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ABSTRACT

While most neural generative models generate outputs in a single pass, the human
creative process is usually one of iterative building and refinement. Recent work
has proposed models of editing processes, but these mostly focus on editing se-
quential data and/or only model a single editing pass. In this paper, we present a
generic model for incremental editing of structured data (i.e. “structural edits”).
Particularly, we focus on tree-structured data, taking abstract syntax trees of com-
puter programs as our canonical example. Our editor learns to iteratively generate
tree edits (e.g. deleting or adding a subtree) and applies them to the partially edited
data, thereby the entire editing process can be formulated as consecutive, incre-
mental tree transformations. To show the unique benefits of modeling tree edits
directly, we further propose a novel edit encoder for learning to represent edits, as
well as an imitation learning method that allows the editor to be more robust. We
evaluate our proposed editor on two source code edit datasets, where results show
that, with the proposed edit encoder, our editor significantly improves accuracy
over previous approaches that generate the edited program directly in one pass.
Finally, we demonstrate that training our editor to imitate experts and correct its
mistakes dynamically can further improve its performance.

1 INTRODUCTION

Iteratively revising existing data for a certain purpose is ubiquitous. For example, researchers repet-
itively polish their manuscript until the writing becomes satisfactory; computer programmers keep
editing existing code snippets and fixing bugs until desired programs are produced. Can we properly
model such iterative editing processes with neural generative models?

To answer this question, previous works have examined models for editing sequential data such as
natural language sentences. Some example use cases include refining results from a first-pass text
generation system (Simard et al., 2007; Xia et al., 2017), editing retrieved text into desired outputs
(Gu et al., 2018; Guu et al., 2018), or revising a sequence of source code tokens (Yin et al., 2019;
Chen et al., 2019; Yasunaga & Liang, 2020). These examples make a single editing pass by directly
generating the edited sequence. In contrast, there are also works on modeling the incremental edits
of sequential data, which predict sequential edit operations (e.g. keeping, deleting or adding a token)
either in a single pass (Shin et al., 2018; Vu & Haffari, 2018; Malmi et al., 2019; Dong et al., 2019;
Stahlberg & Kumar, 2020; Iso et al., 2020) or iteratively (Zhao et al., 2019; Stern et al., 2019; Gu
et al., 2019a;b), or modify a sequence in a non-autoregressive way (Lee et al., 2018).

However, much interesting data in the world has strong underlying structure such as trees. For ex-
ample, a syntactic parse can be naturally represented as a tree to indicate the compositional relations
among constituents (e.g. phrases, clauses) in a sentence. A computer program inherently is also a
tree defined by the programming language’s syntax. In the case that this underlying structure exists,
many edits can be expressed much more naturally and concisely as transformations over the under-
lying trees than conversions of the tokens themselves. For example, removing a statement from a
∗Work done while interning at CMU.
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computer program can be easily accomplished by deleting the corresponding tree branch as opposed
to deleting tokens one by one. Despite this fact, work on editing tree-structured data has been much
more sparse. In addition, it has focused almost entirely on single-pass modification of structured
outputs as exemplified by Yin et al. (2019); Chakraborty et al. (2020) for computer program editing.

In this work, we are interested in a generic model for incremental editing of structured data (“struc-
tural edits”). Particularly, we focus on tree-structured data, taking abstract syntax trees of computer
programs as our canonical example. We propose a neural editor that runs iteratively. At each step,
the editor generates and applies a tree edit (e.g. deleting or adding a subtree) to the partially edited
tree, which deterministically transforms the tree into its modified counterpart. Therefore, the entire
tree editing process can be formulated as consecutive, incremental tree transformations (Fig. 1).

While recent works (Tarlow et al., 2019; Dinella et al., 2020; Brody et al., 2020) have also examined
models that make changes to trees, our work is distinct from them in that: First, compared with
Dinella et al. (2020), we studied a different problem of editing tree-structured data particularly
triggered by an edit specification (which implies a certain edit intent such as a code refactoring rule).
Second, we model structural edits via incremental tree transformations, while Tarlow et al. (2019)
and Brody et al. (2020) predict a complete edit sequence based on the fixed input tree, without
applying the edits or performing any tree transformations incrementally. Although Dinella et al.
(2020) have explored a similar idea, our proposed tree editor is more general owing to the adoption
of the Abstract Syntax Description Language (ASDL; Wang et al. (1997)). This offers our editor
two properties: being language-agnostic and ensuring grammar validity. In contrast, Dinella et al.
(2020) include JavaScript-specific design and employ only ad-hoc grammar checking. Finally, our
tree editor supports a comprehensive set of operations such as adding or deleting a tree node and
copying a subtree, which can fulfill a broad range of tree editing requirements. These operations
are not fully allowed by previous work, e.g., Brody et al. (2020) cannot add (or generate) a new tree
node from scratch; Tarlow et al. (2019) and Dinella et al. (2020) do not support subtree copying.

We further propose two modeling and training improvements, specifically enabled by and tailored to
our incremental editing formalism. First, we propose a new edit encoder for learning to represent the
edits to be performed. Unlike existing edit encoders, which compress tree differences at the token
level (Yin et al., 2019; Hoang et al., 2020; Panthaplackel et al., 2020b) or jointly encode the initial
and the target tree pairs in their surface forms (Yin et al., 2019), our proposed edit encoder learns
the representation by encoding the sequence of gold tree edit actions. Second, we propose a novel
imitation learning (Ross et al., 2011) method to train our editor to correct its mistakes dynamically,
given that it can modify any part of a tree at any time.

We evaluate our proposed tree editor on two source code edit datasets (Yin et al., 2019). Our ex-
perimental results show that, compared with previous approaches that generate the edited program
in one pass, our editor can better capture the underlying semantics of the intended edits, which
allows it to outperform existing approaches by more than 7% accuracy in a one-shot evaluation
setting. With the proposed edit encoder, our editor significantly improves accuracy over existing
state-of-the-art methods on both datasets. We also demonstrate that our editor can become more
robust by learning to imitate expert demonstrations dynamically. Our source code is available at
https://github.com/neulab/incremental_tree_edit.

2 PROBLEM FORMULATION

As stated above, our goal is to create a general-purpose editor for tree-structured data. Specifically,
we are interested in editing tree structures defined following an underlying grammar that, for every
parent node type, delineates the allowable choices of child nodes. Such syntactic tree structures, like
syntax trees of sentences or computer programs, are ubiquitous in fields like natural language pro-
cessing and software engineering. In this paper we formulate editing such tree structures as revising
an input tree C− into an output tree C+ according to an edit specification ∆. As a concrete example,
we use editing abstract syntax trees (ASTs) of C# programs, as illustrated in Fig. 1. This figure
shows transforming the AST of “x=list.ElementAt(i+1)” (C−) to the AST of “x=list[i+1]”
(C+). In this case, the edit specification ∆ could be interpreted as a refactoring rule that uses the
bracket operator [ · ] for accessing elements in a list.1 In practice, the edit specification is learned

1The corresponding Roslyn analyzer in C# can be found at https://github.com/JosefPihrt/
Roslynator/blob/master/docs/analyzers/RCS1246.md.
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Figure 1: Our proposed neural editor for editing tree-structured data.

by an edit encoder f∆ from a pair of input-output examples 〈C ′−, C ′+〉, and encoded as a real-valued
edit representation, i.e. f∆(C ′−, C

′
+) ∈ Rn. The learned edit representation could then be used to

modify C− in a similar way as editing C ′−. Onwards we use f∆ as a simplified notation for edit
representations.

Revising a tree into another typically involves a sequence of incremental edits. For instance, to
modify the input tree in the aforementioned example, one may first delete the subtree rooted at
the node MethodCall, which corresponds to the code fragment “list.ElementAt(i+1)”, and
then replace it with an ElementAccess node denoting the bracket operator, etc. We formulate this
editing process as a sequential decision making process (〈g1, a1〉, . . . , 〈gT , aT 〉), where for each
tree gt at time step t, the editor executes a tree edit action at, deterministically transforming it into
gt+1. In particular, g1 is the initial input tree C−.2 The process stops at gT when the editor predicts
a special Stop action as aT . Denoting g1:t = (g1, ..., gt) as the tree history and a1:t = (a1, ..., at)
the edit history until step t, then the editing can be framed as the following autoregressive process:

p(a1:T |f∆, g1) = p(a1|f∆, g1)p(a2|f∆, g1:2) · · · p(aT |f∆, g1:T ) =

T∏
t=1

p(at|f∆, g1:t). (1)

3 MODEL

We will introduce our neural editor for modeling p(at|·) in § 3.1, followed by the edit representation
model f∆ in § 3.2.

