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Abstract
Motivation: In the field of drug discovery, accurately and effectively predicting the binding affinity between proteins and ligands is crucial for 
drug screening and optimization. However, current research primarily utilizes representations based on sequence or structure to predict pro
tein–ligand binding affinity, with relatively less study on protein surface information, which is crucial for protein–ligand interactions. Moreover, 
when dealing with multimodal information of proteins, traditional approaches typically concatenate features from different modalities in a 
straightforward manner without considering the heterogeneity among them, which results in an inability to effectively exploit the complemen
tary between modalities.
Results: We introduce a novel multimodal feature extraction (MFE) framework that, for the first time, incorporates information from protein sur
faces, 3D structures, and sequences, and uses cross-attention mechanism for feature alignment between different modalities. Experimental 
results show that our method achieves state-of-the-art performance in predicting protein–ligand binding affinity. Furthermore, we conduct abla
tion studies that demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within 
the framework.
Availability and implementation: The source code and data are available at https://github.com/Sultans0fSwing/MFE.

1 Introduction
As a crucial stage in drug discovery, predicting protein–ligand 
binding affinity has been intensively studied for a long time 
(Sousa et al. 2006, Jacob and Vert 2008), which is of great 
importance for efficient and accurate drug screening (Li et al. 
2021). Traditional computer-aided drug discovery tools use 
scoring functions (SF) to estimate protein–ligand binding af
finity roughly (Jacob and Vert 2008) but with lower accu
racy. Molecular dynamics simulation methods can provide 
more accurate estimates of binding affinity (Deng and Roux 
2009), but are often costly and time-consuming.

With the significant development of computing technology 
and the increasing abundance of large-scale biological data, 
deep learning-based methods have shown great potential in 
the field of protein–ligand binding affinity prediction. For ex
ample, methods such as DeepDTA ( €Ozt€urk et al. 2018), 
DeepDTAF (Wang et al. 2021a), and DeepAffinity (Karimi 
et al. 2019) use sequence information of proteins and ligands 
to predict the binding affinity between them. However, exist
ing sequence-based methods lack 3D structure information, 
prompting researchers to leverage 3D grid data representa
tions of proteins’ geometric structures and use 3D 
Convolutional Neural Networks (3D CNNs) for affinity 

prediction to learn the geometric features of proteins (Ragoza 
et al. 2017, Jim�enez et al. 2018). With the recent development 
of Graph Neural Networks (GNNs), the advantages of using 
graphs to represent proteins and ligands are gradually being 
highlighted in deep learning-based models (Lim et al. 2021), 
such as graph convolutional network (GCN) (Townshend 
et al. 2020), graph attention network (GAT) (Yuan et al. 
2021) and graph isomorphism network (GIN) (Xu et al. 
2019). But directly applying GNNs to process the 3D struc
tures of proteins falls short in adequately capturing their geo
metric information. Therefore, GBPNet (Aykent and Xia 
2022) incorporates direction vectors as node and edge fea
tures and uses an SO(3) equivariant message passing network 
to learn the proteins’ geometric representations for predicting 
protein–ligand binding affinity.

However, these methods do not take into account the im
portant role that molecular surface information plays in pro
tein–ligand interactions. Molecular surface, a high-level 
representation of protein structure, exhibits patterns of chem
ical and geometric features that serve as fingerprints for the 
protein’s modes of interaction with other biomolecules 
(Gainza et al. 2020). Therefore, some studies begin to use 
protein surface information to predict protein–ligand binding 
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affinity. For example, MaSIF (Gainza et al. 2020) pioneers 
surface-based geometric deep learning to solve protein inter
action related tasks. It computes the geometric and chemical 
features of each vertex in the surface mesh and utilizes geo
metric deep neural networks to learn interaction fingerprints 
in protein molecular surfaces. In HOLOPROT (Somnath 
et al. 2021), researchers use the triangulation software 
MSMS (Connolly 1983, Sanner et al. 1996) to generate a 
mesh of the protein surface, with each surface node pointing 
to the corresponding amino acid residue through directed 
edges, and use a multi-scale message passing network to learn 
protein representations at different scales for protein–ligand 
binding affinity prediction. Unfortunately, adopting meshes 
to represent protein surfaces encounters several challenges. 
The primary issues include the necessity to pre-compute input 
features and mesh connectivities, which substantially 
increases computational time and demands significant mem
ory resources. To avoid these problems, dMaSIF (Sverrisson 
et al. 2021) generates a point cloud representation of the pro
tein surface by inputting only atomic coordinates and types, 
learns task-specific geometric and chemical features on the 
surface point cloud, and finally applies a new convolutional 
operator that approximates geodesic coordinates in the tan
gent space.

