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Abstract

Designing ecological systems, whether for conservation planning, microbial com-
munities, or tissue architectures, requires anticipating how populations will evolve.
Yet most existing tools optimize indirect measures that do not reliably predict
long-term evolutionary outcomes, limiting their usefulness across domains. We
introduce a new approach that treats ecological design as a graph generation prob-
lem grounded in evolutionary theory. In this framework, fragmented ecosystems or
connectivity networks of interacting individuals in the population are represented
as graphs, and we guide their design using two intuitive controls, based on prior
theoretical work: amplification, the likelihood that a new trait will spread, and ac-
celeration, the speed at which this happens. To train our model, we create a dataset
of 12,173 synthetic networks, each evaluated through evolutionary simulations. We
then develop a generative model that proposes designs and a “compile-to-edits”
step that translates them into practical, budgeted modifications, while ensuring
the network remains connected. Our method exhibits calibrated target to realized
control for both factors, uncovers clear structural patterns, produces fixation curves
consistent with targets across selection strengths, and outperforms baselines when
applied to a real conservation case in the Eldorado National Forest. This work
delivers the first end-to-end, evolution-aware generative design tool, advancing
principled and budget-conscious ecological interventions.

1 Introduction

As climate, emerging diseases, and human pressures reshape ecosystems, ecological design offers a
way to respond. By shaping environments to foster resilience, biodiversity, and sustainability, we
can guide how living systems adapt, respond to change and steer them toward desired outcomes.
Applications range from constructing habitat corridors that reconnect fragmented landscapes [1–3],
to engineering microbial communities that resist invasion [4–6], to modeling tissue architectures that
inform cancer treatment strategies [7–9].

Across these biological scales, a consistent theme emerges: population structure and spatial ar-
rangement matter [10–12]. Who interacts with whom, how genes or information flow, and how
space constrains these interactions can all tip the balance of ecological and evolutionary outcomes
[13–16]. To capture these dynamics, researchers increasingly use networks as mathematical proxies
for interaction, reproduction, and replacement [10, 17]. Network-based models have enabled major
advances in recent years in understanding how heterogeneous structures shape eco-evolutionary
outcomes such as mutant spread, population persistence, and community stability [18–20].

Networks make for a natural and versatile mathematical representation of heterogeneous population
structure, because they allow continuous tuning of population complexity. A fully connected network
represents a well-mixed population, while regular lattices can model local interactions, and systematic
addition or deletion of edges creates a spectrum of intermediate structures. Recent studies have
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shown that the evolutionary role of such structures can be summarized by two key properties: the
amplification factor, which describes how structure alters the probability that a new mutation spreads
relative to a well-mixed population [12, 19] and the acceleration factor, which describes how structure
alters the time it takes for spread and fixation to occur [12, 18].

Despite these advances, ecological design still lacks practical tools that harness these insights to
tailor structure toward specific eco-evolutionary outcomes. Current workflows typically optimize
surrogate connectivity metrics (e.g., least-cost paths or circuit theory) [21–24], or coverage targets
wrapped in budgeted optimizers [25–28]. While such approaches produce plausible corridors or
reserve networks, they target proxies rather than evolutionary dynamics themselves. This often makes
solutions brittle across species, landscapes, or movement models, and limits fine-grained control over
network topology. The challenge is further amplified by the multi-objective and nonlinear nature
of evolutionary control: a structure may increase the chance a beneficial mutation spreads, while
simultaneously slowing the rate at which it does so [12, 29]. These trade-offs are difficult to capture
with surrogate metrics and costly to simulate directly.

Together, these gaps motivate a generative approach, one that learns to condition on evolutionary tar-
gets and produces actionable designs that generalize beyond any single structural property. Advances
in graph representation learning and generative modeling have opened new possibilities for design
problems where structure is the key lever. Graph neural networks (GNNs) now capture higher-order
motifs and dynamics beyond handcrafted indices [30, 31], while diffusion-based generative models
have set new benchmarks for controllable generation in molecules, proteins, and other structured
domains [32–34]. The latent graph diffusion model (LGD) [35] in particular combines the strengths
of autoencoders and diffusion processes, enabling flexible, conditional generation of graphs with
desired structural properties. Yet despite this rapid progress, such models have not been applied to
ecological design. This gap creates a unique opportunity: to directly learn mappings from evolu-
tionary objectives to actionable network structures that can inform conservation and sustainability
interventions.

