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ABSTRACT

Traditional domain adaptation addresses the task of adapting a model to a novel
target domain under limited or no additional supervision. While tackling the input
domain gap, the standard domain adaptation settings assume no domain change in
the output space. In semantic prediction tasks, different datasets are often labeled
according to different semantic taxonomies. In many real-world settings, the target
domain task requires a different taxonomy than the one imposed by the source
domain. We therefore introduce the more general taxonomy adaptive domain
adaptation (TADA) problem, allowing for inconsistent taxonomies between the two
domains. We further propose an approach that jointly addresses the image-level
and label-level domain adaptation. On the label-level, we employ a bilateral mixed
sampling strategy to augment the target domain, and a relabelling method to unify
and align the label spaces. We address the image-level domain gap by proposing an
uncertainty-rectified contrastive learning method, leading to more domain-invariant
and class-discriminative features. We extensively evaluate the effectiveness of our
framework under different TADA settings: open taxonomy, coarse-to-fine taxon-
omy, and partially-overlapping taxonomy. Our approach outperforms previous
state-of-the-art by a large margin, while capable of adapting to target taxonomies.

1 INTRODUCTION

Approaches for domain adaptation (Ganin & Lempitsky, 2015; Tzeng et al., 2017; Hoffman et al.,
2018; Long et al., 2015; Chen et al., 2018; Tsai et al., 2018; Liu et al., 2020) typically focus on image
level domain gap, which can include visual style, weather, lighting conditions, etc.. However, these
methods are restricted by the assumption of having consistent taxonomies between source and target
domains, i.e., each source domain class can be unambiguously mapped to one target domain class
(see Fig. 1 (a-c)), which is often not the case in practice. In many applications, the label spaces of
the source and target domains are inconsistent, due to different application scenarios, changeable
requirements, inconsistent annotation practices, or the strive towards an increasingly fine-grained
taxonomy (Neuhold et al., 2017; Lambert et al., 2020; Cordts et al., 2016).

The aforementioned observations motivate us to consider the label level domain gap problem. Even
though recent open/universal/class-incremental/zero-shot domain adaptation works (Panareda Busto
& Gall, 2017; You et al., 2019; Bucher et al., 2020) touched upon the label level domain gap, they
only focus on unseen classes in the target domain. However, label level domain gap in practical
scenarios is far more complicated, rather than restricted to unseen classes. We therefore formulate
and explore the label level domain gap problem in a more general and complete setting. We identify
three typical categories of label taxonomy inconsistency. i) Open taxonomy: some classes, e.g.,
“terrain” in Fig. 1(d), appear in the target domain, but are unlabeled or unseen in the source domain. ii)
Coarse-to-fine taxonomy: some classes in the source domain, e.g., “person”, are divided into several
sub-classes in the target domain, e.g., “pedestrain” and “rider’ (Fig. 1(e)). iii) Partially-overlapping
taxonomy: for a certain class in the source domain, one or more of its sub-classes are merged into
other classes in the target domain. For example, there exists taxonomic conflict between {“vehicle”,
“bicycle”} in the source domain and {“car”, “cycle”} in the target domain (Fig. 1(f)).

We therefore introduce a more general and challenging domain adaptation problem, namely taxonomy
adaptive domain adaptation (TADA). In traditional unsupervised domain adaptation (UDA), the goal
is to transfer a model learned on a labelled source domain to an unlabelled target domain, under the
consistent taxonomy assumption. In contrast, TADA allows for inconsistent taxonomies between a
labeled source domain and a few-shot/partially labeled target domain, where the inconsistent classes
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Figure 1: Consistent v.s. inconsistent taxonomy. In (a)-(f), the upper row is the source domain classes,
and the lower row is the target domain classes. Circles represent classes while an arrow represents
a mapping from the source domain class to the target domain class. The (a)-(c) and (d)-(f) are the
examples of the consistent and inconsistent taxonomy, respectively.

on the target domain are exemplified by a few labeled samples. Thus TADA approaches domain
adaptation over both image and label levels, under the few-shot/partially labeled setting. Such task
setting is realistic and involves practical challenges. On the one hand, TADA allows methods to take
the full use of the labeled source domain without annotation cost in the target domain for consistent
classes. On the other hand, methods are allowed to conduct taxonomy adaptation, with very limited
supervision in the target domain side, i.e., only a few samples from the inconsistent classes in the
target domain are labeled. In this article, semantic segmentation, raising particular interest in domain
adaptation field due to its great potential in autonomous driving, is set as the exemplar task of TADA.

We further put forward the first approach for TADA, addressing both of the label and image level
domain gap. For the former, we aim to remedy the gap in label space using pseudo-labelling
techniques. First, a bilateral mixed sampling strategy is proposed to augment unlabeled images
by mixing them with both labeled source-domain and target-domain samples. Second, we map
inconsistent source domain labels with a stochastic label mapping strategy, which encourages a more
flexible taxonomy adaptation during the earlier learning phase. Third, a pseudo-label based relabeling
strategy is proposed to replace the inconsistent classes in the source-domain according to model’s
predictions, to further enforce taxonomy adaptation during the training process. To tackle image
level domain gap, we introduce an uncertainty-rectified contrastive learning scheme that facilitates
the learning of class-discriminative and domain-invariant features, under the uncertainty-aware
guidance of predicted pseudo-labels. Our complete approach for TADA demonstrates strong results
in the different inconsistent taxonomy settings (i.e., open, coarse-to-fine, and partially-overlapping).
Moreover, our suggested mixed-sampling and contrastive-learning based scheme outperforms current
state-of-the-art methods by a large margin, under traditional UDA setting.

To summarize, the contributions of this paper are three-fold:
• A new problem – taxonomy adaptive domain adaptation (TADA) – is proposed and opens a new

venue for domain adaptation, i.e., address both image and label level domain gap.
• A generic solution for domain adaptation is proposed, where a set of mixed sampling and pseudo-

labelling techniques are developed to reduce the label level domain gap, and a uncertainty-rectified
contrastive learning scheme is presented to enable robust cross-domain representation learning.

• Extensive experiments are conducted under the traditional UDA and different TADA settings.

2 RELATED WORK

Domain adaptation: The traditional unsupervised domain adaptation (UDA) (Tsai et al., 2018;
Zhang et al., 2017; Hoffman et al., 2016; Ganin & Lempitsky, 2015; Zou et al., 2018; Long et al.,
2015) considers the case when the source and target domain share the same label space and where the
target domain is unlabeled. However, this setting does not conform with many practical applications.
Some recent works have therefore explored alternative settings. The open/universal domain adapta-
tion (Panareda Busto & Gall, 2017; Saito et al., 2018; You et al., 2019) aims at recognizing the new
unseen classes in the target domain together as the “unknown” class. The class-incremental/zero-shot
domain adaptation (Kundu et al., 2020; Bucher et al., 2020) are proposed to recognize the new unseen
classes explicitly and separately on the target domain under the source domain free setting and in
the zero-shot segmentation way, resp. These works touch upon the specific case of open taxonomy
setting in TADA. However, the above works only consider the case where the unseen classes are
absent in the source domain. In contrast, the open taxonomy setting in TADA also allows for the
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unseen classes to exist in the source domain, where they are unlabelled. Besides, the above works
do not consider about the coarse-to-fine and partially-overlapping taxonomy problems, which are
covered by the more general TADA formulation. Recent few-shot/semi-supervised domain adaptation
works (Teshima et al., 2020; Motiian et al., 2017; Zhang et al., 2019) aim at improving the domain
adaptation performance by introducing the few-shot fully labeled target domain samples. However,
they still assume the consistent taxonomy between the source and target domain.