Although the previously mentioned research approaches 
have yielded promising outcomes, they mainly focus on sin
gular modal data, overlooking the multimodal information 
of proteins. In recent years, some researchers (Ngo and Hy 
2023, Zhang et al. 2023) have begun to realize the limitations 
of single modal information and have instead tried to com
bine sequence and structure information. However, the fea
ture embedding of different modalities are initially located in 
different subspaces. This direct information fusion method, 
such as concatenating the embeddings of various modalities 
(Hu et al. 2023), often ignores the heterogeneity between dif
ferent modalities and cannot fully exploit the complementar
ity between different modalities.

In this paper, we propose a novel multimodal feature ex
traction (MFE) framework that, for the first time, incorpo
rates information from protein surfaces, 3D structures and 
sequences. Specifically, we design two main components: a 
protein feature extraction module, and a multimodal feature 
alignment module. The protein feature extraction module is 
used to extract the initial embeddings from protein surface, 
structure and sequence information. In the multimodal fea
ture alignment module, we use cross-attention mechanism to 
achieve feature alignment between protein structure, se
quence embedding and surface embedding to obtain unified 
and information-rich feature embedding. Compared with 
current state-of-the-art methods, the proposed framework 
achieves optimal results on the protein–ligand binding affin
ity prediction task.

Our contributions can be summarized as follows:

� We propose a novel framework to extract the initial 
embeddings from protein surface, structure and sequence, 
and efficiently align and fuse three different modalities of 
initial embeddings. 

� Our proposed framework can make the model interpret
able. The attention mechanism can make the model pay 
attention to the most relevant parts of different modali
ties, which is beneficial for the feature alignment 
and fusion. 

� Our evaluation of the model using the PDBbind dataset 
demonstrates that our framework outperforms current 
state-of-the-art methods in predicting protein–ligand 
binding affinity. 

2 Materials and methods
In this section, we first introduce the MFE framework in de
tail, which consists of protein feature extraction module and 
multimodal feature alignment module. Then we introduce its 
application on the protein–ligand binding affinity prediction 
task. The main framework of the model is shown in Fig. 1.

2.1 Protein feature extraction module
The protein-binding pocket refers to the protein surface or in
terior cavity directly binding to the ligand, and plays impor
tant role in determining the protein–ligand binding affinity 
(Jin et al. 2023). The amino acid residues around it determine 
its physical and chemical properties and functions, and these 
properties are critical to the specific interaction between the 
protein and the ligand. Therefore, in protein–ligand binding 
affinity prediction, using protein pocket information can help 
predict the binding ability between protein and ligand more 
accurately. However, if only the surface and structure infor
mation of the protein pocket are considered, the global infor
mation of the protein is ignored. From a microscopic point of 
view, a protein is essentially a long sequence of amino acids, 
and this sequence undergoes changes such as folding in three 
dimensional space to form a complete protein structure 
(Zhang et al. 2023). Therefore, we use the complete amino 
acid sequence to represent the global information of 
the protein.

2.2 Surface feature extraction
Protein molecular surfaces carry important geometric and 
chemical information indicative of the way they interact with 
other molecules (Sverrisson et al. 2021). Here we use the sam
pling algorithm proposed in dMaSIF (Sverrisson et al. 2021) 
to calculate and generate protein surfaces on-the-fly from the 
underlying atomic point cloud. Specifically, we first input an 
atomic cloud containing 22 atom types, and sampled to ob
tain an oriented point cloud representation of the protein sur
face. We then selected the 512 surface points closest to the 
center of the ligand as surface pockets.

Chemical feature. For each selected point, instead of using 
traditional protein chemical descriptors such as electrostatic 
charge or hydrophilicity, we select the 16 nearest atom cen
ters along with their atom types to compute a vector of chem
ical features through multilayer perceptrons. As dMaSIF 
(Sverrisson et al. 2021) demonstrates, chemical properties 
such as Poisson-Boltzmann electrostatics can be simulated 
from primitive chemical features such as atom type 
distributions.

Geometric feature. To characterize the geometry of the sur
face point cloud, we compute the Mean curvature and 
Gaussian curvature as geometric features for each point, and 
the obtained geometric features and chemical features are 
spliced together as a complete feature vector.

