for large-scale scenarios with multi-agents. Consequently, the
MOMARL problem poses new challenges to the design of scalable algorithms and their theoretical
analysis.

This paper aims to address the following problem: How to develop a scalable algorithm for the
MOMARL problem and ensure its convergence to Pareto-stationary of the multi-objective function?
The contributions of this paper are described as follows.

(i) In order to improve the scalability of the algorithm and avoid using the global state-action, we
design a novel graph-truncated Q-function approximation for each agent i, which only requires the
neighborhood state-action (sNκi , aNκi ) of its κ-hop neighbors, instead of the global state-action. Ad-
ditionally, we introduce a new concept of action-averaged Q-function and establish the equivalence
between using the graph-truncated Q-function and action-averaged Q-function for policy gradient
approximation.

(ii) Based on the concept of action-averaged Q-function, we propose a distributed scalable actor-
critic algorithm for the MOMARL problem. In critic step, we use linear function to approximate the
action-averaged Q-function, which further reduces the dimension of state-action to (sNκi , ai) with
local action. In addition, we use the multi-gradient descent method in actor step to update the policy
parameter for finding a Pareto-stationary solution.

(iii) We prove that the proposed scalable algorithm for MOMARL successfully converges to the
Pareto-stationary solution at rateO(1/T ) that is inversely proportional to time domain T . Moreover,
we run simulations in a robot path planning environment and show our algorithm converges to
greater multi-objective values as compared to the latest MORL algorithm (Zhou et al., 2024), and
performs close to the central optimum with much shorter running time.

2 THE NEW MOMARL PROBLEM FORMULATION AND PRELIMINARIES

2.1 MODEL OF THE MOMARL PROBLEM

The MOMARL problem can be described as
(
N ,M,G(N , E), {Si}i∈N , {Ai}i∈N , {Pi}i∈N ,ρ,

{rmi }i∈N ,m∈M,γ
)
, whereN = {1, · · · , N} andM = {1, · · · ,M} represent the agent set and the

objective set, respectively. G =
(
N , E

)
represents the communication network among agents with

E being the set of edges 1. For integer κ ≥ 1, denote N κ
i as the κ-hop neighborhood of agent i.

State and action: Si and Ai represent the local state space and the local action space of agent i,
respectively. Denote S =

∏N
i=1 Si and A =

∏N
i=1Ai as the global state space and the global action

space, respectively. Denote s = (s1, · · · , sN ) ∈ S and a = (a1, · · · , aN ) ∈ A as the global state
and the global action of agents, where si ∈ Si and ai ∈ Ai represent the local state and local action
of agent i ∈ N , respectively. For integer κ ≥ 1, denote sNκi and aNκi as the state and action of agent
i’s κ-hop neighbors, respectively. Moreover, denote SNκi =

∏
j∈Nκi

Sj and ANκi =
∏
j∈Nκi

Aj as
the state space and the action space of agent i’s κ-hop neighbors, respectively.

1For the case of time-varying neighbor agents, our algorithm is still applicable if the agent communicates
intermittently (or delays communication) with its initial neighbor. In the process of convergence analysis of the
algorithm, we just need to introduce an additional error term caused by communication disconnection or delay.
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State transition probability function: Pi(s′i|sN 1
i
, ai) : SN 1

i
× Ai × Si → [0, 1] is the state

transition probability function of agent i, dependent of its 1-hop neighborhood state and its local
action. Denote P(s′|s,a) =

∏N
i=1 Pi(s′i|sN 1

i
, ai) : S × A × S → [0, 1] as the global state

transition probability function. Note that the definition of the state transition probability function∏N
i=1 Pi(s′i|sN 1

i
, ai) is common in the literature. For example, it applies to the scenario of traffic

signal control problem (Chu et al., 2020; Dai et al., 2024), where the traffic flow at each intersection
is influenced by the traffic flow at its neighboring intersections and its own signal light.

Initial state distribution: ρ is the distribution of the initial state s0.

Reward function: rmi (si, ai) : Si ×Ai → R is the reward function of agent i ∈ N in the objective
m ∈ M. Denote st = (s1,t, · · · , sN,t) and at = (a1,t, · · · , aN,t) as the global state and the global
action at time t, respectively. The reward of agent i ∈ N in the objective m ∈ M at time t can be
represented as rmi,t = rmi (si,t, ai,t), as in the literature (Chu et al., 2020; Dai et al., 2024; Zhou et
al., 2023; Qu et al., 2020a).

