Proceedings of Machine Learning Research 260:-, 2024 ACML 2024

A More Efficient Inference Model for Multimodal Emotion

Recognition
Liang Jia JIALIANG@SAU.EDU.CN
Jin Tan TANJIN@QSTU.SAU.EDU.CN
Lijin Qi QILIJINQSTU.SAU.EDU.CN
Mingwen Lin LINMINGWEN@STU.SAU.EDU.CN

School of Electronic Information Engineering, Shenyang Aerospace University, China

Editors: Vu Nguyen and Hsuan-Tien Lin

Abstract

With the widespread adoption of the Internet and mobile Internet, an increasing num-
ber of individuals are expressing their emotions on short-video platforms. Contemporary
multimodal emotion analysis technologies facilitate a more comprehensive recognition and
understanding of emotions through the analysis of various data sources including text,
facial expressions, audio, hand gestures, among others. Consequently, the significance of
sentiment analysis is becoming increasingly pronounced. However, existing research indi-
cates that most emotion analysis techniques are not sufficiently rapid and efficient in light
of the exponential proliferation of short video content. In addition, most sentiment analysis
models demonstrate significant differences in the contribution of each modality, with text
and visual modalities often exerting a greater influence than audio modes. Furthermore, in
the pursuit of heightened accuracy, certain models are designed to be exceedingly complex,
while others prioritize swift reasoning at the expense of accuracy. This paper proposes a
more efficient multimodal sentiment analysis model, presenting three distinct advantages.
Firstly, residual-free connectivity modules capable of extracting 3-D attentional weights are
proposed to process visual modal features, maintaining accuracy while improving inference
efficiency. Secondly, adoption of multi-scale hierarchical context aggregation (aggrega-
tion followed by interaction) for audio modality to capture coarse- and fine-grained audio
contextual information through multilevel aggregation, thereby enriching audio modality
features and minimizing disparities between modalities’ contributions. Finally, attainment
of a superior balance between accuracy and speed, thereby enhancing adaptability to the
fast-paced short video environment and meeting the burgeoning demand for video content
processing.

Keywords: emotion analysis, multimodal, efficient, inference.

1. Introduction

In daily life, people can express their emotions not only through text but also through facial
expressions and vocal tone. Therefore, modern multimodal emotion analysis techniques can
enhance the identification and understanding of emotions by analyzing various information
sources such as text, facial expressions, audio, hand posture and so on. Integrating data
from different modalities can improve the accuracy and richness of emotion analysis. How-
ever, existing multimodal emotion recognition techniques face several challenges. Firstly,
the proliferation of short video content on social media platforms has created a need for more
efficient processing methods. While the existing visual processing methods can effectively
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extract the emotions of the characters in the video, they often lack the necessary speed for
processing the large volume of short videos. Secondly, the contribution of each modality in
most of the existing emotion analysis models varies significantly. For instance, traditional
audio processing methods may fail to capture subtle emotional changes in speech, leading
to a lack of richness and expressiveness in the extracted audio features compared to other
modalities.Finally, most of the existing emotion analysis models typically fall into two cate-
gories: those with high accuracy but complex structures and a large number of parameters,
resulting in slower processing speeds, and those with fast inference speeds but simpler archi-
tectures and lower accuracy. Addressing these challenges requires developing more efficient
and balanced multimodal emotion analysis models that can handle the growing volume of
short video content while maintaining high accuracy.

In this paper, our goal is to design a more efficient sentiment analysis model to solve
the above problems. We aim to better adapt to the fast-paced short video environment
and meet the increasing demand for video content processing, and the composition of the
model is shown in Fig. 1. Our approach effectively leverages textual, auditory, and visual
cues for robust emotion analysis. Firstly, we leverage the state-of-the-art Albert model
to process textual data. Concurrently, the visual modality adopts a fully connected model
without residuals that can extract 3-D attention weights, first using the reserving and merg-
ing operation to remove the residual connections common in traditional networks, and then
extracting better visual features without introducing any additional parameters, aiming
to reduce the amount of computation and increase prediction speed. Additionally, our
approach incorporates multi-scale hierarchical context aggregation networks for analyzing
audio modalities. The network extracts contextual information across different temporal
scales, thereby enhancing the contribution of audio modalities in multi-modal emotional
analysis tasks. The next step involves encoding the audio modal sequence and visual modal
sequence using Transformer models, followed by multi-modal weight fusion through a feed-
forward neural network to obtain the prediction results. At the same time, in order to
achieve a comprehensive connection between the input video and the emotion analysis pro-
cess, we integrated data preprocessing into a multimodal sentiment analysis model.

