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Abstract

Pretrained language models (PLMs) have be-
come remarkably adept at task and language
generalization. Nonetheless, they often fail dra-
matically when faced with unseen languages,
posing a significant problem for diversity and
equal access to PLM technology. In this work,
we present LINGUALCHEMY, a regularization
technique that incorporates various aspects of
languages covering typological, geographical,
and phylogenetic constraining the resulting
representation of PLMs to better characterize
the corresponding linguistics constraints. LIN-
GUALCHEMY significantly improves the accu-
racy performance of mBERT and XLM-R on
unseen languages by ~18% and ~2%, respec-
tively compared to fully fine-tuned models and
displaying a high degree of unseen language
generalization. We further introduce ALCHE-
MYSCALE and ALCHEMYTUNE, extension of
LINGUALCHEMY which adjusts the linguistic
regularization weights automatically, alleviat-
ing the need for hyperparameter search. LIN-
GUALCHEMY enables better cross-lingual gen-
eralization to unseen languages which is vital
for better inclusivity and accessibility of PLMs.

1 Introduction

Significant advancements in language processing
technology have been achieved through the devel-
opment of PLMs, leading to a commendable pro-
ficiency in language comprehension and genera-
tion (Devlin et al., 2019; Liu et al., 2019; Con-
neau et al., 2020; Sanh et al., 2022; Lewis et al.,
2019; Raffel et al., 2023; Li et al., 2021; Cahyaw-
ijaya et al., 2021; Wilie et al., 2020). However,
there remains a notable deficiency in the ability of
these models to generalize effectively to unseen
languages, resulting in a considerable performance
reduction of PLMs across thousands of unseen lan-
guages. To mitigate this problem, efforts to develop
efficient language adaptation approaches are under-
way, focusing on the incorporation of these unseen
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Figure 1: LINGUALCHEMY enhances performance in
unseen languages by allowing the model to predict the
linguistic vector and then fitting it via a similarity loss
towards the specific language’s URIEL vector.

languages to PLMs (Pfeiffer et al., 2021b; Alabi
et al., 2022; Ebrahimi et al., 2022; Goyal et al.,
2021).

Incorporating new unseen languages has been
a longstanding problem in natural language pro-
cessing (NLP) research, especially given that
most of these unseen languages are low-resource
and underrepresented, making PLMs difficult to
adapt to these languages. MAD-X (Pfeiffer
et al., 2020b) employs a language adapter to learn
new unseen languages by incorporating language
adapters that mitigate the risk of forgetting pre-
trained knowledge, which is known as the curse-
of-multilinguality. Nonetheless, this approach re-
quires training for generalizing to new unseen lan-
guages, which makes it costly and difficult to scale
to thousands of languages. MAD-G (Ansell et al.,
2021) and Udapter (Ustiin et al., 2020) further gen-
eralize this approach by utilizing a linguistic-driven
contextual parameter generator (CPG) module to
generate language-specific parameters, allowing
the models to generalize to other languages with
similar linguistic characteristics. Recently, Rathore
et al. (2023) introduced ZGUL, which combines
representations over multiple language adapters to
generate the unseen language representation. De-
spite the effectiveness, all these approaches largely
rely on two assumptions: 1) strict categorization of
languages and 2) knowing the language category



of the query apriori—our definition of "a priori
categorization" as incorporating language-specific
information into the model. The first assumption
disregards the fact that linguistic phenomena such
as code-mixing may occur in the query. While
the second assumption might cause performance
degradation due to the error propagation from the
language identification module (Adilazuarda et al.,
2023). However, these methods inherit the limita-
tions of the pretrained multilingual models, such
as the limited capacity to adapt effectively to low-
resource and unseen languages. Furthermore, while
the framework facilitates adaptation to specific tar-
get languages, it may bias the model towards these
languages, potentially impacting its performance
on other languages.

In this work, we introduce LINGUALCHEMY,
a novel methodology that diverges from adapter-
based approaches which often segment language
understanding into multiple, isolated language-
specific adapters. Instead, LINGUALCHEMY fos-
ters a unified representation that spans multiple
languages, enabling the model to capitalize on
shared linguistic knowledge. This approach es-
chews language-specific modules in favor of a regu-
larization technique that imbibes language-specific
insights directly into the model’s architecture, al-
lowing for language-agnostic inference. Our evalu-
ations demonstrate that LINGUALCHEMY not only
enhances generalization capabilities of mBERT and
XLM-R on unseen languages but also upholds ro-
bust performance across high-resource languages,
all without prior knowledge of the query’s lan-
guage.

Our strategy aims to refine cross-lingual gener-
alization by leveraging linguistic features encap-
sulated in URIEL vectors. We hypothesize that
languages with similar syntactic and typological
characteristics can benefit from shared represen-
tational frameworks, significantly boosting perfor-
mance in multilingual settings. This approach is
particularly beneficial in contexts where language
resources are limited.

In summary, our contributions are as follows:

1. We propose LINGUALCHEMY, a regulariza-
tion method that improves unseen language
performance on language models and aligns
them to arbitrary languages.

2. We demonstrate strong performance on un-
seen languages for models trained with LIN-
GUALCHEMY.

3. We introduced a dynamic scaling method to
scale the classification and auxiliary loss fac-
tors used in the fine-tuning stage.