3.1 NEURAL TREE EDITOR

Fig. 1(c) illustrates our editor architecture. At each time step, the editor first encodes the current tree
gt and the tree history g1:t. It then employs a modular decoder to predict a tree edit action at. Next,
we will first introduce our tree edit actions and then elaborate the model details.

3.1.1 TREE EDIT ACTIONS

Our editor uses a sequence of editing actions to incrementally modify a tree-structured input. At
each time step, the decoder takes an action at to update a partially-edited tree gt. Specifically, an
action at consists of an operator (e.g. an operator that removes a subtree from gt) with its optional
arguments (e.g. the target subtree to delete). Importantly, the space of actions is limited to maintain
consistency with the underlying syntax of the language. While a number of syntactic formalisms
such as context free grammar (Chomsky, 1956) or tree substitution grammar (Cohn et al., 2010)
exist, in this work we choose the ASDL formalism due to its ability to flexibly handle optional and
sequential fields (interested readers may reference Wang et al. (1997) and Yin & Neubig (2018) for
details). Under this framework, we define four types of operators.

2Notably, the special case of empty initial trees corresponds to code generation from scratch. Thus our
formulation applies to both tasks of editing existing trees and generating new ones.
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Delete operators take a tree node nt as argument and remove nt and its descendants from gt (e.g.
t = 1 in Fig. 1(b)). Note that removing arbitrary (child) nodes from gt might produce syntactically
invalid trees, since under the grammar, a parent node type would always have a fixed set of edge
types. For instance, if the node MethodCall and its incoming edge right were to be removed at t =
1, the resulting AST would be syntactically invalid under C#’s grammar, as the node AssignStmt
denoting a variable assignment statement is missing a child node representing its right operand. To
maintain syntactic correctness (no missing child nodes for any parent nodes), we therefore replace
the to-be-deleted node with a pseudo Dummy node as a placeholder.

Next, we define an Add operator to add new nodes to gt. The operator first locates a target position
by selecting an existing tree node. We consider two cases based on the edge type (or “field”) of the
target position: for single or optional fields that allow at most one child (e.g. field right in Fig. 1(b)
at t = 1), the selected tree node has to be their dummy child node (e.g. node Dummy at t = 1) and
the Add operator will then replace the dummy node with the new tree node; for sequential fields that
accept more than one child (e.g. the field of a “statement block” that allows an arbitrary number of
statements), the selected tree node can be any child node of the field (including a rightmost dummy
node we append to every sequential field) and the Add operator will then insert the new node before
the selected node. We elaborate this mechanism in § A.1. For our editor, adding a non-terminal
node (e.g. node ElementAccess in Fig. 1(b) at t = 2) is equivalent to selecting a production rule

to derive its field (e.g. AssignStmt
right−−→ ElementAccess). As with Delete actions, to ensure

there is no missing child node, we instantiate the set of child nodes with dummy nodes for the newly
added node based on the underlying grammar, which leads to nodes Dummy1 and Dummy2 at t = 2.
Add can also be used to populate empty terminal nodes with actual values (e.g. string token “list”
at t = 3). This is the same as picking a token from the token vocabulary.

Additionally, observing that in many cases, revising a tree can be easily done by copying a subtree
from the initial input g1 (e.g. subtree Expr 7→ i + 1 in Fig. 1(a)) to a new position in the updated
tree gt (e.g. the right child position of node ElementAccess in Fig. 1(b) at t = 4), we introduce
a high-level operator CopySubTree. This operator locates a target position similarly as the Add
operator and then copies a complete subtree from g1 to the target position in a single step.

Finally, a Stop action is used to terminate the iterative tree editing procedure, after which the remain-
ing dummy nodes will be cleared. We note that our framework has decoupled the language grammar
specifications (handled by ASDL) from the model architecture (corresponding to our language-
agnostic model implementation), and thus can be applied to various languages flexibly.

3.1.2 TREE AND TREE HISTORY ENCODER

Similarly to existing works in learning tree representations (Allamanis et al., 2018; Brockschmidt
et al., 2018; Yin et al., 2019; Hellendoorn et al., 2020), we adopt a graph-based encoder to learn
representations of each tree gt. Specifically, we follow Allamanis et al. (2018), and extend gt into
a graph by adding bidirectional edges between parent and child nodes, as well as adjacent sibling
nodes. We use a gated graph neural network (GGNN, Li et al. (2015)) to compute a vector repre-
sentation nt for each node nt on tree gt, and mean-pool {nt} to represent gt, denoted gt.

An LSTM encoder is used to track the tree history g1:t, i.e. st = LSTM([gt; f∆], st−1), where [·; ·]
denotes vector concatenation. We will introduce how to learn the edit representation f∆ in § 3.2.
The updated state st is then used to predict edit actions, as elaborated next.

3.1.3 TREE EDIT DECODER

Our edit decoder predicts an action at using three components: an operator predictor, a node selector,
and a value predictor. At each time step t, the decoder’s operator predictor first decides which
operator opt ∈ {Delete, Add, CopySubTree, Stop} to apply. Next, for operators other than Stop,
the node selector predicts a node nt from the tree to locate the target position for applying opt.
Finally, if opt ∈ {Add, CopySubTree}, the value predictor further determines additional arguments
of those operators (denoted as val t, e.g. the to-be-added node for Add). This is summarized as:

p(at|st) = p(opt|st)p(nt|st, opt)p(val t|st, opt, nt). (2)

Operator Prediction: The operator prediction is a 4-class classification problem. We calculate the
probability of taking operator opt as p(opt|st) = softmax(Wopst + bop).
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Node Selection: Given a tree gt, there could exist an arbitrary number of tree nodes. Therefore,
we design the node selection module similar to a pointer network (Vinyals et al., 2015). To this
end, we learn a hidden state hnode,t = tanh(Wnode[st; emb(opt)] + bnode) as the “pointer”, where
emb(opt) embeds the previously selected operator opt. In our model, “emb(·)” denotes learnable
embeddings. We then calculate the inner product of hnode,t and each node representation nt for
node selection.

Value Prediction: The value predictor predicts an argument val t for Add and CopySubTree actions.
For Add actions, val t denotes the new tree node (corresponding to a production rule or a terminal
token) to be added to gt. For CopySubTree actions, val t is the subtree from g1 to be copied to gt.
In both cases, we only consider the candidate set {val t} allowable under the grammar constraints.
Similarly to the node predictor, the distribution p(val t|·) is also given by a pointer network, with its
hidden state defined as hval,t = tanh(Wval[st;nt; emb(pnt 7→ nt)]+bval), where emb(pnt 7→ nt)
is the embedding of the edge type between the parent node pnt and the child nt (e.g. field right

for AssignStmt
right−−→ ElementAccess). Depending on the type of val t, its representation could be

either a learned embedding of the production rule, a word embedding, or a subtree encoding given
by the representation of its root node. We refer readers to § A.2 for details.

3.2 TREE EDIT ENCODING

Given an edit pair 〈C−, C+〉, we aim to learn a real-valued vector f∆(C−, C+) to represent the
intent behind the edits. This is a crucial task and has been investigated in several previous works.
For example, Yin et al. (2019), Panthaplackel et al. (2020b), and Hoang et al. (2020) considered
edits at the token level and used either a bag-of-edits encoder or a sequence encoder to encode the
differences between C− and C+. As a result, these edit encoders have abandoned the syntactic
structure of tree edits. Yin et al. (2019) further proposed a graph edit encoder, which connects
the input and output trees with labeled edges such as “Removed” and “Added”, and then encodes
the connected trees via a graph neural network. Although structural tree differences have been
expressed in this edit encoder, the differences are modeled rather implicitly as the edit encoder has
simply treated them as additional graph features.

In this section, we present a novel edit encoder which instead shifts the modeling focus completely
to the targeted edit actions themselves. Specifically, it learns an edit representation by directly
encoding the sequence of structural edit actions (a1, a2, ..., aT ) that transforms C− to C+. The
encoder first computes a representation at for each action at, depending on the type of its operator:

aStop = WStopemb(Stop) + bStop,

aDelete = WDelete[emb(Delete);nt; emb(pnt
7→nt)] + bDelete,

aAdd = WAdd[emb(Add);nt; emb(pnt
7→nt); emb(val t)] + bAdd,

aCopySubTree = WCopySubTree[emb(CopySubTree);nt; emb(pnt 7→nt); emb(subtreet)] + bCopySubTree.