Compared to existing multi-modal emotion analysis models, our proposed model exhibits
the capability to enhance processing speed while maintaining high accuracy, thereby better
accommodating the rapid-paced environment inherent in short video content processing,
and meeting the escalating demand for efficient video content analysis.

We summarize our contribution as follows:

e Residual-free connected networks capable of extracting 3-D attentional weights are
proposed to extract visual modal features to improve prediction rate while maintaining
accuracy.

e Successfully ported the Focus Modulation Transformer to audio modality, which is
able to perform multilevel aggregation to capture fine-grained and coarse-grained au-
dio context information and increase the richness of audio modality information.

e After experiments on two datasets, we find that our proposed model achieves a better
balance of speed and accuracy.
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Figure 1: The data flow of the proposed.

2. Related Work

Multimodal emotion analysis has emerged as a rapidly evolving and extensively researched
field within computer vision in recent years. With the proliferation of deep learning, which
has become a dominant force in computing, research on emotion recognition increasingly
integrates knowledge from deep learning. For instance, Zadeh et al. (2018b) proposed a
multi-attention recurrent network that discovers dynamic dependency relationships between
different modalities through multiple attention modules, and stores the matrix representa-
tion of the dependency relationships in a mixed storage unit of LSTM. Wang et al. (2023)
proposes a multimodal encoding-decoding translation network with Transformer, which uses
a modality-enhanced cross-attention module to transform unnatural language features into
natural language features and improve their quality. In addition, a dynamic filtering mech-
anism filters out error messages generated in cross-modal interactions. However, the more
complex the structure of the deep network, the less computationally efficient the resulting
inference is, the greater the storage memory requirement, and the less suitable it may be
for real-time analysis.

Li and Tayir (2021) introduced an additional multimodal attention mechanism at the
decoder side of the Transformer model to align different text and image features. Peng et al.
(2022) proposed a hierarchical fusion CMCN model that utilises an image-text correlation
generator to reduce errors due to the presence of erroneous correlations between images and
text. However, the above studies only investigated textual modalities and visual modalities,
thus ignoring audio modalities.

The evolution of multimodal emotion recognition tasks has gradually permeated various
aspects of daily life, exemplified by its integration into diverse domains such as the medical
field( Pan et al. (2018); Huang et al. (2021)), distance education( Wang et al. (2018); sen
Wang and Wu (2011)), and transportation sector( Liu et al. (2019); Boril et al. (2010)). In
the medical realm, practitioners leverage a fusion of psychological expertise and emotion
recognition techniques to enhance the treatment efficacy for specific psychiatric patients.
This amalgamation facilitates a more holistic understanding of patients’ emotional states,
thereby guiding personalized interventions and fostering improved therapeutic outcomes.
Within the realm of distance education, educators leverage portable devices equipped with
emotion recognition capabilities to monitor students’ emotional well-being during online
classes. By gauging students’ emotional states in real-time, instructors can tailor the pacing
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and content delivery of lessons, fostering a conducive learning environment that promotes
efficient knowledge absorption and student comfort. Furthermore, in the transportation sec-
tor, the deployment of emotion recognition technology enables continuous monitoring of the
mental states of transportation personnel. This proactive approach not only enhances oper-
ational safety but also mitigates the occurrence of traffic accidents by promptly addressing
potential emotional distress or fatigue among transportation workers. These applications
underscore the transformative potential of multimodal emotion recognition technologies in
enhancing human experiences and augmenting operational efficiencies across diverse do-
mains, thereby heralding a new era of intelligent and empathetic technological integration
into everyday life.