2 Related Works

PLMs with their transformer-based architectures
have been demonstrating exceptional capabilities
in language comprehension and generation. These
models excel in abstract linguistic generalization
by capturing complex linguistic patterns and un-
derstanding structural positions and thematic roles,
which are crucial for interpreting language seman-
tics. Research in this area (Ganesh et al., 2021) has
provided critical insights that enable these models
to process and generate human language effectively.
The studies have explored how these models grasp
intricate linguistic features, including syntax and
semantics, thereby enhancing their performance
across a wide range of language tasks (Rathore
et al., 2023).

In parallel, the development of resources like
publicly available URIEL vector and lang2vec util-
ity (Littell et al., 2017) has been instrumental in
extending the reach of multilingual NLP, partic-
ularly for less-resourced languages. These tools
provide vector representations of languages, lever-
aging typological, geographical, and phylogenetic
data, thus offering a structured approach to under-
standing linguistic diversity. Complementing this,
recent research has conducted a comprehensive
survey on the utilization of typological informa-
tion in NLP, highlighting its potential in guiding
the development of multilingual NLP technologies
(Ponti et al., 2019). This survey emphasized the
underutilization of typological features in existing
databases and the need for integrating data-driven
induction of typological knowledge into machine
learning algorithms.

However, despite these advancements, PLMs
still face significant challenges in generalizing to
unseen languages, particularly when adapting to
low-resource and unseen languages. These chal-
lenges stem from the vast structural and semantic
variation across languages (Bender, 2011; Jurafsky
and Martin, 2019), the scarcity of resources (Mo-
hammad, 2019; Lewis et al., 2020), and the limita-
tions inherent in the models themselves (Lin et al.,
2017). This situation highlights the complexity of
scaling and generalizing these models effectively
and underscores the need for more sophisticated ap-
proaches in model training and adaptation to ensure



broader and more equitable language coverage.

3 Unseen Languages Adaptation with
LINGUALCHEMY

In this section, we provide an overview of how
LINGUALCHEMY can capture linguistic constraint
and how is the intuition behind LINGUALCHEMY.
We also discuss in detail how do we align model
representations with the linguistic vector.

3.1 Does Multilingual LMs capture Linguistic
Constraint?

In this work, we define the linguistic knowledge as
a vector gathered from URIEL vector (Littell et al.,
2017). We chose three distinct linguistic knowl-
edge from the database, namely ’syntax_knn’,
’syntax_average’!, and ’geo’ features. The
choice of ’syntax_knn’ and ’syntax_average’
is motivated by the typological nature of syntax.
Syntax in languages varies widely; hence, by us-
ing aggregate measures like averages and k-nearest
neighbors (kNN), we can capture a more gen-
eral representation of syntactic features across lan-
guages. These features include consensus values,
like averages, and predicted values, such as kNN
regressions based on phylogenetic or geographical
neighbors. Note that in our experiments, we ex-
cluded phonological features and language family
attributes from our analysis because they are less
relevant to textual data and offer limited granularity
for understanding linguistic variations in written
languages.

Syntax Feature These feature vectors denote
a typological feature that is adapted from sev-
eral sources including World Atlas of Language
Structures (WALS) (Dryer and Haspelmath, 2013),
Syntactic Structures of World Languages (Collins,
2010), and short prose descriptions on typologi-
cal features in Ethnologue (Lewis, 2009). Syntax
vectors captures information about the syntactic
properties of languages which derived from large-
scale typological databases, which document the
structural and semantic variation across different
languages. These syntax features in the URIEL
vector are utilized to represent languages in vector
form, allowing for the analysis and comparison of
languages based on their syntactic properties.

'Tn this work, we chose the "knn’ and ’average syntax
features. These include consensus values (like averages) and
predicted values (such as kNN regressions based on phyloge-
netic or geographical neighbors)

Geographical Feature On the other hand, ge-
ographical features represent languages in terms
of their geographical properties. The inclusion
of ’geo’ features aims to capture geographical at-
tributes of languages. Geographic factors can sig-
nificantly influence language evolution and struc-
ture, making them crucial for understanding lin-
guistic variations. This feature expresses geograph-
ical location with a fixed number of dimensions that
each represents the “great circle” distance—from
the language in question to a fixed point on the
Earth’s surface. By incorporating geographical
information into language vectors, URIEL and
lang2vec provide a more comprehensive view of
languages, considering not only their structural and
semantic properties but also their geographical con-
text.

3.2 Proof of Concept

Linguistic Separability in LMs We investigate
if multilingual language models (MLMs) like Mul-
tilingual BERT (mBERT) capture linguistic con-
straints, aligning mBERT language embeddings
with URIEL vectors to assess how they represent
seen and unseen languages. This includes examin-
ing how well mBERT’s embeddings correspond to
the typological and geographical features detailed
in URIEL. In Figure 2, sentence embeddings (green
dots) from mBERT, derived from the last hidden
state of multilingual training data, and URIEL vec-
tors ( )—structured representations from
the URIEL database—are projected into the same
space. A matrix W is used to linearly project sen-
tence embeddings, minimizing the mean squared
error with URIEL vectors. This alignment is show-
cased in Figure 2 using UMAP for dimensionality
reduction for visualization purpose.

Figure 2 presents a visual analysis facilitated by
UMAP (Mclnnes et al., 2018), showing the cor-
relation between mBERT language representation
and the linguistic vectors from the URIEL database
(R? = 0.816). By leveraging UMAP, the plot ac-
centuates the principal variances within the joint
feature space of the embeddings and vectors. The
spatial representation of languages on this plot mir-
rors their linguistic and geographical relatedness,
as encapsulated by mBERT. This visualization un-
derscores the model’s ability to mirror linguistic
typologies, with languages sharing common roots
such as ’de-DE’ and ’nl-NL’ naturally clustering to-
gether. The density and arrangement of these clus-
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Figure 2: Alignment between mBERT Representation
with URIEL Language Representation. The green-
shaded areas indicate the sentence representations of
mBERT while the brown dots represent the URIEL rep-
resentations of the corresponding language.

ters potentially reflect mBERT capacity to capture
and represent language family traits. Conversely,
the presence of sparser clusters or outliers prompts
a closer examination of mBERT’s coverage and
consistency in representing diverse linguistic fea-
tures. We also formally defined the language repre-
sentation alignment in the Appendix B.