Contrastive learning: Recently, the contrastive learning (Chen et al., 2020a; Grill et al., 2020; Chen
et al., 2020b; He et al., 2020; Chen et al., 2020c) is proven to be successful for unsupervised image
classification. Benefiting from the strong representation learning ability, contrastive learning has
been applied to different applications, including semantic segmentation (Wang et al., 2021), image
translation (Park et al., 2020), object detection (Xie et al., 2021) and domain adaptation (Kang et al.,
2019). In Kang et al. (2019), contrastive learning is exploited to minimize the intra-class discrepancy
and maximize the inter-class discrepancy for the domain adaptive image classification task. However,
since the approach is designed for the images classification task, it utilizes the contrastive learning
between the whole feature vector of the different image samples, which is not applicable to dense
prediction tasks, such as semantic segmentation. Instead, we develop a pseudo-label guided and
uncertainty-rectified pixel-wise contrastive learning, to distinguish between positive and negative
pixel samples to learn more robust and effective cross-domain representations.

3 METHOD

3.1 THE TAXONOMY ADAPTIVE DOMAIN ADAPTATION (TADA) PROBLEM

In our introduced taxonomy adaptive domain adaptation (TADA) problem, we are given the labeled
source domain Ds = {(xsi ,ysi )}ns

i=1, where xs ∈ RH×W×3 is the RGB color image, and ys is the
associated ground truth CS-class semantic label map, ys ∈ {1, ..., CS}H×W . In the target domain,
we are also given a limited number of labeled samples Dt = {(xti,yti)}n

t

i=1, which we refer to as
few-shot or partially labeled target domain samples. We are also given a large set of unlabeled target
domain samples Du = {xui }n

u

i=1. The target ground truth yt follows the CT -class semantic label
map. Denoting the source and target image samples distributions as PS and PT , we have xs ∼ PS ,
xt,xu ∼ PT . The source and target image distributions are different, i.e., PS 6= PT . The label set
space of Ds and {Dt,Du} are given by Cs = {cs1, cs2, ..., csCS

} and Ct = {ct1, ct2, ..., ctCT
} resp., and

Cs 6= Ct. The inconsistent taxonomy subsets of Cs, Ct are denoted as Cs, Ct, resp. Our goal is to train
the model on Ds, Dt and Du, and evaluate on the target domain data in the label sets space Ct.
Inconsistent Taxonomy.1 Specifically, we consider three different cases of inconsistent taxonomy. 1)
The open taxonomy considers the case where new classes, unseen or unlabeled in the source domain,
appear in the target domain. That is, ∃ctj ∈ Ct such that csi ∩ ctj = ∅,∀csi ∈ Cs. 2) The coarse-to-fine
taxonomy considers the case where the target domain has a finer taxonomy where source classes
have been split into two or more target classes. That is, ∃csi ∈ Cs, ctj1 ∈ Ct, ctj2 ∈ Ct, j1 6= j2
such that ctj1 , c

t
j2
6= csi and (ctj1 ∪ ctj2) ⊆ csi . 3) The partially-overlapping taxonomy considers

the case where a class in the target domain has a common part with the class in the source domain,
but also owns the private part. That is, ∃csi ∈ Cs, ctj ∈ Ct such that ctj 6⊆ csi ,c

s
i ∩ ctj 6= ∅, and

(ctj \ (csi ∩ ctj)) 6∈ {∅, csq, q = 1, ..., CS}.
Few-shot/Partially Labeled. In TADA, the Dt is only few-shot/partially labeled for the inconsistent
taxonomy classes, in the class-wise way. More specifically, for each of the class ctj ∈ Ct, we have nt-
shot labeled samples {(xtji ,y

tj
i )}n

t

i=1, where only the class ctj is labeled in y
tj
i . When nt � nu, it is

called few-shot labeled. When nt 6� nu, it is named partially-labeled. The sample and corresponding
semantic map is written as xtj and ytj .

Technical Challenges. The main technical challenge of TADA is to deal with both of the label-level
and image-level domain gap. On the label level, there are two main problems: i) The inconsistent
taxonomy may induce there is the one-to-many mapping from the source domain to the target domain
classes. If we purely assign the source class of inconsistent taxonomy to one of the corresponding

1With a slight abuse of notation, each class, e.g., csi , is also considered as a set consisting of its domain of
definition. The set operations ∩,∪, \,⊂ thus applies to the underlying definition of the class.
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Figure 2: Framework overview. Class A is an inconsistent taxonomy class (e.g., “person”) in the
source domain, related to class A1 (e.g., “pedestrian”) and A2 (e.g., “rider”) in the target domain.
Class B is a consistent taxonomy class. On the label level, SLM/RL module maps the inconsistent
taxonomy class A in the source domain to the related classes A1, A2 in the target domain. BMS
module unifies label space, by randomly selecting samples from the source and the few-shot/partially
labeled target domain and mixing them in the unlabeled target domain. On the image level, CT/UCT
module adopts the pseudo-label to distinguish positive and negative pixel samples, and then conducts
the pixel-wise contrastive learning, to learn more domain-invariant and class-discriminative features.

target class, it will generate incorrect supervision, degrading the performance of the model. However,
if we instead take the inconsistent source class as unlabeled, the source domain information is not
fully exploited. ii) The complete target domain label taxonomy is partially inherited from the source
domain for the consistent taxonomy, and partially provided by the few-shot/partially labeled target
domain. The problem of how to unify the consistent and inconsistent taxonomy classes for the target
domain is non-trivial. The naive way is to train the model on the source domain for the consistent
taxonomy classes, and on the few-shot/partially labeled target domain for the inconsistent taxonomy
classes separately, in the supervised way. However, the few-shot labeled target domain samples are
far fewer than the labeled source domain samples, causing the model training to be easily dominated
by the consistent taxonomy classes, therefore the inconsistent taxonomy classes are possibly ignored.
Meanwhile, most of the pixels in the few-shot/partially labeled target domain samples are unlabeled
except for the pixels of class ctj , and the arbitrarily incorrect prediction on these unlabeled parts can
bring the negative effect since most of these parts belong to the consistent taxonomy classes or other
inconsistent taxonomy classes. On the image level, the image domain distribution difference between
the source and target domain, PS 6= PT , still exists in TADA.

3.2 OUR APPROACH TO THE TADA PROBLEM

Motivation. Motivated by the technical challenge i) of the label level in Sec. 3.1, the stochastic
label mapping (SLM) module and pseudo-label based relabeling (RL) module are proposed to solve
the problem of the one-to-many mappings from the source domain to the target domain classes.
Motivated by the technical challenge ii) of the label level in Sec. 3.1, the bilateral mixed sampling
(BMS) module is proposed to unify the consistent and inconsistent taxonomy classes for the target
domain. Motivated by the technical challenge of the image level in Sec. 3.1, the contrastive learning
(CT/UCT) module is proposed to train the domain-invariant but class-discriminative features.

Training Strategy. The whole framework adopts pseudo-label based self-training strategy. Following
the self-training structure of Tranheden et al. (2021); Olsson et al. (2021), there are two components
of our framework, namely a semantic segmentation network Fθ and a mean-teacher network Fθ′ . The
semantic segmentation network Fθ is used to output the predicted semantic map. The pseudo-labels
ỹu = Fθ′(xu) are generated by the mean-teacher network Fθ′ by feeding the unlabeled target sample
xu. The parameters θ′ are the exponential moving average of the parameters θ during the optimization
process, which is proven to bring more stable prediction (Tarvainen & Valpola, 2017) during training.