3. Proposed Methods

There are three modalities included in the model, which are text, acoustic, and visual. For
textual modality, textual modality features are extracted using Albert Lan et al. (2019).
For visual modality, residual-free connected networks capable of extracting 3-D attentional
weights were used to obtain frame information, and then Basic Transformer Vaswani et al.
(2017) was used to obtain visual sequence information. For acoustic modality, audio features
are extracted for each spectrum of audio modality using focal modulation, and then the
audio sequence information is obtained using Basic Transformer. Following the extraction
of modality-specific features, our model employs a weighted fusion mechanism to integrate
predictions from each modality and outputs the final emotion category predictions.

3.1. Residual-Free Attention Module(RFAM)

To tackle the issues of sluggish processing speeds and inefficient inference observed in cur-
rent multimodal sentiment analysis models, we propose a Residual-Free Attention Module
to extract visual modal features, and the general framework of this module is shown in
Fig. 2. RFAM consists of a Residual-Free Block (RFB) and a 3-D attention Block (TDAB).
Influenced by RMNet Meng et al. (2021), the RFB removes residual connections between
nonlinear layers by reserving the input feature mappings and merging them with the output
feature mappings. This method converts a network with residual connections into a recti-
linear network, which can greatly improve the processing speed of the model. The TDAB
is different from existing channel or spatial attention modules in that it is lightweight in
that it can derive 3D attention weights for the feature maps without additional parameters.
In summary, RFAM is able to process visual features at a faster rate while maintaining
accuracy in visual modal feature extraction, which is consistent with our original intention.
Next, we will introduce each module in detail.

3.1.1. RESIDUAL-FREE Brock (RFB)

Reserving: the number of channels in the input image frame is 3. In Convl, insert a
convolutional kernel initialized by the Dirac filter with the same number of channels. The
Dirac filter is capable of constant mapping for each channel separately, setting the weight
of the desired channel to 1 and the weight of other channels to 0. The input features are



A MORE EFFICIENT INFERENCE MODEL FOR MULTIMODAL EMOTION RECOGNITION

preserved by this method ( is preserved to remain as after convolution), as shown on the
left side of Fig. 3.

To preserve the input features, for the BN layer, it is necessary to adjust the weight w
and bias b in the BN layer so that the BN layer behaves like an identity function. Assuming
that the running mean and running variance of the feature map are p and o2 respectively,
we set w = Vo2 + ¢ and the bias is b = pu, where e = 107°.

For ReLU, if the value of each input is non-negative, ReLU can be used directly; if
there are negative values in the input, PReLU can be used instead of ReLU. for the input
features, the alpha parameter of PReLU is set to 1 to keep the linear mapping. For convolved
features, set the alpha parameter of PReLU to 0, which is equivalent to ReLU.

Merging: as shown on the right side of Fig. 3, this operation incorporate the weighted
convolutional kernel initialized by the Dirac filter, which was utilized in the reserved oper-
ation of Convl, into Conv2. This integration serves as a substitute for the residual connec-
tion typically present in Conv2. By implementing this approach, we effectively transform
the network with residual connections into a linear network. Consequently, this conversion
significantly enhances the processing speed and prediction efficiency of the model, as it elim-
inates the need for complex residual connections. This streamlined architecture facilitates
smoother and more efficient model inference.
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Figure 2: Overall framework diagram of RFAM.
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Figure 3: Framework diagram of the RFB.