3.3  LINGUALCHEMY

We introduce LINGUALCHEMY as an approach
that intuitively aligns model representations with
linguistic knowledge, leveraging URIEL vectors.
This is operationalized through an auxiliary loss
function, involving the training process with a nu-
anced understanding of linguistic characteristics.
In LINGUALCHEMY, we enhance the fine-tuning
of encoder models such as mBERT for downstream
tasks by not only using the regular classification
loss but also introducing a novel linguistic regu-
larization term. This is achieved through the im-
plementation of a URIEL loss, designed to align
the model’s representations with linguistic knowl-
edge derived from URIEL vectors. Specifically,
this process involves applying a linear projection
to the model’s pooled output, which aligns it with
the URIEL vector space. The URIEL loss is quan-
tified as the mean squared error (MSE) between
the projected model outputs and the corresponding
URIEL vectors. This dual approach, combining
classification loss and URIEL loss, allows for a
more linguistically informed model training, en-
hancing the model’s ability to capture and reflect
complex linguistic patterns and relationships.

N
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where R represents the model-generated repre-
sentations, U denotes the URIEL vectors, and [V is
the number of data points. To generate the model
representation, we take the output representation
from the C'LS token and multiply it with a new,
trainable projection layer to transform the vector
size so that they are compatible.

Note that there may be discrepancies between
the scales of the standard classification loss and
the URIEL loss. To address this, we introduce an
optional hyperparameter, denoted as ), to scale the
URIEL loss appropriately.

Dynamic Scaling Approaches In addition to the
fixed scaling factor, we also explore dynamic ad-
justment of this scaling factor at each training step.
This aims to maintain a balance between the clas-
sification and URIEL losses, and even considers
making the scale trainable. The final loss formula
when training with LINGUALCHEMY is given by:

L= /\cls * Lcls + )\uriel * Lum’el(R7 U)

We define two methods to implement dynamic
scaling:

1. ALCHEMYSCALE: This method dynamically
adjusts the scaling factor A during training. It
initiates with scaling factors set relative to the
mean of initial losses, ensuring proportional
importance to each loss component. Subse-
quently, these factors are updated periodically
using an Exponential Moving Average (EMA)
method that ensures an optimal balance be-
tween different loss components.

2. ALCHEMYTUNE: Here, A is conceptualized
as a trainable parameter within the model’s
architecture. Initialized as part of the model’s
parameters, A undergoes optimization during
the training process. This method applies the
scaling factors to loss components, and an ad-
ditional mini_loss—representing the deviation
of the sum of scaling factors from unity—is
computed.

Both methods aim to enhance model perfor-
mance by dynamically and intelligently scaling



loss components, with the first method relying on
predefined, periodically updated scaling mecha-
nisms, and the second integrating the scaling factor
into the model’s learning parameters for adaptive
adjustments.

4 Experiment Setting

Datasets In our experiments, we utilize the pub-
licly available MASSIVE Dataset (Xu et al., 2022),
which is a comprehensive collection of multilingual
data incorporating intent classification tasks. We
split MASSIVE into 25 languages that are ’seen’
during finetuning and the rest 27 languages that are
“unseen’, which we exclusively used for evaluation.
This splitting is based on the language adapters
availability as outlined in the prior research of
(Pfeiffer et al., 2020a), which we utilized in the
AdapterFusion experiment for our baseline model.
For a detailed breakdown of the languages used, in-
cluding their respective families, genera, and script
can be found in Appendix A.

Additionally, we incorporate the MasakhaNews
Dataset (Adelani et al., 2023), consisting of news
article classification across several African lan-
guages. This dataset tests our models against
diverse journalistic styles and complex syntactic
structures. For our experiments, the training lan-
guages are amh, eng, fra, hau, swa, orm,
and som, while the testing languages include ibo,
lin, lug, pcm, run, sna, tir, xho, and yor.
Lastly, we also utilize the SemRel2024 Dataset
(Ousidhoum et al., 2024), aimed at semantic re-
latedness in low-resource languages. This dataset
serves to evaluate our models’ semantic parsing
and relationship extraction capabilities. We train
using the languages amh, arq, ary, eng, esp,
hau, kin, mar, and tel. The test set includes
afr, amh, arb, arq, ary, eng, esp, hau,
hin, ind, kin, and pan.

Models Our research employs two state-of-the-
art language models: Multilingual BERT Base
(mBERTg,s;) and XLLM-RoBERTa Base (XLM-
Rgpase). In our training process, we use a learning
rate of 5 x 10~°, train for 30 epochs, and mea-
sure performance based on accuracy for MASSIVE,
F1 for MasakhaNews, and Pearson correlation for
SemRel. Each training takes at most 5 hours using
a single A100 GPU.

