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ABSTRACT

Recent studies empirically indicate that language models (LMs) encode rich world
knowledge beyond mere semantics, attracting significant attention across various
fields. However, in the recommendation domain, it remains uncertain whether
LMs implicitly encode user preference information. Contrary to prevailing under-
standing that LMs and traditional recommenders learn two distinct representation
spaces due to the huge gap in language and behavior modeling objectives, this
work re-examines such understanding and explores extracting a recommendation
space directly from the language representation space. Surprisingly, our findings
demonstrate that item representations, when linearly mapped from advanced LM
representations, yield superior recommendation performance. This outcome sug-
gests the possible homomorphism between the advanced language representation
space and an effective item representation space for recommendation, implying
that collaborative signals may be implicitly encoded within LMs. Motivated by
the finding of homomorphism, we explore the possibility of designing advanced
collaborative filtering (CF) models purely based on language representations with-
out ID-based embeddings. To be specific, we incorporate several crucial com-
ponents (i.e., a multilayer perceptron (MLP), graph convolution, and contrastive
learning (CL) loss function) to build a simple yet effective model, with the lan-
guage representations of item textual metadata (i.e., title) as the input. Empirical
results show that such a simple model can outperform leading ID-based CF mod-
els on multiple datasets, which sheds light on using language representations for
better recommendation. Moreover, we systematically analyze this simple model
and find several key features for using advanced language representations: a good
initialization for item representations, superior zero-shot recommendation abili-
ties in new datasets, and being aware of user intention. Our findings highlight the
connection between language modeling and behavior modeling, which can inspire
both natural language processing and recommender system communities.

1 INTRODUCTION

Language models (LMs) have achieved great success across various domains (Vaswani et al., 2017;
Devlin et al., 2019; Dubey et al., 2024; OpenAI, 2023), raising a critical question about the knowl-
edge encoded within the language space. Recent studies empirically find that LMs extend beyond
semantic understanding to encode comprehensive world knowledge about various domains, such as
game states (Li et al., 2023a), lexical attributes (Vulic et al., 2020), and even concepts of space and
time (Gurnee & Tegmark, 2023) through language modeling. However, in the domain of recom-
mendation where the integration of LMs is attracting widespread interest (Fan et al., 2023; Li et al.,
2023b; Wu et al., 2023a), it remains unclear whether LMs inherently encode relevant information
on user preferences and behaviors in the language space.

Currently, one prevailing understanding holds that general LMs and traditional recommenders (e.g.,
collaborative filtering models (Koren et al., 2009; He et al., 2021)) encode distinct representation
spaces — one for language space and the other for behavior space — but they offer the potential
to enhance each other in downstream recommendation tasks (Liao et al., 2024). Specifically, on
the one hand, when using LMs as recommenders to directly output items of interest, aligning the
language space with the behavior space can significantly improve the recommendation performance
(Lin et al., 2023a; Vats et al., 2024; Xu et al., 2024). Various alignment strategies are proposed,
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(a) Linearly mapping language representations into the behavior space for recommendation

(b) Performance comparison (c) The t-SNE representations of movies and user intention in two spaces.

Figure 1: Linearly mapping item titles in language representation space into behavior space yields
superior recommendation performance on Movies & TV (Ni et al., 2019) dataset. (1a) The frame-
work of linear mapping. (1b) The recommendation performance comparison between leading CF
recommenders and linear mapping. (1c) The t-SNE (Van der Maaten & Hinton, 2008) visualiza-
tions of movie representations, with colored lines linking identical movies or user intention across
language space (left) and linearly projected behavior space for recommendation (right).

including fine-tuning LMs with user behavior data (Zhang et al., 2023d; Bao et al., 2023; Geng et al.,
2022; Cui et al., 2022; Lin et al., 2023b), incorporating embeddings from traditional recommenders
as a new modality of LMs (Liao et al., 2024; Zhang et al., 2023e; Yang et al., 2023; Tennenholtz
et al., 2024), and extending the vocabulary of LMs with item tokens (Zhu et al., 2023; Zheng et al.,
2023; Rajput et al., 2023; Zhai et al., 2024). On the other hand, when using LMs as the enhancer
to represent item content (e.g., text metadata), traditional recommenders greatly benefit from text
embeddings (Yuan et al., 2022; 2023; Li et al., 2023c; Hou et al., 2024a; Liu et al., 2024a), semantic
and reasoning information (Wei et al., 2024; Ren et al., 2024b; Xi et al., 2023), and generated user
behaviors (Zhang et al., 2023b;c). Despite these efforts, explicit studies of the relationship between
language and behavior spaces remain largely unexplored in the recommendation domain.

In this work, we re-examine this prevailing understanding, by exploring whether LM-generated lan-
guage space has inherently encoded user preferences and behaviors. Specifically, we test the possi-
bility of directly deriving a behavior space from the language space — that is, we assess whether the
language representations of item text metadata (e.g., titles) generated by LMs can independently pre-
dict user behaviors and achieve competitive recommendation performance. Positive results would
imply that user behavioral patterns, such as collaborative signals (i.e., users’ preference on items
reflected by their behavioral similarities) (Wang et al., 2019b), might be implicitly encoded by LMs.
To test this hypothesis, we employ linear mapping (Merullo et al., 2023) to project language rep-
resentations of item titles into a behavior space for recommendation, as Figure 1a shows. Our
empirical observations and findings include:

• Before linear mapping, language representation similarities (i.e., semantic textual similarities
(STS) (Muennighoff et al., 2023)) may reflect user preference similarities for item contents. Con-
sidering Figure 1c as an example, movies with themes of superheroes and monsters cluster to-
gether in both language and behavior spaces.

• After linear mapping, language representations are transformed into high-quality behavior repre-
sentations, which achieve exceptional recommendation performance, as Figure 1b and experimen-
tal results in Section 3.2 show. Moreover, the performance improves as the language model size
increases and remains relatively robust to prompt disturbances (see Section 3.2).

• Post-mapping language representations encode user behaviroal similarities beyond STS. For in-
stance, while certain movies, such as those of homosexual movies (illustrated in Figure 1c), show
low STS and their representations disperse in the language space, their projections through linear
mapping tend to cluster together, reflecting high user preference similarities.
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These findings suggest the homomorphism (Dieudonne, 1969) between the LM-generated language
space and an expressive behavior space for recommendation. Motivated by this insight, we explore
the possibility of building advanced collaborative filtering (CF) models based solely on the language
space. To be specific, considering text metadata solely as items’ pre-existing features rather than the
widely-used ID information, we perform a frozen LM to create the language representations of
items; consequently, we apply a trainable projector (i.e., a two-layer MLP with graph convolution)
to map them into a behavior space, and then employ a contrastive loss (i.e., InfoNCE (van den
Oord et al., 2018; Wu et al., 2022)) to optimize. We term this model AlphaRec for its simplicity
and a series of good properties. Surprisingly, our empirical results show that such a simple model
can outperform leading ID-based CF models on multiple datasets. This result sheds light on using
language representations for better recommendation.

Furthermore, we systematically analyze this simple model and discover several potentials of adopt-
ing language representations for recommendation. First, language representations may serve as a
good initialization for item representations, with few adjustments to achieve high recommendation
performance (see Section 5.1). This is evidenced by the rapid training convergence of AlphaRec.
Second, advanced language representations provide strong zero-shot recommendation capability
across entirely new datasets (see Section 5.2). By co-training on multiple datasets, AlphaRec can
achieve performance comparable to or even surpassing the fully-trained LightGCN (He et al., 2021)
on new datasets without additional training. This underscores the potential of adopting advanced
language representations to develop more generalizable recommenders. Third, advanced language
representations provide opportunities for perceiving user intentions to refine recommendation results
(see Section 5.3). Endowed with the inherent semantic comprehension of language representations,
AlphaRec can adjust recommendations according to text-based user intentions, enabling recom-
menders to evolve into intention-aware systems through a straightforward paradigm shift.

2 PRELIMINARY

2.1 TASK FORMULATION

Personalized recommendation aims to learn user preferences from historical behaviors (i.e., histor-
ical interactions with items like view, click, purchase) and find items of interest to trigger users’
future behaviors (Zhou et al., 2018). In this paper, we consider one common recommendation set-
ting: collaborative filtering (CF) (Koren et al., 2022). It aims to select item i ∈ I that best matches
user u’s preferences based on binary interaction behaviors Y = [yui], where yui = 1 indicates user
u ∈ U has interacted with item i, and yui = 0 otherwise (Rendle, 2022). Scrutinizing leading CF
models, we summarize a common paradigm ŷui = s ◦ ϕθ(xu,xi) involving three components:

• For a user-item pair (u, i), we first get their pre-existing features xu and xi, which are usually set
as ID information or one-hot encodings in CF (Koren et al., 2009; Rendle, 2022; He et al., 2021).