3.1.2. 3-D ATTENTION BLOCK(TDAB)

Existing attention modules, such as spatial attention and channel attention, which can
only refine features along channel or spatial dimensions, produce 1-D or 2-D weights that
either treat all neurons in a channel equally or all neurons in a spatial location equally,
which limits their flexibility to learn attention weights that vary across channels and across
space. Secondly, these two attentional mechanisms correspond exactly to feature-based
and spatial-based attention in the human brain Carrasco (2011). In the human brain,
however, these two mechanisms work in tandem to jointly facilitate information selection
during visual processing. In visual neuroscience, the most informative neurons are usually
those that exhibit a different firing pattern than the surrounding neurons. In addition, an
active neuron may also inhibit the activity of surrounding neurons, a phenomenon known as
spatial inhibition Webb et al. (2005). In other words, neurons that exhibit significant spatial
inhibition effects should be given higher priority (i.e., importance) in visual processing. The
simplest way to find these neurons is to measure the linear separability between a target
neuron and other neurons. Based on these neuroscientific findings, the minimum energy
function of a target neuron ¢ is defined as Yang et al. (2021):

4(6% 4+ X)
(t — )% + 262 42X

*7
et_

(1)

M M
Here,i = 57 > 2,67 = 5 3 (2 — 1)%>, A = 0.0001. The above equation shows that the
lower the ene;g;/ e;, the grealtelr the difference between neuron ¢ and peripheral neurons and
the more important it is for visual processing. Therefore, the importance of each neuron
can be obtained by 1/e} .

Suppose the input feature map is V € , and the number of neurons on this
channel is N = H x W — 1 . Then the importance of neurons can be expressed as:
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Here, p= % > > vy Z Z (vij — 1), e = 0.0001. Finally, according to Hillyard
i=1j= i=1j5=1

et al. (1998), attentional modulatlon in the mammalian brain usually manifests itself as a

gain effect on neuronal responses:

Output = v ® sigmiod (y) (3)

In RFAM, the RFB forms a residual-free connected rectilinear network by reserving and

merging operation, and the THAB also does not introduce additional parametric quantities,

e., it does not change the structure of the RFB. So the RFAM is able to extract visual
modal features better while maintaining fast inference speed.

3.2. Multi-scale hierarchical context-aggregated audio feature processing
module

To improve the effectiveness of the acoustic modality in multimodal sentiment analysis tasks,
we designed a multi-scale hierarchical context-aggregation audio feature processing module.
This approach addresses the observed limitations of the acoustic modality when compared
to the other two modalities. Inspired by the success of the Transformer architecture in
computer vision, we utilized its key component, Self-Attention(SA) Vaswani et al. (2017),
to create feature representations. In SA, the attention scores between a Query and all
Keys are computed through an interaction operation, and then aggregated to generate the
final representation. Despite its effectiveness, the traditional SA has a critical limitation:
its computational complexity grows quadratically with the length of the input sequence,
due to the need to compute attention weights between all tokens. This makes it computa-
tionally expensive and potentially limits its application to long sequences. To address this
challenge, we drew inspiration from the concept of focal attention Yang et al. (2024), which
performs multi-level aggregation to capture both fine and coarse-grained audio contexts.
This method allows for effective context-aggregation without the high computational over-
head of standard SA. The structure of our audio feature extraction module, as illustrated in
Fig. 4, employs focal attention to improve the computational efficiency while maintaining
robust context-aggregation. This approach enables our model to process longer sequences
with greater efficiency and contributes to a more balanced multimodal sentiment analysis
by enhancing the role of the acoustic modality.

The initial spectrum is obtained by passing the audio signal through a set of Mel-scale
filter banks. Following this, the resulting spectrogram, with dimensions H x W, serves as
the input X:

yi = Q (z:) © CA(i, X) (4)

where @ (-) is the Query for each spectrogram token and ® is the Hadamard product
element-wise. CA () represent the Context Aggregation Function, whose output is the
modulator. @ () retains the most valuable information from each spectrum token, while
CA (-) extracts coarse-grained contextual information; they are decorrelated but combined
with the modulator.

The specific process of C'A (-) involves applying LN to the input x; to project it into the
new feature space RT*W*C  Then a depth-separable convolution stack with L convolution
kernel sizes k; is passed, because of its lower number of parameters and computational
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cost compared to normal convolution, followed by the GeLU Hendrycks and Gimpel (2016)
activation function. The above depth-separable convolution as well as the GeLLU function
obtains a hierarchical representation of the context. At this point the receptive field is much
larger compared to the convolutional kernel k;. To capture the global context of the entire
input audio, we then perform global average pooling. As a result, we get a total of i + 1
feature maps, which collectively capture the context information at different granularity
levels.