5 Results and Discussion

5.1 LINGUALCHEMY Performance

To evaluate the effectiveness of our proposed tech-
nique on unseen languages, we trained mBERT
and XLM-R on the MasakhaNews and Semantic
Relatedness datasets. Our results, displayed in Ta-
ble 2, reveal that LINGUALCHEMY excels across
all languages in the MasakhaNews dataset, includ-
ing those not encountered during the pretraining of
mBERT (*) and XLM-R (*). LINGUALCHEMY fur-
ther demonstrates substantial improvements on the
Semantic Relatedness dataset, showcasing its capa-
bility to adapt to languages with distinct typological
characteristics from the training corpus. We opted
not to compare our method against the baseline
used in the Semantic Relatedness paper because
LaBSE is not zero-shot; it was pretrained with sen-
tence similarity tasks, contrasting our method’s
conditions. Moreover, we excluded the MAD-X
experiment from the MasakhaNews evaluation be-
cause MAD-X’s parameter-efficient approach dif-
fers fundamentally from our method of full fine-
tuning, rendering a direct comparison inapplica-
ble. Collectively, these insights affirm that LIN-
GUALCHEMY robustly generalizes across varied
linguistic attributes, bolstering language model per-
formance on both seen and unseen languages.

Additionally, we applied the same procedure to
MASSIVE dataset. Specifically, we train on 25 lan-
guages and test on 27 different, unseen languages.
Our results are summarized in Table 3. We com-
pared our method with zero-shot generalization,
where the model is fully tuned on seen languages
and then tested on unseen languages (referred to as
Full FT in the Table). Additionally, we explored
AdapterFusion (Pfeiffer et al., 2021a) as another
baseline. AdapterFusion has shown better adapta-
tion to unseen languages than naive zero-shot gen-
eralization. Unfortunately, many language adapters
that we need for AdapterFusion is not available for
XLM-R.

From Table 3, it is shown that LIN-
GUALCHEMY achieves better generalization
for unseen languages. We observed a significant
improvement for mBERT and a modest average
improvement for the stronger XLM-R model.
For mBERT, LINGUALCHEMY can significantly
increase performance in truly unseen languages
of am-ET, km-KH, mn-MN, in which mBERT
has never seen during the pre-training stage
nor fine-tuning. These findings show that LIN-



GUALCHEMY can be useful in truly zero-shot
settings. While LINGUALCHEMY significantly
boosts performance in weaker languages such
as cy-GB or sw-KE, it can occasionally degrade
results in languages with already strong zero-shot
performance, particularly evident in XLM-R where
it tends to flatten results to the 80-82% range.

Despite the variations in performance, the po-
tential of LINGUALCHEMY is particularly clear
in scenarios where zero-shot performance is in-
herently weak. Our hypothesis is that the model
indirectly leverages familiar scripts encountered
during pretraining, aiding its ability to effectively
handle UNK tokens. Advances in models using
byte-level tokenization units theoretically reduce
or eliminate OOV tokens; however, our evaluations
across the MASSIVE, MasakhaNews, and Sem-
Rel2024 datasets, as shown in Table 1, confirm that
UNK tokens have a minimal impact, demonstrating
the robustness of LINGUALCHEMY in such envi-
ronments. For contexts where UNK token rates
are high, the solution might be orthogonal to our
approach, requiring enhancements in base models
or tokenizers that could later be integrated with
LINGUALCHEMY.

Dataset Language UNK %
MASSIVE am-ET 6.79%
km-KH 3.81%
vi-VN 0.35%
Other languages <0.1%
SemRel amh 3.43%
hau 0.60%
ary 0.44%
Other languages <0.4%
MasakhaNews  pcm 0.43%
eng 0.16%
Other languages <0.1%

Table 1: UNK percentages in different datasets, illus-
trating the prevalence of unknown tokens that LIN-
GUALCHEMY successfully manages.

5.2 Effect of Scaling URIEL loss

The classification and URIEL losses are not on
the same scale. Therefore, simply adding both
losses together means that the model will give more
weight to the loss with the higher magnitude. When
observing both the classification and URIEL losses
during the early stages of training, we note that the
classification loss is around 10 times larger than
the URIEL loss. In this part, we explore the effect
of different scaling factors for the URIEL loss.
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Figure 3: Average performance of unseen languages
under various URIEL loss scales.

Constant Scaling We explore consistently scal-
ing up the URIEL loss across various scaling fac-
tors. The results can be seen in Figure 3. It is
important to note that, as we use the scale-invariant
optimizer AdamW, we don’t have to worry about
gradients becoming too large due to extremely large
losses. Generally, we observe that a scaling factor
of 10x slightly outperforms other scaling factors,
and the performance appears to decline with higher
scale factors.

Dynamic and Trainable Scaling One issue with
introducing a scaling factor is the addition of an-
other tunable hyperparameter. Intuitively, we might
aim for a balanced weight between the classifica-
tion and URIEL losses. Therefore, instead of ex-
pensively testing different scaling factors, an adap-
tive scaling factor might be more cost-effective
and beneficial. Here, we explore two ideas: dy-
namic and trainable factors. The results of these
approaches can be seen in Table 4.

Interestingly, these dynamic scale factors do not
significantly outperform a constant factor. In con-
trast, a 10x scaling achieves the best performance
in mBERT, while dynamic scaling barely outper-
forms the 10x scaling in XLM-R. Therefore, in a
limited budget scenario, a suggested 10x scaling
factor should suffice, and one may explore differ-
ent scaling factors given more computational re-
sources.

