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Abstract

Vector quantization (VQ) is a key technique in high-resolution and high-fidelity
image synthesis, which aims to learn a codebook to encode an image with a
sequence of discrete codes and then generate an image in an auto-regression manner.
Although existing methods have shown superior performance, most methods prefer
to learn a single-modal codebook (e.g., image), resulting in suboptimal performance
when the codebook is applied to multi-modal downstream tasks (e.g., text-to-
image, image captioning) due to the existence of modal gaps. In this paper, we
propose a novel language-guided codebook learning framework, called LG-VQ,
which aims to learn a codebook that can be aligned with the text to improve the
performance of multi-modal downstream tasks. Specifically, we first introduce
pre-trained text semantics as prior knowledge, then design two novel alignment
modules (i.e., Semantic Alignment Module, and Relationship Alignment Module)
to transfer such prior knowledge into codes for achieving codebook text alignment.
In particular, our LG-VQ method is model-agnostic, which can be easily integrated
into existing VQ models. Experimental results show that our method achieves
superior performance on reconstruction and various multi-modal downstream tasks.

1 Introduction

In recent years, with the growing development of various multi-modal task scenarios [37, 36, 38],
unified modeling of visuals and language has sparked considerable interest. Vector Quantization
(VQ)-based image modeling technique, exemplified by VQ-VAE [43] and VQ-GAN [9], has emerged
as a pivotal approach in the realm of unified modeling. The VQ methodology [43] typically follows
a two-stage generation paradigm. In the initial stage, a trainable discrete codebook is employed to
quantize continuous image features into a discrete token sequence to finish the reconstruction task.
Subsequently, the codebook is utilized for various downstream tasks by generative models [42, 37].

Learning a robust codebook during the initial stage is crucial for optimizing performance in down-
stream tasks. At present, lots of VQ methods have been proposed to achieve robust code represen-
tation [15, 14, 7, 12]. For instance, VQ-GAN [9] introduces an adversarial training loss to learn a
perceptually rich codebook. Some other works consider improving the codebook representation from
the perspective of addressing the problem of codebook collapse [53, 52].

Although existing methods have shown superior performance, most methods only focus on learning a
single-modal codebook contains more low-level information (e.g., image’s pixel, edge, and texture),
resulting in suboptimal performance when the codebook is applied to multi-modal downstream tasks
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(e.g., text-to-image [37], image captioning [36], VQA [24]). That is because the codebook lacks
high-level semantics and the existence of modal gaps.

To address the above issue, we propose a novel codebook learning method (i.e., multi-modal codebook
learning), called Language-Guided VQ (LG-VQ). The novelty lies in utilizing pre-trained text
semantics as supervised information to guide the codebook to learn abundant multi-modal knowledge.

Q: What is this woman holding?

grass

racket

woman

holding

on

Figure 1: To answer the question, one not
only needs to identify “women” and “racket”
but also understand the semantic relation-
ship between them (“holding”).

Specifically, we first employ a cross-modal pre-trained
model (i.e., CLIP [32]) to encode text semantics. Then,
we propose two novel semantic supervision modules to
transfer the text semantics into codebook, i.e., Seman-
tic Alignment Module, and Relationship Alignment
Module. Within the semantic alignment module, we
enhance the consistency between the semantic repre-
sentations of the codebook and text through global se-
mantic alignment and masked text prediction. On the
other hand, simply aligning the text and codebook in
the holistic semantic space cannot satisfy more com-
plex reasoning tasks like image captioning and VQA.
Inspired by some VQA techniques [26, 40, 24], the se-
mantic relationships between words play a very impor-
tant role in various tasks of natural language processing
(See Fig. 1). Based on this fact, we further propose to
transfer the semantic relationships between words into
codes to achieve better alignment between the codes and words. Such a text-aligned codebook helps
alleviate modal gaps and improve codebook performance on cross-modal tasks.

The contributions of this work are summarized as follows:

• We point out the limitations of existing methods in learning an expressive codebook since
they learn a single-modal codebook. We propose a novel multi-modal codebook learning
method, named LG-VQ, which can enable the codebook to effectively retain fine-grained
reconstruction information while aligning with the text.

• Resorting to pre-trained text semantics, we propose two novel semantic supervision modules,
i.e., Semantic Alignment Module and Relationship Alignment Module, effectively learn
text-aligned codebook. The advantage of such alignment modules is the abundant context
and relationship semantics contained in pre-trained text can be sufficiently leveraged for
enhancing multi-modal codebook learning.

• We conduct comprehensive experiments on four public datasets, which shows that our
LG-VQ method outperforms various state-of-the-art models on reconstruction and various
cross-modal tasks (e.g., text-to-image, image captioning, VQA).

