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Abstract

Pretrained language models (PLMs) have be-001
come remarkably adept at task and language002
generalization. Nonetheless, they often fail dra-003
matically when faced with unseen languages,004
posing a significant problem for diversity and005
equal access to PLM technology. In this work,006
we present LINGUALCHEMY, a regularization007
technique that incorporates various aspects of008
languages covering typological, geographical,009
and phylogenetic constraining the resulting010
representation of PLMs to better characterize011
the corresponding linguistics constraints. LIN-012
GUALCHEMY significantly improves the accu-013
racy performance of mBERT and XLM-R on014
unseen languages by ∼18% and ∼2%, respec-015
tively compared to fully fine-tuned models and016
displaying a high degree of unseen language017
generalization. We further introduce ALCHE-018
MYSCALE and ALCHEMYTUNE, extension of019
LINGUALCHEMY which adjusts the linguistic020
regularization weights automatically, alleviat-021
ing the need for hyperparameter search. LIN-022
GUALCHEMY enables better cross-lingual gen-023
eralization to unseen languages which is vital024
for better inclusivity and accessibility of PLMs.025

1 Introduction026

Significant advancements in language processing027

technology have been achieved through the devel-028

opment of PLMs, leading to a commendable pro-029

ficiency in language comprehension and genera-030

tion (Devlin et al., 2019; Liu et al., 2019; Con-031

neau et al., 2020; Sanh et al., 2022; Lewis et al.,032

2019; Raffel et al., 2023; Li et al., 2021; Cahyaw-033

ijaya et al., 2021; Wilie et al., 2020). However,034

there remains a notable deficiency in the ability of035

these models to generalize effectively to unseen036

languages, resulting in a considerable performance037

reduction of PLMs across thousands of unseen lan-038

guages. To mitigate this problem, efforts to develop039

efficient language adaptation approaches are under-040

way, focusing on the incorporation of these unseen041
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Figure 1: LINGUALCHEMY enhances performance in
unseen languages by allowing the model to predict the
linguistic vector and then fitting it via a similarity loss
towards the specific language’s URIEL vector.

languages to PLMs (Pfeiffer et al., 2021b; Alabi 042

et al., 2022; Ebrahimi et al., 2022; Goyal et al., 043

2021). 044

Incorporating new unseen languages has been 045

a longstanding problem in natural language pro- 046

cessing (NLP) research, especially given that 047

most of these unseen languages are low-resource 048

and underrepresented, making PLMs difficult to 049

adapt to these languages. MAD-X (Pfeiffer 050

et al., 2020b) employs a language adapter to learn 051

new unseen languages by incorporating language 052

adapters that mitigate the risk of forgetting pre- 053

trained knowledge, which is known as the curse- 054

of-multilinguality. Nonetheless, this approach re- 055

quires training for generalizing to new unseen lan- 056

guages, which makes it costly and difficult to scale 057

to thousands of languages. MAD-G (Ansell et al., 058

2021) and Udapter (Üstün et al., 2020) further gen- 059

eralize this approach by utilizing a linguistic-driven 060

contextual parameter generator (CPG) module to 061

generate language-specific parameters, allowing 062

the models to generalize to other languages with 063

similar linguistic characteristics. Recently, Rathore 064

et al. (2023) introduced ZGUL, which combines 065

representations over multiple language adapters to 066

generate the unseen language representation. De- 067

spite the effectiveness, all these approaches largely 068

rely on two assumptions: 1) strict categorization of 069

languages and 2) knowing the language category 070
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of the query apriori—our definition of "a priori071