The proposed edit encoder then feeds the sequence of action representations {at}Tt=1 into a bidirec-
tional LSTM, whose last hidden state is used as the edit representation f∆(C−, C+).

3.3 TRAINING AND INFERENCE

We jointly train the proposed editor and the edit encoder in an autoencoding style, following Yin
et al. (2019). Specifically, given an edit pair 〈C−, C+〉 in the training set, we assume a gold-standard
edit action sequence a∗1:T which edits C− to C+ (e.g. the edit action sequence in Fig. 1). We seek to
maximize the probability of p(a∗1:T |f∆(C−, C+), C−) in training.3 By decomposing the probability
according to Eq. (2), this is equivalent to jointly maximizing the probability of each edit decoder
module making the gold decision at each time step. In practice, we use dynamic programming
(pseudo code can be found in §C.1) to calculate the shortest tree edit sequence as a∗1:T ,4 and compute
a cross entropy loss for each edit decoder module.

3f∆(C−, C+) is one real-valued vector and thus does not directly expose C+. We set it to a low dimension
following Yin et al. (2019), which bottlenecks the vector’s ability to memorize the entire output.

4We assume a left-to-right, top-down order when comparing the input/output tree. Future work can also
consider other orders to improve the editing quality (Gu et al., 2019a; Welleck et al., 2019; Góis et al., 2020).
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At inference time, given an input tree C− and an edit representation f∆ (calculated either from
〈C−, C+〉 or another edit pair 〈C ′−, C ′+〉), we generate one tree edit at each time step t by greedily
deciding the operator, the node and the value. The generated edit is then applied to the tree so it
transits to gt+1 deterministically. We then update the tree history representation st+1 for generating
the next tree edit. The inference process ends when a Stop operator is chosen.

4 ROBUST STRUCTURAL EDITING VIA IMITATION LEARNING

A unique advantage that distinguishes our editor from existing ones is its potential to fix wrong
edits and iteratively refine its own output. This is achievable because our editor can revise any part
of a tree at any time. We investigate this hypothesis by training the proposed editor via imitation
learning, where the editor learns to imitate gold edit actions (“expert demonstrations”) under states
it visits at the inference time. Here, we define a “state” st to include the current tree history g1:t and
the edit representation f∆. Our learning algorithm follows DAGGER (Ross et al., 2011), where in
each training iteration, for a given 〈f∆, C−, C+〉 tuple, we first run the editor to infer and apply a
sequence of edits resulting in a “trajectory” of (〈s1, a1〉, ..., 〈sT , aT 〉). We then request a gold edit
action π∗(st) for each state st visited by the editor. The collected state-gold edit action pairs are
aggregated to retrain the editor for the next iteration. This sampling and demonstration collecting
strategy (denoted as DAGGERSAMPLING) is shown in Algo. 1 (Appendix B). Note that, in practice,
instead of sampling a trajectory solely from the learning editor πθ, the DAGGER algorithm samples
from a mixture policy π′, with which the actual edit action at at each step t comes from either πθ
with a probability of 1− β or the “expert” π∗ with a probability of β.

To simulate the “expert”, we calculate “dynamic oracles” (Goldberg & Nivre, 2012) by comparing
the current tree with the target output tree. For example, in Fig. 1, if our editor incorrectly takes
“Add[AssignStmt 7→ Expr]” at t = 2, the dynamic oracle will produce “Delete[AssignStmt
→ Expr]” as the gold edit action at t = 3 to revoke the wrong edit. This thus provides a means for
the editor to learn to correct mistakes that it will likely produce at inference time.

Preliminary results showed that the editor trained following DAGGERSAMPLING may fall into a
loop of repetitively deleting and adding the same component. We hypothesize that teaching the
editor to imitate experts under unstable states (i.e. amid its initial full pass of editing) could be detri-
mental. Therefore, we propose another sampling strategy, POSTREFINESAMPLING, which samples
and collects state-action pairs from the expert as a post refinement step (Algo. 2 in Appendix B).
Specifically, we first run our editor to finish its sequential editing, which gives the output tree gT
(Line 2). If gT is different from target C+, we run the expert policy π∗ to continue editing until it
successfully reaches C+, and return state-action pairs collected from the expert as training material
for the editor (Line 3-5). When gT is correct, no further training data will be collected (Line 6-8).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We test our methods on two source code edit datasets introduced by Yin et al. (2019), also largely
following their experimental setting.

The GitHubEdits (GHE) dataset contains 〈C−, C+〉 pairs and their surrounding context collected
from the commit logs of 54 GitHub C# projects. The dataset is split into train/dev/test sets of
91,372 / 10,176 / 10,176 samples. We jointly learn an edit representation f∆(C−, C+) while training
the editor to generate C+ from C−. In evaluation, we measure the accuracy of each editor based
on whether they successfully edit C− to the exact gold C+. Since the edit representation f∆ is
calculated from the targeted 〈C−, C+〉 pair, we denote this setting as GHE-gold.

The second dataset, C#Fixers (Fixers), is relatively small, containing 2,878 〈C−, C+〉 pairs. Unlike
GHE, edit pairs in Fixers are built using 16 C# “fixers” with known semantics (e.g. removing
redundant parentheses as a way to perform refactoring). As standard, we use this dataset only for
testing purposes (i.e. all methods are first trained on GHE-gold). We consider a Fixers-gold setting
similar as GHE-gold to evaluate the accuracy of generating C+ from 〈f∆(C−, C+), C−〉.
Since edits in Fixers have known semantics, we also use Fixers to test methods in a one-shot setting
(denoted as Fixers-one shot): For each 〈C−, C+〉 pair, we select another 〈C ′−, C ′+〉 pair from the
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same fixer category (which bears the same edit intent as 〈C−, C+〉 but is applied to a different input)
to infer the edit representation and evaluate the accuracy of generating C+ from 〈f∆(C ′−, C

′
+), C−〉.

We follow Panthaplackel et al. (2020a) and pick the first 100 samples at most per fixer category (the
“seeds”), compute an edit representation of each one, and apply it to edit the others. We then report
an average accuracy over the seeds as the score for this fixer category. Because the sample size
of each fixer category is highly imbalanced, we report both macro average (treating all categories
equally) and micro average (dependent on the sample size) edit accuracies over the 16 fixer cate-
gories.5 In this one-shot evaluation, higher accuracy also implies that the learned edit representation
generalizes better from the specific edit pair to represent the semantics of an edit category.

Compared with GHE/Fixers-gold, the Fixers-one shot setting is somewhat more realistic, since in
practice one could only provide similar edits on other input trees as the edit specifications. However,
GHE/Fixers-gold provides a more controllable learning benchmark. It investigates how well an
editor can perform when its given edit representation has encoded the exact desired edits on the given
input. Note that this is not a trivial task as the edit representation has been “bottlenecked” within a
single continuous vector. Particularly for GHE, it covers way more diverse edit patterns than the 16
fixer categories by Fixers, making the GHE-gold evaluation also challenging. Consequently, in our
experiments, we examine each model by analyzing their performance on all evaluation settings.

Baselines: We compare our proposed neural editor (denoted as “Graph2Edit”6) with two state-
of-the-art editors: (1) Graph2Tree (Yin et al., 2019), a model that, like ours, represents a program
in its AST form and models the editing of tree-structured data. However, instead of generating a
sequence of incremental edits, it decodes the edited tree in one pass; (2) CopySpan (Panthaplackel
et al., 2020a), a model that represents programs as sequences of tokens and edits them by directly
generating the edited code tokens from scratch.

We also experiment with two edit encoders for learning edit representations. Besides our proposed
structural edit encoder (denoted as “TreeDiff Edit Encoder”), we consider a sequence edit encoder,
which uses a bidirectional LSTM to compress three pieces of information: code tokens in C−, code
tokens in C+, as well as their differences represented by a sequence of predefined edit tags (e.g.
delete, add, or keep). This edit encoder (denoted as “Seq Edit Encoder”) was shown to offer more
precise and generalizable edit representations than others tested in Yin et al. (2019).

In experiments, we reproduce and test baselines by using implementations kindly provided by their
authors. We include all configuration and implementation details in Appendix C.

5.2 MAIN RESULTS

Tab. 1 shows our experimental results, where we examine two questions:

Table 1: Test accuracy (%) of different editors and
edit encoders. See more comparisons in § D.1.