Quasi-geodesic convolutions. Here we use quasi-geodesic 
convolution layers to obtain the final scalar embedding of the 
surface point. Quasi-geodesic convolution is a convolution 
operation applied to protein surface-oriented point clouds 
and is able to learn problem-specific features directly 
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from the surface point cloud of proteins instead of relying on 
precomputed descriptors. Quasi-geodesic convolution is in
variant to 3D rotations and translations, meaning the model 
can make predictions based on the local chemical and geo
metric properties of the protein surface, independent of the 
protein’s specific location in space.

2.3 Structure feature extraction
As a biological macromolecule, protein has a complex struc
ture. It is usually represented by a residue graph, where nodes 
represent amino acid residues and edges represent interac
tions between residues, such as Hydrogen bonds, hydropho
bic interactions, or spatial proximity relationships. At 
present, Graph Neural Networks (GNNs) are widely used to 
capture the features of protein residue graphs. However, 
GNNs mainly focuses on the topological relationship be
tween nodes in the graph, rather than the specific positions 
and directions of these nodes in 3D space. The Geometric 
Vector Perceptron (GVP) (Jing et al. 2021) addresses this lim
itation by integrating not only the topological features but 
also the spatial orientation and position of nodes. The input 
to the GVP model consists of a tuple (s, V), where s 2 Rn rep
resents scalar features designed to ensure rotational invari
ance of molecules, and V 2 Rv×3 comprises vector features 
that indicate the absolute directions of each node. These vec
tor features can be propagated directly in the standardized 
global coordinate system of the entire structure, making it 

easier for GNNs to access the global geometric properties of 
the structure (Hu et al. 2023). We use the GVP-GNN to ex
tract 3D structural features of proteins. All nodes and edges 
in this GNN are represented using tuples containing scalars 
and vectors, enabling efficient representation of 3D structures 
of protein through geometric and relational reasoning 
(Zheng et al. 2023). The GVP-GNN updates node embed
dings through message propagation steps according to: 

mij ¼ GVPsðconcatðhðjÞv ;h
ðj! iÞ
e ÞÞ; (1) 

hðiÞv ¼ LayerNorm hðiÞv þ
1
k0

Dropout
X

j:ej! i2ε
mij

 ! !

; (2) 

where hðiÞv represents the embedding of node i, while hðj! iÞ
e 

denotes the embedding of the edge ðj ! iÞ. mij represents the 
message passed by node j to node i calculated by three GVP 
layers, and k0 is the number of incoming messages.

2.4 Sequence feature extraction
The properties and functions of a protein are determined by 
its amino acid sequence and the way it folds in 3D space. The 
1D amino acid sequence of a protein can be regarded as a 
special “biological language” that has natural similarities 
with natural language. Many methods based on Natural 
Language Processing (NLP) can be directly extended to 
process amino acid sequences. Here, we process the input 

Figure 1. Illustration of the MFE framework. (a)–(c) Protein feature extraction module. (d) Multimodal feature alignment module.
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sequence through ProtBert (Elnaggar et al. 2022) to obtain 
the initial sequence embedding of our model. ProtBert is a 
pretrained model on protein sequences using a masked lan
guage modeling (MLM) objective. It was pretrained on the 
public dataset Uniref100 and can be used for protein se
quence analysis and predict. It should be noted that ProtBert 
is only used to obtain the initial sequence embedding, and its 
network weights are not involved in subsequent multi
modal training.

2.5 Multimodal feature alignment module
The effective fusion of protein multimodality is affected by 
the heterogeneity of its different modalities and scale differen
ces. Commonly used techniques such as concatenating the 
embedding often ignore the heterogeneity between different 
modalities when processing protein data, which may lead to 
the loss of modality-specific features (Hu et al. 2023). The 
Transformer architecture provides an effective solution to 
this problem. It is capable of processing sequential data and 
capturing long-distance dependencies through the self- 
attention mechanism, as well as learning the data between 
different modalities through the cross-attention layer, achiev
ing effective alignment and fusion of features.

Specifically, we first use the Transformer Encoder to pro
cess the embedding of the protein surface, utilizing the self- 
attention mechanism to deeply learn the details and charac
teristics of the protein surface. Subsequently, through the 
Transformer Decoder, we globally align the structure and se
quence embeddings of the protein with the new surface em
bedding obtained after processing by the Encoder. This not 
only retains the unique information and complementarity of 
each modality but also promotes effective communication be
tween different modalities. Finally, we apply average pooling 
to the new embeddings of the surface, structure, and sequence 
separately. These pooled embeddings are then merged to cre
ate a unified and context-rich feature representation. The ap
plication of this method not only improves the accuracy of 
predictions but also offers a new perspective for understand
ing the complexity of proteins.