5.3 Generalization Across Language Family

We investigate LINGUALCHEMY across language
families to further analyze the generalization ca-
pabilities of BERT and XLM-R models. This ex-
periment offers insight into how adaptable LIN-
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Method afr arb hin ind pan ibo*” lin*” lug*” pcm** run*” sha*” tir<” xho* yor*
mBERT mBERT

zero-shotcL {1 0.14ME -023 [ 003 E -008 {029 47.5% [7787.0% [ 21.19% [7769.:6% [82.4% [ 19.7% [ 23.1% [T 14.5% [42.3%

Ours i 024 | o002 K 014 | o006 | 038 73.8%  73.2%  714%  71.8%  71.1%  68.3%  66.8%  64.1%  63.1%
XLM-R XLM-R
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Ours {050 i 103 i 068 i 037 | -0.01 80.6%  79.8%  77.5%  78.0%  77.3%  747% _ 73.5%  71.1% _ 69.6%

Table 2: Performance of LINGUALCHEMY in SemRel (left) and MasakhaNews (right) dataset for unseen languages.
For languages in * and , mBERT and XLMR have never seen the languages during pre-training respectively.

Unseen Language Performance

Method am-ET* cy-GB af-ZA km-KH* sw-KE mn-MN* t-PH kn-IN te-IN sq-AL ur-PK az-AZ ml-IN ms-MY
mBERT
AdapterFusion | 4.6% {7251% {7877% { 7.8% {7222% {727.6% {40.3% | 41.0% |'84.4% |7495% | 47.1% | 638% | 35.8% | 65.8%
Zero-shotCL  § 5.5% {1123.8% {527% § 83% 119.8% 27.2% | 87.5% | 84.2% ! 853% | 44.8% | 42.8% ! 616% | 27.7% | 665%
Oours {58:1% | 30.0% ! 50.2% ! 59.9% ! 54.9% ! 57.4% ! 665% | 67.8% | 71.9% i 70.7% i 69.4% i 69.2% i 67.8% i 67.9%
XLM-R
Zero-shotCL | 786% | 64.4% | 827% | 846% | 581% | 87.5% | 85.9% | 80.5% | 84.6% | 67.9% | 73.6% | 80.2% | 78.9% | 83.0%
Ours {77.0% | 69.0% | 757% i 78.7% | 74.9% | 76.3% | 80.4% | 81.2% i 82.6% | 82.2% i 81.8% ! 82.0% i 81.8% ! 81.8%
ca-ES sl-SL sv-SE ta-IN nl-NL it-IT he-IL pl-PL da-DK nb-NO ro-RO th-TH fa-IR Average
mBERT
AdapterFusion 734% {749.3% (641w 1U41.7% [U700% |708% {612% {1628% 171.8% |688% |587% |180.4% {1594% | 48.0%
Zero-shot CL 734% {47.2% {7601% {849% [1707% {708% | 48.2% {600% [ 717% {685% [ 542% |124.2% [ 56:9% | 45.5%
Ours 68.4% | 68.5% | 68.4% ! 68.6% | 68.6% ! 68.1% i 681% ! 67.4% | 66.4% ! 657% | 64.9% ! 64.4% | 64.4% ! 64.2%
XLM-R
Zero-shot CL 87.4% | 86.3% | 85.4% | 84.4% | 820% | 783% | 88.7% | 613% | 765% | 782% | 82.8% | 733% | 77.2% | 79.0%
ours 82.0% | 822% | 822% | 824% | 82.3% | 821% | 823% | 81.6% | 81.4% | 81.3% | 81.3% | 81.1% | 81.0% | 80.3%

Table 3: Performance of LINGUALCHEMY in MASSIVE dataset for unseen languages. For languages in *, mBERT

has never seen the languages during pre-training.

URIEL scaling mBERT XLM-R
Constant 10x 64.68% 80.32%
ALCHEMYSCALE 6297% 80.43%
ALCHEMYTUNE 63.24% 79.10%

Table 4: Performance Comparison Across Different
URIEL Scaling Methods.

GUALCHEMY is to a variety of linguistic features.
We perform our experiment by splitting the lan-
guages in MASSIVE according to their language
families and train the model on a subset of language
families while testing on the rest, unseen language
families. We explore on including different subset
of language families, as seen in Table 5.

The "others unseen" category includes additional
language families not incorporated in the train-
ing set, serving as an "unseen" testbed. As il-
lustrated in Figure 4, LINGUALCHEMY demon-
strates generalization towards these unseen lan-
guage families. Perhaps unsurprisingly, adding
more languages and, importantly, diversity to the
training data improves generalization performance.
Notably, the inclusion of the Afro-Asiatic lan-
guage group—consisting of languages such as *am-
ET, ’ar-SA, and ’he-IL, each featuring unique
scripts—has significantly enhanced performance

from the second to the third training group iteration.
This improvement underscores LINGUALCHEMY'S
capability to adapt to scripts not presented during
the initial training or fine-tuning phases, such as the
Hebrew script of "he-IL’ and the Ethiopian script
of ’am-ET, further illustrating its robustness in
generalizing across different scripts.

The performance of both models, combined with
LINGUALCHEMY underscores the advantage of in-
cluding a broader spectrum of languages within
training groups for enhanced model generalization.
However, the impact of this diversity is not uniform
across all language families: While some consis-
tently benefit from the expansion of training data,
others do not, indicating that merely increasing the
volume of data from the same family may not nec-
essarily improve performance. This inconsistency
indicates the potential limitations within the mod-
els’ capacity to learn and generalize the linguistic
features specific to certain language families. Con-
sequently, our observation shows that the degree
of generalization varies noticeably among different
families, suggesting that while some may signifi-
cantly profit from these models’ capabilities, others
may require more tailored strategies to gain similar
performance improvement.