Framework Overview. The framework overview is shown in Fig. 2. The SLM and RL modules
(Sec. 3.2.1) are used to map inconsistent taxonomy class labels ys in the source domain to target-
domain class labels ỹs. Then in order to unify the label spaces, the source domain sample (xs, ỹs)
and the few-shot/partially labeled target domain sample (xtj ,ytj ) is cut and mixed with the unlabeled
target domain sample and corresponding pseudo-label (xu, ỹu), to synthesize the sample (x̂u, ŷu)
through the BMS module (Sec. 3.2.1). In this way, the synthesized sample (x̂u, ŷu) is a cross-domain
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mixed sample and covers the consistent taxonomy class from (xs, ỹs) and inconsistent taxonomy
class from (xtj ,ytj ). The CT/UCT module (Sec. 3.2.2) is further utilized on the (x̂u, ŷu) to train
the domain-invariant and class-discriminative features using pixel-wise contrastive learning. All the
modules are thus employed together in a single framework. Next, we detail individual components.

3.2.1 APPROACH TO THE LABEL LEVEL DOMAIN GAP

In order to solve the problem of one-to-many class mappings, the SLM and RL modules are proposed.
In the initial training stage, the model is unable to distinguish the different inconsistent taxonomy
classes reliably. Thus, taking the coarse-to-fine taxonomy as example, we propose the SLM module,
and it stochastically assigns the source “coarse class” to different corresponding target “finer classes”
to guide the model to predict the uniform distribution over the “finer classes” on the source domain
samples. In this way, in the early training stage, the prediction of the model on the “finer classes” will
be mainly guided by the few-shot labeled target samples. As the training goes on, with the help of the
few-shot labeled target samples, the teacher network gradually has the capacity to distinguish the
“finer classes”. In the second stage, we then replace the SLM module with the RL module. It relabels
the “coarse-class” pixel in the source domain with the “finer class” predicted by the teacher network.

Stochastic Label Mapping (SLM). We propose the SLM module, which maps the source domain
classes of inconsistent taxonomy, e.g., “person” in Fig. 1 (e), to the corresponding target domain
classes stochastically, e.g., “pedestrian” and “rider” in Fig. 1 (e), in the initial training stage and in
each training iteration. Under the inconsistent taxonomy setting, there might be the one-to-many
class mapping from the source domain classes to the target domain label space. Without loss of
generality and for the convenience of clarification, we take the example that the corresponding classes
in Ct of csi include q classes ctp, c

t
p+1, ..., c

t
p+q−1. Then the SLM module can be described as,

ỹs(m,n) =

{It(rand(ctp, ctp+1, ..., c
t
p+q−1)), if ys(m,n) = Is(csi),

Ist(ys(m,n)), otherwise,
(1)

where the (m,n) is the (row, column) index. The rand(·) represents the uniformly discrete sampling
function. The function Is(·) maps the source domain class to the corresponding class index in
source domain, i.e., Is : csi → [1, CS ]. The function It(·) maps the target domain class to the
corresponding class index in the target domain, i.e., It : ctj → [1, CT ]. The function Ist maps
the consistent taxonomy source domain class index to the corresponding target domain class index,
i.e., Ist : [1, CS ] → [1, CT ]. With the new labels obtained in Eq. (1), we employ the standard
cross-entropy loss, Lslm = CE(Fθ(xs), ỹs) to learn the model.

Pseudo-Label based Relabeling (RL). As the training goes on, the model learns to distinguish the
different inconsistent taxonomy classes to some extent. Instead of adopting SLM strategy at the latter
part of the training, we introduce an alternative strategy. To exploit the capabilities learned by the
model, we perform pseudo-label based relabeling (RL), which relabels the pixels of inconsistent
taxonomy classes in the source domain with the classes predicted by the model. Without generality
loss and for writing convenience, we take the same example that csi is related to ctp, c

t
p+1, ..., c

t
p+q−1

as in SLM module. We generate predictions fs = Fθ′(xs) by feeding the source domain sample
xs into the mean-teacher network Fθ′ . Then the prediction fs is used to relabel the source domain
sample xs for the inconsistent taxonomy classes csi , to generate the complete label ỹs as,

ỹs(m,n) =


argmaxc f

s(m,n), if maxc f
s(m,n) > δ, and ys(m,n) = Is(csi)

and argmaxc f
s(m,n) ∈ It({ctp, ctp+1, ..., c

t
p+q−1}),

Ist(ys(m,n)), otherwise,
(2)

where the δ represents the threshold to decide whether the predicted label is used. The pseudo-label
based relabeling module loss is written as Lrl = CE(ỹs,Fθ(xs)). The SLM module and the RL
module are used in the sequential manner during the training process, i.e., initially SLM and then RL.

Bilateral Mixed Sampling (BMS). In order to unify the consistent and inconsistent taxonomy classes
for the target domain, we propose the bilateral mixed sampling (BMS) module, which cuts and mixes
the source domain and few-shot/partially labeled target domain samples on the unlabeled target
domain. Recently, the mixed sampling based data augmentation approach (Zhang et al., 2018; Ghiasi
et al., 2020; Yun et al., 2019) is proven to be able to generate the synthetic data to combine the samples
and corresponding labels, thus provides such a potential to unify the label space. In Tranheden et al.
(2021), the cross-domain mixed sampling (DACS) is shown helpful to UDA of consistent taxonomy.
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Similar to DACS for UDA, we adopt the class-mixed sampling strategy for TADA. Different from
DACS, which only focus on the labeled source domain and the unlabeled target domain, our BMS
module conducts the class-mixed sampling in the bilateral way: 1) from labeled source domain
samples xs to unlabeled target domain samples xu; 2) from few-shot/partially labeled target domain
samples xtj to unlabeled target domain samples xu. The bilateral mixed sampling mask ms of xs is,

ms(m,n) =

{
1, if ỹs(m,n) = It(cr)
0, otherwise,

(3)

where the sampling class cr is randomly selected from the available classes in ỹs. Following
Tranheden et al. (2021), half of all the available classes in ỹs is randomly selected as the sampling
class in each training iteration. Similar to ms, the bilateral mixed sampling mask mtj of xtj is
defined. Then the augmented target domain sample and the corresponding pseudo-label x̂u, ŷu are,

x̂u = ms � xs + (1−ms)� (mtj � xtj + (1−mtj )� xu), (4)
ŷu = ms � ỹs + (1−ms)� (mtj � ytj + (1−mtj )� ỹu). (5)

where the � denotes element-wise multiplication. On this basis, the pseudo-label based self-training
loss of our BMS module is formulated as, Lbms = CE(x̂u, ŷu).

3.2.2 APPROACH TO THE IMAGE LEVEL DOMAIN GAP

Besides dealing with the label-level domain gap, we also need to handle the image-level domain gap.
We propose a pseudo-label based contrastive learning (CT) module, and further the pseudo-label
based uncertainty-rectified contrastive learning (UCT) module. They are easy to be plugged into our
self-training pipeline and trained jointly with the BMS, SLM and RL modules.