Discount factor: γ = (γ1, · · · , γM )> ∈ RM with γm ∈ (0, 1) being the discount factor in the
objective m ∈M.

Softmax policy: In this paper, we use the parameterized softmax policy πθi(ai|si) with parameter
θi ∈ R|Si||Ai|, which is described as

πθi(ai|si) =
exp(θi,si,ai)∑
a′i

exp(θi,si,a′i)
, (1)

where θi,si,ai represents the element corresponding to (si, ai) in θi. Denote θ = (θ>1 , · · · , θ>N )> ∈
R

∑N
i=1 |Si||Ai| as the joint policy parameter of agents and πθ(a|s) =

∏N
i=1 πθi(ai|si) be the joint

policy of all agents. Note that the softmax policy is used in RL to ensure the exploration of a-
gents (Zhou et al., 2023; Zhang et al., 2022).

In the MOMARL problem, given a joint policy parameter θ, the m-th objective of all agents is
defined as Jm(θ) and represented as

Jm(θ) =Es∼ρ
[ 1

N

∞∑
t=0

N∑
i=1

(γm)trmi,t|s0 = s,at ∼ πθ(·|st)
]
. (2)

The goal of agents in the MOMARL problem is to find a joint policy parameter θ to maximize the
following composite objective, i.e.,

max
θ
J(θ) = [J1(θ), · · · , JM (θ)]> ∈ RM . (3)

In order to address the potential conflicts among the J(θ) in (3), the notions of Pareto-optimality
and ε-Pareto-stationarity are introduced as follows.

Definition 1 (Pareto-optimality) A solution θ dominates solution θ′ if and only if Jm(θ) ≥ Jm(θ′),
∀m ∈ M and ∃m′ ∈ M, Jm

′
(θ) > Jm

′
(θ′). A solution θ is Pareto-optimal if it is not dominated

by any other solution.

Considering that finding Pareto-optimal solutions for non-convex MOMARL problems is NP-hard,
it is generally more practical to seek the ε-Pareto-stationary solution instead of the Pareto-optimal
solution (Kumar et al., 2019).

Definition 2 (ε-Pareto-stationarity) A solution θ is ε-Pareto stationary if there exists λ =
(λ1, · · · , λM )> ∈ RM such that minλ∈RM ‖∇θJ(θ)>λ‖22 ≤ ε with λ ≥ 0, ‖λ‖1 = 1, and
ε > 0.

Based on Definitions 1-2, it is obvious that the Pareto-stationarity is a necessary condition for a solu-
tion to be Pareto-optimal. Specifically, in the context of convex MOMARL problems, the solutions
that are Pareto-stationary also qualify as Pareto-optimal. Given the complexity associated with the
MOMARL problem, this paper focuses on developing a distributed scalable algorithm to identify
and achieve Pareto-stationarity.
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2.2 PRELIMINARIES IN THE MOMARL PROBLEM

In the MOMARL problem, for any joint policy parameter θ and m ∈ M, the global Q-function
Qm(s,a;θ) in m-th objective is defined as

Qm(s,a;θ) = Eπθ
[ 1

N

∞∑
t=0

N∑
i=1

(γm)trmi,t|s0 = s,a0 = a
]
. (4)

Different from the definition of the global Q-function in (4), for each agent i ∈ N , its local Q-
function Qmi (s,a;θ) in m-th objective is defined as

Qmi (s,a;θ) = Eπθ
[ ∞∑
t=0

(γm)trmi,t|s0 = s,a0 = a
]
. (5)

Based on the definitions of the global Q-function (4) and the local Q-function (5), we have

Qm(s,a;θ) =
1

N

N∑
i=1

Qmi (s,a;θ), (6)

which shows the global Q-function can be decomposed into the sum of the local Q-functions of
all agents. In the MOMARL problem, given the joint policy parameter θ, define dθ,mρ (s) as the
discounted state visitation distribution, which is represented as

dθ,mρ (s) = (1− γm)

∞∑
t=0

(γm)tPrπθ (st = s|s0 ∼ ρ), (7)

where Prπθ (st = s|s0 ∼ ρ) represents the probability of st = s at time t under the initial state
distribution ρ and the joint policy πθ. Moreover, let ξθ,mρ (s,a) be the discounted state-action
visitation distribution of (s,a) ∈ S ×A and satisfy

ξθ,mρ (s,a) = dθ,mρ (s)πθ(a|s). (8)

In the MOMARL problem, some assumptions are introduced in the following.