• Upon xu and xi, the representation generation module ϕ parameterized by θ is adopted to trans-
fer them into behavior representations eu and ei, encoding the behavioral patterns of users. Its
architecture can vary widely, including ID-based embeddings (Koren et al., 2009), multilayer
perceptions (He et al., 2017), graph neural networks (Wang et al., 2019b; Cai et al., 2023), and
variational autoencoders (Liang et al., 2018).

• Upon eu and ei, the scoring function s is used to quantify their relevance reflecting how likely user
u will interact with item i. One widely-used function is cosine similarity, s(eu, ei) = eu

⊤ei

∥eu∥·∥ei∥
(Chen et al., 2023; Wu et al., 2022).

2.2 ITEM REPRESENTATION GENERATION

Here we emphasize the critical role of item representation generation, which involves transforming
item i’s pre-existing features xi into representations ei suitable for recommendation. This process is
essential, as the quality of these representations directly impacts the recommendation performance.
In this paper, we focus mainly on two kinds of item representation generation tailor-made for differ-
ent pre-existing features: ID- and LM-based generators.

ID-based generator. Prevailing CF models (Koren et al., 2009; Rendle, 2022; Koren et al., 2022;
Wang et al., 2019b; He et al., 2021; Yu et al., 2024) typically convert the ID information of each
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item i into one-hot encodings (e.g., pre-existing features xi). These sparse features are then passed
through a trainable generator, such as ID embedding matrices (Koren et al., 2009; Rendle, 2022) or
optionally combined with graph convolution layers (Wang et al., 2019b; He et al., 2021; Yu et al.,
2024), to generate dense representations ei. Optimizing the learning of ID-based representations
allows the generator to effectively learn user preferences and behaviors, leading to competitive rec-
ommendation performance. However, such ID-based generators suffer several problems, such as
poor domain transferability and lack of user intention-aware abilities, since one-hot encodings lack
sufficient semantics beyond being identifiers (He et al., 2021).

LM-based generator. Beyond ID information, another research line (Pazzani & Billsus, 2007;
Covington et al., 2016; Liu et al., 2024b; Zhang et al., 2024a; Liu et al., 2023b) explores using the
text metadata of item i (e.g., titles, descriptions) as pre-existing features xi. These features are fed
into the LM-based generator, typically a combination of two subsequent components: (1) A frozen
LM to extract i’s language representation zi, such as the encoder-only LMs like BERT-style models
(Devlin et al., 2019; Liu et al., 2019), the decoder-only LMs like Llama-style autoregressive models
(Touvron et al., 2023b; Jiang et al., 2023) and OpenAI text embedding models (Neelakantan et al.,
2022); and (2) A trainable projector to map zi into the final representation ei, often using layers
like graph convolution layers (He et al., 2021). Although such LM-based generators have been
explored to enrich the item representations in literatures (Yuan et al., 2023; Li et al., 2023c; Ren
et al., 2024b), few studies have demonstrated that they can solely outperform ID-based generators
in recommendation tasks. Worse still, the relationship between the LM-based language space and
the behavior space remain largely unexplored in the recommendation domain.

3 UNCOVERING COLLABORATIVE SIGNALS IN LMS VIA LINEAR MAPPING

In this section, we first explore the following research questions. RQ1: Do LMs inherently encode
collaborative signals (i.e., users’ preferences for items as reflected by behavioral similarities) within
their representation spaces? RQ2: If so, does the presence of such signals scale with model size,
and are they robust across different settings? To investigate these questions, we use linear mapping
to project language representations of item titles into a behavior space for recommendation. We
detail the implementation of the linear mapping in Section 3.1. Subsequently, in Section 3.2, we
empirically assess the existence and robustness of collaborative signals in language representations.

3.1 LINEAR MAPPING

Linear mapping is effective to study the representation properties of LMs (Merullo et al., 2023; Alain
& Bengio, 2017), discovering the homomorphism (Dieudonne, 1969) between the language space
and another space in the target domain. However, its application in the recommendation domain
remains largely underexplored.

To bridge this gap, we train a linear mapping matrix W to project representations from the lan-
guage space into a behavior space for recommendation. High performance of this linear mapping
on the test set would indicate the presence of homomorphism between the language space and an
effective behavior space, suggesting the possible existence of collaborative signals in the language
representation space (Ravichander et al., 2021; Gurnee & Tegmark, 2023). The overall framework of
linear mapping is illustrated in Figure 1a. Specifically, we use frozen LMs to transform pre-existing
item title features xi into language representations zi. To derive user representations, we compute
the average of the language representations of the items a user u has interacted with, denoted as
zu = 1

|Nu|
∑

i∈Nu
zi, where Nu is the set of user u’s historical items. See Appendix B.2 for de-

tailed procedures for obtaining language representations. The linear mapping matrix sets behavior
representations of user u and item i as eu = W zu and ei = W zi respectively. To optimize the
matrix W , we adopt the InfoNCE loss (van den Oord et al., 2018) as the objective function, which
has demonstrated strong performance in both ID-based (Zhang et al., 2023a; Yu et al., 2024) and
LM-based generators (Ren et al., 2024b) (refer to equation 4 for the formula).

3.2 EMPIRICAL FINDINGS

Existence (RQ1). To explore the existence of collaborative signals in language representations,
we test the recommendation performance of the linear mapping method. Table 1 reports the perfor-
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Table 1: The comparison of the recommendation performance of linear mapping with the classical
ID-based CF baselines.

Movies & TV Video Games Books
Recall NDCG HR Recall NDCG HR Recall NDCG HR

C
F

MF (Rendle et al., 2012) 0.0568 0.0519 0.3377 0.0323 0.0195 0.0864 0.0437 0.0391 0.2476
MultVAE (Liang et al., 2018) 0.0853 0.0776 0.4434 0.0908 0.0531 0.2211 0.0722 0.0597 0.3418
LightGCN (He et al., 2021) 0.0849 0.0747 0.4397 0.1007 0.0590 0.2281 0.0723 0.0608 0.3489

L
in

ea
rM

ap
pi

ng

BERT 0.0415 0.0399 0.2362 0.0524 0.0309 0.1245 0.0226 0.0194 0.1240
RoBERTa 0.0406 0.0387 0.2277 0.0578 0.0338 0.1339 0.0247 0.0209 0.1262
Llama2-7B 0.1027 0.0955 0.4952 0.1249 0.0729 0.2746 0.0662 0.0559 0.3176
Mistral-7B 0.1039 0.0963 0.4994 0.1270 0.0687 0.2428 0.0650 0.0544 0.3124
text-embedding-ada-v2 0.0926 0.0874 0.4563 0.1176 0.0683 0.2579 0.0515 0.0436 0.2570
text-embeddings-3-large 0.1109 0.1023 0.5200 0.1367 0.0793 0.2928 0.0735 0.0608 0.3355
SFR-Embedding-Mistral 0.1152 0.1065 0.5327 0.1370 0.0787 0.2927 0.0738 0.0610 0.3371

(a) Movie & TV (b) Games (c) Books

Figure 2: The recommendation performance of linear mapping with different language model sizes.

mance yielded by post-mapping representations on three Amazon datasets (Ni et al., 2019), compar-
ing with classic ID-based CF baselines: matrix factorization (MF) (Koren et al., 2009), MultVAE
(Liang et al., 2018), and LightGCN (He et al., 2021) (see baseline details in Appendix C.2). Figures
(2a) - (2c) depict the linear mapping performance under different LM sizes. Figure 1c demonstrates
the visualization of representations before and after linear mapping. We observe that:

• Post-mapping representations of advanced LMs achieve superior recommendation perfor-
mance in most cases, suggesting the possible homomorphism between language spaces and
behavior spaces. Specifically, advanced LMs (e.g., Llama2-7B (Touvron et al., 2023b) and text-
embeddings-3-large (Neelakantan et al., 2022)) consistently perform better than leading CF mod-
els (e.g., LightGCN) on most metrics. We also see that the performance improves with more recent
and advanced LMs. In contrast, earlier BERT-style models (e.g., BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019)) perform similarly to or worse than MF, indicating that LMs have only
recently developed the ability to encode user preference similarities effectively.

• Language representations encode user preference similarities beyond semantic textual simi-
larities (STS). Consider Figure 1c as an example again, homosexual movies, which differ signif-
icantly in textual meaning, cluster together after linear mapping. This suggests that user prefer-
ences, which are not immediately apparent from text alone, are implicitly encoded in the language
space and can be uncovered through linear mapping.

Scaling and Robustness (RQ2). We also investigate whether the encoding of user preference sim-
ilarities in LMs scales with model size and whether this encoding is robust in the presence of noise
in the input prompts. To this end, we test the linear mapping performance of LMs of various sizes
and prompts with noise:

• The encoding of user preference similarities becomes more refined as model size increases,
leading to better linear mapping performance. Specifically, we test the linear mapping perfor-
mance across different language model sizes (7B, 13B, and 70B) of the Llama2 family (Touvron
et al., 2023b). Llama3 (Dubey et al., 2024) is not selected due to the lack of a 13B model. As
shown in Figure 2, linear mapping performance improves consistently as the model size increases
from 7B to 70B, indicating that larger models capture more nuanced user behavioral patterns.