In this work, we reframe ecological design as a conditional graph generation problem grounded in
evolutionary graph theory. Specifically, we make the following contributions:

1. Construct a dataset of 12173 graphs across diverse families and ran Moran birth–death
simulations to obtain labels of amplification and acceleration factors.

2. Adapt the latent graph diffusion (LGD) model to our dataset, enabling conditional generation
of graphs given target amplification and acceleration.

3. Introduce a post-processing pipeline that translates generated graphs into actionable edit
plans under ecological constraints (edge budgets, connectivity preservation).

4. Demonstrate the framework in a corridor-design case study for the Eldorado National Forest,
where learned generative control produces strategies that outperform baselines.

Together, these contributions establish the first end-to-end, evolution-aware generative design frame-
work, a principled, data-driven approach that links evolutionary theory to practical, budget-conscious
interventions for ecological systems.

2 Methods

2.1 Dataset Curation

We construct a synthetic dataset of 12173 connected graphs to span diverse topologies relevant
to evolutionary dynamics. All graphs have n=100 nodes with target average degree of four. We
sample from multiple families and mixtures: Erdős–Rényi (ER), Watts–Strogatz (WS), preferential
attachment (PA), k-regular, bipartite, and spatial random geometric graphs (RGG). Family param-
eters are drawn from broad ranges to diversify clustering, degree heterogeneity, path lengths, and
modularity. Graphs are re-sampled until connected (cap 200 attempts) and stored as edgelists. We
split train/validation/test by graph instance (80%/20%/20%). Distribution of λ and α for this dataset
is visualized in Fig. 6 in Appendix.
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Figure 1: Overview of conditional graph generation for ecological design. (A) Evolutionary simu-
lations on synthetic graphs (with 100 nodes) provide amplification (α) and acceleration (λ) labels.
(B) Latent diffusion model projects graphs into latent space and learns to predict noise during the
denoising process. Model is conditioned on the α and λ labels obtained through simulations. (C)
Conditional sampling produces candidate graphs matching targets. Design layer chooses a single net-
work based on the optimization goal and compiles a feasible edge edit plan under budget constraints.

2.2 Evolutionary Simulation

We simulate the Moran birth–death process on each graph G starting from a single mutant with
fitness 1+s invading N−1 wild types of fitness 1, as is common in population genetic analyses. Let
ΦG(s) denote the fixation probability on G and TG

fix(s) the conditional mean time to fixation. The
well–mixed reference (complete graph) is denoted Φwm(s) and Twm

fix (s).

Amplification α. Following the definition in [10, 12], the amplification factor α can be computed
by solving

ΦG(s) =
1− (1 + s)−α

1− (1 + s)−αN
, (well-mixed is recovered by α=1). (1)

Given an estimate of ΦG(s), we solve (1) using s = 0.05. This value is big enough such that the
difference in fixation probability compared to the well-mixed model is sufficiently large, while also
small enough to be in the constant regime.

For small s and large N , a first-order expansion yields

Φwm(s) =
1

N
+

N − 1

2N
s+O(s2), (2)

ΦG(s) =
1

N
+

N − 1

2N
αs+O(s2). (3)

Hence

α =
ΦG(s)− 1

N

Φwm(s)− 1
N

+ O(s), (4)

and, when N is large and s≫ 1/N so that the 1/N term is negligible,

α ≈ ΦG(s)

Φwm(s)
. (5)

For efficiency of model training, we estimate α using Eq. (5) in all of our experiments.
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Acceleration λ. Acceleration (deceleration) compares fixation times on G to a well–mixed popula-
tion:

λ =

[
TWM

fix (s)

TG
fix(s)

]
. (6)

For each graph G, we run 20000 Monte-Carlo simulations with initial mutants placed uniformly at
random. We record the states at fixation or extinction and calculate α and λ using the probability and
time of fixation.

2.3 Conditional Latent Graph Diffusion

We use Latent Graph Diffusion (LGD) from [35] as our conditional generative backbone. LGD
pretrains a encoder to project graphs into a continuous latent space H = (Z,W ), trains a diffusion
model in this latent space, and decodes back to discrete graphs. Controllable generation is enabled via
cross-attention conditioning on node and edge embeddings. More details about training and inference
can be found in Appendix 6.