Train Group Lang. Family Languages Num. Languages
1 Indo-European  af-ZA, bn-BD, ca-ES, cy-GB, da-DK, de-DE, el-GR, en-US, 26
es-ES, fa-IR, fr-FR, hi-IN, hy-AM, is-IS, it-IT, 1v-LV, nb-NO,
nl-NL, pl-PL, pt-PT, ro-RO, ru-RU, slI-SL, sq-AL, sv-SE, ur-PK
2 Dravidian Train Group 1 + kn-IN, ml-IN, ta-IN, te-IN 30
3 Afro-Asiatic Train Group 2 + am-ET, ar-SA, he-IL 33
4 Sino-Tibetan Train Group 3 + my-MM, zh-CN, zh-TW 36

Unseen Languages

sw-KE, km-KH, vi-VN, id-ID, jv-ID, ms-MY, tI-PH, ja-JP, ka-
GE, ko-KR, mn-MN, th-TH, az-AZ, tr-TR, fi-FI, hu-HU
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Table 5: Language family distribution used in the language family generalization experiment (§5.3)
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Figure 4: Model performance across language families.
Dotted lines indicates language families used in training
in some of the training stages (solid dots for active use—
refer to Table 5), and solid grey lines for families unseen
in all training stages, with variance shown in shading.

5.4 Seen Language Performance

While LINGUALCHEMYconsistently improves per-
formance across unseen languages, we note some
inconsistencies concerning the performance of seen
languages. In MASSIVE, we observe a noticeable
performance drop in seen languages, while in con-
trast, we still see a massive gain in MasakhaNews.
The performance of SemRel seems to be unaffected.
The compiled results can be seen in Table 6.

As MasakhaNews focuses on extremely low-
resource languages, we hypothesize that despite
being exposed during fine-tuning, the performance
remains subpar with standard fine-tuning methods.
Hence, LINGUALCHEMYcan significantly improve
performance. For higher-resource languages, tradi-

tional fine-tuning is a better choice. We are inves-
tigating why LINGUALCHEMYdoes not help with
some languages and how to enhance the perfor-
mance of some seen languages as part of our future
work. Nevertheless, our method still proves benefi-
cial in under-resourced settings where multilingual
models typically perform poorly.

mBERT XLM-R
Method  Zero-Shot CL Ours Zero-Shot CL Ours
MASSIVE
Unseen 45.48% 64.68 % 78.97% 80.43%
Seen 84.52% 67.45% 86.45% 81.05%
Average 64.25% 66.01% 82.56% 80.62%
MasakhaNews
Unseen 65.18% 70.27 % 70.41% 79.24%
Seen 36.35% 69.28 % 40.17% 75.79%
Average 48.96% 69.71% 53.40% 77.30%
SemRel
Unseen 0.02 0.11 0.30 0.32
Seen 0.14 0.12 0.46 0.44
Average 0.09 0.11 0.39 0.38

Table 6: Comparative performance of Zero-Shot and
Ours methods using mBERT and XLLM-R models across
different language scenarios and datasets.

6 Conclusion

We introduced LINGUALCHEMY, a novel approach
that demonstrates strong performance across 27
unseen languages in a 60-class intent classifica-
tion task. Our method hinges on the integration of
linguistic knowledge through the URIEL vectors,
enhancing the language model’s ability to gener-
alize across a diverse set of languages. We also
proposed ALCHEMYSCALE and ALCHEMYTUNE,
which employs a hyperparameter search for the
URIEL scaling factor. This is achieved by two
key strategies: (1) weight-averaging classification
and URIEL loss, and (2) learning to balance the
scale between classification and URIEL loss, thus
ensuring a more adaptable and robust performance.



Limitations

LINGUALCHEMY enhances performance across
many unseen languages in intent classification, yet
it faces limitations. Performance on seen languages
is less than ideal, indicating room for improvement
through methods like weight freezing. Also, bet-
ter generalization appears to reduce accuracy in
seen languages, pointing to a need for balanced
approaches. Currently, the research is limited to
intent classification, and expanding to other NLP
tasks could reveal more about its versatility. More-
over, the choice of URIEL features—syntax, geog-
raphy, language family—is theoretically sound, as
discussed in Chapter 3, but empirical tests with dif-
ferent features might refine the model further. Over-
coming these limitations could greatly improve the
generalizability and effectiveness of multilingual
NLP models.
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A Languages in Dataset

The MASSIVE Dataset, also known as the Multi-
lingual Amazon SLU Resource Package (SLUPR),
offers a comprehensive collection of approximately
one million annotated utterances for various natural
language understanding tasks such as slot-filling,
intent detection, and Virtual Assistant performance
evaluation. It is an extensive dataset that includes
51 languages, 60 intents, 55 slot types, and spans
18 different domains. The dataset is further en-
riched with a substantial amount of English seed
data, comprising 587k training utterances, 104k
development utterances, and 152k test utterances.

Code Name Script Genus ‘ Code Name Script Genus
ar-SA  Arabic Arab  Semitic is-IS Icelandic Latn Germanic
bn-BD  Bengali Beng  Indic ka-GE  Georgian Geor  Kartvelian
el-GR  Greek Grek  Greek km-KH Khmer Khmr  Khmer
en-US  English Latn Germanic Iv-LV Latvian Latn Baltic
es-ES  Spanish Latn Romance ml-IN  Malayalam Mlym Southern Dravidian
fa-IR Persian Arab  Iranian nb-NO  Norwegian Latn Germanic
fr-FR French Latn Romance ro-RO  Romanian  Latn Romance
he-IL Hebrew Hebr  Semitic sI-SI Slovenian  Latn Slavic
hu-HU  Hungarian Latn Ugric ur-PK  Urdu Arab  Indic
hy-AM  Armenian Armn  Armenian zh-CN  Mandarin  Hans  Chinese
id-ID Indonesian Latn Malayo-Sumbawan | zh-TW  Mandarin  Hant  Chinese

Table 7: Statistics and description of the dataset used (Xu et al., 2022). The dataset used is a subset of the MASSIVE

dataset, selecting 25 different seen languages.