Contrastive Learning (CT) for Domain Adaptation. The typical strategy of image-level adaptation
is to train the domain-invariant but class-discriminative features in the cross-domain embedding
space (Ganin & Lempitsky, 2015; Tsai et al., 2018; Ganin et al., 2016). The pixels of the same class
from different or same domains need to have similar features in the feature embedding space, while
the pixels of different classes needs be distinguishable in the feature embedding space. This kind of
distinction between features can naturally be formulated as a contrastive learning problem, where
positive pairs stem from pixels of the same class, irrespective of their domain. In Wang et al. (2021),
the pixel-wise contrastive learning is proven to be helpful for semantic segmentation. However, it
relies on ground truth supervision of the pixel, which is unavailable for our unlabeled target samples.

In order to exploit contrastive learning to train domain-invariant and class-discriminative features
under cross-domain setting, we propose the pseudo-label based contrastive learning for domain
adaptation. We employ pseudo-labels as guidance for distinguishing the positive and negative
samples. The contrastive learning is conducted on the augmented target domain image sample x̂u,
and corresponding pseudo-label ŷu in the BMS module. Our main semantic segmentation network
Fθ can be decomposed into the encoder Eθ and the decoderMθ. The decoder is used to map the
embedding space B to the label domain Y . The encoder Eθ maps the source image domain S and
the target image domain T to the embedding space V , i.e., Eθ : S, T → V . The feature embedding
corresponding to the sample x̂u is denoted as v̂u, i.e., v̂u = Eθ(x̂u). Then the pseudo-label based
contrastive learning module loss Lct can be described as,

Lct = −
∑
h

∑
w

log
∑

v+∈Pv

exp(v · v+/τ)
exp(v · v+/τ) +∑v−∈Nv

exp(v · v−/τ) (6)

where v = v̂u(h,w) is the feature vector of v̂u at the position (h,w). The positive samples in Pv
are the feature vectors whose corresponding pixels in ŷu have the same class label as that of the
corresponding pixel of v. The negative samples in Nv are the feature vectors whose corresponding
pixels in ŷu have the different class label from that of the corresponding pixel of v. Eq. (6) tries to
learn similar features for the pixels of the same class label, and learn discriminative features for the
pixels of different class label, no matter the pixels are in the same domain or not.

Uncertainty-Rectified Contrastive Learning (UCT) for Domain Adaptation. There unavoidably
exist incorrect predictions in the pseudo-label ŷu of the unlabeled part in CT module, resulting in
incorrect guidance to the contrastive module for the selection of the positive and negative samples. In
order to alleviate the incorrect guidance, we propose the uncertainty-rectified contrastive learning

6



Under review as a conference paper at ICLR 2022

(UCT) module based on the CT module. In our UCT module, we use the prediction uncertainty of
the pseudo-label ŷu to rectify the contrastive learning, so that the uncertain prediction of ŷu has less
effect on the contrastive learning. The uncertainty estimation map of ŷu is denoted as ûu, and the
uncertainty measurement function is denoted as U(·), i.e., ûu = U(ŷu). We adopt the maximum
prediction probability of x̂u as the uncertainty estimation function U(·), formulated as,

ûu = max
c
Fθ′(x̂u). (7)

Then, based on Eq. (6), the uncertainty-rectified contrastive learning loss Luct is formulated as,

Luct = −
∑
h

∑
w

ûu(v)ûu(v+) log
∑

v+∈Pv

exp(v · v+/τ)
exp(v · v+/τ) +∑v−∈Nv

exp(v · v−/τ) (8)

where ûu(v), ûu(v+) are the uncertainty estimation value of the pixel corresponding to v, v+, resp.

3.3 JOINT TRAINING

With the above proposed BMS, SLM, RL and UCT modules, the total loss function is derived as,

Ltotal = Lbms + λ1Lslm + λ2Lrl + λ3Luct (9)

where λ1 and λ2 are used to train the SLM and RL module in a sequential manner. When iteration
t < T , λ1 = 1, λ2 = 0. When iteration t ≥ T , λ1 = 0, λ2 = 1. T is the number of iterations to start
training the RL module. λ3 is the hyper-parameter to balance the UCT module loss and other loss,
which is set as 0.01 in our work. Our model is trained end-to-end with the total loss in Eq. (9).

4 EXPERIMENTS

We evaluate the effectiveness of our framework under different scenarios, including the consistent
and inconsistent taxonomy settings. For the consistent taxonomy, we follow the traditional UDA
setting. For the inconsistent taxonomy, we build different benchmarks for TADA, including an open
taxonomy setting, a coarse-to-fine taxonomy setting, and a partially-overlapping taxonomy setting.
The DeepLabv2-ResNet101 (Chen et al., 2017; He et al., 2016) is adopted as the segmentation
network. Experimental details for baselines and our framework training are put in the supplementary.

4.1 EXPERIMENTAL SETUP

UDA: Consistent Taxonomy. We adopt the UDA setting for the consistent taxonomy. The target
domain is completely unlabeled. SYNTHIA (Ros et al., 2016) is used as the source domain, while
Cityscapes (Cordts et al., 2016) is treated as the target domain. The source domain and target domains
share the same label space, where there are 16 classes in total: road, sidewalk, building, wall, fence,
pole, traffic light, traffic sign, vegetation, sky, person, rider, car, bus, motorcycle and bike.

TADA: Open Taxonomy. The SYNTHIA dataset (Ros et al., 2016) is used as the source domain,
and the Cityscapes dataset (Cordts et al., 2016) is adopted as the target domain. In the SYNTHIA
dataset, the main 13 classes are labeled: road, sidewalk, building, traffic light, traffic sign, vegetation,
sky, person, rider, car, bus, motorcycle and bike. In the Cityscapes dataset, the 6 classes wall, fence,
pole, terrain, truck and train are few-shot labeled, with 30 image samples per class.

TADA: Coarse-to-Fine Taxonomy. The GTA5 dataset (Richter et al., 2016) is utilized as the source
domain, and the Cityscapes dataset (Cordts et al., 2016) as the target domain. The label space of
source domain is composed of road, sidewalk, building, wall, fence, pole, traffic light, traffic sign,
vegetation, sky, person, car, truck, bus, train, cycle. The vegetation class of source domain is further
divided into vegetation and terrain in the target domain, person in source domain is mapped to person
and rider in the target domain, and cycle in the source domain is fine-grained labeled into bicycle and
motorcycle in the target domain. In Cityscapes, each of the fine-grained 6 classes is 30-shot labeled.

TADA: Partially-Overlapping Taxonomy. The Synscapes dataset (Wrenninge & Unger, 2018) is
treated as the source domain, while the Cityscapes dataset (Cordts et al., 2016) is seen as the target
domain. The label space of the source domain contains the road, sidewalk, building, wall, fence, pole,
traffic light, traffic sign, vegetation, terrain, sky, person, rider and vehicle. The vehicle class in source
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Method Road SW Build Wall∗ Fence∗ Pole∗ TL TS Veg Sky Person Rider Car Bus MC Bike mIoU∗ mIoU

ADVENT(Vu et al., 2019) 87.0 44.1 79.7 9.6 0.6 24.3 4.8 7.2 80.1 83.6 56.4 23.7 72.7 32.6 12.8 33.7 47.6 40.8
FDA(Yang & Soatto, 2020) 79.3 35.0 73.2 – – – 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 52.5 –
IAST(Mei et al., 2020) 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 85.0 65.5 30.8 86.5 38.2 33.1 52.7 57.0 49.8
DACS(Tranheden et al., 2021) 80.56 25.12 81.90 21.46 2.85 37.20 22.67 23.99 83.69 90.77 67.61 38.33 82.92 38.90 28.49 47.58 54.81 48.34

Ours (DACS+CT) 86.32 26.63 82.71 5.78 1.97 33.87 34.60 40.00 83.83 86.73 67.52 36.53 83.46 55.23 25.03 41.46 57.70 49.47
Ours (DACS+UCT) 91.54 60.41 82.52 21.80 1.48 31.66 31.59 27.95 84.71 88.95 66.68 35.78 81.04 42.79 28.49 45.88 59.10 51.45

Table 1: Consistent Taxonomy: SYNTHIA→Cityscapes. The mIoU are over 13 classes and 16
classes, resp. In the UDA setting, we adopt the class-mixed sampling strategy in DACS to augment
the target domain. ∗The 3 classes are not included when calculating the mIoU over 13 classes.