Conditioning on evolutionary targets. Let y = (α∗, λ∗) be the desired amplification/acceleration
targets. We follow LGD’s conditioning interface: a small MLP embeds y into τ(y), which is
injected into the denoiser via cross-attention over node/edge latents. Training minimizes the standard
conditional latent diffusion loss

Ldiff = EH0,t,ϵ

∥∥ϵθ(Ht, t, τ(y))− ϵ
∥∥2
2
,

with Ht obtained by the forward noising process in latent space. At inference, we sample with DDPM
in latent space conditioned on y and decode to graphs.

Encoders used with LGD. Following [35], we pair LGD with a Graph Transformer Encoder [36]
to train: (i) an unsupervised structure encoder pretrained by masked reconstruction of node labels
and edge existence, used to initialize the latent space, and (ii) a regression encoder trained to predict
(α, λ) from a graph (graph-level head only). The structure encoder is also used for label embedding
during joint fine-tuning with the diffusion model. The regression encoder is frozen and used during
diffusion training for label monitoring, and its loss is solely the graph-level prediction error. The
diffusion stage uses only the noise-prediction objective above with no label regression loss added.

2.4 Design Layer: Edge Edits Optimization

Given a baseline network G0 = (V,E0) and an LGD proposal G̃ = (V, Ẽ) conditioned on (α∗, λ∗),
we compute an edge-addition plan that moves G0 toward G̃ subject to a budget constraint. In Fig.5
we use edge additions only; no node edits or deletions are performed.

Feasibility constraint. Let Be be the edge-edit budget. We also preserve a native connectivity score
C(·) at or above baseline by reporting C(G) along the edit path and enforce C(G) ≥ C(G0) at each
step.

Objective and scoring. We take as candidates the proposed additions present in G̃ but absent in
G0 (C = Ẽ \ E0). Our optimization objective depends on the goal of our graph design. In the
case study of corridor construction in fragmented habitats, the goal is to maximize global efficiency
(connectivity) while maintaining λ and α. We therefore rank (u, v) ∈ C by the predicted gain in
connectivity:

s(u, v) = Ĉ
(
G0 ∪ {(u, v)}

)
− Ĉ(G0). (7)

Ties are broken by larger degree sum ku+kv . Scores are recomputed after each accepted edit (greedy
re-evaluation).

Greedy edit selection. Initialize G←G0 and ∆E+←∅. Iterate:

1. recompute s(·) on the current G.

2. choose (u, v)⋆ = argmax(u,v)∈C\E(G) s(u, v).

3. if |∆E+| < Be and adding (u, v)⋆ keeps C(·) at or above baseline, accept the edit.
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Figure 2: LGD model provides accurate and robust topological control. (Left) Target vs. realized
amplification factor (α). We report the slope for the OLS regression, 95% confidence interval, binned
mean of the α values, as well as the identity line of y = x. (Right) Target vs. realized acceleration
factor (λ).

Stop when |∆E+| = Be or C is exhausted. The output is an ordered edit list ∆E+ =
{(u, v)1, . . . , (u, v)m} with m ≤ Be.

3 Experiments

We evaluate the conditional generator on held-out graphs and a grid of targets (α∗, λ∗). For each
target we sample graphs from the model, estimate realized (α̂, λ̂) via Moran birth–death (Section 2.2),
and compute basic structural descriptors (transitivity, assortativity). For plotting, we include graphs
for which the realized labels fall within ±0.1 of the provided targets. Calibration is summarized by
OLS slope and mean absolute error (MAE) of target to realized mappings with bootstrap confidence
intervals. We also report a success-within-tolerance rate on a coarse (α, λ) grid (tolerances and
simulation budgets in the appendix). Our aim is to assess whether a single conditional model learns a
generalizable mapping from evolutionary properties to graph topology.