Model GHE-gold Fixers-gold Fixers-one shot
macro micro

w/ Seq Edit Encoder:
CopySpan 67.40 87.07 20.64 24.20
Graph2Tree 57.13 79.48 28.49 35.53
Graph2Edit 54.49 71.90 37.49 42.55
w/ TreeDiff Edit Encoder:
Graph2Tree 67.06 82.35 36.17 42.35
Graph2Edit 69.35 91.59 36.10 41.34

(1) How does our incremental editor
compare with one-pass baselines? On
Fixers-one shot, when all editors use the
Seq Edit Encoder, our editor outperforms
others substantially by more than 9% macro
accuracy and 7% micro accuracy. This im-
plies that our editor is better at capturing
generalizable semantics underlying the ed-
its. Given that all editors use the same archi-
tecture for the edit encoder, this also means
that our editor encourages better edit repre-
sentation learning in the edit encoder. The outstanding generalization ability of our editor demon-
strates the advantage of modeling incremental edits; when our editor is trained to generate the edits
rather than the edited tree from scratch, it implicitly drives its edit encoder to learn to capture the
salient information about the edits (otherwise it has no means to generate the accurate edit sequence).

Intriguingly, we observe inverse performance from the three editors when their edit representation is
or is not inferred from the gold edit pair; editors performing better on GHE/Fixers-gold (CopySpan

5Note that this one-shot evaluation procedure is different from the one used by Yin et al. (2019), so the
results from Table 5 of Yin et al. (2019) are not comparable to ours. See § C.1 for details.

6“Graph” simply indicates the use of a graph neural network to encode a tree.
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Table 2: Edited programs C+ from each editor (w/ Seq Edit Encoder) given 〈f∆(C ′−, C
′
+), C−〉 on

Fixers. We show where our editor succeeds (Example 1) and fails (Example 2). More examples can
be found in § D.2.

Example 1 Example 2

〈C ′−, C ′+〉 C ′−: AskNode(VAR0,new SelectString(VAR1.VAR2.ToString()

↪→ +LITERAL)).ShouldBe(VAR1);

C ′+: AskNode(VAR0,new SelectString(VAR1.VAR2+LITERAL)).

↪→ ShouldBe(VAR1);

C ′−: VAR0.VAR1=(int)VAR2.ColBegin;
C ′+: VAR0.VAR1=VAR2.ColBegin;

〈C−, C+〉 C−: PersistAsync(VAR0,VAR1=>Sender.Tell(VAR1.VAR2.

↪→ ToString()+LITERAL+VAR3.IncrementAndGet()));

C+: PersistAsync(VAR0,VAR1=>Sender.Tell(VAR1.VAR2+

↪→ LITERAL+VAR3.IncrementAndGet()));

C−: var VAR0=(Exception)VAR1.

↪→ ExceptionFromProto(VAR2.Cause);

C+: var VAR0=VAR1.

↪→ ExceptionFromProto(VAR2.Cause);

CopySpan C+: PersistAsync(VAR0,VAR1=>Sender.Tell(VAR1.VAR2+

↪→ VAR3.IncrementAndGet()));

C+: var VAR0=VAR1.

↪→ ExceptionFromProto(VAR2.Cause);

Graph2Tree C+: PersistAsync(VAR0,VAR1=>VAR1.VAR2.ToString(VAR1.

↪→ VAR2+LITERAL).IncrementAndGet());

C+: var VAR0=VAR2.Cause;

Graph2Edit C+: PersistAsync(VAR0,VAR1=>Sender.Tell(VAR1.VAR2+

↪→ LITERAL+VAR3.IncrementAndGet()));

C+: var VAR0=VAR2.Cause;

> Graph2Tree > Graph2Edit) consistently obtain worse accuracies on Fixers-one shot (CopySpan
< Graph2Tree< Graph2Edit). We conjecture that when Seq Edit Encoder is jointly trained with the
baseline editors, it tends to memorize the specific patterns about C+ as opposed to the generalizable
information about the edits when trained with our editor, because the baseline editors are trained to
decode the exact content of C+ from scratch. In comparison, this phenomenon is less prominent
for Graph2Tree and more for CopySpan, since the former generates C+ in the form of an AST tree
while the latter generates C+ in the form of a token sequence (which is exactly how C+ is encoded
by the Seq Edit Encoder).

Case study & expressivity of structural edits: We further showcase the generation from each ed-
itor (with Seq Edit Encoder) in the Fixers-one shot setting (Tab. 2). Example 1 illustrates typical
cases where our editor Graph2Edit succeeds while the baseline editors fail. The example is about re-
moving a redundant ToString call. Our editor learns to transfer and apply this editing pattern even
when the input tree C− is very different from C ′−, while other editors behave very sensitively to the
specific content of C−. This is because, from the perspective of our editor, the edits required by
〈C ′−, C ′+〉 and 〈C−, C+〉 are the same, both first deleting an InvocationExpression subtree cor-
responding to “VAR1.VAR2.ToString()” and then copying back its MemberAccessExpression
subtree corresponding to “VAR1.VAR2”. In fact, we observe that in many cases, the actual tree edit
that our editor needs to perform is irrelevant to the surface form of the input treeC−. As our editor is
trained to generate the actual tree edits, together with Seq Edit Encoder, it learns a better alignment
between changing at the token level (e.g. from “VAR1.VAR2.ToString()” to “VAR1.VAR2”) and
performing targeted edits at the tree level.

On the other hand, this also means that our editor may fail when the desired edits
for 〈C−, C+〉 bears a very different structure from the edits of 〈C ′−, C ′+〉, even if they
are very close at the token level. Example 2 illustrates this situation where our edi-
tor fails. In this example, editing C ′− involves removing a redundant type cast from a
MemberAccessExpression subtree (corresponding to “VAR2.ColBegin”) while the desired edits
for C− require detaching the type cast from an InvocationExpression subtree (corresponding to
“VAR1.ExceptionFromProto(VAR2.Cause)”). Therefore, even if our editor can precisely capture
the structural edits expressed in 〈C ′−, C ′+〉, it cannot edit C− correctly. We observe that Graph2Tree
could also be sensitive to this phenomenon while CopySpan runs successfully (although in many
other cases, CopySpan produces ungrammatical programs, as we enumerate in § D.2).

Finally, we note that our editor also performs comparably with or better than Graph2Tree when they
are both equipped with TreeDiff Edit Encoder, as we will discuss next.

(2) What is the influence of edit encoding? When replacing the Seq Edit Encoder with TreeD-
iff Edit Encoder, we observe significant improvement for both Graph2Tree and Graph2Edit on
GHE/Fixers-gold; in the meantime, their performance on Fixers-one shot is comparable to the best
accuracy. This implies that our proposed edit encoder is able to learn both more expressive and more
generalizable edit representations. Particularly for our proposed Graph2Edit, it clearly outperforms
Graph2Tree on GHE/Fixers-gold and is comparable to the latter on Fixers-one shot.
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However, we also notice that for Graph2Edit, switching to the TreeDiff Edit Encoder only helps the
GHE/Fixers-gold scenario and results in a slight performance drop in the one-shot setting. This is
likely because Graph2Edit has overfit to the specific edit representations during training, the same
issue that CopySpan confronts, when the target outputs of the editor (ground-truth tree edits for
Graph2Edit and ground-truth code tokens for CopySpan) have been exposed to the edit encoder
(TreeDiff Edit Encoder for Graph2Edit and Seq Edit Encoder for CopySpan) in exactly the same
format. We note that the issue comes with the fact that all models are trained on the GHE-gold
training set while only tested on Fixers-one shot (see § 3.3 and § 5.1). It would be ideal to train and
test a model on the Fixers-one shot setting, but the Fixers dataset is not large enough for this to be
feasible. We leave such an evaluation as an important topic to explore in the future.

Finally, in § D.3, we show the nearest neighbors of given edit pairs based on their edit representa-
tions, which qualitatively also demonstrate the superiority of TreeDiff Edit Encoder.

5.3 IMITATION LEARNING EXPERIMENTS

We finally demonstrate that training our editor via imitation learning makes it more robust. We con-
sider two data settings: 20% or full training data. In each case, we first pretrain our editor with gold
edit sequences on the training set via supervised learning, equivalent to setting β to 1 in the first
iteration of imitation learning, a commonly adopted strategy for DAGGER (Ross et al., 2011). We
then run another iteration of imitation learning on the same training set to sample states and collect
dynamic expert demonstrations, following either DAGGERSAMPLING (Algo. 1) or POSTREFINE-
SAMPLING (Algo. 2). Empirically, we observe worse performance when setting β = 0 in DAGGER-
SAMPLING. This is likely because in the editing tasks we experiment on, offering one-step expert
demonstrations is not enough to teach the model to complete all the remaining edits successfully.
We eventually set β = 0.5. We include the experimental details and an analysis in § D.4.