• Language representations are relatively robust to prompt disturbances. Following previous
works (Gurnee & Tegmark, 2023), we compare two prompting strategies: using item titles alone
(e.g., Castlevania), and adding 5-10 random letters to the titles (e.g., Castlevania sdfhdsk). Table
2 shows that adding random noise to the item titles had minimal impact on the linear mapping
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Table 2: The robustness of language representations for recommendation.

Movies & TV Video Games Books
Recall NDCG HR Recall NDCG HR Recall NDCG HR

Title + Random Noise 0.0952 0.0887 0.4731 0.1213 0.0706 0.2722 0.0632 0.0525 0.3099
Title Only 0.1027 0.0955 0.4952 0.1249 0.0729 0.2746 0.0662 0.0559 0.3176

performance. The prompt noise has more impact on Movies & TV since item titles in this dataset
are relatively shorter than others (see Appendix C.1). This finding suggests the relative robustness
of the recommendation knowledge encoded in the language representation space.

4 LEVERAGING LANGUAGE REPRESENTATIONS FOR BETTER
RECOMMENDATION

This finding of possible space homomorphism (Dieudonne, 1969) and encoded collaborative signals
arouse interest in the following questions. RQ3: How powerful are such language representations
for building advanced CF models that can outperform prevailing ID-based CF methods? To address
these questions, in Section 4.1, we aim to develop a simple yet effective CF model termed AlphaRec,
which is solely based on language representations and merely incorporates three crucial components
in modern CF models. After that, we evaluate its performance in Section 4.2 to demonstrate the
capability of advanced language representations for recommendation.

4.1 ALPHAREC

We briefly present how this simple model AlphaRec is designed and trained. It is important to
highlight that we center on exploring the power of language representations for recommendation,
rather than deliberately inventing new CF mechanisms. Generally, the representation generation
architecture ϕθ(·, ·) is simple, which only contains a two-layer MLP and the basic graph convolution
operation. The cosine similarity is used as the similarity function s(·, ·), and the contrastive loss
InfoNCE (van den Oord et al., 2018; Wu et al., 2022) is adopted for optimization. For simplicity, we
adopt text-embeddings-3-large (Neelakantan et al., 2022) for language representation generation by
default, for its excellent language understanding and representation capabilities.

Nonlinear projection. We substitute the linear matrix delineated in Section 3 with a nonlinear MLP.
Nonlinear transformation helps in excavating more comprehensive preference similarities from the
language representation space (see discussions about this in Appendix C.7) (He et al., 2017). Taking
the averaged language representaions of historical items as the user language representation (i.e.,
zu = 1

|Nu|
∑

i∈Nu
zi), the initial nonlinear transformation operation be formulated as:

e
(0)
i = W2 LeakyReLU (W1zi + b1) + b2, e(0)u = W2 LeakyReLU (W1zu + b1) + b2. (1)

Graph convolution. Graph neural networks (GNNs) show superior effectiveness for recommenda-
tion (Wang et al., 2019b), owing to the natural user-item graph structure in recommender systems
(Wu et al., 2023b). We employ a minimal graph convolution operation (He et al., 2021) to capture
more complicated collaborative patterns from high-order connectivity (Wu et al., 2019) as follows:

e(k+1)
u =

∑
i∈Nu

1√
|Nu|

√
|Ni|

e
(k)
i , e

(k+1)
i =

∑
u∈Ni

1√
|Ni|

√
|Nu|

e(k)u . (2)

The information of connected neighbors is aggregated with a symmetric normalization term
1√

|Nu|
√

|Ni|
. Here Nu (Ni) denotes the historical item (user) set that user u (item i) has inter-

acted with. The representations e(0)u and e
(0)
i projected from the MLP are used as the input of the

first layer. After propagating for K layers, the final behavior representation of a user u (item i) is
obtained as the average of representations from each layer:

eu =
1

K + 1

K∑
k=0

e(k)u , ei =
1

K + 1

K∑
k=0

e
(k)
i . (3)

Contrastive learning objective. The introduction of contrastive learning (Radford et al., 2021)
is another key element for the success of leading CF models. Recent research suggests that the
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Table 3: The performance comparison with ID-based CF baselines. The improvement achieved by
AlphaRec is significant (p-value << 0.05).

Movies & TV Video Games Books
Recall NDCG HR Recall NDCG HR Recall NDCG HR

MF (Rendle et al., 2012) 0.0568 0.0519 0.3377 0.0323 0.0195 0.0864 0.0437 0.0391 0.2476
MultVAE (Liang et al., 2018) 0.0853 0.0776 0.4434 0.0908 0.0531 0.2211 0.0722 0.0597 0.3418
LightGCN (He et al., 2021) 0.0849 0.0747 0.4397 0.1007 0.0590 0.2281 0.0723 0.0608 0.3489

SGL (Wu et al., 2021) 0.0916 0.0838 0.4680 0.1089 0.0634 0.2449 0.0789 0.0657 0.3734
BC Loss (Zhang et al., 2022) 0.1039 0.0943 0.5037 0.1145 0.0668 0.2561 0.0915 0.0779 0.4045
XSimGCL (Yu et al., 2024) 0.1057 0.0984 0.5128 0.1138 0.0662 0.2550 0.0879 0.0745 0.3918
XSimGCLt (Yu et al., 2024) 0.1015 0.0951 0.5016 0.1199 0.0679 0.2674 0.0900 0.0736 0.4036

KAR (Xi et al., 2023) 0.1084 0.1001 0.5134 0.1181 0.0693 0.2571 0.0852 0.0734 0.3834
RLMRec (Ren et al., 2024b) 0.1119 0.1013 0.5301 0.1384 0.0809 0.2997 0.0928 0.0774 0.4092

EMB-KNN 0.0548 0.0380 0.2916 0.0879 0.0389 0.1970 0.0434 0.0248 0.1851
AlphaRec 0.1221* 0.1144* 0.5587* 0.1519* 0.0894* 0.3207* 0.0991* 0.0828* 0.4185*
Imp.% over the best baseline 6.79% 5.34% 2.27% 9.12% 10.75% 5.40% 9.75% 10.51% 7.01%

(a) Ablation study on Books (b) Training efficiency comparison

Figure 3: (3a) The effect of each component on Books dataset. (3b) The number of epochs needed
for each model to converge. AlphaRec exhibits a breakneck convergence speed.

contrast learning objective, rather than data augmentation, plays a more significant role in improving
recommendation performance (Yu et al., 2024; 2022; Zhang et al., 2023a). Therefore, we simply
use the contrast learning object InfoNCE (van den Oord et al., 2018) as the loss function without any
additional data augmentation on the graph (Wu et al., 2022). With cosine similarity as the similarity
function s(eu, ei) =

eu
⊤ei

∥eu∥·∥ei∥ , the InfoNCE loss (van den Oord et al., 2018) is written as:

LInfoNCE = −
∑

(u,i)∈O+

log
exp (s(eu, ei)/τ)

exp (s(eu, ei)/τ) +
∑

j∈Su
exp (s(eu, ej)/τ)

. (4)

Here, τ is a hyperparameter called temperature (Wang & Liu, 2021), O+ = {(u, i)|yui = 1}
denoting the observed interactions between users U and items I. And Su is a randomly sampled
subset of negative items that user u does not adopt.

4.2 EMPIRICAL FINDINGS

Baselines. We compare AlphaRec with leading ID-based CF baselines, to assess the effectiveness of
adopting advanced language representations. In addition to classic baselines introduced in section
3.2, we consider two categories of leading ID-based CF baselines, CL-based CF methods: SGL
(Wu et al., 2021), BC Loss (Zhang et al., 2022), XSimGCL (Yu et al., 2024) and LM-enhanced
CF methods: KAR (Xi et al., 2023), RLMRec (Ren et al., 2024b). We also consider a variant of
XSimGCL (i.e., XSimGCLt) where ID embeddings are replaced with language representations, and
directly using language representations zu and zi for recommendation without training (i.e., EMB-
KNN). See baseline details in Appendix C.2.