Method Road SW Build Wall Fence Pole TL TS Veg Terrain Sky Person Rider Car Truck Bus Train MC Bike mIoU mIoU

Source 29.22 6.58 55.48 4.79 8.71 10.11 4.04 12.93 64.06 5.09 71.90 43.26 11.93 22.43 6.04 6.96 2.42 2.61 16.41 6.19 20.26

ADVENT(Vu et al., 2019) 75.72 24.62 74.94 0.00 0.17 18.98 11.30 16.01 76.87 21.93 78.91 48.24 14.20 54.97 2.54 18.38 17.58 12.22 20.90 10.20 30.97
FDA(Yang & Soatto, 2020) 28.87 13.22 67.10 4.63 14.52 18.94 10.99 14.75 51.56 12.48 78.85 56.78 25.81 70.10 14.24 20.85 21.27 19.22 41.14 14.35 30.81
IAST(Mei et al., 2020) 70.73 29.60 75.49 6.90 0.00 1.36 36.43 25.37 66.17 7.65 83.96 60.72 19.99 82.51 0.00 39.52 0.09 27.42 23.55 2.67 34.60
DACS(Tranheden et al., 2021) 66.48 1.42 6.55 10.26 9.47 4.39 0.47 2.09 33.38 3.75 36.45 46.75 18.23 20.90 1.91 2.78 7.18 1.30 5.08 6.16 14.68

Ours (M) 87.59 27.18 80.98 5.99 15.74 7.13 37.09 18.51 83.68 0.08 87.46 65.89 37.45 86.55 24.76 40.58 37.71 37.57 43.44 15.24 43.44
Ours (M+CT) 86.33 32.57 82.62 9.49 12.78 5.10 37.49 39.32 82.00 0.73 88.03 65.70 33.09 78.92 33.55 62.53 41.90 29.83 49.35 17.26 45.86
Ours (M+UCT) 90.84 57.64 80.77 5.79 16.67 8.40 32.82 33.21 83.68 1.68 86.89 63.54 26.57 86.87 33.43 48.65 35.57 31.51 49.29 16.92 45.99
Ours (M+UCT+RL) 92.64 58.66 84.21 20.55 15.04 29.47 35.26 32.41 84.63 4.45 87.91 66.16 34.07 87.52 36.37 57.63 31.21 34.17 52.28 22.85 49.72
nt=2975 89.19 41.08 86.14 37.54 33.68 33.45 32.25 39.99 85.39 31.64 89.51 67.02 35.61 80.49 50.54 49.43 51.70 32.41 47.90 39.76 53.42
Oracle (Wang et al., 2020) 96.7 75.7 88.3 46.0 41.7 42.6 47.9 62.7 88.8 53.5 90.6 69.1 49.7 91.6 71.0 73.6 45.3 52.0 65.5 50.0 65.9

Table 2: Open Taxonomy: SYNTHIA→Cityscapes. There are 13 classes labeled in the SYNTHIA
dataset, and 6 new classes few-shot labeled in Cityscapes. The gray columns are the 6 new classes
and mean IoU of 6 new classes in Cityscapes. ”M” represents the BMS module.

domain can be seen as the union of the car, truck, bus, and motorcycle classes. In the target domain,
each of 3 classes are few-shot labeled in 15 image samples, including the vehicle, public transport
and cycle. The vehicle class in the target domain is the union of car and truck, the public transport is
the union of bus and train, and cycle is the union of the bicycle and motorcycle.

4.2 EXPERIMENTAL RESULTS

Comparison with the SOTA and Ablation Study. In Table 1, it is shown that our proposed
contrastive-learning based scheme outperforms the previous SOTA methods under the UDA setting,
including the adversarial learning based ADVENT (Vu et al., 2019), the image translation based FDA
(Yang & Soatto, 2020), the self-training based IAST (Mei et al., 2020), and the data augmentation
based DACS (Tranheden et al., 2021). It proves the effectiveness of our contrastive learning for
dealing with the domain gap on the image level. In Table 2, Table 3, and Table 4, it is shown that our
proposed framework improves the other SOTA methods performance by a large margin, under the
open, coarse-to-fine and partially-overlapping taxonomy settings. It validates the proposed framework
for dealing with both of the image-level and label-level domain gap. The ablation study in Table 2,
Table 3, and Table 4 proves that each module, BMS, SLM, RL, CT/UCT, all contributes to the final
performance under open, coarse-to-fine, and partially-overlapping taxonomy settings. Besides, it is
shown that the UCT module is able to reach higher performance than the CT module, verifying the
help of our uncertainty rectification for contrastive learning. In Fig. 4, we show qualitative results.

Partially Labeled/Oracle. In Table 2, Table 3, and Table 4, under the open, coarse-to-fine, and
partially-overlapping taxonomy setting, we report the partially labeled performance where inconsistent
taxonomy classes are labeled in all the available target domain image samples, i.e., nt = 2975.
Compared with the few-shot performance, the partially labeled performance is further improved

Method Road SW Build Wall Fence Pole TL TS Veg Terrain Sky Person Rider Car Truck Bus Train MC Bike mIoU mIoU

Source 54.12 16.20 70.08 13.07 19.37 22.56 28.59 20.59 75.87 13.49 74.36 47.91 5.35 36.15 16.08 9.71 1.61 8.77 21.34 28.79 29.22
Source∗ 63.38 20.95 67.65 15.07 18.60 23.03 27.74 18.00 76.03 14.11 75.19 38.36 10.25 49.01 26.32 9.23 2.68 9.93 27.26 29.32 31.20

ADVENT(Vu et al., 2019) 88.91 38.93 79.18 26.22 22.65 25.45 31.24 25.42 75.22 0.03 78.91 55.76 0.00 77.76 28.22 33.19 0.55 13.02 7.15 25.20 37.25
ADVENT∗ 86.72 34.02 79.22 22.32 23.60 26.92 31.36 24.89 59.86 3.39 75.47 41.83 7.73 69.62 32.71 20.39 0.49 12.06 39.25 27.35 36.41
FDA(Yang & Soatto, 2020) 90.83 45.07 81.62 28.37 31.04 32.56 34.00 29.80 83.09 6.31 72.61 60.67 10.13 82.71 29.06 51.51 0.11 15.69 45.61 36.92 43.73
FDA ∗ 88.96 39.53 80.23 22.58 29.73 32.78 33.64 26.66 80.06 25.39 73.63 36.78 10.91 77.82 26.35 46.14 1.37 22.80 50.31 37.71 42.40
IAST(Mei et al., 2020) 83.20 37.84 82.63 36.00 21.59 32.34 43.48 44.69 84.92 36.51 88.77 59.71 28.04 84.34 32.64 38.66 2.52 31.27 35.57 46.00 47.62
IAST∗ 76.62 32.39 83.04 37.52 23.43 28.96 39.11 39.47 81.33 26.02 89.10 56.83 26.41 82.36 18.95 38.16 23.03 21.14 44.22 42.66 45.69
DACS(Tranheden et al., 2021) 82.93 29.50 69.67 31.58 24.87 18.17 20.71 17.43 69.69 8.54 64.06 32.17 9.78 76.99 36.40 44.26 0.00 8.64 30.39 26.54 35.57
DACS ∗ 45.03 18.55 24.01 9.80 12.25 10.14 13.08 5.62 46.05 4.23 23.95 14.94 8.64 52.14 36.28 12.43 0.00 8.35 15.08 16.22 18.98