Code Name Script  Genus Code Name Script Genus

af-ZA Afrikaans Latn Germanic my-MM  Burmese Mymr Burmese-Lolo
am-ET  Ambharic Ethi Semitic nl-NL Dutch Latn Germanic

az-AZ Azerbaijani Latn Turkic pl-PL Polish Latn Slavic

cy-GB  Welsh Latn Celtic pt-PT Portuguese Latn Romance

da-DK  Danish Latn Germanic ru-RU Russian Cyrl Slavic

de-DE  German Latn Germanic sq-AL Albanian Latn Albanian

fi-FI Finnish Latn Finnic sv-SE Swedish Latn Germanic

hi-IN Hindi Deva  Indic sw-KE  Swabhili Latn Bantoid

ja-JP Japanese Jpan Japanese ta-IN Tamil Taml  Southern Dravidian
kn-IN Kannada Knda  Southern Dravidian | te-IN Telugu Telu South-Central Dravidian
ko-KR  Korean Kore Korean th-TH Thai Thai Kam-Tai

mn-MN Mongolian  Cyrl Mongolic vi-VN Vietnamese Latn Viet-Muong
ms-MY Malay Latn Malayo-Sumbawan

Table 8: Statistics and description of the dataset used (Xu et al., 2022). The dataset used is a subset of the MASSIVE

dataset, selecting 27 different unseen languages.
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B Algorithm

Formally, we define the language representation
alignment in Algorithm 1, where Fy; represents the
features extracted from URIEL, S is the set of sen-
tence representations, H, and NN, are the hidden
states and number of attention-masked tokens for a
sentence x, respectively. The matrix W is used for
the linear projection, and A holds the final aligned
representations. Algorithm 1 outlines the process
for aligning language representations we use in
Figure 2. It leverages the URIEL database for lin-
guistic features, processes sentences through a lan-
guage model (O), and aligns these with mBERT
representations (M ). The algorithm iteratively up-
dates transformation parameters (W and b) through
a training loop to minimize the loss between the
projected mBERT representations and the target
sentence representations in set .S, thus achieving
aligned language representations (A).

Algorithm 1 Language Representation and Align-
ment Process
Require: Dataset D, URIEL database U, Lan-
guage Model ©, mBERT representations M
Ensure: Aligned Language Representations A
Fy +— EXTRACTFEATURES(U)
S« {}
for each sentence x in D do
H, <+ GETLASTHIDDENSTATES(z, ©)
N, < COUNTATTENTIONMASKED(x)
R, + 75”%(5]‘”)
S+ SU{R,}
end for
W, b < INITIALIZEPARAMETERS()
for each training epoch do
Py« (W x S ) +b
loss <+ COMPUTELOSS(Py, Fiy)
W,b < UPDATEPARAMETERSWITHCON-
STRAINT(W, b, loss)
end for
A {}
for each sentence representation s in S do
Ap (W xs)+b
A+ AU{A,}
end for

13



C Language Family Experiment

Tables 9 and 10 provide a comprehensive analysis
of language family performance across different
training groups. These tables compare the accu-
racy percentages of the Multilingual BERT and
XLM-RoBERTa models, respectively. The results
displayed in the tables elucidate the models’ capa-
bilities in generalizing from the training data to un-
seen languages. A clear trend that can be observed
is the improvement in performance as the training
groups progress from 1 to 4, which suggests that
the models benefit from exposure to a wider variety
of language families during training. The *Average’
row at the bottom of each table indicates the mean
accuracy across all language families, providing an
insight into the overall performance enhancement
achieved by each model with incremental training
diversity.

Language Family Train Group1 Train Group2 Train Group3 Train Group 4

Afro-Asiatic 52.82% 52.93% 61.26% 61.00%
Atlantic-Congo 65.71% 68.08% 70.62% 71.79%
Austroasiatic 64.77% 66.78% 69.72% 70.16%
Austronesian 66.88% 68.66% 72.06% 72.19%
Dravidian 64.74% 67.97% 70.93% 71.41%
Indo-European 67.50% 68.61% 72.53% 72.95%
Japonic 72.11% 71.98% 75.80% 75.67%
Kartvelian 68.91% 68.89% 72.46% 72.32%
Koreanic 64.80% 66.46% 70.04% 69.91%
Mongolic-Khitan 63.11% 66.44% 69.71% 69.59%
Sino-Tibetan 62.65% 66.29% 68.79% 70.33%
Tai-Kadai 63.52% 67.89% 70.23% 71.34%
Turkic 54.69% 56.91% 63.54% 64.05%
Uralic 71.49% 71.27% 75.33% 75.15%
Average 65.54% 67.07% 71.04% 71.43%

Table 9: Multilingual BERT Performance of Language Families Across Training Groups