2 Related Works

2.1 Vector Quantization for Image Generation

Vector quantization (VQ) is designed to learn a codebook, which aims to encode continuous image
features into a discrete sequence. Then, the learned codebook can be utilized for various downstream
tasks. Oord et al. [43] first propose a novel VQ method called VQ-VAE. This method innovatively
replaces the prior distribution of Variational Autoencoder (VAE) with a discrete deterministic distri-
bution (i.e., a codebook). To further improve the performance of VQ, various models are proposed to
learn a more expressive codebook [9, 48, 2, 17, 7, 15, 14, 21]. For example, VQ-GAN [9] addresses
the issue of image blur generated by VQ-VAE through the introduction of an adversarial training
loss. However, the above methods do not tackle the codebook collapse issue. To address the issue,
many novel methods are proposed from the perspective of regularization [33], codebook update [53],
codebook transfer [51]. Recently, inspired by the large language models (LLMs), instead of mapping
images to the visual code tokens, some works attempt to map the images to the word tokens of LLMs
by viewing images as “foreign languages” [22, 50, 56]. However, because of the inherent differences
between vision and language, these works have difficulty assigning correct semantic words to images.
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Figure 2: The overall architecture of the proposed LG-VQ method. The right part of the figure is the
basic VQ-VAE module, left is our language-guided module, which consists of three losses: global
semantic alignment (Lgsa), masked text prediction (Lmtp), and relationship alignment supervision
(Lras). Here, pre-trained text information guides discrete code tokens of an image to learning rich
semantic knowledge based on three losses.

Compared with the aforementioned methods, our approach focuses more on multi-modal alignment in
feature space (i.e., learning a text-aligned codebook). We use pre-trained text semantics to supervise
the codebook learning. The advantage is that the rich semantic information from the text can be
fully exploited for more robust codebook learning so that the codebook can not only retain more
reconstruction information but also be able to understand and match text. More importantly, our
method is model-agnostic, which can be easily integrated into existing VQ models.

2.2 Vision-Language Representation Learning

Vision-language Pre-training (VLP) aims to learn multi-modal representations from large-scale image-
text pairs that can improve vision-language downstream tasks, for example, VQA[1]. Early methods
such as LXMERT [41], UNITER [4] employ pre-trained object detectors to extract image region
features, and fuse image features with text by a cross-modal encoder to achieve the vision-language
representation learning. Although these methods achieve superior performance on downstream tasks,
they require high-resolution input images and pre-trained object detectors. To remove the object
detectors, a large number of researchers focus on learning two separate representations for image and
text [32, 16, 18]. For instance, CLIP [32] learns a robust representation for each image and text using
contrastive learning based on large-scale image-text pair data.

In this paper, we propose to employ pre-trained text semantics as supervised information to guide
codebook learning. Its advantage is that abundant multi-modal knowledge contained in text can be
fully leveraged for robust codebook learning. Additionally, we design a novel relationship alignment
module to inject semantic relationships between words into codes.

3 Methodology

3.1 Preliminaries: VQ-VAE

VQ-VAE [43], as a pioneering work on the VQ research domain, aims to learn a discrete codebook to
encode images into discrete token sequences through an Encoder-Decoder framework. As illustrated
in Fig. 2 right, the VQ-VAE consists of a visual encoder Eθe(·) with parameter θe, a token decoder
Dθd(·) with parameter θd, a quantizer Q(·), and a codebook is defined as Z = {ek}Kk=1 that consists
of learnable K entries ek ∈ Rdz with dimension dz . Given an input image x ∈ RH×W×C , where H ,
W , and C represent the height, width, and channel of the image respectively. The visual encoder
Eθe(·) learns to convert the original image into grid features Ẑ = Eθe(x) ∈ R

H
f ×W

f ×dz and f is the
down-sampling factor. The quantizer Q(·) looks up the nearest neighbor in the codebook for each
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grid representation ẑi ∈ Rdz in Ẑi using the following equation:

zi = Q(ẑi) = argmin
ek∈Z

∥ẑi − ek∥. (1)

The token decoder Dθd(·) is used to reconstruct the original image by x̃ = Dθd(Z), where Z is
discrete code tokens of whole image obtained by Eq. 1. During training, the visual encoder Eθe(·),
codebook Z , and token decoder Dθd(·) are jointly optimized by minimizing the following objective:

Lvq = ∥x− x̃∥22 + ∥sg[Eθe(x)]− Z∥22 + ω∥Eθe(x)− sg[Z]∥22, (2)

where, the first term is reconstruction loss, which measures the difference between the original
image x and the reconstructed image x̃. sg[·] represents the stop-gradient operator, and the second
term is codebook loss, which encourages the codebook to be close grid features. The third term is
the “commitment loss” [43], where ω serves as a hyper-parameter. However, existing VQ-based
methods mainly focus on the learning of single-modal codebook, thereby limiting their applicability
to multi-modal downstream tasks.

3.2 Proposed Method: LG-VQ

Existing works attempt to improve codebook reconstruction capabilities to obtain better performance
on downstream tasks. However, ignoring modal differences results in suboptimal performance when
the codebook is applied to cross-modal tasks. To address this issue, we propose to utilize the pre-
trained text semantics as supervised information to learn a text-aligned codebook. Its advantage is
abundant semantic information from text can be fully exploited for more robust codebook learning to
improve the performance of reconstruction and cross-modal tasks. The comprehensive architecture
of the proposed LG-VQ method is illustrated in Fig. 2 left. It consists of two supervision modules:
Semantic Alignment Module (i.e., Lgsa and Lmtp), and Relationship Alignment Module (i.e., Lras).
The first module encourages global semantic consistency between the codebook and text. The second
module aims to transfer the rich semantic relationship between words into codes. Next, we introduce
these two modules in detail.