2.6 Protein–ligand binding affinity prediction
We evaluate our framework on the task of protein–ligand 
binding affinity prediction. We treat small molecule ligands 
as 2D graphs, with atoms in the ligand corresponding to 
nodes in the graph, and covalent bonds between atoms corre
sponding to edges in the graph. AttentiveFP (Xiong et al. 
2020) is used to learn the representation of ligands. This 
method can use the attention mechanism to capture the com
plex interactions between atoms. It has a certain interpret
ability and achieves good performance on a variety of tasks.

In order to better study the interaction between protein and 
ligand, we construct a heterogeneous graph G¼ ðVl;Vp;EÞ, 
where Vl represents the set of atoms in the ligand molecule, 
Vp represents the set of atoms in the protein. If the distance 
between ligand atoms Vi

l and protein atoms Vj
p is less than the 

cutoff distance c¼5Å, we set eij ¼ 1. It is worth noting that 
there are no edges in the same atom set. We construct the 
global embedding of the entire heterogeneous graph by per
forming message passing on two sets of nodes respectively, 
and utilizing edge-level pooling and multilayer perceptron.

At the end of the model, we connect the multimodal feature 
embeddings of the protein, the embedding of the ligand 

graph, and the embedding of the heterogeneous graph and 
pass them to the multilayer perceptron for affinity prediction.

The model uses Mean Squared Error (MSE) as the loss func
tion, and uses the Adam Optimizer to optimize parameters: 

MSE ¼
1
N

XN

i¼1

ðyi − ŷiÞ
2
; (3) 

where N represents the number of sample pairs contained in 
the dataset.

3 Results and discussion
3.1 Dataset
The PDBbind dataset (version 2016) (Wang et al. 2005) con
tains biomolecular complexes from the Protein Data Bank 
(Berman et al. 2000) and their experimentally measured bind
ing affinity data, and is often used for protein–ligand binding 
affinity prediction tasks. The dataset is divided into 3 subsets: 
general set, refined set and core set. The general set contains 
9228 protein–ligand complexes, but the data quality is un
even; the refined set contains 4057 complexes with higher 
data quality; the core set contains 285 carefully selected the 
highest quality complexes and commonly used as a test set 
for protein–ligand binding affinity prediction tasks. Here we 
directly use the core set as the test set, and the complexes in 
the core set are removed from the general set and refined set 
to avoid data leakage. And 1000 complexes were randomly 
selected from the refined set as the validation set, and then 
the remaining complexes were merged into the general set as 
the training set.

3.2 Baseline
For evaluating the overall performance of our model, we 
compare the Multimodal Feature Extraction framework 
against some wide-ranging popular or state-of-the-art base
lines. The baselines discussed here can be categorized into 
four distinct groups. The first group consists of sequence- 
based methods, exemplified by DeepDTA ( €Ozt€urk et al. 
2018). The second group encompasses structure-based meth
ods, represented by Pafnucy (Stepniewska-Dziubinska et al. 
2018), OnionNet (Zheng et al. 2019), and CurvAGN (Wu 
et al. 2023). The third group focuses on surface-based meth
ods, with dMaSIF (Sverrisson et al. 2021) being a notable ex
ample. Lastly, the fourth group is comprised of multimodal 
methods, which include DPLA (Wang et al. 2021b) and 
HaPPy (Zhang et al. 2023).

3.3 Error evaluation metrics
We use the root mean square error (RMSE) and the mean ab
solute error (MAE) to evaluate the prediction error of the 
model. In addition, we use two indicators, the standard devi
ation (SD) and the Pearson correlation coefficient (R), to 
measure the correlation between the predicted values and the 
true values.

3.4 Experimental results
Table 1 shows the results of our and other baseline models 
on the protein–ligand binding affinity prediction task. All 
models use the same training set and validation set partition
ing method, and are tested on PDBbind core set (version 
2016). Apart from dMaSIF (Sverrisson et al. 2021), the pre
dicted results of the other baseline models are derived from 
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their respective published papers. It can be found that our 
method achieves SOTA performance compared to 
all baselines.

