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ABSTRACT

Robust subspace recovery (RSR) is the problem of learning a subspace from sample
data points corrupted by outliers. Dual Principal Component Pursuit (DPCP) is
a robust subspace recovery method that aims to find a basis for the orthogonal
complement of the subspace by minimizing the sum of the distances of the points
to the subspaces subject to orthogonality constraints on the basis. Prior work has
shown that DPCP can provably recover the correct subspace in the presence of
outliers as long as the true dimension of the subspace is known. In this paper, we
show that if the orthogonality constraints –adopted in previous DPCP formulations–
are relaxed and random initialization is used instead of spectral one, DPCP can
provably recover a subspace of unknown dimension. Specifically, we propose a very
simple algorithm based on running multiple instances of a projected sub-gradient
descent method (PSGM), with each problem instance seeking to find one vector in
the null space of the subspace. We theoretically prove that under mild conditions
this approach succeeds with high probability. In particular, we show that 1) all of
the problem instances will converge to a vector in the nullspace of the subspace
and 2) the ensemble of problem instance solutions will be sufficiently diverse
to fully span the nullspace of the subspace thus also revealing its true unknown
codimension. We provide empirical results that corroborate our theoretical results
and showcase the remarkable implicit rank regularization behavior of the PSGM
algorithm that allows us to perform RSR without knowing the subspace dimension.

1 INTRODUCTION

Robust subspace recovery (RSR) refers to the problem of identifying an underlying linear subspace
(with dimension less than the ambient data dimension) from sample data points that are potentially
corrupted with outliers (i.e., points that do not lie in the linear subspace). Many methods for RSR have
been proposed in the literature over the past several years (Xu et al., 2012; You et al., 2017a; Lerman
& Maunu, 2018). Formulations based on convex relaxations and decompositions of the data matrix
into a low-rank matrix plus a matrix of sparse corruptions – either entrywise-sparse corruptions as in
Candès et al. (2011) or columnwise-sparse corruptions as in Xu et al. (2012); McCoy & Tropp (2011)
– can, in certain situations, be shown to provably recover the true subspace when the dimension is
unknown. However, these theoretical guarantees often require the dimension of the subspace, d, to be
significantly less than the ambient dimension of the data, D, and these methods are not suitable for
the more challenging regime of subspaces of high relative dimension (i.e., when d

D ≈ 1).

Dual Principal Component Pursuit. Recently, progress has been made towards solving the RSR
problem in the high relative dimension regime by a formulation termed Dual Principal Component
Pursuit (DPCP). As implied by its name, DPCP follows a dual perspective of RSR by aiming to
recover a basis for the orthogonal complement of the inliers’ subspace. As shown in (Tsakiris &
Vidal, 2018), DPCP is provably robust in recovering subspaces of high relative dimension. However,
a key limitation of DPCP is that it requires a priori knowledge of the true subspace dimension.
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DPCP for c = 1. Let X̃ ∈ RD×(N+M) denote the data matrix defined as X̃ = [X O]Γ, where
X ∈ RD×N is a matrix containing N inliers as its columns,O ∈ RD×M is a matrix containing M
outliers, and Γ is an unknown permutation matrix. DPCP was first formulated by Tsakiris & Vidal
(2018) for handling subspaces of codimension c = D−d equal to 1 (i.e., the subspace is a hyperplane
with dimension d = D − 1). In this case, DPCP is formulated as the optimization problem

min
b∈RD

‖X̃>b‖1 s.t. ‖b‖2 = 1, (1)

which is nonconvex due to the spherical constraint imposed on the normal vector b ∈ SD−1 of the
D − 1 dimensional hyperplane. Tsakiris & Vidal (2018) showed that the global minimizer of (1) is a
normal vector of the underlying true hyperplane when both inliers and outliers are well-distributed
or the ratio between the number of inliers and number of outliers is sufficiently small. Following a
probabilistic point of view, (Zhu et al., 2018) presented an improved theoretical analysis of DPCP
giving further insights on the remarkable robustness of DPCP in recovering the true underlying
subspaces even in datasets heavily corrupted by outliers. Moreover, the authors introduced a projected
subgradient method which converges to a normal vector of the true subspace at a linear rate.