3.2.1 Semantic Alignment Module

Considering that paired image and text data have consistent semantic information and the missing
information of masked data can be completed from the other modality, we propose global semantic
alignment, which aims to enhance the consistency of global semantics between text and visual codes,
and masked text prediction, which uses visual codes to restore the masked words. Next, we discuss
how to align text and codebook in the semantic space.
Text Information Encoder: Instead of jointly training text and codebook from scratch, we employ a
pre-trained cross-modal model CLIP [32] to encode text information. Its advantage is that such text
information already has good cross-modal semantic knowledge and is beneficial for codebook learning.
Specifically, for a given text description of an image t = {wSOT , w1, w2, · · · , wn−2, wEOT }, where
wi denotes the i-th word, wSOT and wEOT represent the [start] token and [end] token, respectively,
and n is text sequence length. We use the text encoder of a pre-trained CLIP model to obtain whole
sequence embedding T ∈ Rn×dt :

T = {eSOT , ew1
, ew2

, · · · , ewn
, eEOT } = CLIP(t). (3)

Similar to CLIP, we use the eEOT to represent the global context feature of the sequence.
Global Semantic Alignment aims to align text and image visual codes in the global semantic space.
For getting the global representation of visual codes, we employ a vision transformer (ViT) fθvt [8]
to encode the discrete codes of image. Specifically, given an image, we firstly obtain the discrete
codes of image Z by Eq. 1. Then, we introduce a learnable global token [CLS] at the beginning
to form a token sequence Zc, where global token [CLS] is employed to capture the image’s global
context information. We feed the sequence into fθvt

to get a new visual code representation, that is:

Zvt = {eCLS , e1, e2, · · · , eH
f ×W

f
} = fθvt

(Zc). (4)

Finally, we employ InfoNCE [29], which maximizes the similarity between visual and text in the
global representation, as our learning objective, where B is the batch size, s(·, ·) is cosine similarity:

Lgsa = −
∑
i∈B

log
exp(s(eiCLS , e

i
EOT ))∑

j∈B exp(s(eiCLS , e
j
EOT ))

. (5)
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Masked Text Prediction: To further enhance the semantic alignment, we propose to use discrete
visual codes to reconstruct the masked words from a more fine-grained perspective, refer to Fig. 2 left.
Formally, for a given fixed-length text sequence of n− 2, we first randomly sample the masking ratio
r from a truncated Gaussian distribution [19]. Subsequently, we randomly mask out r · (n− 2) words
and replace them with learnable [maski] tokens based on their positions i. Next, a self-attention
module [44] is employed to learn adaptive masked word embeddings based on unmasked words.
The resulting adaptive masked sequence is denoted as Tmsk = {eSOT ,m1, ew2

,m3, · · · , eEOT },
where mi is the mask token embedding at the i-th position in the sequence. Following this, a cross
attention decoder fθm(·, ·) is employed to predict the masked word tokens given the discrete visual
codes Zvt obtained by Eq. 4. Finally, we add a cross-entropy loss H(·, ·) between the ground-truth
word tokens and the output of the decoder. Let ymsk denote a one-hot vocabulary distribution where
the ground-truth word token has a probability of 1, fθm(Zvt, T

msk) denote the predicted probability
of model for masked word tokens. That is:

Lmtp = −E(Zvt,Tmsk)∼BH(ymsk, fθm(Zvt, T
msk)). (6)

3.2.2 Relationship Alignment Module

While the two aforementioned loss functions for achieving good alignment at holistic semantic space
have demonstrated initial promise, they cannot satisfy more complex reasoning tasks like image
captioning and VQA. Inspired by some VQA techniques [26, 40, 24, 1], the semantic relationships
between pre-trained words play a very important role in complex text reasoning tasks. For instance,
as shown in Fig 1, to answer question (“What is this woman holding?”), one needs to fully understand
the visual objects “women”, “racket”, and semantic relationship between them (“holding”). Based
on the above fact, we propose to transfer the semantic relationship between words into codes. Such
semantic relationships enable the model to better understand the image for addressing complex
reasoning tasks.

girl earring

Step 1: Alignment

1 2 3 4 5���

1 2 3 4 5�

Step 2: Mapping

0.6

0.5

Step 3: ℒ���

Figure 3: Illustration of relationship align-
ment module, we use Zvt to align with two
words, then inject the semantic relationship
of two words into Z codes.

But unfortunately, there is an issue there is no align-
ment between words and codes. Thanks for the above
two losses that have provided semantic alignment of
text and visual codes. To achieve the above idea, as
shown in Fig. 3, we first use Zvt to align with words.
Then, we inject semantic relationships between words
into the initial codebook Z, instead of the Zvt. Its ad-
vantage is it can prevent codes from collapsing into a
single point for learning more diverse representations
by relationship limiting. Then, Zvt primarily serves the
purpose of aligning words and codes, but it is a crucial
step for subsequent processes. Specifically, given any
two words of a sentence, we use pre-trained word em-
bedding [32] to encode words, ewi

and ewj
. We employ

cosine similarity to find the index of the code from Zvt

that is most similar to the word. Then, one can get code embedding from Z based on the index:

ezi = Z[argmax
ez∈Zvt[1:]

s(ewi , ez), :], ezj = Z[argmax
ez∈Zvt[1:]

s(ewj , ez), :]. (7)

Next, we consider cosine similarity as a measure of semantic relationships between words and
leverage it to establish corresponding relationships between codes achieving semantic relationship
transfer. Finally, we utilize the following loss function as learning objective:

Lras =
∑

(wi,wj)∈t

(s(ewi
, ewj

)− s(ezi , ezj ))
2. (8)

3.2.3 Training Objective

We use three hyperparameters (i.e., α, β, and γ) to control three losses, respectively. Finally, the
overall objective function is:

L = Lvq + αLgsa + βLmtp + γLras. (9)
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Table 1: Results of image reconstruction on TextCaps, CelebA-HQ, CUB-200, and MS-COCO.
“VQ-VAE+LG” denotes considering our method LG-VQ based on VQ-VAE.