Table 3: Test (dev) accuracy by % of Graph2Edit w/ Seq
Edit Encoder on GHE-gold after one iteration of imita-
tion learning. Examples (simplified) illustrate how the
base editor works when trained via supervised learning
or with different imitation learning strategies. Colors in-
dicate correct or incorrect edits.

Supervised DAGGER POSTREFINE

w/ 20% data 42.30 (44.22) 42.70 (45.03) 43.94 (46.10)
w/ full data 54.49 (55.43) 53.85 (55.57) 54.91 (56.48)

Example ...
Add[Id−>Token]

Add["VAR1"]

...

...
Add[Id−>Token]

Add["VAR1"]

Delete["VAR1"]

Add["StringX"]

...

...
Add[Id−>Token]

Add["StringX"]

...

Avg. edits (T ) 7.480 11.549 7.594

For the base editor, we use “Graph2Edit
w/ Seq Edit Encoder,” which is more
prone to mistakes than “Graph2Edit
w/ TreeDiff Edit Encoder” and thus
presumably a better testbed for robust
learning algorithms. The experimen-
tal results are show in Tab. 3. In
the 20% training data setting, imita-
tion learning improves supervised learn-
ing slightly with DAGGERSAMPLING
and by 1.5% accuracy with POSTRE-
FINESAMPLING. Our analysis shows
that the editor trained using DAGGER-
SAMPLING learns to correct its previous
wrong edits (e.g. Delete["VAR1"]
then Add["StringX"]). However, it may also fall into a local loop of repetitively deleting and
adding the same component, which makes its edit length (T ) generally longer than other editors.
This situation is neatly remedied by using POSTREFINESAMPLING to collect expert demonstra-
tions. With this strategy, although we train the editor to correct its wrong edits as a post refinement
step, the well trained editor is indeed enhanced to be more robust in making correct decisions in its
initial full pass of editing (rather than making wrong decisions then revoking them). This strategy
also improves the base editor under the full training data setting slightly.

6 CONCLUSION AND FUTURE WORK

This paper presented a generic model for incremental editing of tree-structured data and demon-
strated its capability using program editing as an example. In the future, this model could be
extended to other tasks such syntax-based grammar error correction (Zhang & Wang, 2014) and
sentence simplification (Feblowitz & Kauchak, 2013), or incorporate natural language-based edit
specification, where the editing process is triggered by natural language feedback or commands
(Suhr et al., 2018; Zhang et al., 2019; Yao et al., 2019; 2020; Elgohary et al., 2020).
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Sean Welleck, Kianté Brantley, Hal Daumé Iii, and Kyunghyun Cho. Non-monotonic sequential
text generation. In International Conference on Machine Learning, pp. 6716–6726, 2019.

Yingce Xia, Fei Tian, Lijun Wu, Jianxin Lin, Tao Qin, Nenghai Yu, and Tie-Yan Liu. Deliberation
networks: Sequence generation beyond one-pass decoding. In Advances in Neural Information
Processing Systems, pp. 1784–1794, 2017.

Ziyu Yao, Yu Su, Huan Sun, and Wen-tau Yih. Model-based interactive semantic parsing: A unified
framework and a text-to-SQL case study. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 5447–5458, 2019.

Ziyu Yao, Yiqi Tang, Wen-tau Yih, Huan Sun, and Yu Su. An imitation game for learning semantic
parsers from user interaction. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 6883–6902, 2020.

Michihiro Yasunaga and Percy Liang. Graph-based, self-supervised program repair from diagnostic
feedback. In International Conference on Machine Learning (ICML), 2020.

Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 440–450, 2017.

Pengcheng Yin and Graham Neubig. TRANX: A transition-based neural abstract syntax parser
for semantic parsing and code generation. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pp. 7–12, 2018.

Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L. Gaunt.
Learning to represent edits. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=BJl6AjC5F7.

Longkai Zhang and Houfeng Wang. Go climb a dependency tree and correct the grammatical errors.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 266–277, 2014.

Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim, Eric Xue, Xi Victoria Lin, Tianze Shi, Caiming
Xiong, Richard Socher, and Dragomir Radev. Editing-based SQL query generation for cross-
domain context-dependent questions. In Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pp. 5341–5352, 2019.

Rui Zhao, David Bieber, Kevin Swersky, and Daniel Tarlow. Neural networks for modeling source
code edits. arXiv preprint arXiv:1904.02818, 2019.

12

https://openreview.net/forum?id=BJl6AjC5F7


Published as a conference paper at ICLR 2021

A MODEL ARCHITECTURE DETAILS

A.1 IMPLEMENTATION WITH ASDL

To implement the “dummy node” mechanism, we utilize the ASDL “field”, which ensures the gram-
matical correctness of every edit. In ASDL, children of each tree node are grouped under different
fields, and each field has a cardinality property (single, optional ?, or sequential *) indicating the
number of nodes they can accept as grammatically valid children.

For single-cardinality fields that require exactly one child and optional-cardinality fields that require
optionally zero or one child, we attach one dummy node when they do not have a child. For ex-
ample, at t = 1 in Fig. 1(b), when the MethodCall-rooted subtree is deleted, we automatically
attach a Dummy node to its parent field “right” (which has single cardinality). Then the new node
ElementAccess can be added by selecting Dummy and replacing it with the new node. Similarly,
after deriving node ElementAccess at t = 2, we automatically add a Dummy node to each of its two
single-cardinality fields (i.e. obj and index). Note that, to add a new tree node or copy a subtree as
a child of a single/optional field, the Add or CopySubTree operator needs to be applied to a dummy
node, because the dummy node of a single/optional field indicates the only vacant position that is
syntactically valid to accept a child for such fields. Then the new tree node or the copied subtree
will simply replace the original dummy node of the field.

For sequential-cardinality fields that accept multiple children, we always attach one dummy node as
their rightmost child. For example, a sequential field having two children A and B will have a child
list of [A, B, Dummy]. Adding a new node in this case is implemented by selecting the right sibling of
the target position and then inserting the new node to its left. For example, adding a new node C to
the left of A can then be achieved by selecting A and then inserting C before it, and adding to the right
of B is done by selecting Dummy and then inserting C before Dummy (resulting in [A, B, C, Dummy]).

A.2 TREE EDIT DECODER

In this section, we provide detailed formulations of node selection and value prediction in our pro-
posed tree edit decoder.

Node Selection: Given a tree gt, there could exist an arbitrary number of tree nodes. Therefore, we
design the node selection module similar to a pointer network (Vinyals et al., 2015):

hnode,t = tanh(Wnode[st; emb(opt)] + bnode),

p(nt|st, opt) = softmax(hTnode,tnt),

where emb(opt) embeds the previously selected operator opt, nt is the node representation, and
Wnode, bnode are model parameters. The softmax is computed over all nodes nt ∈ gt.
Value Prediction: After deciding the target position (inferred from the selected node), adding a new
node or subtree to the current tree can be viewed as expanding its parent node in typical tree-based
generation tasks (Yin & Neubig, 2017; Rabinovich et al., 2017; Yin & Neubig, 2018). We thus adapt
the tree-based semantic parsing model of Yin & Neubig (2018) as our value predictor.

Recall that the Add operator adds a new node to the tree by either applying a production rule (val =
rule) or predicting a terminal token (val = tok), and the CopySubTree operator copies a subtree
(val = subtree) to expand the current tree. In all cases, we only consider candidates that satisfy the
underlying grammar constraints. The prediction probability is also calculated via a pointer network
in order to handle varying numbers of valid candidates in each decision situation:

hval,t = tanh(Wval[st;nt; emb(pnt
7→ nt)] + bval),

p(val t|st, opt, nt) = softmax
(
hTval,tW emb(val t)

)
,

where Wval, bval and W are all model parameters, emb(pnt
7→ nt) is the embedding of the edge

type (or “field”; see § A.1) between the parent node pnt
and the child nt (e.g. field “right” for

AssignStmt
right−−→ ElementAccess), and emb(val t) denotes the representation of the argument

candidate: for production rules, it is their learned embedding; for terminal tokens, it is their word
embedding; for subtree candidates, we use the representation of their root node as the encoding of
the subtree.

13



Published as a conference paper at ICLR 2021

Algorithm 1 DAGGERSAMPLING

Require: 〈f∆, C−, C+〉 from training set, learn-
ing editor πθ, expert policy π∗, β ∈ [0, 1]

1: Let g1 = C−.
2: Let π′ = βπ∗ + (1− β)πθ.
3: Sample a trajectory from π′(f∆, g1).
4: Collect and return {〈s, π∗(s)〉} for all states s

visited by π′.