categorization" as incorporating language-specific072

information into the model. The first assumption073

disregards the fact that linguistic phenomena such074

as code-mixing may occur in the query. While075

the second assumption might cause performance076

degradation due to the error propagation from the077

language identification module (Adilazuarda et al.,078

2023). However, these methods inherit the limita-079

tions of the pretrained multilingual models, such080

as the limited capacity to adapt effectively to low-081

resource and unseen languages. Furthermore, while082

the framework facilitates adaptation to specific tar-083

get languages, it may bias the model towards these084

languages, potentially impacting its performance085

on other languages.086

In this work, we introduce LINGUALCHEMY,087

a novel methodology that diverges from adapter-088

based approaches which often segment language089

understanding into multiple, isolated language-090

specific adapters. Instead, LINGUALCHEMY fos-091

ters a unified representation that spans multiple092

languages, enabling the model to capitalize on093

shared linguistic knowledge. This approach es-094

chews language-specific modules in favor of a regu-095

larization technique that imbibes language-specific096

insights directly into the model’s architecture, al-097

lowing for language-agnostic inference. Our evalu-098

ations demonstrate that LINGUALCHEMY not only099

enhances generalization capabilities of mBERT and100

XLM-R on unseen languages but also upholds ro-101

bust performance across high-resource languages,102

all without prior knowledge of the query’s lan-103

guage.104

Our strategy aims to refine cross-lingual gener-105

alization by leveraging linguistic features encap-106

sulated in URIEL vectors. We hypothesize that107

languages with similar syntactic and typological108

characteristics can benefit from shared represen-109

tational frameworks, significantly boosting perfor-110

mance in multilingual settings. This approach is111

particularly beneficial in contexts where language112

resources are limited.113

In summary, our contributions are as follows:114

1. We propose LINGUALCHEMY, a regulariza-115

tion method that improves unseen language116

performance on language models and aligns117

them to arbitrary languages.118

2. We demonstrate strong performance on un-119

seen languages for models trained with LIN-120

GUALCHEMY.121

3. We introduced a dynamic scaling method to 122

scale the classification and auxiliary loss fac- 123

tors used in the fine-tuning stage. 124

2 Related Works 125

PLMs with their transformer-based architectures 126

have been demonstrating exceptional capabilities 127

in language comprehension and generation. These 128

models excel in abstract linguistic generalization 129

by capturing complex linguistic patterns and un- 130

derstanding structural positions and thematic roles, 131

which are crucial for interpreting language seman- 132

tics. Research in this area (Ganesh et al., 2021) has 133

provided critical insights that enable these models 134

to process and generate human language effectively. 135

The studies have explored how these models grasp 136

intricate linguistic features, including syntax and 137

semantics, thereby enhancing their performance 138

across a wide range of language tasks (Rathore 139

et al., 2023). 140

In parallel, the development of resources like 141

publicly available URIEL vector and lang2vec util- 142

ity (Littell et al., 2017) has been instrumental in 143

extending the reach of multilingual NLP, partic- 144

ularly for less-resourced languages. These tools 145

provide vector representations of languages, lever- 146

aging typological, geographical, and phylogenetic 147

data, thus offering a structured approach to under- 148

standing linguistic diversity. Complementing this, 149

recent research has conducted a comprehensive 150

survey on the utilization of typological informa- 151

tion in NLP, highlighting its potential in guiding 152

the development of multilingual NLP technologies 153

(Ponti et al., 2019). This survey emphasized the 154

underutilization of typological features in existing 155

databases and the need for integrating data-driven 156

induction of typological knowledge into machine 157

learning algorithms. 158

However, despite these advancements, PLMs 159

still face significant challenges in generalizing to 160

unseen languages, particularly when adapting to 161

low-resource and unseen languages. These chal- 162

lenges stem from the vast structural and semantic 163

variation across languages (Bender, 2011; Jurafsky 164

and Martin, 2019), the scarcity of resources (Mo- 165

hammad, 2019; Lewis et al., 2020), and the limita- 166

tions inherent in the models themselves (Lin et al., 167

2017). This situation highlights the complexity of 168

scaling and generalizing these models effectively 169

and underscores the need for more sophisticated ap- 170

proaches in model training and adaptation to ensure 171
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broader and more equitable language coverage.172

3 Unseen Languages Adaptation with173

LINGUALCHEMY174

In this section, we provide an overview of how175

LINGUALCHEMY can capture linguistic constraint176

and how is the intuition behind LINGUALCHEMY.177

We also discuss in detail how do we align model178

representations with the linguistic vector.179

3.1 Does Multilingual LMs capture Linguistic180

Constraint?181

In this work, we define the linguistic knowledge as182

a vector gathered from URIEL vector (Littell et al.,183

2017). We chose three distinct linguistic knowl-184

edge from the database, namely ’syntax_knn’,185

’syntax_average’1, and ’geo’ features. The186

choice of ’syntax_knn’ and ’syntax_average’187

is motivated by the typological nature of syntax.188

Syntax in languages varies widely; hence, by us-189

ing aggregate measures like averages and k-nearest190

neighbors (kNN), we can capture a more gen-191

eral representation of syntactic features across lan-192

guages. These features include consensus values,193

like averages, and predicted values, such as kNN194

regressions based on phylogenetic or geographical195

neighbors. Note that in our experiments, we ex-196

cluded phonological features and language family197

attributes from our analysis because they are less198

relevant to textual data and offer limited granularity199

for understanding linguistic variations in written200

languages.201

Syntax Feature These feature vectors denote202

a typological feature that is adapted from sev-203

eral sources including World Atlas of Language204

Structures (WALS) (Dryer and Haspelmath, 2013),205

Syntactic Structures of World Languages (Collins,206

2010), and short prose descriptions on typologi-207

cal features in Ethnologue (Lewis, 2009). Syntax208

vectors captures information about the syntactic209

properties of languages which derived from large-210

scale typological databases, which document the211

structural and semantic variation across different212

languages. These syntax features in the URIEL213

vector are utilized to represent languages in vector214

form, allowing for the analysis and comparison of215

languages based on their syntactic properties.216

1In this work, we chose the ’knn’ and ’average syntax
features. These include consensus values (like averages) and
predicted values (such as kNN regressions based on phyloge-
netic or geographical neighbors)

Geographical Feature On the other hand, ge- 217

ographical features represent languages in terms 218

of their geographical properties. The inclusion 219

of ’geo’ features aims to capture geographical at- 220

tributes of languages. Geographic factors can sig- 221

nificantly influence language evolution and struc- 222

ture, making them crucial for understanding lin- 223

guistic variations. This feature expresses geograph- 224

ical location with a fixed number of dimensions that 225

each represents the “great circle” distance—from 226

the language in question to a fixed point on the 227

Earth’s surface. By incorporating geographical 228

information into language vectors, URIEL and 229

lang2vec provide a more comprehensive view of 230

languages, considering not only their structural and 231

semantic properties but also their geographical con- 232

text. 233

3.2 Proof of Concept 234

Linguistic Separability in LMs We investigate 235

if multilingual language models (MLMs) like Mul- 236

tilingual BERT (mBERT) capture linguistic con- 237

straints, aligning mBERT language embeddings 238

with URIEL vectors to assess how they represent 239

seen and unseen languages. This includes examin- 240

ing how well mBERT’s embeddings correspond to 241

the typological and geographical features detailed 242

in URIEL. In Figure 2, sentence embeddings (green 243

dots) from mBERT, derived from the last hidden 244

state of multilingual training data, and URIEL vec- 245

tors (brown dots)—structured representations from 246

the URIEL database—are projected into the same 247

space. A matrix W is used to linearly project sen- 248

tence embeddings, minimizing the mean squared 249

error with URIEL vectors. This alignment is show- 250

cased in Figure 2 using UMAP for dimensionality 251

reduction for visualization purpose. 252

Figure 2 presents a visual analysis facilitated by 253

UMAP (McInnes et al., 2018), showing the cor- 254

relation between mBERT language representation 255

and the linguistic vectors from the URIEL database 256

(R2 = 0.816). By leveraging UMAP, the plot ac- 257

centuates the principal variances within the joint 258

feature space of the embeddings and vectors. The 259

spatial representation of languages on this plot mir- 260

rors their linguistic and geographical relatedness, 261

as encapsulated by mBERT. This visualization un- 262

derscores the model’s ability to mirror linguistic 263

typologies, with languages sharing common roots 264

such as ’de-DE’ and ’nl-NL’ naturally clustering to- 265

gether. The density and arrangement of these clus- 266
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Figure 2: Alignment between mBERT Representation
with URIEL Language Representation. The green-
shaded areas indicate the sentence representations of
mBERT while the brown dots represent the URIEL rep-
resentations of the corresponding language.