Recommendation capabilities (RQ3). Table 3 presents performance comparison. To alleviate the
possible information leakage problem that pretraining data of LMs may include the training data,
we also conduct experiments on a newly published dataset Amazon 2023 in Appendix C.6. The
best-performing methods are bold, while the second-best methods are underlined. We observe that:
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• Advanced language representations shows strong potentials for recommendation, which can
be unleashed by appropriate model design. AlphaRec consistently outperforms leading CF
baselines by a large margin across all metrics on all datasets, with an improvement ranging from
6.79% to 9.75% on Recall@20 compared to the best baseline. Moreover, as shown in Figure
3a, each component contributes positively (see more ablation results and details in Appendix
C.3) in unleashing the power of language representations. Moreover, simply replacing the ID
embeddings in XSimGCL with language representations (i.e., XSimGCLt) does not bring a stable
and remarkable improvement, which is consistent with previous findings (Yuan et al., 2023; Li
et al., 2023c). This phenomenon highlights the importance of appropriate model design beyond
simple input feature replacement. Above findings suggest that the power of advanced language
representations can be unleashed by carefully designing the model, showcasing the potential to
surpass prevailing ID-based recommenders.

• The incorporation of advanced language representations can benefit traditional ID-based
CF methods. We note that two LM-enhanced CF methods, KAR and RLMRec, both show im-
provements over the most advanced CF methods. Nevertheless, the combination of ID-based em-
beddings and language representations in these methods does not yield higher results than purely
language-representation-based AlphaRec. We attribute this phenomenon to their naive design for
the combination ID-based embeddings and language representations, which is also highlighted by
previous works (Yuan et al., 2023; Zhang et al., 2024c).

5 EXPLORING POTENTIALS OF LANGUAGE REPRESENTATIONS FOR
RECOMMENDATION

In this section, we focus on this question: What new opportunities beyond good performance can ad-
vanced language representations bring to recommender systems? To answer this, we systematically
analyze AlphaRec and discover the following potentials of adopting such language representations.
Potential 1: Good initialization for item representations (Section 5.1). Potential 2: Zero-shot abil-
ity (Section 5.2). Potential 3: Intention-aware ability (Section 5.3).

5.1 GOOD INITIALIZATION FOR ITEM REPRESENTATIONS (POTENTIAL 1)

Advanced language representations may provide a good initialization for item representations,
with few adjustments for effective recommendation. As shown in Figure 3b, beyond its good per-
formance, AlphaRec also exhibits extremely fast convergence speed, which is comparable with or
even surpasses the fastest ID-based CF methods (e.g., SGL (Wu et al., 2021) and XSimGCL (Yu
et al., 2024)). Moreover, recent works also suggest that, when using advanced language representa-
tions to initialize ID-based item embeddings (Harte et al., 2023; Zhao et al., 2024), the performance
of traditional ID-based recommenders improves significantly. We attribute the above findings to
the homomorphism between the language space and a good behavior space. Therefore, when using
advanced language representations for initialization, only minor adjustments are needed to generate
effective behavior representations for recommendation.

5.2 ZERO-SHOT ABILITY (POTENTIAL 2)

The prevailing ID-based recommenders suffer from domain transferring problems (i.e., behavior
representations are highly bound with ID information (Zhu et al., 2021)). Advanced language rep-
resentations may provide opportunities for learning transferable item representations (Hou et al.,
2022), enabling recommenders to perform well on entirely new datasets without any ID overlap. To
address this potential, we test the zero-shot recommendation ability of AlphaRec (Ding et al., 2021).

Experimental settings. In zero-shot recommendation, there is no item or user overlap between the
training set and test set (Ding et al., 2021; Zhang et al., 2024b), which is different from the research
line of cross-domain recommendation (Zhu et al., 2021). We jointly train AlphaRec on three source
datasets (i.e., Books, Movies & TV, and Video Games), while testing it on three completely new
target datasets (i.e., Movielens-1M (Harper & Konstan, 2016), Book Crossing (Lee et al., 2019),
and Amazon Industrial & Scientific (Ni et al., 2019)) without further training on these new datasets.
(see more details about training on multiple datasets in Appendix D.2.1). Due to the lack of zero-
shot recommenders in general CF, we slightly modify three zero-shot methods in the sequential

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: The zero-shot recommendation performance comparison on entirely new datasets. The
improvement achieved by AlphaRec is significant (p-value << 0.05).

Industrial & Scientific MovieLens-1M Book Crossing
Recall NDCG HR Recall NDCG HR Recall NDCG HR

fu
ll MF (Rendle et al., 2012) 0.0344 0.0225 0.0521 0.1855 0.3765 0.9634 0.0316 0.0317 0.2382

MultVAE (Liang et al., 2018) 0.0751 0.0459 0.1125 0.2039 0.3741 0.9740 0.0736 0.0634 0.3716
LightGCN (He et al., 2021) 0.0785 0.0533 0.1078 0.2019 0.4017 0.9715 0.0630 0.0588 0.3475

ze
ro

-s
ho

t Random 0.0148 0.0061 0.0248 0.0068 0.0185 0.2611 0.0039 0.0036 0.0443
Pop 0.0216 0.0087 0.0396 0.0253 0.0679 0.5439 0.0119 0.0101 0.1157
ZESRec (Ding et al., 2021) 0.0326 0.0272 0.0628 0.0274 0.0787 0.5786 0.0155 0.0143 0.1347
UniSRec (Hou et al., 2022) 0.0453 0.0350 0.0863 0.0578 0.1412 0.7135 0.0396 0.0332 0.2454
VQ-Rec (Hou et al., 2023) 0.0645 0.0410 0.0963 0.0804 0.1921 0.8167 0.0485 0.0492 0.2825
AlphaRec 0.0913* 0.0573 0.1277* 0.1486* 0.3215* 0.9296* 0.0660* 0.0545* 0.3381*
Imp.% over the best zero-shot baseline 157.09% 127.69% 30.29% 66.67% 64.16% 37.78% 101.55% 63.71% 47.97%

recommendation (Wang et al., 2019a), ZESRec (Hou et al., 2022), UniSRec (Hou et al., 2022), and
VQ-Rec (Hou et al., 2023), as baselines. We also incorporate two strategy-based CF methods (i.e.,
Random and Pop) and one method using the large language model (LLM) as zero-shot recommender
(i.e., LLMRank (Hou et al., 2024b)) (see more details about baselines in Appendix D.2.2).

Findings. Table 4 presents the zero-shot recommendation performance comparison. The best meth-
ods are bold and starred, while the second-best methods are underlined. We observe that:

• Advanced language representations provide opportunities for learning transferable item
representations. AlphaRec demonstrates strong zero-shot recommendation capabilities, compa-
rable to or even surpassing the fully trained LightGCN. AlphaRec performs better on the Amazon
Industrial & Scientific dataset, possibly because it captures user behavioral patterns of the same
platform (Ni et al., 2019) through training on multiple Amazon datasets. Conversely, ZESRec and
UniSRec exhibit a marked performance decrement compared with AlphaRec. We attribute this
phenomenon to two aspects. On the one hand, BERT-style LMs (Devlin et al., 2019; Liu et al.,
2019) used in these works may not have effectively encoded user preference similarities, which is
consistent with our previous findings in Section 3. On the other hand, components designed for
the next item prediction task in sequential recommendation (Kang & McAuley, 2018) may not be
suitable for capturing the general preferences of users in CF scenarios. Moreover, AlphaRec also
outperforms the leading LLM-based zero-shot recommender LLMRank (see Appendix D.2.3).

• The zero-shot recommendation capability of advanced language representations generally
benefits from an increased amount of training data, without compromising performance on
source datasets. As illustrated in Table 12, the zero-shot performance of AlphaRec, when trained
on a mixed dataset, is generally superior to training on one single dataset (Hou et al., 2022). More-
over, we discover that AlphaRec, when trained jointly on multiple datasets, hardly experiences a
performance decline on each source dataset. These results indicate the general recommendation
capability of a single pre-trained AlphaRec across multiple datasets. The above findings also offer
a potential research path to achieve general recommendation capabilities, by incorporating more
training data with more themes. See more details about these results in Appendix D.2.4.

5.3 INTENTION-AWARE ABILITY (POTENTIAL 3)

The language understanding ability in advanced language representations (especially representa-
tions from LLM-based text embedding models) offers the opportunity for perceiving text-based user
intentions and refining recommendations. To study the potential of intention-aware ability, we in-
troduce a new hyperparameter α in AlphaRec to combine user intentions with historical interests.

Experimental settings. To endow AlphaRec with user intention-aware ability, we adopt a simple
paradigm shift by introducing a user intention representation eIntentionu . In the inference stage, we
obtain the language representation eIntentionu for each user intention query and combine it with the
original user representation to get a new user representation as ẽ(0)u = (1−α)e

(0)
u +αeIntentionu (Ai

et al., 2017). This new user representation ẽ
(0)
u is sent into the pre-trained AlphaRec for recommen-

dation. We test the user intention capture ability of AlphaRec on MovieLens-1M and Video Games.
In the test set, only one target item remains for each user (Ai et al., 2017), with one intention query
generated by ChatGPT (OpenAI, 2023; Hou et al., 2024a) (see the details about how to generate and
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Table 5: The performance comparison in user intention capture.