Algorithm 2 POSTREFINESAMPLING

Require: 〈f∆, C−, C+〉 from training set,
learning editor πθ, expert policy π∗

1: Let g1 = C−.
2: Sample a trajectory using πθ(f∆, g1). De-

note gT as the output tree by the editor.
3: if gT 6= C+ then
4: Sample a trajectory from π∗(f∆, gT );
5: Return {〈st, π∗(st)〉|t ≥ T}.
6: else
7: Return empty collection.
8: end if

B IMITATION LEARNING ALGORITHMS

We present DAGGERSAMPLING and POSTREFINESAMPLING in Algo. 1 and Algo. 2, respectively.

C DATASETS AND CONFIGURATIONS

C.1 DATASETS

For all datasets, we use the preprocessed version by Yin et al. (2019) for a fair comparison. The pre-
processing includes tokenizing each code snippet and converting it into a AST.7 For each 〈C−, C+〉,
we run a dynamic programming algorithm to search for the shortest edit sequence from C− to
C+. The average length of gold edit sequences is 7.375 on GitHubEdits training set and 7.348 on
C#Fixers.

Our evaluation of the Fixers-one shot setting follows Panthaplackel et al. (2020a). Specifically, for
each fixer category, we pick its first 100 samples to compute 100 “seed” edit representations (for
categories whose numbers of samples are smaller than 100, we use all of their N samples). We then
apply each seed edit representation to edit the remaining 99 samples (or N -1 samples for categories
with less than 100 total samples), calculate one accuracy score for each seed, and report an average
accuracy over the 100 seeds. This gives us an average score for each fixer category. Because the
sample size of each fixer category is highly imbalanced, we report both macro average (treating all
categories equally) and micro average (dependent on sample size) edit accuracies over the 16 fixer
categories. Note that this is different from the evaluation procedure of Yin et al. (2019). Yin et al.
(2019) considered only 10 “seeds” per category (although each seed edit representation is applied
to all samples in the category), and reported the best accuracy over the 10 seeds as the score for
the category. We believe enlarging the number of “seeds” and reporting an average accuracy can
better represent a model’s capability. As a result, the numbers in Table 5 of Yin et al. (2019) are not
comparable with results reported in our Tab. 1.

As introduced in § 3.3, for every 〈C−, C+〉 pair in the training set, we run a dynamic programming
algorithm to create the gold-standard edit action sequence. We elaborate the algorithm in Algo. 3
(for simplicity, we omit the edit backtrace recording part). The algorithm edits a source tree node
Cs into a target tree node Ct of the same type (and thus having the same fields), given a memory of
subtrees M that can be copied during edits. In practice, this subtree memory consists of all subtrees
in the input tree C−. The algorithm compares the source and the target tree node field by field (Line
2). In each field f , we assume a left-to-right, top-down order when comparing the children of the
source tree node Cs,f and the children of the target tree node Ct,f within this field. Cs,fm (resp.
Ct,fn ) denotes the m-th (n-th) child of Cs,f (Ct,f ). “CountTreeNode” counts the number of tree
nodes within the subtree of a root node.

D[m,n] defines the shortest distance of editing Cs,f (up to the m-th child) into Ct,f (up to the
n-th child). In Line 4-19, the algorithm initializes the distance matrix with boundary cases; in Line

7The ASDL grammar we used for C# can be found at: https://raw.githubusercontent.com/
dotnet/roslyn/master/src/Compilers/CSharp/Portable/Syntax/Syntax.xml.
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Algorithm 3 TREESHORTESTDIST

Require: Source tree node Cs and target tree node Ct (assuming non-terminal nodes and have the
same node type and fields), subtree memory M.

Ensure:
1: Initialize d← 0; // total edit distance for all fields
2: for every field f of Cs do // loop over aligned fields
3: M ← number of children in Cs,f , N ← number of children in Ct,f .
4: Initialize D as a matrix of (M + 1) by (N + 1). // distance matrix
5: Initialize D[0, 0]← 0.
6: for m = 1 to M do
7: D[m, 0]←D[m− 1, 0] if Cs,fm is dummy and D[m− 1, 0] + 1 otherwise. //deleting a

tree node takes 1 step; no need to delete dummy nodes
8: end for
9: for n = 1 to N do

10: if field f is single/optional and Cs,fm is a valid, non-dummy node then
11: D[0, n]← inf. //cannot add to non-empty single/optional fields of Cs,f
12: else if Ct,fn is dummy then
13: D[0, n]←D[0, n− 1]. //no need to add dummy nodes
14: else if Ct,fn ∈M then
15: D[0, n]←D[0, n− 1] + 1. // copying a subtree takes 1 step
16: else
17: D[0, n] ← D[0, n − 1] + CountTreeNode(Ct,fn ). // add nodes of Ct,fn one by one,

each requiring 1 step
18: end if
19: end for
20: for m = 1 to M do
21: for n = 1 to N do
22: v1 ←D[m− 1, n] if Cs,fm is dummy and D[m− 1, n] + 1 otherwise;
23: v2 ←D[m,n− 1] if Ct,fn is dummy, D[m,n− 1] + 1 if Ct,fn ∈M, and D[m,n−

1] + CountTreeNode(Ct,fn ) otherwise;
24: v3 ←D[m−1, n−1] + TREESHORTESTDIST(Cs,fm , Ct,fn , M) if Cs,fm and Ct,fn are

both non-terminal nodes and have the same node type, D[m − 1, n − 1] if Cs,fm and Ct,fn are
both terminal tokens and have the same value, and inf otherwise;

25: D[m,n]← min{v1, v2, v3}.
26: end for
27: end for
28: d← d+ D[M,N ]. // add the shortest distance of field f
29: end for
30: return d as the total shortest edit distance.

20-27, it considers general cases. D[M,N ] is thus the shortest distance of editing Cs,f into Ct,f
completely (Line 28). The final distance from Cs to Ct is the summation of shortest distances over
all fields (Line 30).

To generate the shortest edit distance for 〈C−, C+〉, we run the TREESHORTESTDIST algorithm with
Cs and Ct being the roots of C− and C+, respectively. Based on the backtrace records (omitted
in Algo. 3), we produce the gold-standard edit action sequence, with one extra Stop edit action
appended in the end to signal the end of the editing process. Note that this is a global stop signal.
As the model learns about when to stop editing the whole tree globally, it actually also learns about
when to stop editing any certain subtrees within it.

C.2 MODEL CONFIGURATIONS

Since surrounding contexts around the edited program are also provided in all datasets, we addi-
tionally allow the value predictor (§ 3.1) to copy a terminal token from either the input tree’s code
tokens or the contexts. To this end, we introduce another bidirectional LSTM encoder to encode the
input code tokens as well as the contexts. The last hidden state is used to represent each token. The
same design is also adopted in the two baseline editors.

15



Published as a conference paper at ICLR 2021

For the encoder of our neural editor, the dimension of word embedding and the tree node representa-
tion is set to 128. The dimension of the bidirectional LSTM encoder for encoding input code tokens
and contexts is set to 64. The hidden state for tracking tree history is set to 256 dimensions. In the
decoder side, the dimensions of the operator embedding, the field embedding, the production rule
embedding, and the hidden vector in value prediction are set to 32, 32, 128 and 256, respectively.

For a fair comparison, we follow Yin et al. (2019) and Panthaplackel et al. (2020a) to encode a code
edit into a real-valued vector of 512 dimensions. For our TreeDiff Edit Encoder, each edit action is
encoded into a vector of 256 dimensions. The bidirectional LSTM also has a hidden state of 256
dimensions. When training Graph2Edit/Graph2Tree jointly with TreeDiff Edit Encoder, common
parameters that are designed for both the neural editor and the edit encoder (e.g. the operator/field
embedding) are shared.

In experiments, we reproduce and evaluate baselines by using implementations kindly provided by
their authors. This includes testing the baseline editors under exactly the same setting as they were
tested in their original paper (e.g. decoding using beam search of size 5 for Graph2Tree and 20 for
CopySpan).