ters potentially reflect mBERT capacity to capture267

and represent language family traits. Conversely,268

the presence of sparser clusters or outliers prompts269

a closer examination of mBERT’s coverage and270

consistency in representing diverse linguistic fea-271

tures. We also formally defined the language repre-272

sentation alignment in the Appendix B.273

3.3 LINGUALCHEMY274

We introduce LINGUALCHEMY as an approach275

that intuitively aligns model representations with276

linguistic knowledge, leveraging URIEL vectors.277

This is operationalized through an auxiliary loss278

function, involving the training process with a nu-279

anced understanding of linguistic characteristics.280

In LINGUALCHEMY, we enhance the fine-tuning281

of encoder models such as mBERT for downstream282

tasks by not only using the regular classification283

loss but also introducing a novel linguistic regu-284

larization term. This is achieved through the im-285

plementation of a URIEL loss, designed to align286

the model’s representations with linguistic knowl-287

edge derived from URIEL vectors. Specifically,288

this process involves applying a linear projection289

to the model’s pooled output, which aligns it with290

the URIEL vector space. The URIEL loss is quan-291

tified as the mean squared error (MSE) between292

the projected model outputs and the corresponding293

URIEL vectors. This dual approach, combining294

classification loss and URIEL loss, allows for a295

more linguistically informed model training, en-296

hancing the model’s ability to capture and reflect297

complex linguistic patterns and relationships.298

Luriel(R,U) =
1

N

N∑
i=1

∥Ri − Ui∥2 299

where R represents the model-generated repre- 300

sentations, U denotes the URIEL vectors, and N is 301

the number of data points. To generate the model 302

representation, we take the output representation 303

from the CLS token and multiply it with a new, 304

trainable projection layer to transform the vector 305

size so that they are compatible. 306

Note that there may be discrepancies between 307

the scales of the standard classification loss and 308

the URIEL loss. To address this, we introduce an 309

optional hyperparameter, denoted as λ, to scale the 310

URIEL loss appropriately. 311

Dynamic Scaling Approaches In addition to the 312

fixed scaling factor, we also explore dynamic ad- 313

justment of this scaling factor at each training step. 314

This aims to maintain a balance between the clas- 315

sification and URIEL losses, and even considers 316

making the scale trainable. The final loss formula 317

when training with LINGUALCHEMY is given by: 318

L = λcls ∗ Lcls + λuriel ∗ Luriel(R,U) 319

We define two methods to implement dynamic 320

scaling: 321

1. ALCHEMYSCALE: This method dynamically 322

adjusts the scaling factor λ during training. It 323

initiates with scaling factors set relative to the 324

mean of initial losses, ensuring proportional 325

importance to each loss component. Subse- 326

quently, these factors are updated periodically 327

using an Exponential Moving Average (EMA) 328

method that ensures an optimal balance be- 329

tween different loss components. 330

2. ALCHEMYTUNE: Here, λ is conceptualized 331

as a trainable parameter within the model’s 332

architecture. Initialized as part of the model’s 333

parameters, λ undergoes optimization during 334

the training process. This method applies the 335

scaling factors to loss components, and an ad- 336

ditional mini_loss—representing the deviation 337

of the sum of scaling factors from unity—is 338

computed. 339

Both methods aim to enhance model perfor- 340

mance by dynamically and intelligently scaling 341
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loss components, with the first method relying on342