Recursive DPCP for known c > 1. Zhu et al. (2018) also proposed an extension to DPCP to
subspaces with codimension c > 1 via a projected subgradient algorithm that tries to learn c
normal vectors to the subspace in a recursive manner. Specifically, after convergence to a normal
vector, the projected subgradient algorithm is initialized with a vector orthogonal to the previously
estimated normal vector. However, for that approach to be successful, knowledge of the true subspace
codimension c becomes critical. Specifically, if an underestimate of the true codimension c is assumed
the recovered basis for the null space, B̂, will fail to span the whole null space, S⊥. On the other
hand, an overestimate of c will lead to columns of B̂ corresponding to vectors that lie in S.

Orthogonal DPCP for known c. Zhu et al. (2019) proposed an alternative to (1) which attempts to
solve for c normal vectors to the subspace at once by minimizing the sum of the distances from the
points to the subspace:

min
B∈RD×c

‖X̃>B‖1,2 s.t. B>B = I. (2)

The authors also proposed an optimization algorithm based on the projected Riemannian subgradient
method (RSGM), which builds on similar ideas as the projected subgradient method of Zhu et al.
(2018) and enjoys a linear converge rate when the step size is selected based on a geometrically
diminishing rule. Ding et al. (2021) provided a geometric analysis of (2) which shows the merits of
DPCP in handling a) datasets highly contaminated by outliers (in the order of M = O(N2)) and b)
subspaces of high relative dimension. However, a key shortcoming of this approach is that, because
all minimizers of (2) are orthogonal matrices, a prerequisite for recovering the correct orthogonal
complement of the inliers subspace is the a priori knowledge of the true codimension c (see Fig. 1).

Contributions. In this work, we address this key limitation by proposing a framework that allows
us to perform robust subspace recovery in the high relative subspace dimension regime without
requiring a priori knowledge of the true subspace dimension. In particular, our proposed approach
is based on the simple idea of solving multiple, parallel instances of the DPCP formulation for
subspaces of codimension one,

min
B∈RD×c′

c′∑
i=1

‖X̃>bi‖1 s.t. ‖bi‖2 = 1, i = 1, 2, . . . , c′ (3)

where c′ is assumed to be an upper bound of c, i.e., c′ ≥ c. Contrary to (2), the objective function in
(3) decouples over the columns bi of matrixB = [b1 b2 · · · bc′ ] and thus can be solved in a parallel
manner by independently applying a projected subgradient algorithm (referred to as PSGM) from c′

different random initializations. Moreover, we observe that with random initialization we can get
vectors sufficiently spread on the sphere that lead PSGM (initialized with those vectors) to return
normal vectors of S. These are all linearly independent when c′ ≤ c and thus can span S⊥ when
c′ = c. If c′ > c then PSGM will return c′ − c redundant vectors that will still lie in S⊥ yet they will
be linearly dependent (see Figure 1). That being said, we show that this simple strategy permits us to
robustly recover the true subspace even without knowledge of the true codimension c.

As is detailed in Sections 3 and 4, this remarkable behavior of PSGM originates from the implicit bias
that is induced in the optimization problem due to a) the relaxation of orthogonality constraints in (3)
and b) the random initialization scheme that is adopted. Our specific contributions are as follows:
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Figure 1: Graphical illustration of the recovered normal vectors of S by (left) the proposed DPCP-
PSGM approach and (right) methods that use spectral initialization and impose orthogonality con-
straints . Initial vectors b01, b

0
2, b

0
3 are randomly initialized and are non-orthogonal in (left) and spec-

trally initialized (hence orthogonal) in (right). Note that in (left) rank(B̂∗) (where B̂∗ = [b∗1, b
∗
2, b
∗
3])

equals to the true codimension c = 2 of S and span(B∗) ≡ S⊥ while in (right) B∗ is orthogonal
hence rank(B∗) = 3 with b∗2 ∈ S.