MovieLens-1M Video Games
HR@5 NDCG@5 HR@5 NDCG@5

TEM (Bi et al., 2020) 0.2738 0.1973 0.2212 0.1425
AlphaRec (w/o Intention) 0.0793 0.0498 0.0663 0.0438
AlphaRec (w Intention) 0.4704* 0.3738* 0.2569* 0.1862*

(a) Case study of user intention capture (b) Effect of α

Figure 4: User intention capture experiments on MovieLens-1M. (4a) AlphaRec refines the recom-
mendations according to language-based user intention. (4b) The effect of user intention strength α.

check these intention queries in Appendix D.3.1). We report a relatively small K = 5 for all metrics
to better reflect the intention capture accuracy.

Findings: We report the user intention capture experiment results in Table 5, show one case study
in Figure 4a, and study the effect of α in Figure 4b. We find out that:

The language understanding ability in advanced language representations enables recom-
menders to perceive user intentions and refine recommendations. As shown in Table 5, the
introduction of user intention (w Intention) significantly refines the recommendations of the pre-
trained AlphaRec (w/o Intention). Moreover, AlphaRec outperforms the baseline model TEM (Bi
et al., 2020), even without additional training on search tasks. We further conduct a case study on
MovieLens-1M to demonstrate how AlphaRec captures the user intention (see more examples in
Appendix D.3.3). Additionally, the intention-aware ability benefits from user historical interests.
Figure 4b depicts the effect of α, which controls the strength of user intention. Here α = 0 denotes
that the user intention is neglected and α = 1 denotes that the user historical interest is ignored.
The convex curve in Figure 4b suggests that both user interests and user intention play vital roles.
Above findings highlight the potential of adopting advanced language representations to perceive
text-based user intentions and refine recommendations (see more details in Appendix D.3).

6 LIMITATIONS

There are several limitations unaddressed in this paper. First, this research lacks theoretical guaran-
tee, and we do not contribute to designing any new components for CF models. Second, AlphaRec
lacks a personalized design, since there is only a single MLP introduced for all users. The fixed user
intention in Section 5.3 is less practical, lacking exploration on personalized user intentions.

7 CONCLUSION

In this paper, we explored the relationship between language space and behavior spaces for rec-
ommendation, and explored the potential for using language representations for recommendation.
Empirical results suggest the possible presence of homomorphism between advanced LMs repre-
sentation spaces and an effective item representation space for recommendation. Inspired by this
finding, we discussed how to unleash the power of advanced language representations by devel-
oping a simple yet effective CF model called AlphaRec. Moreover, by systematically analyzing
AlphaRec, we explored the potentials of advanced language representations: good initialization for
item representations, zero-shot ability, and intention-aware ability. Possible future work will involve
exploring the space relationship from both theoretical and multimodal perspectives. We believed that
this paper sheds light on rethinking the connection between language modeling and user behavior
modeling, benefiting both natural language processing and recommender system communities.
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Ethic Statement. This work focuses on uncovering the relationship between language spaces
and behavior spaces in recommendation systems. Our goal is to explore the potential of language
representations for recommendation and offer valuable insights to the academic community. We do
not foresee any negative social impacts or violations of the ICLR code of ethics.

Reproducibility Statement. All the results in this work are reproducible. We provide codes for
our method and baselines in the attachment. We have discussed the hyperparameters search space in
Table 14, and the best hyperparameters we use are detailed in Table 15. We also provide the details
about devices and software environment in Appendix E.
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A RELATED WORKS

Representations in LMs. The impressive capabilities demonstrated by LMs across various tasks
raise a wide concern about what they have learned in the representation space. Linear methods (e.g.,
linear probing (Merullo et al., 2023) and linear mapping (Alain & Bengio, 2017)) are important
and effective approaches for interpreting and analyzing representations of LMs (Ravichander et al.,
2021). The main idea of linear methods is simple: training linear classifiers to predict some specific
attributes or concepts (e.g., lexical structure (Vulic et al., 2020) ) from the representations in the
hidden layers of LMs, or transforming language representations into another feature space with a
linear matrix. A high result of linear methods (e.g., classification accuracy on the out-of-sample
test set) tends to imply relevant information has been implicitly encoded in the representation space
of LMs, although this does not imply LMs directly use these representations (Ravichander et al.,
2021; Gurnee & Tegmark, 2023). Recent studies empirically demonstrate that concepts such as
color (Patel & Pavlick, 2022), game states (Li et al., 2023a). and geographic position are encoded
in LMs. Furthermore, these concepts may even be linearly encoded in the representation space of
LMs (Li et al., 2023a; Park et al., 2023).

Collaborative filtering. Collaborative filtering (CF) (Ren et al., 2024a) is an advanced technique
in modern recommender systems. The prevailing CF methods tend to adopt an ID-based paradigm,
where users and items are typically represented as one-hot vectors, with an embedding table used for
lookup (Koren et al., 2009). Usually, these embedding parameters are learned by optimizing specific
loss functions to reconstruct the history interaction pattern (Rendle et al., 2012). Recent advances in
CF mainly benefit from two aspects, graph convolution (Wu et al., 2023b) and contrastive learning
(Ren et al., 2024a). These CF models exhibit superior recommendation performance by conducting
the embedding propagation (Wang et al., 2019b; He et al., 2021) and applying contrastive learning
objectives (Wu et al., 2021; Cai et al., 2023; Yu et al., 2024). However, although effective, these
methods are still limited, due to the ID-based paradigm. Since one-hot vectors contain no feature
information beyond being identifiers, it is challenging to transfer pre-trained ID embeddings to other
domains (Hou et al., 2022) or to leverage leading techniques from computer vision (CV) and natural
language processing (NLP) (Yuan et al., 2023).

LMs for recommendation. The remarkable language understanding and reasoning ability shown
by LMs has attracted extensive attention in the field of recommendation. The application of LMs
in recommendation can be categorized into three main approaches: LM-enhanced recommendation,
LM as the modality encoder, and LM-as recommender. The first research direction, LM-enhanced
recommendation, focuses on empowering traditional recommenders with the semantic represen-
tations from LMs (Xi et al., 2023; Ren et al., 2024b; Wei et al., 2024; Geng et al., 2024; Chen,
2023; Wang et al., 2024; Hou et al., 2023; Mao et al., 2023; Qiu et al., 2021; Zhang et al., 2024c).
Specifically, these methods introduce representations from LMs as additional features for traditional
ID-based recommenders, to capture complicated user preferences. The second research line lies in
adopting the LM as the text modality encoder, which is also known as a kind of modality-based
recommendation (MoRec) (Yuan et al., 2023; Li et al., 2023c). These methods tend to train the
LM as the text modality encoder together with the traditional recommender. In previous studies,
BERT-style LMs are widely used as the text modality encoder. The third research line fails in di-
rectly using LMs as the recommender and recommends items in a text generation paradigm. Early
attempts focus on adopting in-context learning (ICL) (Dong et al., 2022) and prompting pre-trained
LMs (Hou et al., 2024b; Liu et al., 2023a; Dai et al., 2023; Gao et al., 2023). However, such naive
methods tend to yield poor performance compared to traditional models. Therefore, recent studies
concentrate on fine-tuning LMs on recommendation-related corpus (Bao et al., 2023; Zhang et al.,
2023d; Lin et al., 2023b; Cui et al., 2022; Liu et al., 2024b; Hua et al., 2023; Chen et al., 2024) and
align the LMs with the representations from traditional recommenders as the additional modality
(Liao et al., 2024; Zhang et al., 2023e; Yang et al., 2023; Li et al., 2023d; Kong et al., 2024).

B UNCOVERING COLLABORATIVE SIGNALS IN LMS VIA LINEAR MAPPING

B.1 BRIEF OF USED LMS

We briefly introduce the LMs we use for linear mapping in Section 3.1.
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• BERT (Devlin et al., 2019) is an encoder-only language model based on the transformer archi-
tecture (Vaswani et al., 2017), pre-trained on text corpus with unsupervised tasks. BERT adopts
bidirectional self-attention heads to learn bidirectional representations.

• RoBERTa (Liu et al., 2019) is an enhanced version of BERT. RoBERTa preserves the architecture
of BERT but improves it by training with more data and large batches, adopting dynamic masking,
and removing the next sentence prediction objective.

• Llama2-7B (Touvron et al., 2023b) is an open-source decoder-only LLM with 7 billion param-
eters. Llama2 adopts grouped-query attention, with longer context length and larger size of the
pre-training corpus compared with Llama-7B (Touvron et al., 2023a).

• Mistral-7B (Jiang et al., 2023) is an open-source pre-trained decoder-only LLM with 7 billion
parameters. Mistral 7B leverages grouped-query attention, coupled with sliding window attention
for faster and lower cost inference.

• text-embedding-ada-v2 & text-embeddings-3-large (Neelakantan et al., 2022) are leading text
embedding models released by OpenAI. These models are built upon decoder-only GPT models,
pre-trained on unsupervised data at scale.