predefined, periodically updated scaling mecha-343

nisms, and the second integrating the scaling factor344

into the model’s learning parameters for adaptive345

adjustments.346

4 Experiment Setting347

Datasets In our experiments, we utilize the pub-348

licly available MASSIVE Dataset (Xu et al., 2022),349

which is a comprehensive collection of multilingual350

data incorporating intent classification tasks. We351

split MASSIVE into 25 languages that are ’seen’352

during finetuning and the rest 27 languages that are353

’unseen’, which we exclusively used for evaluation.354

This splitting is based on the language adapters355

availability as outlined in the prior research of356

(Pfeiffer et al., 2020a), which we utilized in the357

AdapterFusion experiment for our baseline model.358

For a detailed breakdown of the languages used, in-359

cluding their respective families, genera, and script360

can be found in Appendix A.361

Additionally, we incorporate the MasakhaNews362

Dataset (Adelani et al., 2023), consisting of news363

article classification across several African lan-364

guages. This dataset tests our models against365

diverse journalistic styles and complex syntactic366

structures. For our experiments, the training lan-367

guages are amh, eng, fra, hau, swa, orm,368

and som, while the testing languages include ibo,369

lin, lug, pcm, run, sna, tir, xho, and yor.370

Lastly, we also utilize the SemRel2024 Dataset371

(Ousidhoum et al., 2024), aimed at semantic re-372

latedness in low-resource languages. This dataset373

serves to evaluate our models’ semantic parsing374

and relationship extraction capabilities. We train375

using the languages amh, arq, ary, eng, esp,376

hau, kin, mar, and tel. The test set includes377

afr, amh, arb, arq, ary, eng, esp, hau,378

hin, ind, kin, and pan.379

Models Our research employs two state-of-the-380

art language models: Multilingual BERT Base381

(mBERTBASE) and XLM-RoBERTa Base (XLM-382

RBASE). In our training process, we use a learning383

rate of 5 × 10−5, train for 30 epochs, and mea-384

sure performance based on accuracy for MASSIVE,385

F1 for MasakhaNews, and Pearson correlation for386

SemRel. Each training takes at most 5 hours using387

a single A100 GPU.388

5 Results and Discussion 389

5.1 LINGUALCHEMY Performance 390

To evaluate the effectiveness of our proposed tech- 391

nique on unseen languages, we trained mBERT 392

and XLM-R on the MasakhaNews and Semantic 393

Relatedness datasets. Our results, displayed in Ta- 394

ble 2, reveal that LINGUALCHEMY excels across 395

all languages in the MasakhaNews dataset, includ- 396

ing those not encountered during the pretraining of 397

mBERT (*) and XLM-R (^). LINGUALCHEMY fur- 398

ther demonstrates substantial improvements on the 399

Semantic Relatedness dataset, showcasing its capa- 400

bility to adapt to languages with distinct typological 401

characteristics from the training corpus. We opted 402

not to compare our method against the baseline 403

used in the Semantic Relatedness paper because 404

LaBSE is not zero-shot; it was pretrained with sen- 405

tence similarity tasks, contrasting our method’s 406

conditions. Moreover, we excluded the MAD-X 407

experiment from the MasakhaNews evaluation be- 408

cause MAD-X’s parameter-efficient approach dif- 409

fers fundamentally from our method of full fine- 410

tuning, rendering a direct comparison inapplica- 411

ble. Collectively, these insights affirm that LIN- 412

GUALCHEMY robustly generalizes across varied 413

linguistic attributes, bolstering language model per- 414

formance on both seen and unseen languages. 415

Additionally, we applied the same procedure to 416

MASSIVE dataset. Specifically, we train on 25 lan- 417

guages and test on 27 different, unseen languages. 418

Our results are summarized in Table 3. We com- 419

pared our method with zero-shot generalization, 420

where the model is fully tuned on seen languages 421

and then tested on unseen languages (referred to as 422

Full FT in the Table). Additionally, we explored 423

AdapterFusion (Pfeiffer et al., 2021a) as another 424

baseline. AdapterFusion has shown better adapta- 425

tion to unseen languages than naive zero-shot gen- 426

eralization. Unfortunately, many language adapters 427

that we need for AdapterFusion is not available for 428

XLM-R. 429

From Table 3, it is shown that LIN- 430

GUALCHEMY achieves better generalization 431

for unseen languages. We observed a significant 432

improvement for mBERT and a modest average 433

improvement for the stronger XLM-R model. 434

For mBERT, LINGUALCHEMY can significantly 435

increase performance in truly unseen languages 436

of am-ET, km-KH, mn-MN, in which mBERT 437

has never seen during the pre-training stage 438

nor fine-tuning. These findings show that LIN- 439
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GUALCHEMY can be useful in truly zero-shot440

settings. While LINGUALCHEMY significantly441

boosts performance in weaker languages such442

as cy-GB or sw-KE, it can occasionally degrade443

results in languages with already strong zero-shot444

performance, particularly evident in XLM-R where445

it tends to flatten results to the 80-82% range.446

Despite the variations in performance, the po-447

tential of LINGUALCHEMY is particularly clear448

in scenarios where zero-shot performance is in-449

herently weak. Our hypothesis is that the model450

indirectly leverages familiar scripts encountered451

during pretraining, aiding its ability to effectively452

handle UNK tokens. Advances in models using453

byte-level tokenization units theoretically reduce454

or eliminate OOV tokens; however, our evaluations455

across the MASSIVE, MasakhaNews, and Sem-456

Rel2024 datasets, as shown in Table 1, confirm that457

UNK tokens have a minimal impact, demonstrating458

the robustness of LINGUALCHEMY in such envi-459

ronments. For contexts where UNK token rates460

are high, the solution might be orthogonal to our461

approach, requiring enhancements in base models462

or tokenizers that could later be integrated with463

LINGUALCHEMY.464

Dataset Language UNK %

MASSIVE am-ET 6.79%
km-KH 3.81%
vi-VN 0.35%
Other languages <0.1%

SemRel amh 3.43%
hau 0.60%
ary 0.44%
Other languages <0.4%

MasakhaNews pcm 0.43%
eng 0.16%
Other languages <0.1%

Table 1: UNK percentages in different datasets, illus-
trating the prevalence of unknown tokens that LIN-
GUALCHEMY successfully manages.

5.2 Effect of Scaling URIEL loss465

The classification and URIEL losses are not on466

the same scale. Therefore, simply adding both467

losses together means that the model will give more468

weight to the loss with the higher magnitude. When469

observing both the classification and URIEL losses470

during the early stages of training, we note that the471

classification loss is around 10 times larger than472

the URIEL loss. In this part, we explore the effect473

of different scaling factors for the URIEL loss.474
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Figure 3: Average performance of unseen languages
under various URIEL loss scales.

Constant Scaling We explore consistently scal- 475

ing up the URIEL loss across various scaling fac- 476

tors. The results can be seen in Figure 3. It is 477

important to note that, as we use the scale-invariant 478

optimizer AdamW, we don’t have to worry about 479

gradients becoming too large due to extremely large 480

losses. Generally, we observe that a scaling factor 481

of 10x slightly outperforms other scaling factors, 482

and the performance appears to decline with higher 483

scale factors. 484

Dynamic and Trainable Scaling One issue with 485

introducing a scaling factor is the addition of an- 486

other tunable hyperparameter. Intuitively, we might 487

aim for a balanced weight between the classifica- 488

tion and URIEL losses. Therefore, instead of ex- 489

pensively testing different scaling factors, an adap- 490

tive scaling factor might be more cost-effective 491

and beneficial. Here, we explore two ideas: dy- 492

namic and trainable factors. The results of these 493

approaches can be seen in Table 4. 494

Interestingly, these dynamic scale factors do not 495

significantly outperform a constant factor. In con- 496

trast, a 10x scaling achieves the best performance 497

in mBERT, while dynamic scaling barely outper- 498

forms the 10x scaling in XLM-R. Therefore, in a 499

limited budget scenario, a suggested 10x scaling 500

factor should suffice, and one may explore differ- 501

ent scaling factors given more computational re- 502

sources. 503

5.3 Generalization Across Language Family 504

We investigate LINGUALCHEMY across language 505

families to further analyze the generalization ca- 506

pabilities of BERT and XLM-R models. This ex- 507

periment offers insight into how adaptable LIN- 508
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afr arb hin ind pan