For the supervised learning, we train our Graph2Edit for 30 epochs on GitHubEdits training set,
where the best model parameters are selected based on the editor’s cross entropy loss on dev set.
To enable more stable and reproducible results, we repeat the experiments for 3 times and report
average performance.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 A MORE COMPREHENSIVE COMPARISON WITH EXISTING APPROACHES

We note that there are some other approaches by Yin et al. (2019) and Panthaplackel et al. (2020a)
that are not included in our Tab. 1. However, these approaches have been reported to be weaker
than those we mainly tested. For example, “Seq2Seq + Seq Edit” performs worse than “CopySpan
+ Seq Edit” on both GHE-gold and Fixers-one shot (micro) in Panthaplackel et al. (2020a); Yin
et al. (2019) claimed that “Graph2Tree + Seq Edit” is better than both “Seq2Seq + Seq Edit” and
“Graph2Tree + Graph Edit”. As we have slightly adjusted the evaluation settings (i.e. adding Fixers-
gold and changing the evaluation procedure of Fixers-one shot compared with Yin et al. (2019)),
results are largely missing for existing approaches. Therefore, we only re-tested and compared
with existing state-of-the-art approaches (CopySpan and Graph2Tree) in our main results (§ 5.2).
In Tab. 4, however, we include a more comprehensive set of existing approaches for reference.

Table 4: A more comprehensive comparison with existing approaches. *: numbers copied from
original paper; –: missing evaluation in the original paper; other numbers without indication are re-
ported by us. For baselines re-tested by us, we use implementations kindly provided by their authors
and make sure that our reproduced version has comparable performance as what was reported in
their paper.

Model GHE-gold Fixers-gold Fixers-one shot
macro micro

Seq2Seq + Seq Edit (Yin et al., 2019) 59.63* – – –
Seq2Seq + Seq Edit (Re-implemented w/
tricks by Panthaplackel et al. (2020a))

64.40* – – 18.80*

CopySpan + Seq Edit (Panthaplackel et al.,
2020a)

67.40* 87.07 20.64 24.20*

Graph2Tree + Seq Edit (Yin et al., 2019) 57.13 79.48 28.49 35.53
Graph2Edit + Seq Edit (ours) 54.49 71.90 37.49 42.55
Graph2Tree + Graph Edit (Yin et al., 2019) 48.05* – – –
Graph2Tree + TreeDiff Edit (w/ our edit
encoder)

67.06 82.53 36.17 42.35

Graph2Edit + TreeDiff Edit (ours) 69.35 91.59 36.10 41.34
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D.2 MORE EDIT EXAMPLES

In Tab. 5, we include more examples from each editor (with Seq Edit Encoder) in the Fixers-one
shot setting. Example 1-2 demonstrate that our proposed Graph2Edit editor can successfully iden-
tify the correct target position to edit, even when the context of C− is very different from that of C ′−.
Consider Example 1 for instance. Graph2Edit correctly locates the await keyword and its associ-
ated expression “await VAR0.GracefulStop(TimeSpan.FromSeconds(LITERAL))”, and then
appends “.ConfigureAwait(false)” to the expression, all within the argument field of the outer
“Assert.True()” expression. Graph2Tree also tries to append “.ConfigureAwait(false)” to
the await expression, but as it generates the edited tree from scratch, it mistakenly copies an addi-
tional argument to the “Assert.True()” expression. CopySpan’s generation misses a right paren-
thesis, leading to an ungrammatical program. Similarly in Example 2, only Graph2Edit performs
the desired edits when the contexts are different for C ′− and C−.

On the other hand, Graph2Edit can fail when the correct edits require more than structural informa-
tion. For example, to succeed in Example 3 of Tab. 5, an editor needs to generalize the removal of
redundant parentheses from a literal variable name (“VAR4”) to a bracket-wrapped binary expression
(“VAR2/LITERAL”). We found that all editors fail in this case. Graph2Edit in this example correctly
removes the parenthesized binary expression but can only copy the literal part (“LITERAL”) back;
Graph2Tree incorrectly revises the irrelevant VAR3 variable; CopySpan again produces an ungram-
matical output. The target edits in Example 4 are even more complicated.8 It requires an editor to
understand the use of the nameof operator to replace the explicit string literal. All editors fail to
identify “EnumUnderTest.ALLCAPITALS.ToString()” as another kind of string literal.

8A de-anonymized instance of 〈C′−, C′+〉 could be: 〈parameter.EnsureIsPositiveFinite("parameter"),
parameter.EnsureIsPositiveFinite(nameof(parameter))〉. The nameof operator returns the name
of the variable as a string literal.
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Table 5: Edited programs C+ from each editor (w/ Seq Edit Encoder) given 〈f∆(C ′−, C
′
+), C−〉 on

Fixers. We show where our editor succeeds in Example 1-2 and fails in Example 3-4.
Example 1

〈C ′−, C ′+〉 C ′−: await VAR0.WriteAsync(VAR1.Array, VAR1.Offset, VAR1.VAR2);

C ′+: await VAR0.WriteAsync(VAR1.Array, VAR1.Offset, VAR1.VAR2).ConfigureAwait(false);

〈C−, C+〉 C−: Assert.True(await VAR0.GracefulStop(TimeSpan.FromSeconds(LITERAL)));

C+: Assert.True(await VAR0.GracefulStop(TimeSpan.FromSeconds(LITERAL)).

↪→ ConfigureAwait(false));

CopySpan C+: Assert.True(await VAR0.GracefulStop(TimeSpan.FromSeconds(LITERAL)).

↪→ ConfigureAwait(false);

Graph2Tree C+: Assert.True(await VAR0.GracefulStop(TimeSpan.FromSeconds(LITERAL)), await VAR0.

↪→ GracefulStop(TimeSpan.FromSeconds(LITERAL)).ConfigureAwait(false));

Graph2Edit C+: Assert.True(await VAR0.GracefulStop(TimeSpan.FromSeconds(LITERAL)).

↪→ ConfigureAwait(false));

Example 2

〈C ′−, C ′+〉 C ′−: VAR0 = (VAR0∗LITERAL)^(VAR1 != null ? VAR1.GetHashCode(): 0);

C ′+: VAR0 = (VAR0∗LITERAL)^(VAR1?.GetHashCode()?? 0);

〈C−, C+〉 C−: var VAR0 = (VAR1 != null ? VAR1.GetHashCode(): 0);

C+: var VAR0 = (VAR1?.GetHashCode()?? 0);

CopySpan C+: var VAR0 = (VAR1 != null ? VAR1?.GetHashCode()?? 0);

Graph2Tree C+: var VAR0 = (VAR1 != null ? VAR1.GetHashCode(): 0);

Graph2Edit C+: var VAR0 = (VAR1?.GetHashCode()?? 0);

Example 3

〈C ′−, C ′+〉 C ′−: Push(VAR0.VAR1, VAR0.VAR2(VAR0.VAR3.Select(VAR4 => Grab((VAR4))).

↪→ ToImmutableList()));

C ′+: Push(VAR0.VAR1, VAR0.VAR2(VAR0.VAR3.Select(VAR4 => Grab(VAR4)).ToImmutableList

↪→ ()));

〈C−, C+〉 C−: VAR0.Add(ApplyGender(VAR1[(VAR2/LITERAL)], VAR3));

C+: VAR0.Add(ApplyGender(VAR1[VAR2/LITERAL], VAR3));

CopySpan C+: VAR0.Add(ApplyGender(VAR1[(VAR2/LITERAL[(/LITERAL/(LITERAL)], VAR3));

Graph2Tree C+: VAR0.Add(ApplyGender(VAR1[(VAR2/LITERAL)], (VAR2/VAR2.VAR3).VAR3(VAR3)));

Graph2Edit C+: VAR0.Add(ApplyGender(VAR1[LITERAL], VAR3));

Example 4

〈C ′−, C ′+〉 C ′−: VAR0.EnsureIsPositiveFinite(LITERAL);
C ′+: VAR0.EnsureIsPositiveFinite(nameof(VAR0));

〈C−, C+〉 C−: Assert.Equal(EnumUnderTest.ALLCAPITALS.ToString(), EnumUnderTest.ALLCAPITALS.

↪→ Humanize());

C+: Assert.Equal(nameof(EnumUnderTest.ALLCAPITALS), EnumUnderTest.ALLCAPITALS.

↪→ Humanize());

CopySpan C+: Assert.Equal(nameof(VAR1)));
Graph2Tree C+: Assert.Equal(nameof(VAR1));
Graph2Edit C+: Assert.Equal(EnumUnderTest.ALLCAPITALS.ToString(), EnumUnderTest.ALLCAPITALS.