1. First, we study a continuous version of (3) where the inliers and outliers are drawn from continuous
measures. We show that this induces a benign landscape on the DPCP objective, which can be
analyzed more easily. Specifically, we prove that the DPCP problem in (3) can be solved via
a projected subgradient algorithm that implicitly biases solutions towards low-rank matrices
B̂ ∈ RD×c′ whose columns are the projections of the randomly initialized columns ofB0 onto
S⊥. As a result, B̂ almost surely spans S⊥ as long as it is randomly initialized with c′ ≥ c.

2. Second, we analyze the discrete version which is more challenging, yet of more practical interest,
showing that iterates of DPCP-PSGM converge to a scaled and perturbed version of the initial
matrixB0. This compelling feature of DPCP-PSGM allows to derive a sufficient condition and a
probabilistic bound guaranteeing when the matrix B̂ ∈ RD×c′ spans S⊥.

3. We provide empirical results both on simulated and a real datasets, corroborating our theory and
showing the robustness of our approach even without knowledge of the true subspace codimension.

2 RELATED WORK

Subspace Recovery. Learning underlying low-dimensional subspace representations of data has been
a central topic of interest in machine learning research. Principal Component Analysis (PCA) has
been the most celebrated method of this kind and is based on the minimization of the perpendicular
distances of the data points from the estimates linear subspace, Jolliffe & Cadima (2016). Albeit, it is
originally formulated as nonconvex optimization problem, PCA can be easily solved in closed form
using a singular value decomposition (SVD) operation (see e.g. Vidal et al. (2016)). Despite its great
success, PCA is prone to failure when handling datasets that contain outliers i.e., data points whose
deviation from the inliers’ subspace is “large” in the `2 norm sense.

Robust Subspace Recovery (RSR). To remedy this weakness of PCA robust subspace recovery
(RSR) methods attempt to identify the outliers in the dataset an recover the true underlying low-
dimensional subspace of the inliers Lerman & Maunu (2018); Maunu et al. (2019). A classical
approach to this problem is RANSAC Fischler & Bolles (1981), which is given a time budget and
randomly chooses per iteration d points and then fits a d-dimensional subspace to those points and
checks how the proposed subspace fits the remaining data points. RANSAC then outputs the subspace
that agrees with the largest number of points. However, RANSAC’s reliance on randomly sampling
points to propose subspaces can be highly inefficient when the number of outliers is high (as well
as the fact that RANSAC also needs knowledge of the true subspace dimension, d). The need to
tackle inherent shortcomings of RANSAC pertaining to computational complexity issues inspired
alternative convex formulations of RSR, Xu et al. (2012); You et al. (2017b); Rahmani & Atia (2017);
Zhang & Lerman (2014). In Xu et al. (2012) the authors decompose the data matrix as a sum of
a low-rank and a column-sparse component. However, theoretical guarantees obtained for convex
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formulations only hold for subspaces of relatively low-dimensional subspaces i.e., for d� D where
d and D denote the subspace and the ambient dimension, respectively. To the best of our knowledge,
existing RSR algorithms rely heavily on one of two key assumptions. 1) The subspace is very
low-dimensional relative to the ambient dimension (d� D) or 2) The subspace dimension is a priori
known. Undoubtedly, the second hypothesis is rather strong in real-world applications, and many
applications also do not satisfy the first assumption. Moreover, heuristic strategies for selecting the
dimension of the subspace are hard to be applied in the RSR setting since they incur computationally
prohibitive procedures, Lerman & Maunu (2018).
Relation to Orthogonal Dictionary Learning (ODL). Note that objective functions in the form
of (3) show up beyond RSR problems i.e., in orthogonal dictionary learning (ODL), sparse blind
deconvolution, etc., Qu et al. (2020). Specifically, based on a similar formulation the authors in Bai
et al. (2019) proved that c′ = O(c log c) independent random initial vectors suffice in order to recover
with high probability a dictionary of size D × c with high accuracy. In this paper we aim to recover
a basis of the orthogonal complement of a subspace of unknown dimension instead of accurately
estimating a dictionary hence our goal differs from that in Bai et al. (2019).
Implicit bias in Robust Recovery Problems. The notions of implicit bias and implicit regularization
have been used interchangeably in the nonconvex optimization literature for describing the tendency
of optimization algorithms to converge to global minima of minimal complexity with favorable
generalization properties in overparameterized models, Gunasekar et al. (2018). In the context
of robust recovery, the authors in You et al. (2020) showed that Robust PCA can be suitably re-
parametrized in such a way to favor low-rank and sparse solutions without using any explicit
regularization. In this work, we use the term implicit bias for describing the convergence of DPCP-
PSGM to low-rank solutions, which are not necessarily global minimizers, that span the orthogonal
complement of the subspace when a) orthogonality constraints in DPCP formulation are relaxed b)
DPCP is overparameterized i.e., c′ ≥ c and c) PSGM randomly initialized.