Zero-shot CL 0.14 -0.23 -0.03 -0.08 0.29
Ours 0.24 0.02 -0.14 0.06 0.38

Zero-shot CL -0.04 0.09 -0.08 0.15 -0.07
Ours 0.59 0.3 0.68 0.37 -0.01

Method
Unseen Language Performance

mBERT

XLM-R

ibo*^ lin*^ lug*^ pcm*^ run*^ sna*^ tir*^ xho* yor^

Zero-shot CL 47.5% 37.0% 21.1% 69.6% 52.4% 19.7% 23.1% 14.5% 42.3%
Ours 73.8% 73.2% 71.4% 71.8% 71.1% 68.3% 66.8% 64.1% 63.1%

Zero-shot CL 48.1% 40.8% 23.6% 72.9% 50.2% 22.0% 43.0% 23.8% 37.2%
Ours 80.6% 79.8% 77.5% 78.0% 77.3% 74.7% 73.5% 71.1% 69.6%

Method
Unseen Language Performance

mBERT

XLM-R

Table 2: Performance of LINGUALCHEMY in SemRel (left) and MasakhaNews (right) dataset for unseen languages.
For languages in * and , mBERT and XLMR have never seen the languages during pre-training respectively.

am-ET* cy-GB af-ZA km-KH* sw-KE mn-MN* tl-PH kn-IN te-IN sq-AL ur-PK az-AZ ml-IN ms-MY

AdapterFusion 4.6% 25.1% 57.7% 7.8% 22.2% 27.6% 40.3% 41.0% 34.4% 49.5% 47.1% 63.8% 35.8% 65.8%
Zero-shot CL 5.5% 23.8% 52.7% 8.3% 19.8% 27.2% 37.5% 34.2% 35.3% 44.8% 42.8% 61.6% 27.7% 66.5%
Ours 58.1% 30.0% 50.2% 59.9% 54.9% 57.4% 66.5% 67.8% 71.9% 70.7% 69.4% 69.2% 67.8% 67.9%

Zero-shot CL 78.6% 64.4% 82.7% 84.6% 58.1% 87.5% 85.9% 80.5% 84.6% 67.9% 73.6% 80.2% 78.9% 83.0%
Ours 77.0% 69.0% 75.7% 78.7% 74.9% 76.3% 80.4% 81.2% 82.6% 82.2% 81.8% 82.0% 81.8% 81.8%

ca-ES sl-SL sv-SE ta-IN nl-NL it-IT he-IL pl-PL da-DK nb-NO ro-RO th-TH fa-IR Average

AdapterFusion 73.1% 49.3% 64.1% 41.7% 70.0% 71.9% 51.2% 62.3% 71.3% 68.8% 58.7% 30.4% 59.4% 48.0%
Zero-shot CL 73.1% 47.2% 60.1% 34.9% 70.7% 70.8% 48.2% 60.0% 71.7% 68.5% 54.2% 24.2% 56.9% 45.5%
Ours 68.4% 68.5% 68.4% 68.6% 68.6% 68.1% 68.1% 67.1% 66.4% 65.7% 64.9% 64.4% 64.4% 64.2%

Zero-shot CL 87.4% 86.3% 85.4% 84.4% 82.0% 78.3% 88.7% 61.3% 76.5% 78.2% 82.8% 73.3% 77.2% 79.0%
Ours 82.0% 82.2% 82.2% 82.4% 82.3% 82.1% 82.3% 81.6% 81.4% 81.3% 81.3% 81.1% 81.0% 80.3%

mBERT

XLM-R

Unseen Language Performance
Method

mBERT

XLM-R

Table 3: Performance of LINGUALCHEMY in MASSIVE dataset for unseen languages. For languages in *, mBERT
has never seen the languages during pre-training.

URIEL scaling mBERT XLM-R

Constant 10x 64.68% 80.32%
ALCHEMYSCALE 62.97% 80.43%
ALCHEMYTUNE 63.24% 79.10%

Table 4: Performance Comparison Across Different
URIEL Scaling Methods.

GUALCHEMY is to a variety of linguistic features.509

We perform our experiment by splitting the lan-510

guages in MASSIVE according to their language511

families and train the model on a subset of language512

families while testing on the rest, unseen language513

families. We explore on including different subset514

of language families, as seen in Table 5.515

The "others unseen" category includes additional516

language families not incorporated in the train-517

ing set, serving as an "unseen" testbed. As il-518

lustrated in Figure 4, LINGUALCHEMY demon-519

strates generalization towards these unseen lan-520

guage families. Perhaps unsurprisingly, adding521

more languages and, importantly, diversity to the522

training data improves generalization performance.523

Notably, the inclusion of the Afro-Asiatic lan-524

guage group—consisting of languages such as ’am-525

ET,’ ’ar-SA,’ and ’he-IL,’ each featuring unique526

scripts—has significantly enhanced performance527

from the second to the third training group iteration. 528

This improvement underscores LINGUALCHEMY’s 529

capability to adapt to scripts not presented during 530

the initial training or fine-tuning phases, such as the 531

Hebrew script of ’he-IL’ and the Ethiopian script 532

of ’am-ET,’ further illustrating its robustness in 533

generalizing across different scripts. 534

The performance of both models, combined with 535

LINGUALCHEMY underscores the advantage of in- 536

cluding a broader spectrum of languages within 537

training groups for enhanced model generalization. 538

However, the impact of this diversity is not uniform 539

across all language families: While some consis- 540

tently benefit from the expansion of training data, 541

others do not, indicating that merely increasing the 542

volume of data from the same family may not nec- 543

essarily improve performance. This inconsistency 544

indicates the potential limitations within the mod- 545

els’ capacity to learn and generalize the linguistic 546

features specific to certain language families. Con- 547

sequently, our observation shows that the degree 548

of generalization varies noticeably among different 549

families, suggesting that while some may signifi- 550

cantly profit from these models’ capabilities, others 551

may require more tailored strategies to gain similar 552

performance improvement. 553
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Train Group Lang. Family Languages Num. Languages