Assumption 1 In the MOMARL problem, for any joint policy parameter θ and objective m ∈ M,
ξθ,mρ (s,a) satisfies that

inf
θ

min
(s,a)∈S×A

ξθ,mρ (s,a) > 0. (9)

Assumption 2 In the MOMARL problem, for any agent i ∈ N and objective m ∈ M, there exists
constant R > 1 such that the instantaneous reward rmi,t at time t ≥ 0 satisfies |rmi,t| ≤ R.

Assumption 1 ensures that for any joint policy πθ, (s,a) ∈ S ×A is visited with a non-zero prob-
ability and Assumption 2 provides an upper bound on the reward. These assumptions are standard
prerequisite for the convergence analysis of RL algorithms and can be found in (Zhou et al., 2023;
Zhang et al., 2022).

Recall that the policy gradient theorem (Sutton et al., 2000) is the foundation of algorithm design in
RL. Inspired by the theorem, in our MOMARL problem, we also have the following policy gradient
lemma.

Lemma 1 In the MOMARL problem, for any joint policy parameter θ, the gradient of Jm(θ) in
m-the objective with respect to θ is given by:

∇θJm(θ) =
1

1− γm
Es∼dθ,mρ ,a∼πθ [∇θ logπθ(a|s)Qm(s,a;θ)],∀m ∈M. (10)

Lemma 1 shows that the calculation of the policy gradient∇θJm(θ) depends onQm(s,a;θ), which
involves global state-action (s,a). Consequently, there are two challenges in applying (10): (i) the
computational complexity of handling the global state-action (s,a) in a centralized setting is high;
(ii) it is difficult to achieve efficient distributed decision making among multi-agents with limited
communication.

4
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3 DISTRIBUTED SCALABLE ACTOR-CRITIC ALGORITHM FOR MOMARL
PROBLEM

In order to mitigate the RL algorithm’s dependence on global state-action (s,a), this section designs
a distributed scalable algorithm through the following 3 steps as in Fig. 1: (1) We first propose a
new graph-truncated Q-function approximation for each agent i ∈ N , which does not require the
global state-action (s,a) but only the neighborhood state-action (sNκi , aNκi ) of its κ-hop neighbors;
(2) Then, we introduce a new concept of action-averaged Q-function and establish the equivalence
between using the graph-truncated Q-function and action-averaged Q-function for policy gradient
approximation; (3) Finally, we use linear function to approximate the action-averaged Q-function
and reduce the dimensionality of state-action of each agent i ∈ N to (sNκi , ai).

Graph-truncated Q-function 
����,�

� (���
� , ���

�; �) 
in (12)

Action-averaged Q-function 
��

�(�, ��; �) in (16)

Graph-truncated policy 
gradient �������,�

� (�) in 
(14)

Critic Step: Linear function 
approximation 

��
�(���

� , ��; ��
�) in (20)

Approximated policy gradient
 �������,�

� (�) in (17)

Section 3.3

Section 3.4

Actor Step: Approximation 
optimation gradient �� in (25)

(Section 4)
Distributed scalable 

algorithm 
in  Algorithm 1 

Section 3.1

Step 1 Step 2 Step 3 

Section 3.2

Equivalence in 
Proposition 1

Figure 1: The main flowchart of algorithm design: Step 1 proposes a new graph-truncated Q-
function Qmtru,i(sNκi , aNκi ;θ) and the graph-truncated policy gradient ∇θiJmtru,i(θ); Step 2 designs
a action-averaged Q-function Q̂mi (s, ai;θ) and approximation policy gradient∇θiJmapp,i(θ), which
is equivalent to∇θiJmtru,i(θ) (i.e., Proposition 1); Step 3 proposes the linear function approximation
and policy parameter update for the distributed scalable algorithm in Section 4.