• SFR-Embedding-Mistral (Meng et al., 2024) is a decoder-based text embedding model built
upon the open-source LLM Mixtral-7B (Jiang et al., 2023). SFR-Embedding-Mistral introduces
task-homogeneous batching and computes contrastive loss on “hard negatives”, which brings a
better performance than the vanilla Mixtral-7B model.

B.2 GENERATING ITEM REPRESENTATIONS FROM LMS

We present how to extract representations from LMs. For encoder-based LMs (e.g., BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019)), we use the representation of the last hidden state cor-
responding to the [CLS] token (Hou et al., 2024a). For decoder-based models (e.g., Llama-7B (Tou-
vron et al., 2023b; Jiang et al., 2023), Mistral-7B, and SFR-Embedding-Mistral (Meng et al., 2024)),
we use the representation in the last transformer block (Vaswani et al., 2017), corresponding to the
last input token (Gurnee & Tegmark, 2023; Todd et al., 2023; Neelakantan et al., 2022). Especially,
for the commercial closed-source model (e.g., text-embedding-ada-v2 and text-embeddings-3-large
1 (Neelakantan et al., 2022)), we directly call the API interface to obtain representations.

B.3 CONNECTION WITH FINE-TUNED LLM-BASED APPROACHES FOR EXPLORING THE
RELATIONSHIP BETWEEN LANGUAGE SPACE AND BEHAVIOR SPACE.

In exploring the space relationship between language modeling and user behavior modeling, there is
another research line that uses LLMs to interpret behavior representations (e.g., item representations
trained from MF (Koren et al., 2009)) from traditional recommenders (Tennenholtz et al., 2024;
Yang et al., 2023; Lei et al., 2024). They tend to project behavior representations into the token
space of LLMs, and fine-tune LLMs to generate explanations for behavior representations (e.g.,
generate a movie description given a movie representation trained from MF). The fact that LLMs
can interpret such behavior representations indicates that the behavior space and language space can
be aligned at the token space level, which is similar to the findings in our paper. Our paper and these
studies can be viewed as complementary works on a similar research goal (i.e., exploration on the
connection between language modeling and user behavior modeling from the representation space
perspective), providing support for each other.

C LEVERAGING LANGUAGE REPRESENTATIONS FOR BETTER
RECOMMENDATION

C.1 DATASETS

We incorporate six datasets in this paper, including four datasets from the Amazon platform 2 (Ni
et al., 2019) (i.e., Books, Movies & TV, Video Games, and Industrial & Scientific), and two datasets
from other platforms (i.e., MovieLens-1M and Book Crossing). Table 6 reports the dataset statistics.

1https://platform.openai.com/docs/guides/embeddings
2www.amazon.com
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Table 6: Dataset statistics.

Books Movies & TV Video Games Industrial & Scientific MovieLens-1M Book Crossing

#Users 71,306 26,073 40,834 15,141 6,040 6,273
#Items 26,073 12,464 14,344 5,163 3,043 5,335
#Interactions 2,209,030 876,027 390,013 82,578 995,492 253,057
Density 0.0008 0.0026 0.0007 0.0010 0.0542 0.0076

Item Title Examples

Books: Dismissed with Prejudice: A J.P. Beaumont Novel; Die for Love: A Jacqueline
Kirby Novel of Suspense; The Cloud; Memories Before and After the Sound of Music: An
Autobiography; Harry Potter and the Sorcerer’s Stone;
Movies & TV: Batman Begins; Fantastic Four; Max Headroom: The Complete Series;
Madagascar; Land of the Dead; King Kong;
Video Games: USB Microphone for RockBand or Guitar Hero (PS3, Wii, Xbox360); Com-
mand &amp; Conquer: Tiberian Sun - PC; Tomb Raider III: Adventures of Lara Croft;
Kartia: The Word of Fate; Snowboard Kids; Command & amp; Conquer: Tiberian Sun -
PC; Final Fantasy VII; Grim Fandango - PC; Half-Life - PC;
MovieLens-1M: Basquiat (1996); Tin Cup (1996); Godfather, The (1972); Supercop (1992);
Manny & Lo (1996); Bound (1996); Carpool (1996);
Book Crossing: Prague : A Novel; Chocolate Jesus; Wie Barney es sieht; To Kill a Mock-
ingbird; Sturmzeit. Roman; A Soldier of the Great War; Pride and Prejudice (Dover Thrift
Editions);
Industrial & Scientific: Jurassic Perisphinctes Ammonites from France; FS9140:
Spinosaurus - Dinosaur Tooth 20-30mm; FS9410: USA Eocene, Fossil Fish (Knightia alt),
A-grade; Delta 50-857 Charcoal Filter for 50-868; Hitachi RP30SA 7-1/2 Gallon Stainless
Steel Industrial Shop Vacuum (Discontinued by Manufacturer); Makita 632002-4 14-Inch
Cut-Off Wheels (5-Pack) (Discontinued by Manufacturer); PORTER-CABLE 740001801 4
1/2-Inch by 10yd 180 Grit Adhesive-Backed Sanding Roll;

Figure 5: Example of item titles.

We divide the history interaction of each user into training, validation, and testing sets with a ratio
of 4:3:3, and remove users with less than 20 interactions following previous studies (Zhang et al.,
2023b). We also remove items from the test and validation sets that do not appear in the training set,
to address the cold start problem.

In this paper, we only use the item titles as the text description. Figure 5 gives some item title
examples from different datasets.

C.2 BASELINES

We incorporate a series of ID-based CF models as our baselines for general recommendation. These
models are classified as classical CF methods (MF, MultVAE, and LightGCN), CL-based CF meth-
ods (SGL, BC Loss, and XSimGCL), and LM-enhanced CF methods (KAR, RLMRec). We do not
consider baselines using LMs as recommenders for two practical reasons: the huge inference cost
on datasets with millions of interactions and the task limitation of candidate selection (Liao et al.,
2024) or next item prediction (Zheng et al., 2023). For these LM-enhanced CF methods, we adopt
the leading method XSimGCL as the backbone. We use the same item and user representations as
we adopt in AlphaRec for KAR and XSimGCL, to make the comparison relatively fair. To evaluate
the impact of the modifications, we demonstrate one ablation study on RLMRec in Appendix C.5.

• MF (Koren et al., 2009; Rendle et al., 2012) is the most basic CF model. It denotes users and
items with ID-based embeddings and conducts matrix factorization with Bayesian personalized
ranking (BPR) loss.

• MultVAE (Liang et al., 2018) is a traditional CF model based on the variational autoencoder
(VAE). It regards the item recommendation as a generative process from a multinomial distribution
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(a) Ablation study on Movies & TV (b) Ablation study on Video Games

Figure 6: Ablation study

and uses variational inference to estimate parameters. We adopt the same model structure as
suggested in the paper: 600 → 200 → 600.

• LightGCN (He et al., 2021) is a light graph convolution network tailored for the recommendation,
which deletes redundant feature transformation and activation function in NGCF (Wang et al.,
2019b).

• SGL (Wu et al., 2021) introduces graph contrastive learning into recommender models for the
first time. By employing node or edge dropout to generate augmented graph views and conduct
contrastive learning between two views, SGL achieves better performance than LightGCN.

• BC Loss (Zhang et al., 2022) introduces a robust and model-agnostic contrastive loss, handling
various data biases in recommendation, especially for popularity bias.

• XSimGCL (Yu et al., 2024) directly generates augmented views by adding noise into the inner
layer of LightGCN without graph augmentation. The simplicity of XSimGCL leads to a faster
convergence speed and better performance.

• KAR (Xi et al., 2023) enhances recommender models by integrating knowledge from LMs. It gen-
erates textual descriptions of users and items and combine the LM representations with traditional
recommenders using a hybrid-expert adaptor.

• RLMRec (Ren et al., 2024b) aligns semantic representations of users and items with the repre-
sentations in CF models through a contrastive loss, as an additional loss trained together with the
CF model. The fusion of semantic information and collaborative information brings performance
improvement.

C.3 ABLATION STUDY

We conduct the same ablation study as introduced in Section 4 on Movies & TV and Video Games
datasets. As illustrated in Figure 6, each component in AlphaRec contributes positively, which is
consistent with our findings in Section 4. Specifically, the performance degradation caused by
replacing the MLP with a linear weight matrix (w/o MLP) indicates that nonlinear transformations
can extract the implicit user preference similarities encoded in the language representation space
more effectively. Besides, the performance also drops from replacing InfoNCE loss (Wu et al.,
2022) with BPR loss (Rendle et al., 2012) (w/o CL) and removing the graph convolution (w/o GCN)
suggests that explicitly modeling the collaborative relationships through the loss function and model
architecture can further enhance recommendation performance.