1 Indo-European af-ZA, bn-BD, ca-ES, cy-GB, da-DK, de-DE, el-GR, en-US,
es-ES, fa-IR, fr-FR, hi-IN, hy-AM, is-IS, it-IT, lv-LV, nb-NO,
nl-NL, pl-PL, pt-PT, ro-RO, ru-RU, sl-SL, sq-AL, sv-SE, ur-PK

26

2 Dravidian Train Group 1 + kn-IN, ml-IN, ta-IN, te-IN 30
3 Afro-Asiatic Train Group 2 + am-ET, ar-SA, he-IL 33
4 Sino-Tibetan Train Group 3 + my-MM, zh-CN, zh-TW 36

Unseen Languages sw-KE, km-KH, vi-VN, id-ID, jv-ID, ms-MY, tl-PH, ja-JP, ka-
GE, ko-KR, mn-MN, th-TH, az-AZ, tr-TR, fi-FI, hu-HU 16

Table 5: Language family distribution used in the language family generalization experiment (§5.3)

1 2 3 4
Train Group

55

60

65

70

75

Av
er

ag
e 

ac
cu

ra
cy

 (%
)

BERT Model Performance

1 2 3 4
Train Group

76

78

80

82

84

86
XLMR Model Performance

Indo-European
Dravidian

Afro-Asiatic
Sino-Tibetan

Others Unseen

Figure 4: Model performance across language families.
Dotted lines indicates language families used in training
in some of the training stages (solid dots for active use–
refer to Table 5), and solid grey lines for families unseen
in all training stages, with variance shown in shading.

5.4 Seen Language Performance554

While LINGUALCHEMYconsistently improves per-555

formance across unseen languages, we note some556

inconsistencies concerning the performance of seen557

languages. In MASSIVE, we observe a noticeable558

performance drop in seen languages, while in con-559

trast, we still see a massive gain in MasakhaNews.560

The performance of SemRel seems to be unaffected.561

The compiled results can be seen in Table 6.562

As MasakhaNews focuses on extremely low-563

resource languages, we hypothesize that despite564

being exposed during fine-tuning, the performance565

remains subpar with standard fine-tuning methods.566

Hence, LINGUALCHEMYcan significantly improve567

performance. For higher-resource languages, tradi-568

tional fine-tuning is a better choice. We are inves- 569

tigating why LINGUALCHEMYdoes not help with 570

some languages and how to enhance the perfor- 571

mance of some seen languages as part of our future 572

work. Nevertheless, our method still proves benefi- 573

cial in under-resourced settings where multilingual 574

models typically perform poorly. 575

mBERT XLM-R
Method Zero-Shot CL Ours Zero-Shot CL Ours

MASSIVE

Unseen 45.48% 64.68% 78.97% 80.43%
Seen 84.52% 67.45% 86.45% 81.05%
Average 64.25% 66.01% 82.56% 80.62%

MasakhaNews

Unseen 65.18% 70.27% 70.41% 79.24%
Seen 36.35% 69.28% 40.17% 75.79%
Average 48.96% 69.71% 53.40% 77.30%

SemRel

Unseen 0.02 0.11 0.30 0.32
Seen 0.14 0.12 0.46 0.44
Average 0.09 0.11 0.39 0.38

Table 6: Comparative performance of Zero-Shot and
Ours methods using mBERT and XLM-R models across
different language scenarios and datasets.

6 Conclusion 576

We introduced LINGUALCHEMY, a novel approach 577

that demonstrates strong performance across 27 578

unseen languages in a 60-class intent classifica- 579

tion task. Our method hinges on the integration of 580

linguistic knowledge through the URIEL vectors, 581

enhancing the language model’s ability to gener- 582

alize across a diverse set of languages. We also 583

proposed ALCHEMYSCALE and ALCHEMYTUNE, 584

which employs a hyperparameter search for the 585

URIEL scaling factor. This is achieved by two 586

key strategies: (1) weight-averaging classification 587

and URIEL loss, and (2) learning to balance the 588

scale between classification and URIEL loss, thus 589

ensuring a more adaptable and robust performance. 590
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Limitations591

LINGUALCHEMY enhances performance across592

many unseen languages in intent classification, yet593

it faces limitations. Performance on seen languages594

is less than ideal, indicating room for improvement595

through methods like weight freezing. Also, bet-596

ter generalization appears to reduce accuracy in597

seen languages, pointing to a need for balanced598

approaches. Currently, the research is limited to599

intent classification, and expanding to other NLP600

tasks could reveal more about its versatility. More-601

over, the choice of URIEL features—syntax, geog-602

raphy, language family—is theoretically sound, as603

discussed in Chapter 3, but empirical tests with dif-604

ferent features might refine the model further. Over-605

coming these limitations could greatly improve the606

generalizability and effectiveness of multilingual607

NLP models.608
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A Languages in Dataset841