Models TextCaps CelebA-HQ CUB-200 MS-COCO
FID↓ PSNR↑ FID↓ PSNR↑ FID↓ PSNR↑ FID↓ PSNR↑

VQ-VAE 82.31 21.96 41.45 25.57 54.92 24.38 86.21 23.55
VQ-VAE+LG 81.93 21.95 40.53 25.04 36.55 25.60 79.54 23.40

VQ-GAN 24.08 19.64 5.66 24.10 3.63 22.19 14.45 20.21
VQ-GAN+LG 20.35 19.92 5.34 23.75 3.08 22.47 10.72 20.50

CVQ 16.35 20.24 5.19 23.15 3.61 22.29 9.94 20.48
CVQ+LG 15.51 20.21 4.90 24.48 3.33 22.47 9.69 20.71

4 Experiments

4.1 Experimental Settings

Evaluation Metrics. As our method is model-agnostic, we choose recent models, including VQ-VAE
[43], VQ-GAN [9], and CVQ [53] as our backbone network. Following existing works [52, 53], we
evaluate the reconstruction image quality on two evaluation metrics, i.e., Fréchet Inception Distance
(FID) [13] which evaluates the perceptual similarity of reconstructed images and original images, and
Peak Signal-to-noise Ratio (PSNR) [10] is employed to measure the pixel-level similarity between
the reconstructed and original images.
Dataset. We evaluate our method on four public datasets, including TextCaps [39], CelebA-HQ [23],
CUB-200 [45], and MS-COCO [20]. For CelebA-HQ, CUB-200, and MS-COCO datasets, we use
publicly available image captions, CelebA-HQ from [47], CUB-200 from [34], MS-COCO from [3]
Implementation Details. Following VQ-GAN [9], all images are reshaped 256 × 256 for recon-
struction and generation. Down-sampling factor f is set to 16. The codebook size K is 1024. The
batch size is 8. In our experiments, we maintain consistent parameter settings between our method
LG-VQ and the chosen backbone networks (i.e., VQ-VAE [43], VQ-GAN [9], and CVQ [53]) for
a fair comparison. For each image, we randomly select a text from multi-text for training. Since
our method introduces additional text and pre-trained CLIP model, for a fair comparison, we select
VQCT [51] as the baseline for various downstream tasks. VQCT extracts many visual-related words
from a large amount of text and designs a novel codebook transfer network based on the pre-trained
CLIP model to learn the visual codebook.

Table 2: Ablation study of our three loss functions on
TextCaps and CUB-200.

Setting TextCaps CUB-200
FID↓ FID↓

(i) Baseline(VQ-GAN) 24.08 3.63
(ii) + Lgsa 23.01 3.39
(iii) + Lmtp 21.54 3.49
(iv) + Lmtp + Lras 20.77 3.32
(v) + Lmtp + Lgsa 20.46 3.34
(vi) + Lmtp + Lgsa + Lras 20.35 3.08

Table 3: Results (Recall@1) of masked
word prediction on CelebA-HQ and
CUB-200. “Mask-1” denotes that text is
randomly masked one word.

Dataset Recall@1

CelebA-HQ Mask-1 99.55
Mask-3 99.24

CUB-200 Mask-1 83.65
Mask-3 80.17

4.2 Discussion of Results

Table 1 illustrates the image reconstruction performance of our model compared to the backbone
model on multiple datasets. It can be observed that our method LG-VQ outperforms all compared
methods on most evaluations, which suggests that our method is extremely effective and has strong
generality. Compared with FID, our PSNR improvement is marginal, this is reasonable in the VQ
research domain, which widely exists in previous VQ methods [21, 52, 53]. The main reason is that
PSNR only measures the pixel-level similarity of the images, while FID can effectively measure the
diversity and semantic similarity of image generation. Compared with backbone models, the key
difference lies in that our method introduces well pre-trained text semantics, which is beneficial to
learning a more expressive codebook. This shows the effectiveness of our method. We also provide a
qualitative comparison of the image reconstruction performance of different methods, please refer to
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Appendix A.3 Fig. 10.