3.1 GRAPH-TRUNCATED Q-FUNCTION

In the following, we first introduce the formal definition of the exponential decay property in the
MOMARL problem.

Definition 3 The MOMARL satisfies the (ϑ,%)-exponential decay property with ϑ =
(ϑ1, · · · , ϑM )> ∈ RM ,% = (%1, · · · , %M )> ∈ RM , if for any joint policy πθ, agent i ∈ N ,
objective m ∈ M, sNκi ∈ SNκi , aNκi ∈ ANκi , s−Nκi , s

′
−Nκi

∈ S−Nκi , and a−Nκi , a
′
−Nκi

∈ A−Nκi ,
Qmi (s,a;θ) satisfies∣∣∣Qmi (sNκi , s−Nκi , aNκi , a−Nκi ;θ)−Qmi (sNκi , s

′
−Nκi , aN

κ
i
, a′−Nκi ;θ)

∣∣∣ ≤ ϑm(%m)κ+1. (11)

The exponential decay property of the MOMARL problem indicates that the dependence of agen-
t i’s local Q-function Qmi (s,a;θ) on other agents shrinks rapidly as the distance between them
increases. By Assumption 2, we can directly obtain the following lemma.

Lemma 2 The MOMARL problem satisfies
(
( R
1−γ1 , · · · , R

1−γM )>,γ
)
-exponential decay property.

The proof can be found in Appendix A.1. Lemma 2 provides a possibility for agents to approximate
Qmi (s,a;θ) by only using its κ-hop neighbors’ information. Inspired by exponential decay property
in Lemma 2, we design a proper class of graph-truncated Q-functions:

Qmtru,i(sNκi , aNκi ;θ) =
∑

s−Nκ
i
,a−Nκ

i

ξθ,mρ (s−Nκi , a−Nκi |sNκi , aNκi )Qmi (sNκi , s−Nκi , aNκi , a−Nκi ;θ),

(12)

where ξθ,mρ (s−Nκi , a−Nκi |sNκi , aNκi ) is the weight coefficient and satisfies

ξθ,mρ (s−Nκi , a−Nκi |sNκi , aNκi ) =
ξθ,mρ (sNκi , s−Nκi , aNκi , a−Nκi )∑

s′−Nκ
i
,a′−Nκ

i

ξθ,mρ (sNκi , s
′
−Nκi

, aNκi , a
′
−Nκi

)
. (13)
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Using (12), we define the graph-truncated policy gradient∇θiJmtru,i(θ) as

∇θiJmtru,i(θ) =
1

1− γ
Es∼dθ,mρ ,a∼πθ

[ 1

N

∑
j∈Nκi

Qmtru,j(sNκj , aNκj ;θ)∇θi log πθi(ai|si)
]
. (14)

The graph-truncated policy gradient approximation error is presented in the following.

Lemma 3 In the MOMARL problem, for any agent i ∈ N and objective m ∈M, we have∥∥∥∇θiJmtru,i(θ)−∇θiJm(θ)
∥∥∥
2
≤

√
2R

(1− γm)2
(γm)κ+1. (15)

Similar to (Qu et al., 2020a), Lemma 3 shows that the graph-truncated Q-functions
{Qmtru,j(sNκj , aNκj ;θ)}j∈Nκi can effectively approximate the policy gradient ∇θiJm(θ) through
the state-action (sNκi , aNκi ). In order to improve the scalability of the algorithm, we further explore
the properties of graph-truncated Q-function in (13) and reduce the dimensionality of the algorithm
to (sNκi , ai).

3.2 POLICY GRADIENT APPROXIMATION

To further reduce the neighbors’ action aNκi in graph-truncated Q-function (12) to local action ai,
for any agent i and objective m, we design a novel concept of “action-averaged Q-function” by
using its κ-hop neighbors’ rewards as follows:

Q̂mi (s, ai;θ) = Eπθ
[ 1

N

∞∑
t=0

(γm)t
∑
j∈Nκi

rmj (sj,t, aj,t)|s0 = s, ai,0 = ai

]
. (16)

Define ∇θiJmapp(θ) as the approximated policy gradient of agent i by using the action-averaged
Q-function in (16), given by:

∇θiJmapp,i(θ) =
1

1− γm
Es∼dθ,mρ ,ai∼πθi

[
Q̂mi (s, ai;θ)∇θi log πθi(ai|si)

]
. (17)

Unlike the graph-truncated policy gradient∇θiJmtru,i(θ) in (14) that requires aNκi , (17) only requires
the local action ai. As shown in Fig. 1, we establish the equivalence between graph-truncated policy
gradient∇θiJmtru,i(θ) and approximated policy gradient∇θiJmapp(θ) in the following proposition.