O, = AvgPool (GeLU (DW Conv (LN (x;-1)))) (5)

G; denotes the gating weight at position i. We use the gating mechanism to control how
much each query is aggregated from different levels, specifically, we use a linear layer to
obtain spatial and level-aware gating weights G;. We then perform weighted sums by
multiplying by elements to obtain individual feature map S of the same size as the input x;.
We find that focus modulation can adaptively learn contextual information from different
focuses; for tokens with audio information highlighting emotional features, it focuses more
on fine-grained local structure at low focus levels, while tokens in other contexts need to be
perceived from higher levels of focus.

So=Y (G;©0) (6)
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Figure 4: multi-scale hierarchical context aggregation audio feature processing module.

4. Experiments and Analyses
4.1. Experimental details

Experimental Environment The experiment was conducted using NVIDIA GeForce
RTX 4090 GPU and based on PyTorch v1.8.0. Furthermore, training of the model was
facilitated by the Adam optimizer Kingma and Ba (2014). Given the multi-class and multi-
label nature of both datasets, binary cross-entropy loss function was employed. In our
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experiments, the learning rate was set to 4.5e-6, the number of epochs to 30, and the batch
size to 8.
Datasets We use two datasets in the experiment: IEMOCAP Busso et al. (2008) and
CMU-MOSEI Zadeh et al. (2018a). The IEMOCAP dataset is a multimodal emotional
recognition data set consisting of 151 videos in which two professional actors engage in
parallel dialogue in English. The data is labelled into six emotion categories: anger, hap-
piness, excitement, sadness, frustration and neutral. Each data sample consists of three
modalities: audio data sampled at 16 kHz, text transcriptions, and image frames sampled
from the video at 30 Hz. There are 7380 data samples in total, and we randomly allocated
70%, 10%, and 20% of the data to the training, validation, and test sets, respectively.

CMU-MOSEI consists of 3837 videos from 1000 different speakers with six emotion
categories: happy, sad, angry, fearful, disgusted, and surprised. Each data sample in this
dataset consists of three modalities: audio data sampled at a rate of 44.1 kHz, text tran-
scripts, and image frames sampled from the videos at a frequency of 30 Hz. In total, there
are 23259 samples in the dataset.

In subsequent experiments, the same dataset partitioning method was also used for all
the baselines.

In this paper, we use the following five state-of-the-art models in previous work as the
baselines.
LF-LSTM: Lost-fusion using LSTM.
LSTMLF-TRANS: Lost-fusion using transformers.
MulT Tsai et al. (2019): The structure of cross-modal transformer was used to construct
the relationship between different modalities, and after obtaining the multimodal fusion
information, the three sets of features are combined for prediction.
FE2E Dai et al. (2021): Visual and audio features are extracted using VGG16 and text
features are extracted using Albert.
V2EM Wei et al. (2023): The hierarchical attention spectrum computing module was used
to obtain detailed spectral information, visual features were extracted by RepVGG, and
text features were extracted by Albert.
Evaluation Metrics On the IEMOCAP dataset, we use Accuracy and F1 scores to evaluate
our proposed model; on the CMU-MOSEI dataset, we use Weighted Accuracy (W Acc,)
instead of Accuracy because this dataset contains much more negative samples than positive
samples on each emotion category if Normal Accuracy is used, the model will still get a
good score when predicting all samples as negative. The formula for weighted accuracy is:

TP x N/P + TN o
2N

where P is the overall positive sample size, TP is the true positive sample size, N is the
overall negative sample size, and TN is the true negative sample size.