4.3 Ablation Study

Are our three loss functions both effective? In Table 2, we conduct an ablation study to show the
effectiveness of the proposed three loss functions. Specifically, the VQ-GAN serves as the baseline
model (i.e., without introducing any loss). We do not conduct a separate experiment on Lras because
this module requires code and words to be well aligned. Based on the results from (i) ∼ (vi), we draw
several key conclusions: Firstly, each loss function plays a crucial role in improving the performance
of image reconstruction. Secondly, the performance of (iii) outperforms (ii) by a large margin on
TextCaps. This is reasonable because TextCaps’s texts are richer and more diverse than CUB-200,
it can provide more knowledge for more fine-grained alignment between codes and text, which is
useful for the learning of a more robust codebook. Thirdly, analyzing the results of (iii) and (iv),
injecting word-level semantic relationships into codes is beneficial, which confirms our motivation.
Furthermore, the performance of (v) outperforms (i), which is reasonable because the abundant
semantic knowledge from pre-trained text can be fully exploited for learning more robust codebook
representation. This supports the motivation of learning a multi-modal codebook (i.e., aligned with
text). Finally, comparing the results of (vi) with (i)∼(v), fully considering all losses achieves the best
performance, indicating the effectiveness of our method.
Can our global semantic supervision align vision and language? In Fig. 4, we provide several
image-to-text retrieval cases on CelebA-HQ and CUB-200 datasets based on VQ-GAN+LG. From
the figure, it can be observed that our method can accurately retrieve text very similar to the image
content, achieving the alignment of vision and language. For example, row 2 examples show that our
method can precisely understand some key attributes of images (e.g., “gray hair”, “necktie”, “big nose”
and “chubby”) and retrieve similar text. This suggests that the codes learned through our method
have obtained good alignment with the text, which verifies the effectiveness of our method. Moreover,
such alignment is beneficial for learning robust code representations and enhancing performance in
multi-modal downstream tasks.

a jet black bird with a bright 
yellow-orange color on its head and 
chest, its beat is short, sharp, and 
black.

Top-1 retrieved text 
a multicolored bird with an orange 
and white base color with black tips 
and a red head with a short beak.

Top-1 retrieved text 

The person has mouth slightly 
open, gray hair, and bags under 
eyes and is wearing necktie. He is 
smiling, and chubby.

Top-1 retrieved text 
The man has sideburns, bags under 
eyes, big nose, and double chin and is 
wearing necktie. He is smiling.

Top-1 retrieved text 

Figure 4: Examples of the top-1 most similar
text selected on image-to-text retrieval task.

this bird has large [mask] with stripes 
on the ends, a short tail, a large gray 
and white head, and a long beak with 
a downward curve.
GT：wings
Top-1 word：wings

a small bird with a grey-yellow head 
and back, a black eye, a bill which is 
grey on top and yellow on the bottom, 
and a dull white [mask] and abdomen.
GT：breast
Top-1 word：breast

This woman has bags under [mask], big 
nose, narrow [mask], and arched 
eyebrows and is wearing necklace, and 
heavy makeup. She is [mask].
GT：eyes, eyes, smiling
Top-1 word：eyes, eyes, smiling

This person [mask] mustache, bags 
under eyes, bushy eyebrows, and big 
nose. He [mask] young. He [mask] 
beard.
GT：has, is, has
Top-1 word：has, is, has

Figure 5: Examples of the top-1 word predicted
on masked word prediction task.

Can our codebook accurately predict masked words? To answer this question, we conduct a word
prediction task on test data based on VQ-GAN+LG by randomly masking one word or three words of
text, as shown in Table 3. We use Recall@1 as the evaluation metric [18]. From the table, our method
demonstrates accurate predictions of masked words, confirming the effectiveness of our approach.
Fine-grained word prediction can help the codebook better understand the text semantics, which is
crucial for improving the performance of the downstream task. Additionally, several examples in
Fig. 5 demonstrate our method’s ability that accurately predict subject words (e.g., wings, eyes) and
verbs (e.g., has, is, and smiling), further affirming its strong multi-modal understanding capabilities.

Table 4: Results of similarity evalu-
ation between codes and words on
CUB-200 all test data.

Method VQ-GAN VQ-GAN+LG
MSE↓ 0.6374 0.0351

Can our codebook learn the word semantic relationships?
In Fig. 6, we visualize the cosine similarity between words
and the cosine similarity between codes aligned with the words
for a certain sample based on VQ-GAN+LG. From the figure,
we can see our codes can learn consistent relationships with
word semantics compared with VQ-GAN. For example, the
similarity “code 33” vs “code 232” (0.46) resembles “wings” vs
“chest” (0.49). In addition, we provide a quantitative similarity
evaluation between codes and words in Table 4. From the
results, we can find that our codes indeed achieve consistent semantic relationships with words.
Is our method effectively learning more diverse code representation? Following [52], we directly
feed each codebook embedding ek (size: 1× 1× 256) into the decoder Dθd(·) to generate codebook
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image (size: 16 × 16 × 3). Then, we concatenate all codebook images to form a big image with
32 × 32 patches. Finally, we visualize the result of VQ-GAN and our LG-VQ on TextCaps and
MS-COCO as shown in Fig. 7. This visualization suggests that our method enables the model to
learn more diverse code representations and improve codebook usage.

(a) word similarity (b) LG-VQ code similarity (c) VQ-GAN code similarity

Figure 6: Visualization of words similarity and image codes similarity aligned with the word. We
extract some representative words from the text as a demonstration.