Ours(M) 93.60 60.14 85.64 34.57 25.27 33.67 34.67 41.84 83.03 2.67 86.96 60.15 2.34 87.25 52.06 47.66 0.00 17.81 42.53 34.76 46.94
Ours(M+SLM) 93.33 57.28 86.14 36.66 29.25 36.84 43.25 43.09 85.50 39.17 85.85 63.47 26.95 88.71 52.76 53.06 0.00 41.46 57.13 52.28 53.68
Ours(M+SLM+CT) 93.83 60.53 86.37 30.73 35.05 36.69 41.74 47.82 85.70 38.69 85.75 62.65 36.28 87.89 51.00 52.84 0.00 39.71 59.11 53.69 54.34
Ours(M+SLM+UCT) 94.51 62.40 87.15 29.95 35.96 37.96 44.17 52.17 84.56 34.33 84.80 65.79 37.41 90.03 56.10 52.57 0.00 40.46 59.82 53.73 55.27
Ours(M+SLM+UCT+RL) 93.97 59.71 87.58 29.81 36.26 38.81 45.38 52.53 85.26 35.18 87.28 66.58 38.74 89.74 55.23 54.72 0.00 40.72 60.47 54.49 55.68
nt=2975 93.65 56.25 86.48 27.37 39.02 37.59 43.73 50.49 87.08 49.25 86.38 67.71 43.83 89.40 50.98 47.01 0.09 45.42 63.96 59.54 56.09
Oracle (Wang et al., 2020) 96.7 75.7 88.3 46.0 41.7 42.6 47.9 62.7 88.8 53.5 90.6 69.1 49.7 91.6 71.0 73.6 45.3 52.0 65.5 63.1 65.9

Table 3: Coarse-to-Fine Taxonomy: GTA5→Cityscapes. There are 3 classes in the GTA5 dataset
fine-grained into 6 classes in the Cityscapes dataset. The gray columns are the 6 fine-grained classes
in the Cityscapes and corresponding mean IoU of these classes. ”M”: BMS. ”*” with SLM module.
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Method Road SW Build Wall Fence Pole TL TS Veg Terrain Sky Person Rider Vehicle PT Cycle mIoU mIoU

Source 82.74 43.14 70.95 29.04 19.24 33.99 34.47 36.29 81.90 28.67 86.61 55.17 28.25 54.75 1.75 34.99 30.50 45.12
Source∗ 87.95 40.99 74.68 24.35 22.67 32.17 31.86 34.74 81.53 27.52 83.74 55.08 26.68 67.51 11.34 21.56 33.47 45.27

ADVENT(Vu et al., 2019) 92.84 54.32 82.54 31.40 25.90 37.67 38.92 40.55 85.46 35.95 87.69 58.12 29.75 73.19 2.42 3.23 26.28 48.75
ADVENT∗ 90.02 46.16 80.37 27.90 24.56 35.69 31.48 37.81 83.96 38.81 84.83 54.73 30.69 73.67 16.02 18.80 36.16 48.47
FDA(Yang & Soatto, 2020) 89.45 44.66 75.82 28.3 27.91 37.89 41.09 49.91 83.78 26.17 83.50 61.24 39.37 65.35 6.32 26.56 32.74 49.21
FDA ∗ 86.86 43.56 75.32 28.01 27.68 38.50 39.50 50.31 83.80 21.69 83.93 63.45 42.32 80.99 10.96 42.64 44.86 51.22
IAST(Mei et al., 2020) 91.65 54.26 81.82 31.61 28.48 35.33 42.83 46.74 85.67 41.89 89.47 57.51 32.77 75.78 31.13 50.45 52.45 54.84
IAST ∗ 93.00 55.31 83.55 32.80 30.49 38.21 46.04 53.09 86.46 41.91 88.57 60.58 29.17 83.18 39.01 36.76 52.98 56.13
DACS(Tranheden et al., 2021) 89.72 61.93 57.59 28.87 26.87 33.42 41.44 41.14 84.57 41.96 86.49 57.94 25.36 59.88 2.13 19.63 27.21 47.43
DACS ∗ 82.27 41.83 13.43 17.67 18.84 23.23 23.93 23.54 56.89 18.20 68.49 44.60 13.75 22.09 2.39 16.75 13.74 30.49

Ours(M) 91.35 59.29 86.81 34.60 32.14 43.9 49.29 55.8 83.51 42.28 90.44 67.98 37.27 83.01 16.89 43.92 47.94 57.40
Ours(M+SLM) 93.66 65.25 81.31 28.81 26.43 44.96 51.70 55.84 87.59 38.47 88.80 67.93 35.10 87.71 35.55 36.29 53.18 57.84
Ours(M+SLM+CT) 95.70 70.24 85.42 29.16 25.78 42.10 49.77 54.14 87.67 42.11 90.10 66.59 36.67 87.55 34.97 40.43 54.32 58.65
Ours(M+SLM+UCT) 92.43 66.46 82.25 32.24 32.47 45.37 52.29 57.15 87.20 36.48 91.85 65.03 37.87 88.53 41.95 38.11 56.20 59.23
Ours(M+SLM+UCT+RL) 92.47 65.40 83.21 33.33 30.87 45.94 49.86 55.86 87.23 39.50 91.30 66.56 39.87 88.75 42.59 39.64 56.99 59.52
nt=2975 94.62 63.90 85.13 28.52 31.03 46.46 53.44 50.16 86.98 41.21 91.00 67.61 35.04 89.98 74.72 52.85 72.52 62.04
Oracle 96.79 76.53 87.75 49.21 41.14 40.64 43.82 60.49 88.01 52.68 89.16 68.68 49.33 91.05 74.69 64.26 76.67 67.14

Table 4: Partially-Overlapping Taxonomy: Synscapes→Cityscapes. There are 3 classes (in gray) in
the Cityscapes partially overlapping with the source domain classes. ”M”: BMS. ”*”: with SLM.
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Figure 3: Performance of inconsistent taxonomy classes under open taxonomy setting, varying nt.

due to more labeled samples on the target domain being available. But there is still gap to the fully
supervised oracle performance on the target domain. It shows that our proposed framework serves as
a strong baseline for TADA, but still provides the potential to develop stronger algorithms for TADA.

Effect of Few-shot Samples Number. In order to analyze the effect of the number of few-shot
samples in the target domain for the inconsistent taxonomy adaptation performance, we take the
open taxonomy setting as the example, and show the performance change with different number of
few-shot samples in Fig. 3. It is shown that the inconsistent taxonomy class adaptation performance
is improved, when more few-shot labeled samples are available, nt = 10, 30, 60, 120, 2975.

Contrastive Learning. In Fig. 4, we compare the t-SNE visualization (Van der Maaten & Hinton,
2008) of the feature embedding of the model trained with/without UCT module, taking the open
taxonomy setting as example. It verifies that the contrastive learning is helpful to train the cross-
domain invariant and class-discriminative features.