The MASSIVE Dataset, also known as the Multi-842

lingual Amazon SLU Resource Package (SLUPR),843

offers a comprehensive collection of approximately844

one million annotated utterances for various natural845

language understanding tasks such as slot-filling,846

intent detection, and Virtual Assistant performance847

evaluation. It is an extensive dataset that includes848

51 languages, 60 intents, 55 slot types, and spans849

18 different domains. The dataset is further en-850

riched with a substantial amount of English seed851

data, comprising 587k training utterances, 104k852

development utterances, and 152k test utterances.853

Code Name Script Genus Code Name Script Genus

ar-SA Arabic Arab Semitic is-IS Icelandic Latn Germanic
bn-BD Bengali Beng Indic ka-GE Georgian Geor Kartvelian
el-GR Greek Grek Greek km-KH Khmer Khmr Khmer
en-US English Latn Germanic lv-LV Latvian Latn Baltic
es-ES Spanish Latn Romance ml-IN Malayalam Mlym Southern Dravidian
fa-IR Persian Arab Iranian nb-NO Norwegian Latn Germanic
fr-FR French Latn Romance ro-RO Romanian Latn Romance
he-IL Hebrew Hebr Semitic sl-SI Slovenian Latn Slavic
hu-HU Hungarian Latn Ugric ur-PK Urdu Arab Indic
hy-AM Armenian Armn Armenian zh-CN Mandarin Hans Chinese
id-ID Indonesian Latn Malayo-Sumbawan zh-TW Mandarin Hant Chinese

Table 7: Statistics and description of the dataset used (Xu et al., 2022). The dataset used is a subset of the MASSIVE
dataset, selecting 25 different seen languages.

Code Name Script Genus Code Name Script Genus

af-ZA Afrikaans Latn Germanic my-MM Burmese Mymr Burmese-Lolo
am-ET Amharic Ethi Semitic nl-NL Dutch Latn Germanic
az-AZ Azerbaijani Latn Turkic pl-PL Polish Latn Slavic
cy-GB Welsh Latn Celtic pt-PT Portuguese Latn Romance
da-DK Danish Latn Germanic ru-RU Russian Cyrl Slavic
de-DE German Latn Germanic sq-AL Albanian Latn Albanian
fi-FI Finnish Latn Finnic sv-SE Swedish Latn Germanic
hi-IN Hindi Deva Indic sw-KE Swahili Latn Bantoid
ja-JP Japanese Jpan Japanese ta-IN Tamil Taml Southern Dravidian
kn-IN Kannada Knda Southern Dravidian te-IN Telugu Telu South-Central Dravidian
ko-KR Korean Kore Korean th-TH Thai Thai Kam-Tai
mn-MN Mongolian Cyrl Mongolic vi-VN Vietnamese Latn Viet-Muong
ms-MY Malay Latn Malayo-Sumbawan

Table 8: Statistics and description of the dataset used (Xu et al., 2022). The dataset used is a subset of the MASSIVE
dataset, selecting 27 different unseen languages.
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B Algorithm854

Formally, we define the language representation855

alignment in Algorithm 1, where FU represents the856

features extracted from URIEL, S is the set of sen-857

tence representations, Hx and Nx are the hidden858

states and number of attention-masked tokens for a859

sentence x, respectively. The matrix W is used for860

the linear projection, and A holds the final aligned861

representations. Algorithm 1 outlines the process862

for aligning language representations we use in863

Figure 2. It leverages the URIEL database for lin-864

guistic features, processes sentences through a lan-865

guage model (Θ), and aligns these with mBERT866

representations (M ). The algorithm iteratively up-867

dates transformation parameters (W and b) through868

a training loop to minimize the loss between the869

projected mBERT representations and the target870

sentence representations in set S, thus achieving871

aligned language representations (A).872

Algorithm 1 Language Representation and Align-
ment Process
Require: Dataset D, URIEL database U , Lan-

guage Model Θ, mBERT representations M
Ensure: Aligned Language Representations A

FU ← EXTRACTFEATURES(U )
S ← {}
for each sentence x in D do

Hx ← GETLASTHIDDENSTATES(x, Θ)
Nx ← COUNTATTENTIONMASKED(x)
Rx ← SUM(Hx)

Nx

S ← S ∪ {Rx}
end for
W, b← INITIALIZEPARAMETERS()
for each training epoch do
PU ← (W × S) + b
loss← COMPUTELOSS(PU , FU )
W, b ← UPDATEPARAMETERSWITHCON-
STRAINT(W, b, loss)

end for
A← {}
for each sentence representation s in S do

Am ← (W × s) + b
A← A ∪ {Am}

end for
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C Language Family Experiment873

Tables 9 and 10 provide a comprehensive analysis874

of language family performance across different875

training groups. These tables compare the accu-876

racy percentages of the Multilingual BERT and877

XLM-RoBERTa models, respectively. The results878

displayed in the tables elucidate the models’ capa-879

bilities in generalizing from the training data to un-880

seen languages. A clear trend that can be observed881

is the improvement in performance as the training882

groups progress from 1 to 4, which suggests that883

the models benefit from exposure to a wider variety884

of language families during training. The ’Average’885

row at the bottom of each table indicates the mean886

accuracy across all language families, providing an887

insight into the overall performance enhancement888

achieved by each model with incremental training889

diversity.890

Language Family Train Group 1 Train Group 2 Train Group 3 Train Group 4

Afro-Asiatic 52.82% 52.93% 61.26% 61.00%
Atlantic-Congo 65.71% 68.08% 70.62% 71.79%
Austroasiatic 64.77% 66.78% 69.72% 70.16%
Austronesian 66.88% 68.66% 72.06% 72.19%
Dravidian 64.74% 67.97% 70.93% 71.41%
Indo-European 67.50% 68.61% 72.53% 72.95%
Japonic 72.11% 71.98% 75.80% 75.67%
Kartvelian 68.91% 68.89% 72.46% 72.32%
Koreanic 64.80% 66.46% 70.04% 69.91%
Mongolic-Khitan 63.11% 66.44% 69.71% 69.59%
Sino-Tibetan 62.65% 66.29% 68.79% 70.33%
Tai-Kadai 63.52% 67.89% 70.23% 71.34%
Turkic 54.69% 56.91% 63.54% 64.05%
Uralic 71.49% 71.27% 75.33% 75.15%