Proposition 1 In the MOMARL problem, given a joint policy πθ, for any agent i ∈ N and objective
m ∈M, it holds

∇θiJmtru,i(θ) = ∇θiJmapp,i(θ). (18)

The proof of Proposition 1 can be found in Appendix A.3. Proposition 1 provides an equivalence
between Qmtru,i(sNκi , aNκj ;θ) and Q̂mi (s, ai;θ) in policy gradient approximation. Based on Propo-
sition 1, the approximation error between ∇θiJmapp,i(θ) and original ∇θiJm(θ) in (10) can be well
bounded for the MOMARL problem in the following theorem.

Theorem 1 In the MOMARL problem, given a joint policy πθ, for any agent i ∈ N and objective
m ∈M, it holds that

‖∇θiJmapp,i(θ)−∇θiJm(θ)‖2 ≤
√

2R

(1− γm)2
(γm)κ+1. (19)

Theorem 1 is built upon Lemma 3 and Proposition 1, with its proof provided in Appendix A.4.

The policy gradient has been approximated so far by constructing Q̂mi (s, ai;θ) in (16) and
∇θiJmapp,i(θ) in (17), which reduces the action dimension of each agent i to its local action ai.
However, the expression of Q̂mi (s, ai;θ) still requires the global state. Therefore, in the following,
we will focus on reducing the dimensionality of agents’ state information.

6
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3.3 CRITIC STEP: LINEAR FUNCTION APPROXIMATION

As shown in Fig. 1, in this subsection, we use the localized stochastic approximation and propose
a linear function in (20) to reduce the dimension of the state-action required by agent i ∈ N to
(sNκi , ai). Specially, the linear function Q̂mi (sNκi , ai;w

m
i ) of agent i to approximate Q̂mi (s, ai;θ)

is given as

Q̂mi (sNκi , ai;w
m
i ) = φi(sNκi , ai)

>wmi , (20)

where φi(sNκi , ai) : SNκi ×Ai → Rdi is the feature vector mapping and wmi ∈ Rdi is the parameter
of agent i in m-th objective. By the definition of Q̂mi (s, ai;θ) in (16), the parameter with initial
value wmi,0 can be updated by sample sequence {sNκi ,t0 , ai,t0 , r

m
Nκi ,t0

}0≤t0≤K as

wmi,t0+1 = wmi,t0 − η
m
w δ

m
i,t0φi(sNκi ,t0+1, ai,t0+1), (21)

where δmi,t0 is the local temporal difference error at time t0 and represented as

δmi,t0 = φi(sNκi ,t0 , ai,t0)>wmi,t0 −
1

N

∑
j∈Nκi

rmj,t0 − γ
mφi(sNκi ,t0+1, ai,t0+1)>wmi,t0 , (22)

and ηmw is the fixed learning rate of parameters wmi . The detailed description of linear function
approximation is illustrated in Algorithm 2 in Appendix A.5.

3.4 ACTOR STEP: POLICY PARAMETER UPDATE

Based on our peoposed approximated policy gradient ∇θiJmapp,i(θ) in (17), for joint poli-
cy πθt , we denote gmi,t(B) as the estimation of ∇θiJmapp,i(θ) based on the sample sequence
{(sbNκi ,h, a

b
i,h)}0≤b≤B−1,0≤h≤H−1, calculated by

gmi,t(b+ 1) =
b

b+ 1
gmi,t(b) +

1

b+ 1
∇̂θiJ

m,b
app,i(θt), (23)

where gmi,t(0) = 0|Si||Ai| and ∇̂θiJ
m,b
app,i(θt) is defined as

∇̂θiJ
m,b
app,i(θt) =

H−1∑
h=0

(γm)h∇θi log πθi,t(a
b
i,h|sbi,h)φi(s

b
Nκi ,h, a

b
i,h)>wmi,t. (24)