3 DUAL PRINCIPAL COMPONENT PURSUIT AND THE PROJECTED
SUBGRADIENT METHOD

We re-write the DPCP formulation given in (1) as

min
B∈RD×c′

‖X̃>b‖1 = ‖X>b‖1 + ‖O>b‖1 s.t. ‖b‖2 = 1 (4)

In Zhu et al. (2018), the authors proposed a projected subgradient descent algorithm for addressing
(4) that consists of a subgradient step followed by a projection onto the sphere i.e.,

bk+1 = b̂k − µk
(
XSgn(X>bk) +OSgn(O>bk)

)
and b̂k+1 = PSD−1(bk+1), (5)

where µk is the -adaptively updated per iteration- step size and b̂k is the unit `2 norm vector
corresponding to the kth iteration.

The convergence properties of the projected subgradient algorithm described above depend on specific
quantities denoted as cX,min and cX,max that reflect the geometry of the problem and are defined as
cX,min = 1

N minb∈Sd−1∩S ‖X>b‖1 and cX,max = 1
N maxb∈SD−1∩S ‖X>b‖1. Note that the more

well distributed the inliers are in the subspace S the higher the value of the quantity cX,min (called
as permeance statistic which first appeared in Lerman et al. (2015)) as it becomes harder to find a
vector b in the subspace S that is orthogonal to the inliers. Moreover, cX,min and cX,max converge
to the same value as N → ∞ provided the inliers are uniformly distributed in the subspace i.e.,
cX,min → cd, cX,max → cd, where cd is given as the average height of the unit hemisphere on Rd,

cd :=
(d− 2)!!

(d− 1)!!

{
2
π , if d is even,

1, if d is odd
where k!! =

{
k(k − 2)(k − 4) · · · 4 · 2, k is even,

k(k − 2)(k − 4) · · · 3 · 1, k is odd
(6)

Similarly to cX,min, cX,max, we will also be interested in quantities cO,min, cO,max which indicate
how well-distributed the outliers are in the ambient space. These quantities are defined as cO,min =
minb∈SD−1

1
M ‖O

>b‖1 and cO,max = maxb∈SD−1
1
M ‖O

>b‖1. cO,max can be viewed as the dual
permeance statistic and is bounded away from small values while its difference from cO,min tends to
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zero as M →∞. Further, if the outliers are uniformly distributed on the sphere, then cO,max → cD
and cO,min → cD where cD is defined as in (6), (Zhu et al., 2018).

Finally, we also define the quantities ηO = 1
M maxb∈SD−1 ‖(I − bb>)OSgn(O>b)‖2 and ηX =

1
M maxb∈SD−1 ‖(PS − bb>)XSgn(X>b)‖2. As M → ∞ and assuming outliers in O are well-
distributed we getOSgn(O>b)→ cDb thus ηO → 0 (Tsakiris & Vidal, 2018). Likewise, ηX → 0
as N → ∞ provided that inliers are uniformly distributed in the d-dimensional subspace. The
following theorem (see full version in Appendix) provides convergence guarantees of the projected
subgradient method that was proposed in Zhu et al. (2018) for addressing problem (1).