Average 65.54% 67.07% 71.04% 71.43%

Table 9: Multilingual BERT Performance of Language Families Across Training Groups

Language Family Train Group 1 Train Group 2 Train Group 3 Train Group 4

Afro-Asiatic 75.74% 76.23% 85.56% 85.39%
Atlantic-Congo 70.86% 72.38% 83.24% 82.73%
Austroasiatic 74.85% 76.04% 83.91% 83.59%
Austronesian 78.94% 79.83% 84.77% 84.69%
Dravidian 81.49% 82.20% 85.41% 85.43%
Indo-European 80.31% 81.21% 83.26% 83.47%
Japonic 80.21% 81.36% 82.67% 83.15%
Kartvelian 80.40% 81.53% 82.79% 83.27%
Koreanic 79.74% 80.91% 82.14% 82.61%
Mongolic-Khitan 79.54% 81.00% 82.20% 82.65%
Sino-Tibetan 79.25% 81.00% 82.14% 82.58%
Tai-Kadai 79.08% 80.81% 81.90% 82.35%
Turkic 79.20% 80.90% 81.96% 82.39%
Uralic 79.24% 80.91% 81.92% 82.47%

Average 79.45% 80.48% 83.44% 83.62%

Table 10: XLM-RoBERTa Performance of Language Families Across Training Groups
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D Appendix: Language Identification891

(LID) Experiments892

This section presents the results of comprehen-893

sive language identification experiments performed894

across a variety of popular language detection mod-895

els. The evaluations are detailed in two distinct896

tables:897

Table 11, displays the performance of tradi-898

tional language identification models such as LID-899

Fasttext, CLD3, CLD2, langid, and LangDetect900

across multiple languages within the MASSIVE901

dataset. These results illustrate the effectiveness of902

each model in correctly identifying the language of903

given text samples.904

Table 12, focuses on the accuracy of multilin-905

gual language models, specifically XLM-R and906

mBERT, alongside adaptations using the MAD-X907

framework with embeddings from FastText and908

CLD3. This evaluation aims to show how these909

advanced models perform in the task of language910

identification, especially in comparison to more911

specialized LID tools.912
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Language LID-Fasttext CLD3 CLD2 langid LangDetect

ar-SA 94.25 86.45 81.58 91.78 94.13
bn-BD 99.72 97.52 89.57 96.93 99.76
de-DE 97.70 88.59 89.73 92.83 82.54
el-GR 99.68 96.91 99.77 99.84 99.64
en-US 98.61 79.44 93.43 93.96 87.82
es-ES 96.20 78.24 73.14 86.87 86.55
fi-FI 97.70 92.91 92.90 92.08 96.09
fr-FR 98.35 87.53 85.23 94.77 94.80
hi-IN 98.44 88.21 97.83 87.94 93.54
hu-HU 98.54 92.24 93.89 95.34 96.71
hy-AM 99.90 98.37 99.92 99.17 0.00
id-ID 87.20 65.86 73.54 72.68 89.32
is-IS 89.93 92.64 90.88 92.97 0.00
ja-JP 99.41 96.63 99.04 99.11 96.23
jv-ID 24.75 68.10 0.00 22.04 0.00
ka-GE 99.56 98.49 99.95 99.65 0.00
ko-KR 99.50 98.47 99.03 99.96 99.36
lv-LV 90.73 90.06 95.25 94.33 97.32
my-MM 99.93 96.90 99.97 0.00 0.00
pt-PT 92.17 83.42 77.39 77.74 84.05
ru-RU 99.27 84.48 82.35 83.79 91.32
vi-VN 98.41 95.85 97.26 98.62 99.53
zh-CN 97.55 98.07 84.33 99.64 0.00
zh-TW 95.76 94.19 0.03 99.31 0.00

Average 93.89 89.57 83.17 86.31 66.20

Table 11: Per language results of language identification evaluation in MASSIVE.

Language XLMR mBERT MAD-X MAD-X
w/ FastText

MAD-X
w/ CLD3

ar-SA 79.32 78.35 75.72 71.92 67.79
bn-BD 83.25 80.23 78.61 76.36 74.95
de-DE 85.54 83.59 81.81 79.49 76.90
el-GR 85.07 81.74 80.93 79.56 78.51
en-US 88.16 86.45 85.78 83.89 83.15
es-ES 86.18 84.97 82.58 80.97 76.43
fi-FI 85.24 82.55 82.55 79.86 77.07
fr-FR 86.48 86.11 83.69 82.35 80.03
hi-IN 84.63 82.38 80.73 78.14 72.73
hu-HU 85.68 82.65 81.57 80.13 76.40
hy-AM 84.23 81.20 80.43 78.78 77.91
id-ID 86.52 84.67 82.01 76.03 69.30
is-IS 84.16 82.21 80.40 71.49 73.57
ja-JP 85.78 84.70 83.22 82.04 81.27
jv-ID 81.20 81.57 78.58 45.70 59.68
ka-GE 79.19 75.25 73.23 70.85 70.17
ko-KR 85.51 84.30 82.99 81.14 80.56
lv-LV 84.73 82.18 82.08 74.58 74.95
my-MM 82.18 78.01 78.48 76.36 74.98
pt-PT 86.35 85.27 83.59 80.56 77.77
ru-RU 86.65 83.96 83.52 81.74 75.45
vi-VN 86.48 83.32 82.52 79.72 78.61
zh-CN 85.41 85.24 84.23 53.09 52.69
zh-TW 83.73 82.55 81.27 52.79 52.45

Average 84.65 82.64 81.27 74.90 73.47

Table 12: Per language accuracy score of multilingual language models in MASSIVE.
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