4.2. Experimental results and analyses
4.2.1. ACCURACY AND F1

Comparison Experiments Table 1 shows the results of various models on the IEMOCAP
dataset. Compared with other models, the accuracy of the model proposed in this paper has
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been significantly improved (16.42% and 10.94% compared with LF-LSTM and LF-TRANS,
9.84% compared with MulT, 4.65% compared with FE2E), which indicates the structural
excellence of the model proposed in this paper. Because V2EM has the best performance
among existing SOTA models, and the visual mode processing method it uses is to repa-
rameterize the multi-branch topology to RepVGG similar to VGG(single branch) during
deployment, we choose V2EM as the reference model. The model proposed in this paper
is significantly better than V2EM, with an accuracy increase of 3.81%. F1 scores increased
by 4.34%. In Table 2, we further evaluate the results of each model on the CMU-MOSEI
dataset. In terms of weighted accuracy, the model proposed in this paper is also significantly
superior compared with other models (10.74% compared with LF-LSTM, 8.87% compared
with LF-TRANS, 8.11% compared with MulT, 7.03% compared with FE2E). 5.86% im-
provement compared to the current SOTA model V2EM, with the same trend in terms of
F'1 scores.

Table 1: Results on the IEMOCAP dataset. We report the mean Acc. and F1 scores for
the six emotion categories, and the speed is the total time(s) to test the 1481

samples.

Model ‘ Acc. F1 Speed(s)
LF-LSTM 73.25 47.55 -
LF-TRANS 76.87 49.46 -
MulT Tsai et al. (2019) 77.64 56.87 -
FF2E Dai et al. (2021) 81.49 55.76 146.62
V2EM Wei et al. (2023) 82.15 55.73 70.45
Ours | 85.28 58.15 66.35

Table 2: Results on the CMU-MOSEI dataset. We list the mean W Agc, and F1 scores
for the six emotion categories, and the speed is the total time(s) to test the 4188

samples.

Model ‘ WAcc. F1 Speed(s)
LF-LSTM 66.84 44.62 -
LF-TRANS 67.99 45.35 -
MulT Tsai et al. (2019) 68.47 45.28 -
FF2E Dai et al. (2021) 69.16 47.46 142.13
V2EM Wei et al. (2023) 69.92 44.83 111.69
Ours | 74.02 46.37 69.99

Ablation Experiments In order to test the reliability of the proposed multi-scale hierar-
chical context aggregation audio feature processing module and the residual-free attention
module for visual modal feature extraction, we also conducted ablation experiments. We
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compare with the existing SOTA model V2EM. Table 3 and 4 show the results of each
model on the IEMOCAP dataset and the CMU-MOSEI dataset respectively. The multi-
scale hierarchical context aggregation audio feature processing module (V+4A(Ours)+T)
proposed in this paper improves the accuracy of IEMOCAP data set by 1.19% and F1 score
by 2.96% compared with the hierarchical concern spectrum computing module (V+A+T)
in V2EM. On the CMU-MOSEI dataset, the weighted accuracy is increased by 3.56%, and
the F1 score is increased by 2.74%. It can be seen that the multi-scale hierarchical context
aggregation audio feature processing module proposed in this paper has greatly improved
the accuracy, indicating that the module can perform multi-level aggregation to capture
fine-grained and coarse-grained audio context as scheduled. More abundant audio feature
information can be obtained, so that the inflection change of voice intonation in audio can
better predict emotion. At the same time, the performance of the V+A(Ours)+T model
on the two data sets is not much different or even better than that of V(Ours)+A+T,
indicating that the contribution of audio modes is not at a disadvantage in the model pro-
posed in this paper. Compared with the RepVGG-based single branch inference module in
V2EM, the residual-free attention module V(Ours)+A+T proposed in this paper improves
the accuracy of IEMOCAP data set by 1.61% and F1 score by 0.9%. Accuracy improved
by 1.36% on the CMU-MOSEI dataset. Through the analysis of the above results, it can
be seen that although the residual-free attention module proposed in this paper has a small
improvement in accuracy, the original intention of this paper is to improve the processing
speed of the model, and the above results are not inconsistent with the original intention
of this paper.

Table 3: Results on the IEMOCAP dataset. The base V+A+T model uses the Hierarchical
Attention Spectral Computing module to obtain spectral information, RepVGG
to extract visual features, and Albert to extract textual features; the Multi-
scale Hierarchical Contextual Aggregation module to process audio features in
V+A(Ours)+T; and the Residual-Free Attention module to process visual modal-
ities in V(Ours)+A+T. Acc. and F1 scores as evaluation metrics.