Let gmi,t = gmi,t(B)> and gmt =
(
(gm1,t)

>, · · · , (gmN,t)>
)> ∈ R

∑N
i=1 |Si||Ai|. Related to Pareto-

stationarity in Definition 1, we denote λ̂t = (λ̂1t , · · · , λ̂Mt )> ∈ RM as solution of the following
quadratic programming problem:

min
λt=(λ1

t ,··· ,λMt )>∈RM

∥∥∥ M∑
m=1

λmt g
m
t

∥∥∥2
2

s.t. λt ≥ 0, ‖λt‖1 = 1. (25)

After computing λ̂t, we update the weight λt as

λt = (1− ηλ,t)λt−1 + ηλ,tλ̂t, (26)

where ηλ,t is the learning rate of λt. Denote gt =
∑M
m=1 λ

m
t g

m
t , the update of θt+1 is presented as

θt+1 = θt + ηθ,tgt, (27)

where ηθ,t is the learning rate of policy parameter. In the NMARL problem, the agents can use θt
to achieve the distributed decision based on (1).

4 DISTRIBUTED SCALABLE ACTOR-CRITIC ALGORITHM AND ITS
PARETO-STATIONARY CONVERGENCE

In this section, we first propose a distributed scalable actor-critic algorithm (i.e., Algorithm 1) for
the NMARL problem. Then, we prove the Pareto-stationary convergence of Algorithm 1.
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Based on Section 3, we propose a distributed scalable actor-critic algorithm for the MOMARL
problem, which is given in Algorithm 1. In order to analyze the Pareto-stationary convergence of
Algorithm 1.

Algorithm 1: Distributed scalable actor-critic algorithm for the MOMARL problem
Require: The non-negative integers T , B, H , the learning-rates ηmw , {ηλ,t}t∈{1,··· ,T} and
{ηθ,t}t∈{1,··· ,T};
Initialization: Initialize λ0 = 1

M 1M ∈ RM , the policy parameter θi,1 ∈ R|Si|×|Ai| to follow
Gaussian distribution for all i ∈ {1, 2, · · · , N};
for t = 1, 2, · · · , T do

Initial policy gradient estimation gmi,t(0) = 0|Si||Ai| for all i ∈ N ;
Critic step: All agents use (21) in Algorithm 2 and output the weight vectors {wmi,t}i∈N ;
Actor step:
for b = 0, 1, 2, · · · , B − 1 do

All agents execute the joint policy πθt in H − 1 horizon;
Each agent i ∈ N collects a sequence of samples, which includes the state information
{sj}j∈Nκi from its κ-hop neighbors and its local action information ai, i.e.,
{(sbNκi ,h, a

b
i,h)}0≤h≤H−1;

Each agent i estimates the local policy gradient in m-th objective according to (23);
end
All agents calculate gmi,t = gmi,t(B) by (23) and achieve gmt =

(
(gm1,t)

>, · · · , (gmN,t)>
)>

for all
m ∈ [M ];
Compute λ̂t as the solution to problem (25);
Update the weight λt acording to (26);
Update the policy parameter θt+1 according to (27);

end
Output: πθT̂ with T̂ chosen uniformly from {1, · · · , T}

Our process to prove the Pareto-stationary convergence of Algorithm 1 is as follows: (i) We start
from the definition of Pareto-stationarity in Definition 2 and analyze the error between the true
gradient ∇θiJm(θt) and the calculated gradient gmi,t in (23)(i.e., Lemma 4); (ii) We control λt
by setting the step size ηθ,t to ensure that Algorithm 1 converges to Pareto-stationary solution in
Theorem 2.

Lemma 4 In Algorithm 1, for joint policy parameter θt, any agent i ∈ N , and objective m ∈ M,
we have

E[‖∇θiJm(θt)− gmi,t‖22] ≤ 8R2

(1− γm)4
(γm)2κ+2 +

32

(1− γm)2B
+

8(γm)2H

(1− γm)4
+

8εθtcritic
(1− γm)2

,

where εθtcritic is the linear approximation error and defined as

εθtcritic = sup
m∈M

sup
i∈N

E
[

sup
s,ai

∣∣∣Q̂i(sNκi , ai;wmi,K)− Q̂mi (s, ai;θt)
∣∣∣2]. (28)

The proof of the Lemma 4 is given in Appendix A.6. Based on Lemma 4, the Pareto-stationary
convergence of Algorithm 1 is presented in the following theorem.