C.4 EFFECT OF VARYING LANGUAGE REPRESENTATIONS IN ALPHAREC

We evaluate the effect of different language representations in AlphaRec by varying adopted LMs.
As reported in Table 7, advanced language representations consistently yield higher performance
than early BERT-style language representations. Moreover, due to the non-linearity and neighbor-
hood aggregation introduced in AlphaRec, the performance gap between different language repre-
sentations is narrowed.
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Table 7: Effect of varying language representations in AlphaRec.

Movies & TV Video Games Books
Recall NDCG HR Recall NDCG HR Recall NDCG HR

A
lp

ha
R

ec
BERT 0.0994 0.0923 0.4873 0.0960 0.0550 0.2179 0.0719 0.0607 0.3434
RoBERTa 0.0967 0.0895 0.4793 0.0947 0.0545 0.2167 0.0710 0.0596 0.3386
Llama2-7B 0.1160 0.1092 0.5388 0.1395 0.0817 0.3003 0.0940 0.0793 0.4081
Mistral-7B 0.1161 0.1097 0.5421 0.1413 0.0828 0.3020 0.0945 0.0799 0.4090
text-embedding-ada-v2 0.1152 0.1083 0.5382 0.1437 0.0844 0.3062 0.0933 0.0784 0.4061
text-embeddings-3-large 0.1221 0.1144 0.5587 0.1519 0.0894 0.3207 0.0991 0.0828 0.4185
SFR-Embedding-Mistral 0.1225 0.1139 0.5571 0.1521 0.0887 0.3209 0.0982 0.0820 0.4161

Table 8: Performance comparison of different versions of RLMRec .

Movies & TV Video Games Books
Recall NDCG HR Recall NDCG HR Recall NDCG HR

XSimGCL 0.1057 0.0984 0.5128 0.1138 0.0662 0.2550 0.0879 0.0745 0.3918
RLMRec (LLM-generated profile) 0.1046 0.0942 0.5063 0.1218 0.0696 0.2692 0.0905 0.0741 0.4049
RLMRec (This paper) 0.1119 0.1013 0.5301 0.1384 0.0809 0.2997 0.0928 0.0774 0.4092

C.5 ABLATION STUDY ON THE MODIFICATION OF RLMREC

We have modified RLMRec (Ren et al., 2024b) by using the same item and user representations as
in AlphaRec to make the comparison more fair, rather than using representations of LLM-generated
item and user profiles. To evaluate the effectiveness of this modification, we conduct an ablation
study on the adopted item and user representations. Specifically, we implement another version of
RLMRec (Ren et al., 2024b) by using the original prompting approach to generate item and user
profile, and name this version as RLMRec (LLM-generated profile). As shown in Table 8, the
performance of RLMRec (LLM-generated profile) is lower than the implementation in this paper.
Furthermore, the performance of incorporating LLM-generated profiles is not always stable, which
may even lead to performance degradation in some cases (e.g., Movies & TV). We attribute the
performance gap to the possible noise and hallucination introduced by these generated profiles.

C.6 PERFORMANCE ON AMAZON ELECTRONIC 2023

To alleviate the information leakage problem that the early datasets may be used in the pretraining
data of LMs, we consider the latest version of Amazon 2023 (Hou et al., 2024a) as the newly
published dataset. This dataset was published in March 2024, which is the latest public dataset
that we have access to. To further alleviate the information leakage problem, we only consider the
interactions after 2022. We conduct the same experiment as in Section 4 on this new dataset, and
present the performance in Table 9. As shown in this table, in this new dataset, AlphaRec still
consistently outperforms baselines. We attribute this to the fact that language models understand
the user preference behind item title description, rather than naively remembering the training data.
Therefore, AlphaRec still works fine on the latest dataset.

C.7 THE T-SNE VISUALIZATION COMPARISON

In this section, we aim to intuitively explore how the MLP in AlphaRec further helps in excavating
collaborative signals in language representations, compared to the linear mapping matrix. We visu-
alize the item representations from LMs, post-mapping representations from AlphaRec (w/o MLP),
and post-mapping representations from AlphaRec in Figure 7, where AlphaRec (w/o MLP) denotes
replacing the MLP with a linear mapping matrix. We observed that movies about superhero and
monster cluster in all representation spaces, indicating both AlphaRec (w/o MLP) and AlphaRec
capture the preference similarities between these items and preserve the clustering relationship. The
difference between AlphaRec (w/o MLP) and AlphaRec lies in the ability to capture obscure pref-
erence similarities among items. As shown in Figure 7a, homosexual movies are dispersed in the
language space, indicating the possible semantic differences between them. AlphaRec successfully
captures the preference similarities and gathers these items in the representation space, while Al-
phaRec (w/o MLP) remains some items dispersed. Moreover, AlphaRec outperforms AlphaRec
(w/o MLP) by a large margin, as indicated in Figure 6a. These results indicate that AlphaRec ex-
hibits a more fine-grained preference capture ability with the help of nonlinear transformation.
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Table 9: Performance of AlphaRec on Amazon Electronics 2023

Amazon Electronics 2023
Recall NDCG HR

MF (Rendle et al., 2012) 0.0130 0.0089 0.0136
MultVAE (Liang et al., 2018) 0.0227 0.0158 0.0237
LightGCN (He et al., 2021) 0.0237 0.0161 0.0248

SGL (Wu et al., 2021) 0.0519 0.0250 0.0551
BC Loss (Zhang et al., 2022) 0.0548 0.0265 0.0585
XSimGCL (Yu et al., 2024) 0.0534 0.0261 0.0569
KAR (Xi et al., 2023) 0.0611 0.0283 0.0661
RLMRec (Ren et al., 2024b) 0.0633 0.0288 0.0674

AlphaRec 0.0687* 0.0323* 0.0732*

(a) LM representations (b) AlphaRec (w/o MLP) (c) AlphaRec

Figure 7: The t-SNE visualization of representations on Movies & TV. (7a) The item representations
in the LM space. (7b) The item representations obtained by replacing the MLP with a linear mapping
matrix in AlphaRec. (7c) The item representations obtained from AlphaRec.

D EXPLORING POTENTIALS OF LANGUAGE REPRESENTATIONS FOR
RECOMMENDATION

D.1 FAST CONVERGENCE SPEED

We report the training cost of AlphaRec in this section. Table 10 reports the seconds needed per
epoch and the total training cost until convergence. Here Amazon-Mix denotes the mixed dataset
of Books, Movies & TV, and Video Games. It’s worth noting that AlphaRec converges quickly and
only requires a small amount of training time.

D.2 ZERO-SHOT ABILITY

D.2.1 CO-TRAINING ON MULTIPLE DATASETS

Co-training on multiple datasets is similar to training on one single dataset, where the only difference
lies in the negative sampling. When co-training on multiple datasets, the negative items are restricted
to the same dataset as the positive item rather than the full item pool. The other training procedures
remain the same with training on one single dataset.

D.2.2 BASELINES

Since previous works about zero-shot recommendation mostly focus on sequential recommendation
(Kang & McAuley, 2018; Wang et al., 2019a), we slightly modify three methods in sequential
recommendation, ZESRec (Ding et al., 2021), UniSRec (Hou et al., 2022), and VQ-Rec (Hou et al.,
2023) as our baselines. Specifically, we maintain the model structure as provided in the paper, and
adopt the training paradigm of CF.

• Random denotes randomly recommending items from the entire item pool.
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Table 10: Training cost of AlphaRec (seconds per epoch/in total).

Books Movies & TV Video Games Amazon-Mix

AlphaRec 40.1 / 1363.4 12.3 / 479.7 7.4 / 214.6 107.2 / 5788.8

• Pop denotes randomly recommending from the most popular items. Here popularity denotes the
number of users that have interacted with the item.

• ZESRec (Ding et al., 2021) is the first work that defines the problem of zero-shot recommendation.
To address this problem, this work introduces a hierarchical Bayesian model with representations
from the pre-trained BERT.

• UniSRec (Hou et al., 2022) aims to learn universal item representations from BERT, with paramet-
ric whitening and a MoE-enhanced adaptor. By pre-training on multiple source datasets, UniS-
Rec can conduct zero-shot recommendation on various datasets in a transductive or inductive
paradigm.

• VQ-Rec (Hou et al., 2023) learns vector-quantized representations for items, enabling transfer-
ring between datasets. A codebook is learned from language representations, for looking up item
embeddings.