Modalities ‘ Acc. F1 Speed(s)
V+A+T 82.15 55.73 70.45
V+A(Ours)+T 83.13 57.38 65.72
V(Ours)+A+T 83.47 56.23 67.09
V(Ours)+A(Ours)+T 85.28 58.15 66.35

4.2.2. RATE OF INFERENCE

Comparison Experiments Table 1 and 2 also show the reasoning speed of each model.
It can be seen from the table that the reasoning speed of the proposed model is the fastest.
Compared with the existing SOTA model V2EM, the reasoning speed of the proposed model
is increased by 5.82% on the IEMOCAP data set and 37.34% on the CMU-MOSEI data
set, indicating that the proposed model has reached the expected goal. It can better adapt
to the fast-paced short video environment and achieve fast and effective reasoning.
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Table 4: Results on the CMU-MOSEI dataset. The base V4+A+T model uses the Hier-
archical Attention Spectral Computing module to obtain spectral information,
RepVGG to extract visual features, and Albert to extract textual features; the
Multi-scale Hierarchical Contextual Aggregation module to process audio fea-
tures in V4+A(Ours)+T; and the Residual-Free Attention module to process visual
modalities in V(Ours)+A+T. WAcc. and F1 scores as evaluation metrics.

Modalities ‘ WAce. F1 Speed(s)
V+A+T 69.92 44.83 111.69
V+A(Ours)+T 72.41 46.06 92.54
V(Ours)+A+T 70.87 44.62 87.47
V(Ours)+A(Ours)+T 74.02 46.37 69.99

Ablation Experiments As shown in Table 3 and 4, the application of the residual-free
attention module proposed in this paper effectively improves the reasoning efficiency of the
two data sets. Specifically, on the IEMOCAP dataset, V(Ours)+A+T required 67.09s in
the test set, an increase of 4.77% compared to the baseline. Similarly, on the CMU-MOSEI
dataset, V(Ours)+A+T required 87.47s in the test set, an increase of 21.69% compared to
the baseline. The above results show that the residual-free attention module proposed in
this paper has advantages in processing speed.

4.2.3. NUMBER OF PARAMETERS

Table 5 shows the comparison between the existing SOTA model V2EM and the model
proposed in this paper in terms of the number of parameters in the three modes of text,
audio and vision. It can be seen from the table that the number of parameters in the audio
and visual modes of the proposed model is less than that of the V2EM model, which indicates
that the proposed model can better adapt to the fast-paced short video environment. Meet
the growing demand for video content processing.

Table 5: Comparison of the number of V2EM and Ours model parameters.

Modality V2EM Ours
A% 1.81M 0.73M
A 67.25M 49.89M
T 11.68M 11.68M

5. Conclusion

In this paper, we propose a residual-free attention module to process visual modality, in
which the residual-free module and the 3-D attention module effectively improve the speed
and efficiency of emotion analysis while maintaining the recognition accuracy. In addition,
we also propose a multi-scale hierarchical contextual aggregation audio feature processing
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module, which introduces the idea of ‘aggregation before interaction’ into the audio feature
extraction process, so as to extract richer audio feature information and increase the con-
tribution of audio modality in the emotion analysis task. Finally, through experiments on
two datasets, we find that the model achieves a better balance between speed and accu-
racy. In summary, the model proposed in this paper has some academic value and practical
application value.

However, the proposed model still has some limitations. The video scenes in the IEMO-
CAP dataset and the CMU-MOSEI dataset are relatively homogeneous, i.e., the environ-
ment in the videos is relatively quiet and almost noiseless, which is different from some of
the other datasets that were collected in the field. However, in real life such quiet scenes
are after all a minority, and most scenes are still noisy. In addition, our model is not fully
end-to-end. In the future, we will continue to optimise our model to take visual feature
extraction for complex backgrounds, audio feature extraction in noisy environments into
account, and form a fully end-to-end sentiment analysis system to better adapt to the
fast-paced rhythm of short videos.
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