After further observation, we find that DeepDTA ( €Ozt€urk 
et al. 2018) performs the worst due to relying only on protein 
sequence information to model molecular graphs and ignor
ing the spatial structure information of proteins. Pafnucy 
(Stepniewska-Dziubinska et al. 2018) learns the spatial struc
ture of protein–ligand complexes through 3D CNN, but its 
high-dimensional and sparse 3D matrix data processing 
results in high computational costs and is sensitive to atomic 
rotation and translation, affecting prediction accuracy. 
OnionNet (Zheng et al. 2019), which is also based on CNN, 
has achieved some improvements by incorporating long- 
range interaction features. However, it does not account for 
the global structure information of proteins. CurvAGN (Wu 
et al. 2023) adopts a curvature-based adaptive GNN and 
uses an adaptive graph attention mechanism to integrate geo
metric structure, long-range molecular interactions and graph 
heterogeneity to further optimize the representation of pro
tein–ligand complexes. dMaSIF (Sverrisson et al. 2021) 
emphasizes the detailed chemical and geometric features of 
protein surface pockets and utilizes quasi-geodesic convolu
tions to learn surface fingerprints. However, these methods 
focus exclusively on a single modality, ignoring information 
from other modalities. DPLA (Wang et al. 2021b) is a CNN- 
based regression model that represents protein sequences and 
binding pockets as two CNN blocks, extracting sequence and 
structure features through convolution layers. HaPPy (Zhang 
et al. 2023) utilizes pre-trained models to extract protein se
quence features and AttentiveFP (Xiong et al. 2020) for struc
ture features from protein pocket graphs. However, both 
methods merely concatenate the extracted features from dif
ferent modalities, which fails to address the inherent hetero
geneity between these modalities.

3.5 Ablation studies
In order to further prove the effectiveness and necessity of dif
ferent modal features and feature alignment, we conduct the 
following ablation studies: W/O Protein Surface Information, 
W/O Protein Structure Information, W/O Protein Sequence 
Information, and W/O Feature Alignment. The results are 

shown in Table 2 and Fig. 2. The results indicate that when 
surface information is removed, there is a noticeable decline 
in performance, demonstrating the critical role of surface in
formation in the model. Similarly, excluding either structure 
or sequence information leads to a drop in performance, with 
the elimination of sequence information causing a more sig
nificant reduction. This is because sequence information 
encompasses the global information of the protein, which is 
vital for the model’s comprehensive understanding of the pro
tein. Furthermore, the model’s performance decreases in the 
absence of feature alignment. This emphasizes the signifi
cance of feature alignment in handling multimodal data, as it 
helps to lessen the heterogeneity among different modal fea
tures, thereby improving the model’s ability to effectively in
tegrate different modal features.

3.6 Hyperparameter analysis
In order to study the impact of different hyperparameters on 
model performance, we conduct the following three experi
ments: (i) MFE-A-6: Only 6 basic atom types are used to rep
resent the chemical characteristics of the surface, including 
hydrogen, carbon, nitrogen, oxygen, phosphorus, sulfur; (ii) 
MFE-P-256: Select only the 256 surface points closest to the 
ligand center as protein pocket surface; (iii) MFE-P-1024: 
Select the 1024 surface points closest to the ligand center as 
protein pocket surface. Figure 3 shows the results of three 
different hyperparameter selection methods on the protein– 
ligand binding affinity prediction task.

Atom types. Observing the results in the Fig. 3, we can see 
that after reducing the atom types input to the model, the 
overall performance of the model declined, indicating that 
more atom types can provide richer and multi-dimensional 
information for the model. In protein–ligand interactions, 
each atom type carries unique chemical properties that are 
critical to accurately capture the chemical environment of 
protein surface pockets because they directly influence the 
binding site selection and binding affinity of the ligand. By in
cluding more atom types, the model is able to more fully un
derstand and simulate the complex chemical features of 
protein surfaces, leading to better predictions of protein–li
gand binding affinity.

Number of pocket surface points. Further analysis from 
the Fig. 3 shows that using fewer surface points to represent 
protein surface pockets leads to a decline in model prediction 
accuracy. This is because too few surface points might over
look some crucial environmental features within the protein 
pockets, affecting the accuracy and reliability of the final 
binding affinity predictions. On the other hand, using more 
surface points introduces additional redundant information, 
causing the model to overly focus on these unimportant 
details during training and neglect key factors that determine 

Table 1. Result on PDBbind v.2016 core set.