Controllability and calibration. We first evaluate the controllability of the model by looking at
the correlation between target labels and realized graph attributes. Results from Fig. 2 summarizes
controllability for both evolutionary factors. Target vs. realized amplification (panel A) closely
follows the identity line, with an OLS slope of 0.956 (95% CI [0.94, 0.97]). Acceleration shows
a slope of 1.008 (95% CI [0.99, 1.02]) in Fig. 2B which also follows the identity line. We also
investigated the range of (α, λ) that the conditional model can successfully generate. Supplementary
Fig. 7A shows aggregated success-within-tolerance rate over the (α, λ) grid, indicating a broad band
of targets for which the generator repeatedly attains the requested outcomes. Notably, the model
generates out-of-distribution for α in [0.65, 0.8] (Fig. 6 left, Fig. 7A). Supplementary Fig. 7B shows
that at fixed targets of α∗ and λ∗, the model produces diverse solutions of networks while maintaining
accuracy of the labels. Together these results show that the conditioning variables act as reliable dials
for evolutionary behavior across heterogeneous graph topologies.

Higher-order motifs. We next inspect how graph structure changes as we sweep one target while
holding the other fixed (Figure 3). At fixed amplification, increasing λ (acceleration) yields visibly
different graph examples (Fig. 3A). As acceleration increases, networks transition from sparse and
diffused to increasingly clustered structures. Quantitatively, transitivity rises with λ and exhibits
a clear regime change in the mid–λ range (Fig. 3C). Transitivity is the ratio of “closed triplets”
(triangles) to all possible triplets in the graph. Higher value of transitivity indicates higher ratio of
triangles and more clustered networks. At fixed λ, increasing amplification shifts structure toward
hub–leaf organization (Fig. 3B). This trend is reflected in Fig. 3D, where assortativity decreases
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Figure 3: Conditional generation reveals correlation between evolutionary properties and higher
order graph motifs. (A) Conditional generation with fixed amplification (α∗ = 1.17) and increasing
λ. (B) Conditional generation with fixed acceleration (λ∗ = 0.9) and increasing amplification (α).
(C) Transitivity of generated graphs (fixed α∗ = 1.17) as a function of realized λ. (D) Assortativity
of generated graphs (fixed λ∗ = 0.9) as a function of realized α.

steadily with α. These relationships connect the two evolutionary controls to familiar topological
motifs—clustering for acceleration and disassortative hub structure for amplification.

Robustness. Do the generated graphs realize the expected dynamics across selection strengths?
Figure 4 answers this by plotting probability and time to fixation across s for representative graphs.
With fixed target λ∗ = 0.63, we selected three representative graphs ordered by low/medium/high α∗.
These graphs produce cleanly separated fixation-probability curves across a grid of s (Fig. 4A),
with higher α yielding higher probability. With fixed target α∗ = 1.29, graphs ordered by
low/medium/high λ produce consistently ordered fixation-time curves (Fig. 4B), with larger λ
yielding shorter times. The monotone separations across the entire s sweep indicate that the condi-
tional targets govern dynamics beyond a single s point and supports the ability of the conditional
model to be generalized beyond single dataset with fixed selection coefficients.

4 Case study: Corridor Design for Eldorado National Forest

Data. We use the publicly available Eldorado National Forest connectivity dataset hosted on Dryad
[37]. The release provides graph-structured connectivity inputs for a parcel network in Eldorado
National Forest (California, USA).

Network construction and subsampling. Using custom scripts, we convert the Dryad .inc
connectivity files into undirected NetworkX graphs. From the parsed network, we work on the largest
connected component and extract a connected k=100-node induced subgraph using a two-step “seed
+ snowball” procedure: (i) choose a seed vertex in the largest component by centrality, and (ii)
perform a BFS “snowball” expansion from the seed until k nodes are collected, which guarantees
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Figure 4: Robustness of simulation results across generated networks. (A) Fixation probability as a
function of selection coefficient s for three generated graphs with low, medium, and high amplification
(α). Conditioning labels are marked with ∗ while realized labels are not. Target λ is fixed at 0.63. (B)
Time to fixation as a function of s for three generated graphs with low, medium, and high λ. Target α
is fixed at 1.29.

Figure 5: Design under synthetic feasibility constraints. (A) Trade-off between amplification and
native connectivity under edge-edit budgets. The goal is to increase connectivity (higher x value)
while maintaining the target amplification (higher y value). Comparison shown between our method
(green triangles), degree regularization (blue circles), and the original graph (purple square). (B)
Example graph edits proposed by our method for edge-edit budgets of 20. (C) Edits proposed from
baseline degree regularization method. Added edges are highlighted.
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connectivity, then take the induced subgraph on those nodes. This subgraph is the Original network
G0 for subsequent analysis.