Theorem 1 (Informal Theorem 3 of Zhu et al. (2018)) Let {b̂k} the sequence generated by the
projected subgradient algorithm in Zhu et al. (2018), with initialization b̂0 such that

θ0 < arctan

(
NcX,min

NηX +MηO

)
and NcX,min ≥ NηX +MηO (7)

where θ0 denotes the principal angle of b0 from S⊥. If the step size µk is updated according to a
piecewise geometrically diminishing rule given as

µk =

{
µ0, k < K0

µ0βb(k−K0)/K∗c+1, k ≥ K0
(8)

where β < 1, b·c is the floor function, then the iterates bk converge to a normal vector of S.

4 DUAL PRINCIPAL COMPONENT PURSUIT IN SUBSPACES OF UNKNOWN
CODIMENSION

Current theoretical results provide guarantees for recovering the true inlier subspace, when the pro-
posed algorithms know a priori of the subspace codimension c, which is a rather strong requirement
and is far from being true in real word applications. Here we describe our proposed approach, which
consists of removing the orthogonality constraint onB, along with a theoretical analysis that gives
guarantees of recovering the true underlying subspace even when the true codimension c is unknown.
First we analyze a continuous version of DPCP, which arises when the number of inliers and outliers
are distributed according to continuous measures and their number tends to ∞. The continuous
DPCP incurs an optimization problem with a benign landscape that allows us to better illustrate the
favorable properties of DPCP-PSGM when it comes to the convergence of its iterates. Then we
extend the results to the discrete case that deals with a finite number of inliers and outliers yielding a
more challenging optimization landscape.

4.1 PSGM’S ITERATES CONVERGENCE IN THE CONTINUOUS VERSION OF DPCP

The following lemma provides the continuous version of the discrete objective function given in (3).

Lemma 2 In the continuous case, the discrete DPCP problem given in (3) is reformulated as,

min
B∈RD×c′

c′∑
i=1

(
pEµSD−1

[fbi ] + (1− p)EµSD−1∩S
[fbi ]

)
=

c′∑
i=1

‖bi‖2 (pcD + (1− p)cdcos(φi))

s.t. ‖bi‖2 = 1, i = 1, 2, . . . , c′

(9)

where fb : SD−1 → R, fb(z) = |z>b|, φi is the principal angle of bi from the inliers subspace S
and p is the probability of occurrence of an outlier.

Note that µSD−1 ,µSD−1∩S are the continuous measures associated with the outliers and inliers,
respectively. Evidently, (9) attains its global minimum for vectors bis that are orthogonal to the
inliers’ subspace. Based on (3) and due to Lemma 2, we can now minimize the objective function
of the “continuous version” of DPCP by employing a projected subgradient methods (PSGM) that
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performs the following steps per iteration 1

bk+1
i = b̂ki − µki (pcDb̂ki + (1− p)cdŝki ) and b̂k+1

i = PS⊥(b
k+1
i ) , i = 1, 2, . . . , c′ (10)

Lemma 3 A projected subgradient algorithm consisting of the steps described in (10) using a piece-
wise geometrically diminishing step size rule (see (8) in Theorem 1) will almost surely asymptotically
converge to a matrix B̂∗ ∈ RD×c′ whose columns b̂∗i , i = 1, 2, . . . , c′ will be normal vectors of
the inliers’ subspace when randomly initialized with vectors b0i ∈ SD−1, i = 1, 2, . . . , c′ uniformly
distributed over the sphere SD−1.

Lemma 3 allows us to claim that we can always recover c′ ≥ c normal vectors to the inliers’ subspace
using a PSGM algorithm consisting of steps given in (10). However, this does not tell the whole story
yet, since our ultimate objective is to recover a matrix B̂ that spans S⊥. Thus, it remains to show
that the rank of B̂ is equal to the true and unknown codimension of the inliers’ subspace c. Next we
prove that by initializing with a B̂0 such that rank(B̂0) = c′ (i.e., B̂0 is initialized to be full-rank),
we can guarantee that we can solve the continuous version of DPCP using PSGM and converge to
a B̂ such that rank(B̂) = c thus getting span(B̂) ≡ S⊥ (along with recovering the true subspace
dimension). By projecting the PSGM iterates given in (10) onto S⊥ we have,

PS⊥(b
k+1
i ) = (1− µki pcD)PS⊥(b̂ki ) and PS⊥(b̂

k+1
i ) = PS⊥(PSD−1(bk+1

i )) (11)

We hence observe that the projections of successive iterates of PSGM are scaled versions of the
corresponding projections of the previous iterates. We can now state Lemma 4.