↪→ CSharpName(VAR1));

D.3 EDIT REPRESENTATIONS OF TREEDIFF EDIT ENCODER

Tab. 6 shows the nearest neighbors of given edit pairs from GHE dev set, based on the cosine sim-
ilarity of their edit representations f∆(C−, C+) calculated by different edit encoders. The edit in
Example 1 means to swap function arguments (e.g. from “(VAR0,VAR1)” to “(VAR1, VAR0)”).
Intuitively such structural changes can be easily captured by our tree-level edit encoder. This is
consistent with our results, which show that, for both Graph2Tree and Graph2Edit, TreeDiff Edit
Encoder learns more consistent edit representations for this edit, while Seq Edit Encoder may con-
fuse it with edits that replace the original argument with a new one (e.g. modifying “(VAR0,VAR1)”
to “(VAR2,VAR0)”). Our proposed edit encoder can also generalize from literals (e.g. swapping
between “(VAR0,VAR1)”) to more complex expressions (e.g. swapping between “(VAR0.Value,
LITERAL)”). On the other hand, when the intended edits can be easily expressed as token-level
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Table 6: The nearest neighbors of given edit pairs based on their edit representations.
Example 1

C−: BoundsCheck(VAR0, VAR1);

C+: BoundsCheck(VAR1, VAR0);

Graph2Tree – Seq Edit Encoder
I C−: ReleasePooledConnectorInternal(VAR0, VAR1);

C+: ReleasePooledConnectorInternal(VAR2, VAR0);

I C−: UngetPooledConnector(VAR0, VAR1);

C+: UngetPooledConnector(VAR2, VAR0);

I C−: VAR0.Warn(LITERAL, VAR1);

C+: VAR0.Warn(VAR1, LITERAL);

Graph2Tree – TreeDiff Edit Encoder
I C−: InternalLogger.Error(LITERAL, VAR0);

C+: InternalLogger.Error(VAR0, LITERAL);

I C−: VAR0.Warn(LITERAL, VAR1);

C+: VAR0.Warn(VAR1, LITERAL);

I C−: AssertEqual(VAR0.Value, LITERAL);

C+: AssertEqual(LITERAL, VAR0.Value);

Graph2Edit – Seq Edit Encoder
I C−: ReleasePooledConnectorInternal(VAR0, VAR1);

C+: ReleasePooledConnectorInternal(VAR2, VAR0);

I C−: UngetPooledConnector(VAR0, VAR1);

C+: UngetPooledConnector(VAR2, VAR0);

I C−: ReportUnusedImports(VAR0, VAR1, VAR2);

C+: ReportUnusedImports(VAR2, VAR0, VAR1);

Graph2Edit – TreeDiff Edit Encoder
I C−: VAR0.Warn(LITERAL, VAR1);

C+: VAR0.Warn(VAR1, LITERAL);

I C−: InternalLogger.Error(LITERAL, VAR0);

C+: InternalLogger.Error(VAR0, LITERAL);

I C−: AssertEqual(VAR0.Value, LITERAL);

C+: AssertEqual(LITERAL, VAR0.Value);

Example 2
C−: var VAR0=GetEtagFromRequest();

C+: var VAR0=GetLongFromHeaders(LITERAL);

Graph2Tree – Seq Edit Encoder
I C−: var VAR0=new ProfileConfiguration();

C+: var VAR0=new Profile(LITERAL);

I C−: var VAR0=PrepareForSaveChanges();

C+: var VAR0=PrepareForSaveChanges(null);

I C−: bool VAR0=true;

C+: bool VAR0=CanBeNull(VAR1);

Graph2Tree – TreeDiff Edit Encoder
I C−: var VAR0=new ProfileConfiguration();

C+: var VAR0=new Profile(LITERAL);

I C−: CalcGridAreas();
C+: SetDataSource(VAR0, VAR1);

I C−: VAR0=new Win32PageFileBackedMemoryMappedPager();

C+: VAR0=new Win32PageFileBackedMemoryMappedPager(

LITERAL);

Graph2Edit – Seq Edit Encoder
I C−: var VAR0=new ProfileConfiguration();

C+: var VAR0=new Profile(LITERAL);

I C−: VAR0.Dispose();
C+: VAR0.Close(VAR1);

I C−: VAR0=VAR1(VAR2);
C+: VAR0=GetSpans(VAR2, VAR1);

Graph2Edit – TreeDiff Edit Encoder
I C−: var VAR0=new ProfileConfiguration();

C+: var VAR0=new Profile(LITERAL);

I C−: VAR0=Thread.GetDomain().DefineDynamicAssembly(VAR1,
↪→ AssemblyBuilderAccess.Run);

C+: VAR0=Thread.GetDomain().DefineDynamicAssembly(VAR1,
↪→ AssemblyBuilderAccess.RunAndSave, LITERAL);

I C−: new DocumentsCrud().EtagsArePersistedWithDeletes();

C+: new DocumentsCrud().PutAndGetDocumentById(LITERAL);

editing (e.g. inserting an argument token), the two edit encoders perform comparably, as shown
in Example 2. However, we still observe that TreeDiff Edit Encoder works better at interpreting
the editing semantics of code snippets with complex structures (e.g. more complex edit pairs are
retrieved).

D.4 MORE DETAILS ABOUT IMITATION LEARNING EXPERIMENTS

Experimental Setup We use “Graph2Edit w/ Seq Edit Encoder” as the base editor. We do not
experiment with “Graph2Edit w/ TreeDiff Edit Encoder” as it performed very well on GHE-gold
training set even without imitation learning. In fact, 80% of the remaining errors were due to issues
such as unknown tokens, which cannot be fixed with better training algorithms, as they are outside
the search space of our current model. We leave experimenting this model on harder datasets as
future work. Like the main experiments (§ C.2), we ran the imitation learning experiments for three
times and reported average performance in Tab. 3.

Analysis We provide a more detailed analysis about the imitation learning experiments, especially
how the choice of β in DAGGERSAMPLING affects the model performance. Our analysis is based on
Graph2Edit+Seq Edit Encoder’s results on the GHE dev set, when they are trained with 20% of the
GHE training data. We observe that the DAGGERSAMPLING algorithm generally trains the editor
to behave very unstably. The editor shows to “regret” its previous decisions (mostly about terminal
tokens, the prediction of which is generally harder than that of non-terminal nodes on GHE). An
example is shown in Tab. 3, where the DAGGERSAMPLING editor first adds a token “VAR1” to the
tree and then deletes it in the next step. This happens to around 23% of the examples (count=2,373
in Tab. 7) on the dev set for DAGGERSAMPLING when β is set to 0 (i.e. when the editor samples
all states from itself throughout the imitation learning process). Among them, 84% of the deletions
(count=1,989) are correct; they remove the a wrong token added in the previous step. However, we
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also observe that the editor may then regret their correct deletions and add back the wrong tokens
after “swinging” for a few steps (42% of the cases), revealing an interesting “add - delete (- add -
... - delete) - add” hesitation phenomenon. Similarly, among the remaining 384 examples where
the editor deletes a correct token that it previously added, we found out in 51% of the cases the
editor will add back the correct token. This unstable behavior can easily lead to an endless loop
of repetitively adding and then deleting the same token (447 cases), until the editor reaches the
maximum edit length that we set as a hyper-parameter (70 in our experiments).

Table 7: Analysis of DAGGERSAMPLING algorithms with β being 0 and 0.5 on dev set. We analyze
each algorithm’s behavior about “adding then deleting” the same token.

β = 0 β = 0.5
#of examples with add-then-delete 2,373 1,032

- #of endless edit loop 447 605
#of add wrong token then delete 1,989 861

- #of then add back 845 467
#of add correct token then delete 384 171

- #of then add back 196 71

We hypothesize that setting β to 0 in the DAGGERSAMPLING algorithm has forced the editor to
learn only single-step correction edits (i.e., the correction edit under the current state). In other
words, even if the editor could imitate the expert demonstration and correct its mistake at this single
step, it still does not know how to proceed correctly for the next step. This is possibly the reason why
the editor swings between adding then deleting the same token. An interesting question is why this
problem shows more severely in our setting, compared with traditional imitation learning tasks (e.g.
racing games). We hypothesize that editing tree-structured data for program revision requires more
continuous and structured supervision, such as teaching the policy to complete the entire generation
of a subtree, rather than teaching it to add only the next correct single tree node. We leave a deeper
study of this problem to the future.

In experiments, to alleviate this problem, we propose to set β higher, because when the editor ex-
ecutes actions from both itself and the expert, it is more likely to collect a continuous sequence of
correction edits. We show improved program editing accuracy of DAGGERSAMPLING with β = 0.5
in Tab. 3, and an analysis of its “add-then-delete” behavior in Tab. 7. Compared with when β = 0,
this setting reduces the frequency of unstable editing. We also propose a new sampling algorithm,
POSTREFINESAMPLING. We observe that the POSTREFINESAMPLING algorithm trains the editor
to perform much more stably than the DAGGERSAMPLING algorithm. We observe almost no (less
than 0.5% of dev examples) the aforementioned add-then-delete behavior.
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