5 CONCLUSION

We propose the new TADA problem, allowing inconsistent taxonomies between the source and
target domain in domain adaptation. Pseudo-labeling and contrastive learning based techniques are
developed, to reduce the domain gap on both of the image level and label level. Extensive experiments
on both UDA and TADA settings prove the effectiveness of our approach.
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Figure 4: Left: Qualitative segmentation results under different inconsistent taxonomy settings. Each
group has the RGB image (left), the results without adaptation (middle) and adapted with our pipeline
(right). Refer to the red box region for the adaptation of the inconsistent taxonomy classes. Right:
t-SNE visualization of the features with/without contrastive learning under the open taxonomy setting.
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Ethics Statement. Our proposed approach provides the potential to adapt the model even under the
inconsistent taxonomy, saving much cost and effort for labeling when new data and new requirements
come. Thus, there is also a risk for reduced need of data labelling, leading fewer jobs in this domain
and potential unemployment.

Reproducibility Statement. In Sec. 4.1 of the main paper, we introduce the experimental setup of
consistent and inconsistent taxonomy experiments. In Sec. S1 of the supplementary, we list the
framework implementation details such as the batch size, parameters, contrastive learning, baseline
setup and compute resources. All of the aforementioned details make our paper reproducible. Besides,
upon acceptance of our paper, we promise to make our codes publicly available, to further help
reproduce our paper.
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In this supplementary material, we provide the additional information for,

S1 detailed implementation of our proposed framework,

S2 detailed information of involved datasets in our experiments,

S3 additional quantitative and qualitative experimental results.

S1 FRAMEWORK IMPLEMENTATION

In the main paper, we propose the new taxonomy adaptive domain adaptation (TADA) problem,
which allows inconsistent taxonomies between the source domain and the target domain in the domain
adaptation. TADA approaches the domain adaptation on both of the image level and the label level. In
order to address the TADA problem, a set of pseudo-labelling techniques and the contrastive learning
scheme are developed to reduce both of the label-level and image-level domain gap (cf. Sec. 3 of the
main paper). Our proposed complete approach demonstrates the strong performance under different
TADA settings, open taxonomy, coarse-to-fine taxonomy and partially-overlapping taxonomy (cf.
Table 2, Table 3 and Table 4 of the main paper). Moreover, our suggested mixed-sampling and
contrastive learning based scheme outperforms the state-of-the-art (SOTA) methods by a large margin,
under traditional unsupervised domain adaptation (UDA) setting (cf. Table 1 of the main paper). Here
we present the implementation details of our proposed framework.

Batch Size. For the open taxonomy, coarse-to-fine taxonomy and partially-overlapping taxonomy
experiments of TADA in Sec. 4 of the main paper, in each training batch, there are 2 source domain
images, 2 unlabeled target domain images and 2 few-shot labeled target domain images mixed in
the bilateral mixed sampling module. For the consistent taxonomy experiments of UDA in Sec. 4 of
the main paper, we strictly follow the traditional UDA setting, and the target domain is completely
unlabelled. Therefore, under UDA setting, in each training batch, there are 2 source domain images
and 2 unlabelled target domain images mixed in the class mixed sampling way (Tranheden et al.,
2021).

Parameters. The source domain images are resized to 1280×720, and the target domain images are
resized to 1024×512. And the random crop with size 512×512 is then adopted. We adopt the SGD
optimizer to train the semantic segmentation network, whose momentum is set as 0.9 and the weight
decay is set to 5×10−4. The learning rate is set as 2.5×10−4, with polynomial decay of power 0.9.
The iteration T in Sec. 3.3 for starting training the RL module is set as 130000. The total training
iteration is set as 250000.

Contrastive Learning. Following Wang et al. (2021), for each mini-batch, we use 100 anchor pixel
samples per category. The 100 pixel samples of the same category are taken as positive samples,
while the other pixel samples of different categories are all taken as negative samples.

Baseline Setup. In the baseline methods setup of Table 2, Table 3 and Table 4 in the main paper, we
add the additional supervised loss to train the model in the supervised way, with the few-shot/partially
labeled samples in the target domain. For the baseline methods which adopt the pseudo-label based
training strategy, such as FDA (Yang & Soatto, 2020), IAST (Mei et al., 2020), and DACS (Tranheden
et al., 2021), the few-shot/partial label on the target domain samples is combined with the generated
pseudo-label to attain the final pseudo-label. I.e., in the pseudo-label generation process on the
few-shot/partially labeled samples, we adopt the ground-truth label for the labeled parts, while we
adopt the generated pseudo-label for other unlabeled parts.
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Compute Resources. The code is implemented with PyTorch (Paszke et al., 2019). Experiments are
conducted on an NVIDIA GeForce RTX 2080 Ti GPU, with 11GB memory, where it takes 3 days
for training the whole 250000 iterations. In the whole investigation process of our paper, the total
compute used is around 390×3 GPU days.

S2 DATASETS INFORMATION

As introduced in Sec. 4 of the main paper, there are 4 datasets in total involved in our experiments,
including SYNTHIA (Ros et al., 2016), GTA5 (Richter et al., 2016), Synscapes (Wrenninge & Unger,
2018) and Cityscapes (Cordts et al., 2016). Here we provide more information about the datasets.

SYNTHIA. SYNTHIA is a syntheic image dataset, consisting of photo-realistic images rendered from
a virtual city. We adopt the SYNTHIA-RAND-CITYSCAPES subset, including 9400 densely labeled
synthetic images. SYNTHIA is licensed under a CC BY-NC-SA 3.0 license.

GTA5. GTA5 is a synthetic image dataset, containing 24966 urban scene images. The images in GTA5
dataset are rendered from game engine, and densely labeled with pixel-level semantic annotation.
The scene of GTA5 dataset is based on the city of Los Angeles. We were unable to find the license
for the GTA5 dataset. But the code for extracting the GTA5 dataset image from the game engine is
released under the MIT license.

Synscapes. Synscapes is a photo-realistic synthetic dataset, created with physically based rendering
techniques. Synscapes is built for street scene parsing, composed of 25000 densely pixel-level
annotated images. Synscapes customizes the license, i.e., Synscapes grants a non-exclusive, non-
transferable, non-sublicensable, worldwide license to use the dataset for non-commercial purposes.

Cityscapes. Cityscapes is a real street scene image dataset, collected from different European cities.
We adopt the training set of Cityscapes during the training stage, covering 2975 images. And we use
the validation set of Cityscapes, including 500 images, to evaluate the performance of the semantic
segmentation model. Cityscapes customizes the license, i.e., Cityscapes is made freely available
to academic and non-academic entities for non-commercial purposes such as academic research,
teaching, scientific publications, or personal experimentation.

Whether the datasets cover personally identifiable information or offensive content? The SYNTHIA,
GTA5 and Synscapes are all synthetic image datasets, and are rendered from the virtual city or
game engine. The personally identifiable information or offensive content is not found in them.
Cityscapes is a real street scene image dataset, but Cityscapes is for non-commercial use only. Even
though Cityscapes covers the “person” class as one of the semantic annotation classes, the personally
identificable information or offensive content is also not found in Cityscapes. Besides, Citysacpes
creators state that, if any people find themselves or their personal belongings in the data, they will
immediately remove the respective images from their servers after receiving the contact from the
people.