D.2.3 COMPARISON WITH LLMRANK

Table 11: Zero-shot performance comparison with LLMRank

MovieLens-1M Steam
NDCG@1 NDCG@5 NDCG@10 NDCG@20 NDCG@1 NDCG@5 NDCG@10 NDCG@20

LLMRank 0.2485 0.4115 0.5249 0.5612 0.3112 0.4413 0.5255 0.5302

AlphaRec 0.3919 0.6038 0.6543 0.6672 0.4450 0.6131 0.6394 0.6714

Imp .% 57.71% 46.73% 24.65% 18.89% 42.99% 38.93% 21.67% 26.63%

Table 11 illustrates the zero-shot recommendation performance compared with the LLM4Rec
method LLMRank. We adopt the same setting of LLMRank, equipping 19 negative items for each
positive item, and evaluate the NDCG on the candidate set. AlphaRec exhibits excellent zero-shot
performance, significantly surpassing LLMRank. Moreover, the improvement over LLMRank ex-
hibits a rising trend as the K of NDCG decreases.

D.2.4 THE EFFECT OF TRAINING DATASETS

The effect of the training dataset scale on zero-shot recommendation. We report the zero-shot
recommendation performance differences trained on different datasets in Table 12. Here AlphaRec
(trained on Books) denotes training on a single Books dataset, while AlphaRec (trained on mixed
dataset) denotes co-training on three Amazon datasets. Generally, training on more datasets leads
to a better zero-shot performance. In addition, we observe that, for the zero-shot performance on
untrained target datasets, training datasets with similar themes contribute more (e.g., Movies & TV
and MovieLens-1M).

The performance comparison between training on the single dataset and the mixed dataset.
In Table 13, AlphaRec (trained on single dataset) denotes training and testing on the same single
dataset, while AlphaRec (trained on mixed dataset) denotes training on three Amazon datasets (i.e.,
Books, Movies & TV, and Video Games) and testing on one single dataset. Generally, co-training
on three Amazon datasets yields similar performance compared with training on one single dataset.
The only exception lies in Video Games, which shows some performance degradation. We attribute
this to the difference between the selection of τ . We use τ = 0.15 when trained on the mixed
dataset, while the optimal τ for Video Games lies around 0.2. These results indicate that a single
AlphaRec can capture user preferences among various datasets, showcasing a general collaborative
signal capture ability.
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Table 12: The effect of the training dataset on zero-shot recommendation

Industrial & Scientific MovieLens-1M Book Crossing
Recall NDCG HR Recall NDCG HR Recall NDCG HR

AlphaRec (trained on Books) 0.0896 0.0562 0.1256 0.1218 0.2619 0.8942 0.0646 0.0532 0.3346

AlphaRec (trained on Movies & TV) 0.0909 0.0581 0.1266 0.1438 0.3122 0.9200 0.0471 0.0406 0.2600

AlphaRec (trained on Video Games) 0.0905 0.0567 0.1225 0.1221 0.2313 0.9034 0.0412 0.0378 0.2585

AlphaRec (trained on mixed dataset) 0.0913 0.0573 0.1277 0.1486 0.3215 0.9296 0.0660 0.0545 0.3381

Table 13: Performance comparison between training on the single dataset and the mixed dataset

Books Movies & TV Video Games
Recall NDCG HR Recall NDCG HR Recall NDCG HR

AlphaRec (trained on single dataset) 0.0991 0.0828 0.4185 0.1221 0.1144 0.5587 0.1519 0.0894 0.3207
AlphaRec (trained on mixed dataset) 0.0979 0.0818 0.4147 0.1194 0.1107 0.5463 0.1381 0.0827 0.2985

D.3 INTENTION-AWARE ABILITY

D.3.1 INTENTION QUERY GENERATION

The user intention query is a natural language sentence implying the target item of interest. For each
item in the dataset, we generate a fixed user intention query. Following the previous work (Hou
et al., 2024a), we generate user intention queries with the help of ChatGPT (OpenAI, 2023). As
shown in Figure 8, we prompt ChatGPT in a Chain-of-Thought (CoT) (Wei et al., 2022) paradigm
and adopt the output as the user intention query. We adopt a rule-based strategy to ensure the quality
of generated queries, and regenerate the wrong query. Considering the huge amount of item title
text, we use ChatGPT3.5 API for generating all queries for the budget’s sake.

D.3.2 BASELINE

AlphaRec exhibits user intention capture abilities, although not specially designed for search tasks.
We compare AlphaRec with TEM (Bi et al., 2020) which falls in the field of personalized search (Ai
et al., 2017; McAuley et al., 2015).

• TEM (Bi et al., 2020) uses a transformer to encode the intention query together with user history
behaviors, which enables it to achieve better search results by considering the user’s historical
interest.

D.3.3 CASE STUDY

We conduct two more case studies to verify the user intention capture ability of AlphaRec. As
illustrated in Figure 9 and Figure 10, AlphaRec provides better recommendation results, assigning
the target item at the top while maintaining the general user preferences.

D.3.4 EFFECT OF THE INTENTION STRENGTH ALPHA

The value of α controls the balance between the user’s historical interests and the user intention
query. A larger α incorporates more about the user intention while considering less about the user’s
historical interests. As shown in Figure 11, the effect of α on Video Games shows a similar trend
with MovieLens-1M.

E HYPERPARAMETER SETTINGS AND IMPLEMENTATION DETAILS

We conduct all the experiments in PyTorch with a single NVIDIA RTX A5000 (24G) GPU and a
64 AMD EPYC 7543 32-Core Processor CPU. We optimize all methods with the Adam optimizer.
For all ID-based CF methods, we set the layer numbers of graph propagation by default at 2, with
the embedding size as 64 and the size of sampled negative items |Su| as 256. We use the early stop
strategy to avoid overfitting. We stop the training process if the Recall@20 metric on the validation
set does not increase for 20 successive evaluations. In AlphaRec, the dimensions of the input and
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Intention Query Generation

Input
You are an expert in generating queries for a target movie. Please help me generate the most
suitable query for the target movie within one sentence, following the given example.
Example:
TARGET: BUG-A-SALT 3.0 Black Fly Edition.
QUERY: I want a gun that I can use while gardening to get rid of stink bugs, ants, flies, and
spiders in my house. It needs to be amazing and help me feel less scared.
TARGET: Toy Story (1995).

Output
QUERY: I’m looking for a heartwarming animated movie that follows the adventures of a
group of toys who come to life when their owner is not around.

Figure 8: Example of item query generation.

Figure 9: Case study of user intention capture on MovieLens-1M

output in the two-layer MLP are 3072 and 64 respectively, with the hidden layer dimension as 1536.
We apply the all-ranking strategy (Krichene & Rendle, 2020) for all experiments, which ranks all
items except positive ones in the training set for each user. We search hyperparameters for baselines
according to the suggestion in the literature. The hyperparameter search space is reported in Table
14. For these LM-enhanced models, KAR and RLMRec, we also search the hyperparameter of their
backbone XSimGCL.

For AlphaRec, the only hyperparameter is the temperature τ and we search it in [0.05, 2]. We report
the temperature τ we used for each dataset in Table 15. For the mixed dataset Amazon-Mix in
Section 5.2, we use a universal τ = 0.15. We adopt τ = 0.2 for the MovieLens-1M dataset for the
user intention capture experiment in Section 5.3.

Figure 10: Case study of user intention capture on Video Games
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Figure 11: Effect of α on Video Games

Table 14: Hyperparameters search space for baselines.

Hyperparameter space

MF & LightGCN lr ∼ {1e-5, 3e-5, 5e-5, 1e-4, 3e-4, 5e-4, 1e-3}
MultVAE dropout ratio ∼ {0, 0.2, 0.5}, β ∼ {0.2, 0.4, 0.6, 0.8}
SGL τ ∼ [0.05, 2], λ1 ∼ {0.005, 0.01, 0.05, 0.1, 0.5, 1.0}, ρ ∼ {0, 0.1, 0.2, 0.3, 0.4, 0.5}
BC Loss τ1 ∼ [0.05, 3], τ2 ∼ [0.05, 2]

XSimGCL τ ∼ [0.05, 2], ϵ ∼ {0.01, 0.05, 0.1, 0.2, 0.5, 1.0}, λ ∼ {0.005, 0.01, 0.05, 0.1, 0.5, 1.0}, l∗ = 1

KAR No. shared experts ∼ {3, 4, 5}, No. preference experts ∼ {4, 5}
RLMRec kd weight ∼ [0.05, 2], kd temperature ∼ [0.01, 0.05, 0.1, 0.15, 0.2, 0.5, 1]

ZESRec λu ∼ {0.01, 0.05, 0.1, 0.5, 1.0}, λv ∼ {0.01, 0.05, 0.1, 0.5, 1.0}
UniSRec lr ∼ {3e-4, 1e-3, 3e-3, 1e-2}
TEM l ∼ {2,3}, head h ∼ {4, 8}
AlphaRec τ ∼ [0.05, 2]

Table 15: The hyperparameters of AlphaRec

Books Movies & TV Video Games Amazon-Mix

τ 0.15 0.15 0.2 0.15

Table 16: Cost for extracting language representations on Amazon Movie & TV

per 10,000 items Time Cost Money Cost

Llama2-7B 5 mins 0 $
text-embedding-3-large 40 s 0.17 $
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