Baseline evolutionary labels. On G0 we run Moran birth–death simulations (Section 2.2) to
estimate amplification and acceleration: α̂(G0) and λ̂(G0). These values serve as the case-study
targets (α∗, λ∗) for conditional generation and for subsequent filtering.

Conditional sampling and filtering. We condition LGD on (α∗, λ∗) and sample candidate graphs.
Each candidate G̃ is simulated to obtain realized (α̂, λ̂). We retain only candidates that (i) match
the status-quo labels within tolerance |α̂ − α∗| ≤ δα and |λ̂ − λ∗| ≤ δλ (δα = δλ = 0.1), and (ii)
improve the native connectivity score C(·) (global efficiency) relative to G0: C(G̃) ≥ C(G0).

Compile to edge edits. From a filtered candidate G̃ we compute a feasible edge-addition plan
that moves G0 toward G̃ while preserving connectivity (Section 2.4). We evaluate budgets Be ∈
{5, 10, 20, 30, 40, 50, 60, 70, 80, 90}. The degree-regularization heuristic serves as a baseline for
comparison.

Baseline: degree regularization. We compare against a baseline degree-regularization heuristic that
prioritizes connecting low-degree nodes. This approach is reasonable as prioritizing least connected
nodes is an efficient way of increasing overall connectivity. Specifically, for admissible non-edges
(u, v), we rank by

r(u, v) = (degG(u) + degG(v)) +
∣∣degG(u)− degG(v)

∣∣ (ascending),

and add up to Be edges greedily while maintaining C(G) ≥ C(G0).

Results. Applying the compile–to–edits procedure on the Eldorado status-quo graph, we evaluate
edge-addition budgets Be ∈ {5, 10, 20, 30, 40, 50, 60, 70, 80, 90} and report the negative absolute
difference of amplification versus native connectivity (Fig. 5A). Across the full budget range, our
compiled plans form a higher curve in the (amplification, connectivity) plane than the degree-
regularization baseline, and the connectivity of edited graphs remain above the original network.
This shows that our model is able to suggest feasible edge edits that improves native connectivity
while maintaining the target evolutionary properties. Visualizations in Fig. 5B shows representative
edit sets when budget is set to 20. Our plan selects a small set of additions concentrated around
bridging connectors, whereas degree-regularization distributes additions along low-degree periphery.
Together, these results show that conditional targets can be operationalized as concrete edits that
respect the connectivity safeguard while achieving design goals for evolutionary properties under
explicit budgets.

5 Conclusion and Future Work

We introduced a general, controllable graph-generation framework that turns evolutionary graph
theory into an actionable design tool. Conceptually, the novelty is twofold: (i) we use theory-
grounded control variables as the conditioning dial of a modern latent diffusion backbone, and (ii) we
complete the loop from targets to concrete edit plans, enabling budget-aware interventions on real
networks. This closes a long-standing gap between analytical insights about amplifiers/suppressors
and the practical question of “what edges should we add?” Beyond the positive empirical results, the
framework matters because it is family-agnostic (not tied to a single graph class), links interpretable
structural motifs to evolutionary outcomes, and compiles directly to decisions conservation planners
can execute. The same recipe of conditioning on outcome, generating topology, and compiling to
edits extends naturally to other structured systems (e.g., invasion management, microbial community,
tissue architecture modeling in cancer and AMR). By coupling learned generative control with
explicit feasibility constraints, the approach provides a principled pathway for designing ecological
networks that are grounded in evolutionary principles and plausible for execution.