Model RMSE # MAE # SD# R "

Sequence-based methods
DeepDTA 1.443 1.148 1.445 0.749
Structure-based methods
Pafncuy 1.418 1.129 1.375 0.775
OnionNet 1.287 0.983 1.282 0.781
CurvAGN 1.217 0.930 1.191 0.830
Surface-based method
dMaSIFa 1.324 1.067 1.277 0.809
Multimodal methods
DPLA 1.255 0.972 1.248 0.820
HaPPy 1.228 0.936 1.221 0.827
Ours 1.151 0.882 1.138 0.851

a We downloaded the code from the official repository and extended the 
model for the protein–ligand binding affinity prediction task. For the 
protein, we use the same surface feature extraction approach as our model. 
For the ligand and the heterogeneous graph, We use the same approach and 
parameters as model.
Bold numbers represent the best performance in each metric column, while 
underlined numbers indicate the second-best performance in each 
metric column. 

Table 2. Ablation studies results.

Model RMSE # MAE # SD # R "

W/O protein surface 
information

1.361 1.106 1.299 0.801

W/O protein structure 
information

1.203 0.952 1.173 0.841

W/O protein sequence 
information

1.376 1.114 1.311 0.797

W/O feature alignment 1.296 1.055 1.198 0.834
Full model 1.151 0.882 1.138 0.851

Bold numbers represent the best performance in each metric column.
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ligand binding characteristics. As a result, the performance of 
the model also declined.

3.7 Feature alignment analysis and visualization
To thoroughly investigate the influence of feature alignment 
on model performance, we use Principal Component 
Analysis (PCA) for dimensionality reduction and visual 
analysis of surface, structure, and sequence features of 

proteins within the test set. This approach aimed to deter
mine if feature alignment could mitigate heterogeneity among 
multimodal embeddings. As depicted in Fig. 4, the blue nodes 
symbolize surface embeddings, the orange nodes denote 
structure embeddings, and the green nodes signify sequence 
embeddings. Figure 4a shows the dimensionality reduction 
visualization before feature alignment, while Fig. 4b shows 
the result after alignment. These two subfigures allow for a 
comparison of the distributional differences in various modal 
embeddings before and after the process of feature alignment.

Analyzing the results of these two subfigures, we can find:

� The visualization before feature alignment (as seen in  
Fig. 4a) depicts a scattered distribution of nodes across 2D 
space. Specifically, the structure (orange) embedding and 
sequence (green) embedding nodes tend to cluster along 
the Dimension 1 yet display a dispersed arrangement along 
the Dimension 2. Surface (blue) embedding nodes are 
more uniformly distributed across both dimensions. 

� After the feature alignment process (as shown in Fig. 4b), 
the nodes across all three categories exhibit a markedly 
higher concentration within the 2D space. Notably, the 
surface (blue) and structure (orange) embedding nodes 
display a substantial increase in spatial density, which 
suggests a significant enhancement in data feature consis
tency due to the alignment. Given that the sequence 
(green) embedding nodes correspond to the embedding of 
the entire protein sequence and the blue and orange 

Figure 2. Ablation studies results. (a) W/O Protein Surface Information. (b) W/O Protein Structure Information. (c) W/O Protein Sequence Information. (d) 
W/O Feature Alignment. (e) Full Model.

Figure 3. Hyperparameter analysis.

6                                                                                                                                                                                                                                           Xu et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/7/btae413/7697100 by Xiam

en U
niversity user on 26 July 2025



nodes to the protein pocket’s surface and structure em
bedding, respectively, the green points remain more dif
fuse after feature alignment. Nevertheless, they show a 
propensity to aggregate toward the central region. 
Therefore, the analysis demonstrate that feature align
ment can enhance the model’s capability to process and 
fuse multimodal data. 

Therefore, feature alignment significantly enhances the co
herence between the embeddings of protein surface, struc
ture, and sequence. This is due to the optimization of 
multimodal feature interactions within the Transformer 
through attention mechanisms, which calculate attention 
weights between different features. This enhances the model’s 
ability to capture key information, allowing data from differ
ent modalities to aggregate more closely in the feature space, 
thereby reducing noise and errors when the model identifies 
protein–ligand interactions.

4 Conclusion
In this work, we propose a novel framework that unifies the 
information from protein surfaces, 3D structures and sequen
ces, and use Transformer to align features of different modal
ities. We then evaluate our model on the Protein–ligand 
binding affinity prediction task, demonstrating the effective
ness of the model. The final ablation study as well as feature 
alignment analysis demonstrate the importance of each com
ponent in our framework. In summary, by studying the surfa
ces of proteins, we can gain a deeper understanding of how 
proteins interact with other biomolecules. In our future 
work, we will explore the protein surfaces more thoroughly 
to uncover their broader applications in bioinformatics.
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