Theorem 2 In Algorithm 1, let LJ = maxm∈M
6N

(1−γm)3 , ηθ,t = 1
3LJ

, and ηλ,t = 1
(t+1)2 . Our

policy parameter sequences {θt}Tt=1 generated by Algorithm 1 satisfies:

E[‖∇θJ(θT̂ )>λ̂T̂ ‖
2
2] ≤ 36LJ

(1− ‖γ‖∞)T

(
1 +

T∑
t=1

ηλ,t

)
+ 5 max

m∈M

( 8R2

(1− γm)4
(γm)2κ+2

+
32N

(1− γm)2B
+

8(γm)2HN

(1− γm)4
+

8 max1≤t≤T ε
θt
criticN

(1− γm)2

)
, (29)

where T̂ is uniformly sampled among {1, · · · , T}.
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The proof of Theorem 2 can be found in Appendix A.7. Theorem 2 shows that Algorithm 1 can
converge to an approximate Pareto-stationary solution at a rate ofO(1/T ). The gap between the ap-
proximate Pareto-stationary and the Pareto-optimal depends on graph-truncated approximation error

8R2

(1−γm)4 (γm)2κ+2 and linear function approximation error 8ε
θt
criticN

(1−γm)2 . These errors are not signifi-
cant, as we can control the upper bound of their upper bounds by setting the graph-truncated distance
κ and the feature vector in the linear approximation. Specially, the graph-truncated approximation
error is exhibits an exponential decrease as κ increases.

5 ROBOTS PATH PLANNING EXPERIMENTS

In this section, we study MOMARL by considering N robots as agents in a typical path planning
simulation experiment by following (Zhou et al., 2023). Similar setting is also used in (Duan et al.,
2016; Zhang & Pavone, 2016). We consider different path networks as shown in Figs. 2(a) and 3(a),
where leftmost nodes represent the starting locations for agents and rightmost nodes represent the
different objective destinations. The agents have the option to either halt or continue along the path
until they reach the objective destinations, where they will remain. The goal of agents is to explore
different destinations, for simultaneously minimizing the travel time and collision with each other.

In path planning simulation experiment, for each agent i ∈ {1, · · · , N}, define all possible locations
as its local state space and all possible movements as its local action space. In order to better
understand the movement changes of agents, we take network 3-2-2 in Fig. 2(a) as an example. If
agent i at node b2, it can choose remain stationary at the current node for one time step, move along
the edge (b2, c1) or edge (b2, c2).

The reward setting of each agent i includes: (i) the cost of travel time −0.5 at each step, (ii) the
collision penalty −0.5 when it chooses the same path with another to move, (iii) the final reward for
reaching a destination. Specifically, when a agent reaches objective 1 and objective 2 in network 3-2-
2, it will receive additional rewards of [0.5, 0], and [0, 1], respectively. In network 5-5-5-3, each agent
reaches objective 1, objective 2, and objective 3 will receive the additional rewards of [0.5, 0, 0],
[0, 1.5, 0], and [0, 0, 1], respectively. The goal of agents is to find a joint policy parameter θ to
maximize (3).
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Figure 2: (a) Experiment network setting for N = 6 robots, (b) the multi-objective performances,
and (c) the norm of gradient of our Algorithm 1 as compared to the centralized Algorithm 3.

In path network 3-2-2, we set the discount factor γ = (0.9, 0.9)>, the communication distance
κ = 1, and the initial positions of agents are set to b1, b2, b3, b1, b2, b3, respectively. In order to
demonstrate the superiority of our proposed Algorithm 1 in terms of runtime and computational
performance, we compare it to the centralized Algorithm 3 presented in Appendix A.8, which uses
the global state-action information and has also been proven to converge to 0-Pareto-stationarity
(i.e., Theorem 4 in Appendix A.8).