(a) The usage of codebook on VQ-GAN is 18.62%
and VQ-GAN+LG is 43.58% on TextCaps

(b) The usage of codebook on VQ-GAN is 40.09%
and VQ-GAN+LG is 97.89% on MS-COCO

Figure 7: Visualization of the codebook of VQ-GAN and LG-VQ on TextCaps and MS-COCO.

4.4 Application

4.4.1 Image Generation

Following [9, 37, 11], we conduct image generation downstream tasks (i.e., text-to-image, semantic
synthesis, unconditional generation, and image completion) to fully validate the effectiveness of the
learned codebook on CelebA-HQ.
Text-to-Image. In Table 5, we compare our LG-VQ with the state-of-the-art models on CelebA-HQ
dataset for text-to-image. From the results, our LG-VQ method outperforms baseline methods by
a large margin. This is reasonable due to the incorporation of pre-trained text knowledge enabling
a comprehensive understanding of the text, which suggests our method’s effectiveness. Moreover,
we provide some synthesis examples comparing the results of our LG-VQ with baseline methods in
Figure 8, showing the performance in the text-to-image task. From the figure, we can see our method
not only comprehensively understands the given text conditions but also excels in generating realistic
images compared with baseline methods. For instance, our method can capture the “glasses”, “man”,
“long black hair”, and “no beard” key attributions.
Semantic Synthesis. Following [9], we compare with existing semantic synthesis models in Table 6.
Our method achieves the best performance, which suggests our method’s effectiveness. We provide
some examples in Appendix Figure 13.
Unconditional Generation and Image Completion. Following [9], we conduct unconditional image
generation and Image Completion on CelebA-HQ dataset, as shown in Table 7 and Table 10. From
the results, we can see that our method can significantly improve the performance of VQ-GAN, which
is reasonable because pre-trained text can provide rich semantic knowledge for learning more robust
codebook representation. This suggests the effectiveness of our method. We provide some examples
in Appendix Figure 18 and Figure 17.
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The woman has 
brown hair, and 

red eyebrows. She 
is wearing glasses,  

and is wearing 
blue lipstick

Condition VQ-GAN VQ-GAN+LG

The man has long 
black hair. He has 

no beard

CVQ CVQ+LG

Figure 8: Text-to-image synthesis and semantic image synthesis on CelebA-HQ. Text with background
color emphasizes generated details

4.4.2 Visual Text Reasoning

Follow [27, 6], we use the learned codebook to conduct two visual text reasoning tasks: 1) image
captioning on CUB-200; and 2) visual question answering (VQA) on COCO-QA [35]. For the
experimental setting, please refer to Appendix A.1.
Image captioning. Following [27], we conduct the image captioning task on the CUB-200 dataset.
We compare two recent work V2L Tokenizer [56] and VQCT [51]. We select VQ-GAN as our
backbone network. The results are shown in Table 11. For the results, we can see that our LG-VQ
method outperforms the performance of VQ-GAN. This is reasonable because the pre-trained text
provides rich context and relationship semantics for codebook learning, which verifies our motivation
for learning a text-aligned codebook to improve the performance of the codebook on cross-modal
tasks. On the other hand, the V2L Tokenizer and VQCT cannot achieve very good performance
because it is difficult to assign correct semantic language tokens to images. Compared with the V2L
Tokenizer, our method utilizes pre-trained text semantics as supervised information. Its advantage
is can make the codebook learn semantic information consistent with the text (i.e., learning a text-
aligned codebook). And, our method is model-agnostic, which can be easily integrated into existing
VQ models.
Visual Question Answering. We select VQ-GAN and VQCT [51] as the baseline. We conduct the
VQA task on the COCO-QA [35] using the codebook trained on the MS-COCO dataset. The results
are shown in Table 9. From the results, we can see that our LG-VQ method significantly improves
the performance of VQ-GAN on VQA task (approximately 8.32%↑ on Accuracy). That is reasonable
due to we introduce pre-trained text semantics to enable us to obtain a codebook aligned with the
text, which is helpful for comprehensively understanding the given text question. This confirms our
motivation and the effectiveness of our method.

Table 5: Results of text-to-image on CelebA-HQ.

Model Text-to-Image
FID↓

Unite and Conqu [4] 26.09
Corgi [54] 19.74
LAFITE [55] 12.54
VQ-GAN 15.29
CVQ 13.23
VQ-GAN+LG 12.61
CVQ+LG 12.33

Table 6: Result (FID↓) of semantic syn-
thesis on CelebA-HQ.

Model Semantic Synthesis
FID↓

Reg-VQ [52] 15.34
VQCT [51] 14.47
VQ-GAN 11.53
CVQ 11.04
VQ-GAN+LG 11.46
CVQ+LG 11.03

4.4.3 Visual Grounding

We conduct a visual grounding task on refcoco dataset [49] to validate the effectiveness of the
learned MS-COCO’s codebook. Following the same metric used in [5], a prediction is right if the
IoU between the grounding-truth box and the predicted bounding box is larger than 0.5. We select
VQ-GAN and VQCT [51] as the baseline. The results are shown in Table 8. From the results, we
can see that the performance of our method consistently outperforms VQ-GAN and VQCT, which
suggests its effectiveness. We also provide a qualitative comparison in Appendix Figure 19. For the
experimental setting, please refer to Appendix A.1.
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Table 7: Result (FID↓) of un-
conditional image generation
on CelebA-HQ.