Lemma 4 The PSGM iterates b̂ki , i = 1, 2, . . . , c′, k = 1, 2, . . . given in (10), when randomly
initialized with b̂0i s, i = 1, 2, . . . , c′ that are independently drawn from a spherical distribution
with unit `2 norm converge almost surely to c′ normal vectors of the inliers subspace S denoted as

b̂∗i , i = 1, 2, . . . , c′ that are given by b̂∗i =
PS⊥ (b̂0i )

‖PS⊥ (b̂0i )‖2
, i = 1, 2, . . . , c′.

Lemma 4 shows that the initialization of PSGM plays a pivotal role since it determines the direction
of the recovered normal vectors {b̂∗i }c

′

i=1. Lemmas 3 and 4 pave the way for Theorem 5.

Theorem 5 Let B̂0 ∈ RD×c′ where c′ ≥ c with c denoting the true codimension of the inliers
subspace S , consisting of unit `2 norm column vectors b̂0i ∈ SD−1, i = 1, 2, . . . , c′ that are indepen-
dently drawn from uniform distribution over the sphere SD−1. A PSGM algorithm initialized with
B̂0 will almost surely converge to a matrix B̂∗ such that span(B̂∗) ≡ S⊥.

From Theorem 5 we observe that in the benign scenario where inliers and outliers are distributed under
continuous measures, we can recover the correct orthogonal complement of the inlier’s subspace
even when we are oblivious to its true codimension. Remarkably, this is achieved by exploiting the
implicit bias induced by multiple random initializations of the PSGM algorithm for solving the DPCP
formulation given in (3), which is free of orthogonality constraints.

4.2 PSGM’S ITERATES CONVERGENCE IN THE DISCRETE VERSION OF DPCP

From this analysis of the continuous version of DPCP we now extend to the the discrete version,
which is of more practical relevance for finite data, yet also presents more challenges. To begin, we
reformulate the DPCP objective as follows

c′∑
i=1

‖X̃>bi‖1 =

c′∑
i=1

‖X>bi‖1 + ‖O>bi‖1 =M

c′∑
i=1

b>i obi +N

c′∑
i=1

b>i x bi (12)

where x bi and obi are called as average inliers and average outliers terms, defined as x bi =
1
N

∑N
j=1 Sgn(b

>
i x j)x j and obi =

1
M

∑M
j=1 Sgn(b

>
i oj)oj .

In Algorithm 1, we give the projected subgradient method (DPCP-PSGM) applied on the DPCP
problem given in (3).

1Note that ∂‖b‖2 = b
‖b‖2

for b 6= 0 and ‖bi‖2cos(φi) = b>i ŝi where ŝi =
PS(bi)

‖PS(bi)‖2
.
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Algorithm 1: DPCP-PSGM algorithm for solving (3)

Result: B̂ = [b̂k1 , b̂
k
2 , . . . , b̂

k
c′ ]

Initialize: Randomly sample b̂10, b̂
2
0, . . . , b̂

c′

0 from a uniform distribution on SD−1 ;
for k = 1, 2, . . . do

for i = 1, 2, . . . , c′ do
Update the step-size according to a specific rule;
bk+1
i = b̂ki − µki (Mok

b̂i
+Nxk

b̂i
);

b̂k+1
i = PSD−1(bk+1

i );
end

end

Note that the average outliers and inliers terms are discrete versions of the corresponding continuous
average terms cDbi and cdŝi where ŝi = PS(bi), respectively, Tsakiris & Vidal (2018). We now
express the sub-gradient step of Algorithm 1 as

bk+1
i = b̂ki − µki

(
M(cDb̂

k
i + e i,kO ) +N(cD ŝki + e i,kX )

)
(13)

where the quantities e i,kO = o b̂ki
− cDb̂ki− and e i,kX = x b̂ki

− cD ŝki account for the error between the
continuous and discrete versions of the average outliers and the average inliers terms, respectively.
Following a similar path as in the continuous case we next project the iterates of (13) onto S⊥,