Limitations and future work. Our study relies on synthetic training data with a limited range of
amplification and acceleration factors. Although the model has demonstrated the ability to generate
out-of-distribution to a certain extent, it would still be beneficial to incorporate real-life networks into
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the training set to augment the model generalizability. Additionally, the model assumes fixed graph
size (n=100) which constrains the application. A natural next step would be to incorporate masking
to allow for flexible graph size, and also improve the scalability of the model architecture to allow for
generation of larger graphs. Finally, the case study evaluates a connectivity safeguard rather than full
landscape costs or policy constraints. Moving forward, our goal is to integrate mapped landscapes
with species distribution models, resistance surfaces, and economic/policy costs to allow for more
realistic modeling of corridor design.
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Figure 6: Distribution of λ and α in training data labeled by graph family. Graph family includes:
Barabási—Albert (BA), Erdős–Rényi (ER), Watts–Strogatz (WS), preferential attachment (PA),
k-regular (Regular 3,4,6,10), star graph (Star) bipartite, and spatial random geometric graphs (Geo,
Geosplit). (Left) Distribution of λ in the synthetic graph dataset used for training and validation. λ
ranges from 0 to 1. (Right) Distribution of α in the synthetic graph dataset used for training and
validation. α ranges from 0.81 to 1.95.

Figure 7: LGD model provides accurate and robust topological control. (A) Heatmap of success-
within-tolerance rates across the (α, λ) grid. High success regions show that conditioning generalizes
across both in-distribution and out-of-distribution graph families. (B) Mean pairwise 1-WL feature
distance among graphs sampled at the same (α, λ) target. Our method (green) produces diverse
solutions, while degree-preserving collapsed baselines (blue) show lower diversity. Lines connect
paired runs.

Appendix

6 Model Architectures and Training

We trained a latent graph diffusion model using edge-enhanced graph transformers as the both the
autoencoder, the regression head, and the denoising network (as described in [35]). The specific
dimensions of the model is described below

Unsupervised structure encoder. We use a graph transformer structure encoder to encode graphs
into the latent space. Node and edge attributes are first linearly embedded to 64-d features (LinearN-
ode/LinearEdge encoders), and a virtual node/edge is added to facilitate global mixing [35]. The
transformer has 3 layers with 4 attention heads per layer. Each layer uses a 64-d hidden size and
produces a 32-d graph embedding at the output. The encoder and decoder are jointly trained to mini-
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mize reconstruction loss of node and edge labels. During pretrainig of the autoencoder, conditioning
labels at graph-level are not used. During joint training with the diffusion denoising network, the
conditioning labels α and λ are embedded through a 2-layer MLP into a 64-d prefix that is additively
fused to all node and edge embeddings with the token streams. We disable positional encodings for
this process. We mask the node and edge labels with 30% probability during training. Attention
uses full self-attention with edge enhancement and learned edge outputs (Oe, norme). Feed-forward
edge updates are enabled, and a light MPNN block (ReLU, dropout 0.2) projects and updates edges
between transformer blocks. We use batch normalization and residual connections. Dropout is 0.2 on
activations and 0.5 on attention scores. We use mean pooling for tokens and additive pooling at the
graph-level. The model is trained with L1 loss, dot-product edge decoding, batch size 140, AdamW
(weight decay 10−5), base lr 10−3, cosine schedule with 50 warmup epochs, max 1000 epochs.

Regression encoder. We use the exact same backbone as the unsupervised structure encoder for
predicting the conditioning labels (λ and α) from the graph space. The regression model is trained
with L1 loss on the conditioning labels. The batch size is 140, base lr is 5×10−4, and max 1000
epochs.

Conditional diffusion. We train a latent diffusion model with encoder output width 32 and denoiser
(time-conditioned transformer) hidden size 64, 2 layers, 4 heads, temporal embedding 128, condition
embedding 64, and cross-attention conditioning on y = (α∗, λ∗). We use AdamW (base lr 10−3),
cosine schedule with 50 warmup epochs, gradient-norm clipping, and batch size 84. Evaluation runs
every 50 epochs with eval batch size 300; checkpoints are saved periodically and on best validation.

Losses. (i) Unsupervised encoder: masked node-label prediction and edge-existence prediction (no
edge-label prediction), and graph-level reconstruction loss. (ii) Regression encoder: graph-level label
regression loss only (accuracy of (α, λ) prediction via ℓ1). (iii) Diffusion: latent noise-prediction
objective Ldiff as above; no label regression loss term.

Compute resources: For this study, each experiment was run on a single NVIDIA GeForce RTX 5090
(32GB RAM) and AMD Ryzen Threadripper 7960X 24-Core, 48-Thread CPU @ 4.802.90GHz.
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