The discounted average cumulative reward {Jm(θt)}m∈{1,2} of the policy sequence generated by
Algorithm 1 and the centralized Algorithm 3 are depicted in Fig. 2(b), where x-axis represents the
running time. Although the final value of objective 2 generated by centralized Algorithm 3 is better
than Algorithm 1, it takes longer time to learn. As shwn in Fig. 2(b), centralized Algorithm 3 takes
575s to implement an update to the policy parameters, but our algorithm has already learned in this
time. Furthermore, the value of objective 1 in our proposed Algorithm 1 converges to greater value
as compared to the centralized Algorithm 3.
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The Pareto-stationary convergence error (i.e., ‖gt‖2 in (27)) generated by Algorithm 1 and the cen-
tralized Algorithm 3 is depicted in Fig. 2(c), where the x-axis represents the running time. Although
the norm of policy gradient generated by centralized Algorithm 3 is closer to 0 than Algorithm 1, the
norm of policy gradient of our Algorithm 1 can reach to 0.05 quickly after running 575s, which is
significantly faster than the centralized Algorithm 3. This speed advantage stems from the fact that
the centralized algorithm requires time-consuming calculations of the exact value of the global Q-
function during policy updates. In contrast, our Algorithm 1 does not necessitate such computations
and thus outperforms the centralized algorithm in term of runtime.
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Figure 3: (a) Experiment network setting for N = 10 robots, (b) the multi-objective results, and (c)
the norm of gradient of our Algorithm 1 as compared to the latest MORL algorithm (Zhou et al.,
2024).

In the larger path network 5-5-5-3, we set the discount factor γ = (0.9, 0.9, 0.9)>, the communica-
tion distance κ = 1, and the initial positions of agents are set to b1, b2, b3, b4, b5, b1, b2, b3, b4, b5, re-
spectively. In this simulation, the centralized Algorithm 3 is no longer applicable due to its enormous
computational complexity. Thus, we compare our Algorithm 1 to the latest MORL algorithm (Zhou
et al., 2024), which specifically addresses the MORL problem with discrete action space and is cur-
rently the only approach for achieving Pareto-stationarity. Since the latest MORL algorithm cannot
directly apply to our multi-agent setting of limited communications, we transform the multi-agent
setting to its MORL with a single agent, who accesses the global state-action information.

The discounted average cumulative reward {Jm(θt)}m∈{1,2,3} of the policy sequence generated by
our Algorithm 1 and the latest MORL algorithm are depicted in Fig. 3(b), where x-axis represents the
number of iterations. As shown in Fig. 3(b), our Algorithm 1 converges to all greater multi-objective
values as compared to the latest MORL algorithm.

In order to demonstrate the superiority of the algorithm in convergence performance, the Pareto-
stationary convergence error generated by Algorithm 1 and the latest MORL algorithm are shown
in Fig. 3(c), where the x-axis represents the number of iterations. The norm of the policy gradient,
as demonstrated by Algorithm 1, exhibits a clear convergence trend towards 0. However, the policy
gradient in the latest MORL algorithm deviates significantly from 0 due to the excessively large
global state-action dimension, resulting in a substantial approximation error in the globalQ-function
approximation.

Based on the simulation results, the centralized Algorithm 3 necessitates the computation of the
exact value of the global Q-function at each update, resulting in a time-consuming procedure. The
latest MORL algorithm (Zhou et al., 2024) employs an approximation of the global Q-function,
which enhances its efficiency; however, it encounters convergence challenges in MAMORL prob-
lem. In comparison to the centralized Algorithm 3 and the latest MORL algorithm (Zhou et al.,
2024), our proposed Algorithm 1 demonstrates favorable outcomes in terms of both running time
and convergence.

6 CONCLUSIONS

In this paper, we proposed a distributed scalable actor-critic algorithm for the MOMARL problem
and proved that this algorithm reaches a close-to-Pareto-stationary point of J(θ). In the proposed
algorithm, each agent only requires state-action information (sNκi , ai), which can effectively im-
prove the scalability of the algorithm. The underlying framework of distributed scalable actor-critic
algorithm, which includes the graph-truncated Q-function (12) and the action-averaged Q-function
(16), constitutes a significant contribution in its own right and has the potential to pave the way for
other scalable reinforcement learning methods in networked systems.
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