Model CelebA-HQ
FID↓

Style ALAE [30] 19.2
DC-VAE [31] 15.8
VQ-GAN 10.2
LG-VQ 9.1

Table 8: Result (FID↓) of
visual grounding on refcoco
dataset using MS-COCO’s
codebook.

Model Visual Grounding
Accuracy(0.5)↑

VQ-GAN 9.14
VQCT [51] 9.46
LG-VQ 9.62

Table 9: Results of (Accu-
racy and WUPS [46]) VQA on
COCO-QA [35] dataset using
MS-COCO’s codebook.

Setting VQA
Accuracy↑ WUPS↑

VQCT [51] 40.42 82.06
VQ-GAN 37.82 83.22
LG-VQ 40.97 83.56

Table 10: Result (FID↓) of im-
age completion on CelebA-HQ.

Model CelebA-HQ
FID↓

VQ-GAN 9.02
LG-VQ 8.14
Improve 9.76%

Table 11: Results of image captioning on CUB-200.

Model Image Captioning
BLEU4↑ ROUGE-L↑ METEOR↑ CIDEr-D↑

VQ-GAN 1.29 33.40 24.47 93.62
V2L Tokenizer [56] 1.59 30.65 25.76 104.14
VQCT [51] 1.38 26.50 24.63 98.22
LG-VQ 1.69 34.73 25.78 102.77

5 Conclusions

In this paper, we propose a novel codebook learning method, named LG-VQ. LG-VQ is a model-
agnostic method and can easily be integrated into existing VQ models. In particular, we propose
to incorporate pre-trained text semantics into the codebook by two novel supervision modules, i.e.,
semantic and relationship. Quantitative and qualitative experiments demonstrate the strong generality
of our method, showing its ability to improve the performance of the codebook in cross-modal tasks.
Limitations. In our current paper, we suppose each word aligns with a code, but it fails to capture
some more complex relationships between words and codes (e.g., one code aligns with multiple
words). In the future, we plan to investigate the relationships between codes and words. Moreover,
although our results show that the performance of VQ in visual text reasoning tasks can be significantly
improved, its results are still far lower than the performance of image captioning or VQA models.
Broader impact Our paper shows that learning a multi-modal codebook (i.e., a text-aligned codebook)
can not only significantly improve the performance of reconstruction but also the performance of the
codebook on cross-modal tasks. The potential impact of our research lies in its influence on future
studies, specifically in the area of unified modeling of multi-modal understanding and generation.
For instance, our work can be extended to interact with LLMs to improve multi-modal understanding
and generation capabilities. In particular, our model can be used to generate images or text. It may be
exploited to produce some erroneous and unethical information, which needs to be handled carefully
before employing our model in practical applications.
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A Appendix / supplemental material

A.1 Experiment Details

Semantic image synthesis, unconditional generation and image completion: All models follow
the default setting of VQ-GAN-Transformer2. Specifically, the vocabulary size, embedding number,
and input sequence length are 1024, 1024, and 512, respectively. The layers and heads of the
transformer are both 16. The semantic image synthesis experiments are conducted on 1 4090 GPU
with a batch size of 15 and one day of training time. The unconditional generation and image
completion experiments are conducted on 2 4090 GPUs with a batch size of 36 and one day of
training time.
Text-to-image generation: All models follow the default setting of VQ-Diffusion3. Specifically,
the layers of the transformer are 19 with dimension of 1024. The diffusion step is 100. The training
epoch is 90 for all models. The experiments are conducted on 1 4090 GPU with a batch size of 24
and two days of training time.
Image captioning: Inspired by ClipCap [27], we use the trained codes to replace the ClipCap’s prefix
embeddings. The model framework is shown in Fig. 9 (a). The training epoch is 100 for all models.
The experiments are conducted on 2 4090 GPUs with a batch size of 60 and one day of training time.
Visual question answering: The COCO-QA [35] dataset is automatically generated from captions in
the Microsoft COCO dataset [20]. There are 78,736 train questions and 38,948 test questions in the
dataset, These questions are based on 8,000 and 4,000 images respectively. There are four types of
questions including object, number, color, and location. Each type takes 70%, 7%, 17%, and 6% of
the whole dataset, respectively. All answers in this data set are single word. Following the image
captioning task, we use the last hidden embedding to do VQA, as shown in Fig. 9 (b). Following
the [24], we report classification accuracy and Wu-Palmer similarity (WUPS). The training epoch is
50 for all models. The experiments are conducted on 2 4090 GPUs with a batch size of 60 and one
day of training time.
Visual Grounding: The refcoco dataset [49] includes 19,994 images with 50,000 referred objects.
Each object has more than one referring expression, and there are 142,210 referring expressions in
this dataset. There are two commonly used split protocols for this dataset. One is RefCOCOg-google
[25], and the other is RefCOCOgumd [28]. We follow RefCOCOgumd [28] to split the dataset. The
train set has 42,404 expressions, the validation set has 3,811 expressions, and the test set has 3,785
expressions. Following [5], we concatenate the image codes and text tokens and feed them into a
learnable transformer with coordinate regression layers (i.e., FNN) to predict the object box. The
training epoch is 100 for all models. The experiments are conducted on 2 4090 GPUs with a batch
size of 30 and several hours of training time.