Language Family Train Group1 Train Group2 Train Group3 Train Group 4

Afro-Asiatic 75.74% 76.23% 85.56% 85.39%
Atlantic-Congo 70.86% 72.38% 83.24% 82.73%
Austroasiatic 74.85% 76.04% 83.91% 83.59%
Austronesian 78.94% 79.83% 84.77% 84.69%
Dravidian 81.49% 82.20% 85.41% 85.43%
Indo-European 80.31% 81.21% 83.26% 83.47%
Japonic 80.21% 81.36% 82.67% 83.15%
Kartvelian 80.40% 81.53% 82.79% 83.27%
Koreanic 79.74% 80.91% 82.14% 82.61%
Mongolic-Khitan 79.54% 81.00% 82.20% 82.65%
Sino-Tibetan 79.25% 81.00% 82.14% 82.58%
Tai-Kadai 79.08% 80.81% 81.90% 82.35%
Turkic 79.20% 80.90% 81.96% 82.39%
Uralic 79.24% 80.91% 81.92% 82.47%
Average 79.45% 80.48% 83.44% 83.62%

Table 10: XLM-RoBERTa Performance of Language Families Across Training Groups
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D Appendix: Language Identification
(LID) Experiments

This section presents the results of comprehen-
sive language identification experiments performed
across a variety of popular language detection mod-
els. The evaluations are detailed in two distinct
tables:

Table 11, displays the performance of tradi-
tional language identification models such as LID-
Fasttext, CLD3, CLD?2, langid, and LangDetect
across multiple languages within the MASSIVE
dataset. These results illustrate the effectiveness of
each model in correctly identifying the language of
given text samples.

Table 12, focuses on the accuracy of multilin-
gual language models, specifically XLLM-R and
mBERT, alongside adaptations using the MAD-X
framework with embeddings from FastText and
CLD3. This evaluation aims to show how these
advanced models perform in the task of language
identification, especially in comparison to more
specialized LID tools.
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Language | LID-Fasttext ‘ CLD3 ‘ CLD2 ‘ langid ‘ LangDetect

ar-SA 94.25 86.45 | 81.58 | 91.78 94.13
bn-BD 99.72 97.52 | 89.57 | 96.93 99.76
de-DE 97.70 88.59 | 89.73 | 92.83 82.54
el-GR 99.68 96.91 | 99.77 | 99.84 99.64
en-US 98.61 79.44 | 9343 | 93.96 87.82
es-ES 96.20 7824 | 73.14 | 86.87 86.55
fi-FI 97.70 9291 | 92.90 | 92.08 96.09
fr-FR 98.35 87.53 | 85.23 | 94.77 94.80
hi-IN 98.44 88.21 | 97.83 | 87.94 93.54
hu-HU 98.54 9224 | 93.89 | 95.34 96.71
hy-AM 99.90 98.37 | 99.92 | 99.17 0.00
id-ID 87.20 65.86 | 73.54 | 72.68 89.32
is-IS 89.93 92.64 | 90.88 | 92.97 0.00
ja-TP 99.41 96.63 | 99.04 | 99.11 96.23
jv-ID 24.75 68.10 | 0.00 | 22.04 0.00
ka-GE 99.56 98.49 | 99.95 | 99.65 0.00
ko-KR 99.50 98.47 | 99.03 | 99.96 99.36
Iv-LV 90.73 90.06 | 95.25 | 94.33 97.32
my-MM 99.93 96.90 | 99.97 | 0.00 0.00
pt-PT 92.17 8342 | 7739 | 77.74 84.05
ru-RU 99.27 84.48 | 82.35 | 83.79 91.32
Vi-VN 98.41 95.85 | 97.26 | 98.62 99.53
zh-CN 97.55 98.07 | 84.33 | 99.64 0.00
zh-TW 95.76 94.19 | 0.03 | 99.31 0.00
Average | 9389 | 89.57 | 83.17 | 8631 |  66.20

Table 11: Per language results of language identification evaluation in MASSIVE.

Language | XLMR | mBERT | MAD-X w}v;i‘l::::[‘fx " x%‘zg;
ar-SA 7932 | 7835 | 7572 71.92 67.79
bn-BD 8325 | 8023 | 78.61 76.36 74.95
de-DE 8554 | 8359 | 8181 79.49 76.90
el-GR 8507 | 8174 | 80.93 79.56 78.51
en-US 88.16 | 8645 | 85.78 83.89 83.15
es-ES 86.18 | 8497 | 8258 80.97 76.43
fi-FI 8524 | 8255 | 8255 79.86 77.07
fr-FR 8648 | 86.11 | 83.69 82.35 80.03
hi-IN 84.63 | 8238 | 80.73 78.14 72.73
hu-HU 85.68 | 8265 | 81.57 80.13 76.40
hy-AM 8423 | 8120 | 8043 78.78 7791
id-ID 86.52 | 84.67 | 8201 76.03 69.30
is-IS 84.16 | 8221 | 80.40 71.49 73.57
ja-JP 8578 | 8470 | 8322 82.04 81.27
jv-ID 8120 | 8157 | 7858 45.70 59.68
ka-GE 79.19 | 7525 | 73.23 70.85 70.17
ko-KR 8551 | 8430 | 8299 81.14 80.56
Iv-LV 8473 | 8218 | 82.08 74.58 74.95
my-MM | 8218 | 7801 | 7848 76.36 74.98
pt-PT 86.35 | 8527 | 83.59 80.56 7177
ru-RU 86.65 | 83.96 | 83.52 81.74 75.45
vi-VN 86.48 | 8332 | 8252 79.72 78.61
zh-CN 8541 | 8524 | 8423 53.09 52.69
zh-TW 83.73 | 8255 | 8127 52.79 52.45
Average | 84.65 | 8264 | 8127 | 7490 | 7347

Table 12: Per language accuracy score of multilingual language models in MASSIVE.
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