S3 ADDITIONAL EXPERIMENTAL RESULTS

In Sec. 4 of the main paper, we report the experimental results under the traditional UDA setting
and different TADA settings, i.e., open taxonomy, coarse-to-fine taxonomy and partially-overlapping
taxonomy. Here we provide additional quantitative and qualitative experimental results to further
prove the effectiveness of our proposed approach.

S3.1 TADA: COARSE-TO-FINE TAXONOMY INVOLVING MORE CLASSES

In order to prove the effectiveness of our proposed approach when dealing with the inconsistent
taxonomy involving more classes, we provide the experimental results under the coarse-to-fine
taxonomy setting, with more fine-grained classes in the target domain.

Setup. We adopt the GTA5 dataset as the source domain, and the Cityscapes dataset as the target
domain. The label space of source domain is composed of road, sidewalk, building, wall, fence,
pole, traffic light, traffic sign, terrain, vegetation, sky, moving objects. The moving objects class in
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Method Road SW Build Wall Fence Pole TL TS Veg Terrain Sky Person Rider Car Truck Bus Train MC Bike mIoU mIoU

Source 71.59 20.93 67.54 10.00 15.49 24.15 29.90 19.46 79.83 19.10 74.07 34.95 10.53 67.43 9.98 17.72 7.86 4.75 25.14 22.30 32.13

IAST(Mei et al., 2020) 81.87 35.74 79.58 37.35 25.77 32.26 45.14 39.14 85.34 34.09 85.14 57.58 27.32 81.64 28.01 45.54 26.03 21.58 44.28 41.50 48.08

Ours 95.35 68.30 86.75 41.39 38.95 36.62 43.96 49.49 87.64 45.90 87.43 63.96 28.31 88.41 45.41 59.17 57.34 37.02 57.13 54.59 58.87

Table S1: Coarse-to-Fine Taxonomy: GTA5→Cityscapes. The ”moving object” class in the GTA5
dataset is fine-grained into 8 classes in the Cityscapes dataset. The gray columns are the 8 fine-grained
classes in the Cityscapes and corresponding mean IoU of these classes.

Method Road SW Build Wall Fence Pole TL TS Veg Terrain Sky Person Rider Car Truck Bus Train MC Bike mIoU

ADVENT(Vu et al., 2019) 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
FDA(Yang & Soatto, 2020) 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5
IAST(Mei et al., 2020) 93.8 57.8 85.1 39.5 26.7 26.2 43.1 34.7 84.9 32.9 88.0 62.6 29.0 87.3 39.2 49.6 23.2 34.7 39.6 51.5
DACS(Tranheden et al., 2021)† 89.90 39.66 87.87 30.71 39.52 38.52 46.43 52.79 87.98 43.96 88.76 67.20 35.78 84.45 45.73 50.19 0.00 27.25 33.96 52.14
DACS(Tranheden et al., 2021)∗ 93.25 50.20 87.21 36.75 34.80 38.83 39.80 48.68 87.06 44.06 88.76 65.19 34.38 89.25 51.64 52.71 0.00 28.59 48.42 53.66

Ours (DACS+UCT) 93.03 55.92 87.91 38.19 38.76 40.44 42.14 54.50 87.53 46.67 87.77 66.26 33.67 90.18 47.54 54.15 0.00 41.24 53.34 55.75

Table S2: Consistent Taxonomy: GTA5→Cityscapes. The mIoU is over 19 classes. In the UDA
setting, we adopt the class-mixed sampling strategy in DACS to augment the target domain. The best
results are denoted in bold. † is the performance reported in the DACS (Tranheden et al., 2021). ∗ is
the peak performance model publicly provided by the author of DACS (Tranheden et al., 2021).

the source domain is further divided into 8 classes, including person, rider, car, truck, bus, train,
motorcycle and bicycle in the target domain.

Comparison with the SOTA. In Table S1, we show the quantitative comparison between our
proposed method, the non-adapted baseline ”source” and other SOTA self-training based method
IAST (Mei et al., 2020). Same as the ”source” baseline in the Table 2, Table 3 and Table 4 of the main
paper, the non-adapted baseline ”source” in Table S1 is trained in the supervised way on the labeled
source domain and the few-shot labeled target domain. It is shown that both of the adaptation-based
methods, IAST and our proposed method, perform better than the non-adapted baseline method,
48.08%, 58.87% v.s. 32.13%. Moreover, our proposed method outperforms the IAST method by a
large margin, 58.87% v.s. 48.08. It proves the effectiveness of our proposed method when dealing
with the inconsistent taxonomy involving more classes.

S3.2 UDA: CONSISTENT TAXONOMY

In Table. 1 of the main paper, we show the comparison between our suggested mixed-sampling
and contrastive learning based scheme and other SOTA methods under traditional UDA setting,
SYNTHIA→Cityscapes. It is shown that our suggested mixed-sampling and contrastive learning
based scheme outperforms other SOTA methods under traditional UDA setting. Here we provide
additional quantitative experimental results under the traidtional UDA setting, GTA5→Cityscapes,
to further prove the effectiveness of our suggested mixed-sampling and contrastive learning based
scheme for traditional UDA problem.

Setup. We adopt the GTA5 dataset as the source domain, and the Cityscapes dataset as the target
domain. The source domain and the target domain share the same label space, where there are 19
classes in total: road, sidewalk, building, wall, fence, pole, traffic light, traffic sign, vegetation, terrain,
sky, person, rider, car, truck, bus, train, motorcycle and bicycle. We strictly follow the traditional
UDA setting, and the target domain is completely unlabelled.

Comparison with the SOTA. In Table S2, we report the quantitative experimental results of our
suggested mixed-sampling and contrastive learning based scheme and other SOTA methods under
the traditional UDA setting. It is shown that our suggested mixed-sampling and contrastive leaning
based scheme outperforms current SOTA methods under the traditional UDA setting, 55.75% v.s.
53.66%. It further verifies the validity of our suggested mixed-sampling and contrastive learning
based scheme for traditional UDA problem.

S3.3 ADDITIONAL QUALITATIVE RESULTS

In Fig. 4 of the main paper, we show the qualitative semantic segmentation results, w/o adaptation
and adapted with our proposed method, under the open taxonomy, coarse-to-fine taxonomy and
partially-overlapping taxonomy setting. Here we further provide more qualitative segmentation
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results, w/o adaptation, adapted with other method, and adapted with our proposed method, under
the aforementioned settings. In Fig. S1, under different inconsistent taxonomy settings, we show
the qualitative semantic segmentation results on the target domain, w/o adaptation, adapted with
IAST (Mei et al., 2020), and adapted with our proposed method. It is shown that our proposed method
outperforms the non-adaptation baseline and other adaptation-based method IAST (Mei et al., 2020)
qualitatively. It further proves the effectiveness of our proposed method for the TADA problem.
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Figure S1: Qualitative semantic segmentation results on the target domain under different inconsistent
taxonomy settings, open taxonomy, coarse-to-fine taxonomy and partially-overlapping taxonomy. (a)
shows the RGB target domain image. (b) gives the ground truth semantic segmentation map. (c) is the
semantic segmentation result without adaptation. (d) is the semantic segmentation result adapted by
the IAST (Mei et al., 2020) method. (e) is the semantic segmentation result adapted by our proposed
method. Refer to the red box region for the adaptation results of the inconsistent taxonomy classes.
The target domain label space of open taxonomy and coarse-to-fine taxonomy setting both have 19
classes, whose corresponding color in the semantic segmentation map is listed in the top color grid.
The target domain label space of the partially-overlapping taxonomy setting has 16 classes, whose
corresponding color in the semantic segmentation map is listed in the low color grid.
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