VQ The girl wears errings.

GPT

The ... errings END

Encoder

(a) Image captioning

what is coming down 
the tracks.

GPT

train

VQ Encoder

(b) VQA

Figure 9: The architecture of the visual text reasoning based on GPT.

2https://github.com/CompVis/taming-transformers
3https://github.com/microsoft/VQ-Diffusion
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A.2 Experimental comparison with VQCT

We provide comparisons with VQCT [51] for image reconstruction in Table 12. Moreover, we also
provide experimental results on further integrating our method into VQCT to verify its effectiveness
and versatility. The results are shown in Table 13.

Table 12: Comparison of VQCT [51] and our method on reconstruction

Model Codebook Size #Tokens CelebA-HQ CUB-200 MS-COCO
VQCT 6207 512 5.02 2.13 9.82
VQ-GAN+LG 1024 256 5.34 3.08 10.72
CVQ+LG 1024 256 4.90 3.33 9.69

Table 13: Comparison of reconstruction and VQA on VQCT and VQCT+LG on the MS-COCO
dataset.

Image Reconstruction VQA
Model FID↓ Accuracy↑
VQCT 9.82 40.42
VQCT+LG 9.57 40.64

A.3 More Examples and Qualitative Results

We provide more examples of image reconstruction in Fig. 10, image-to-text retrieval in Fig. 11
and Fig. 12. We also provide more image synthesis results in Fig. 13 for semantic image synthesis,
and text-to-image synthesis in Fig. 14. We provide some examples of image captioning in Fig. 15
and VQA in Fig. 16. We provide some examples of unconditional generation in Fig. 18, and image
completion in Fig. 17. We also provide a qualitative comparison of visual grounding in Fig. 19.

Original Image CVQ CVQ+LGVQ-GAN+LG
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VQ-GAN
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M
S-C
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C
O

TextC
aps

Original Image CVQ CVQ+LGVQ-GAN+LGVQ-GAN

Figure 10: Reconstruction from different models on four datasets. The red-color boxes highlight
reconstruction details.
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Figure 11: Examples of the top-5 most similar text selected on Textcaps based on VQ-GAN+LG.
The bold text means the same as the ground truth result.

Figure 12: Examples of the top-5 most similar text selected on CUB-200 based on VQ-GAN+LG.
The bold text means the same as the ground truth result.
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Figure 13: Semantic image synthesis on CelebA-HQ.

Figure 14: More text-to-image generation on CelebA-HQ.

Our: this bird has a white crown and white throat, 
brown back, and black feet.

VQ-GAN: this bird is black and white, and has a 
gray crown and black breast.

Our: this little bird has a yellow belly, wings, 
brown eyes, long black beak, brown crown and 
beak.

VQ-GAN: this bird has a white light red body, a 
white or brown blue crown and is a brown throat, 
and also has a very short crenshaw.

Our: a small bird with a blue head, and long, 
pointed wing bar.

VQ-GAN: this bird has wings that are black and 
white with black spots.

Our: this bird has wings that are brown with a red 
crown and a short point orange bill.

VQ-GAN: this small pter is brown in color and 
has a red crown.

Figure 15: Image Captioning on CUB-200 based on VQ-GAN and VQ-GAN+LG.
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Q : what are sitting on the 
counter in different stages 
of cutting with a knife?
GT:  carrots

VQ-GAN:  pizzas

Our:  vegetables

Q : what is the man 
swinging at a ball on a 
tennis court?
GT:  racquet

VQ-GAN:  bat

Our:  racquet

Q : what are rubbing their 
heads and necks together?

GT:  giraffes

VQ-GAN:  elephants

Our:  giraffes

Q : what is the color of 
the dog?

GT:  white

VQ-GAN:  brown

Our:  white

Q : how many small 
children that are enjoying 
a small snack?
GT:  four

VQ-GAN:  three

Our:  four

Q : what is the person 
with a cowboy hat riding 
trying to get a cow?
GT:  horse

VQ-GAN:  motorcycle

Our:  horse

Figure 16: VQA on COCO-QA based on VQ-GAN and VQ-GAN+LG.

Figure 17: Image completion on CelebA-HQ.

Figure 18: Examples of unconditional image generation on CelebA-HQ based on VQ-GAN+LG.
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player on right of the 

three in front

VQ-GAN

VQ-GAN

+LG

guy on bicycle person with goggles 

sitting

bottom giraffe guy in gray shirt 

standing

man in black on skis

Figure 19: Examples of visual grounding on refcoco. Blue boxes are the ground-truth, red boxes are
the model predictions.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See the last paragraph in Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See the second paragraph in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our work mainly involves empirical contributions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide our code in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide our code and dataset information in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed experimental settings in Section 4.1 and Appendix A.1.
In the supplementary materials, we provide our code, which contains more details of the
model and parameters.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See the third paragraph “Visual Question Answering” in Section 4.4.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss our model’s computational resources in Appendix A.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See the last paragraph in Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We are using publicly available datasets for all experiments.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all used public datasets in Section 4 and Appendix A.1. All datasets
are publicly available. They are under a non-commercial license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our code and pre-trained model will be released later for the assets. We are
using publicly available datasets for all experiments. No personally identifiable information
is involved.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects were involved in our experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects were involved in our experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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