PS⊥(b
k+1
i ) = PS⊥(b̂ki )− µki

MPS⊥(cDb̂ki + e i,kO ) +N
��

���
���

�:0

PS⊥(cD ŝki + e i,kX )


= (1− µkiMcD)PS⊥(b̂ki )− µkiMPS⊥(e

i,k
O )

(14)

Remark. Eq. (14) reveals that DPCP-PSGM, applied on the discrete problem, gives rise to updates
whose projections to S⊥ are scaled and perturbed versions of the previous estimates. The magnitude
of perturbation depends on the discrepancy between the continuous and the discrete problem.

Recall that PS⊥(b̂ki ) =
PS⊥ (bki )

‖bki ‖2
, and we can rewrite the update of the 2nd iteration of DPCP-PSGM,

PS⊥(b2i ) =
(1− µ1

iMcD)

‖b1i ‖2

(
(1− µ0

iMcD)PS⊥(b̂0i )− µ0
iMPS⊥(e

i,0
O )
)
− µ1

iMPS⊥(e
i,1
O )

=
(1− µ1

iMcD)(1− µ0
iMcD)

‖b1i ‖2‖b0i ‖2
PS⊥(b̂0

i )−
(1− µ1

iMcD)

‖b1i ‖2
µ0
iMPS⊥(e

i,0
O )− µ1

iMPS⊥(e
i,1
O )

(15)

where we have assumed that ‖b0i ‖2 = 1. By repeatedly applying the same steps, we can reach to the
following recursive expression for PS⊥(bKi ),

PS⊥(bKi ) =

(
K−1∏
k=0

(1− µkiMcD)

‖bki ‖2

)
PS⊥(b0i )−

K−1∑
k=0

 K−1∏
j=k+1

(1− µjiMcD)

‖bji‖2

µkiMPS⊥(e
i,k
O )

(16)
where for j > K − 1 we set

∏K−1
j=k+1

(1−µj
iMcD)

‖bji‖2
= 1.

By dividing (16) with
∏K−1
k=0

(1−µk
iMcD)

‖bki ‖2
and by projecting onto the sphere SD−1 we get

PSD−1(PS⊥(bKi )) = PSD−1(PS⊥(b0i )− PS⊥(δKi )) (17)

where δi is defined as δKi =
∑K−1
k=0

(∏k
j=0

‖bji‖2
(1−µj

iMcD)

)
µkiMe i,kO .

Assumption 1. We assume that the principal angles θi0 for all b0i s satisfy the inequality θi0 <

arctan
(

NcX,min

NηX+MηO

)
∀i, i = 1, 2, . . . , c′.
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Assumption 1 essentially assumes that the sufficient condition given in eq. (7) required by PSGM
algorithm for converging to a normal vector is satisfied which is the same condition for success in
Zhu et al. (2018). Under Assumption 1 we can invoke the convergence properties of PSGM given
in Theorem 1 and get as K → ∞,PSD−1(PS⊥(bK)) → b̂∗ ∈ S⊥ ∩ SD−1. That being said, we
denote b̂∗i = PSD−1

(
PS⊥(b0i )− PS⊥(δ̂i)

)
, where δ̂i = limK→∞ δ

K
i

2. Following the same steps

as in Section 4.1 and by defining matrices B∗ = [b∗1, b
∗
2, . . . , b

∗
c′ ],B

0 = [b01, b
0
2, . . . , b

0
c′ ], ∆̂ =

[δ̂1, δ̂2, . . . , δ̂c′ ] we can express the matrixB∗ as B̂∗ = PSD−1

(
PS⊥

(
B0 − ∆̂

))
whereB∗ will

now consist of normal vectors of the inliers’ subspace. In order to guarantee that span(B∗) ≡ S⊥ it
thus suffices to ensure that rank (B∗) = c. Here we show that a sufficient condition for this to hold
is that the matrixA = B0 − ∆̂ is full-rank.

Lemma 6 If σc′(B0) > ‖∆̂‖2 then matrixA = B0 − ∆̂ is full-rank.

From Lemma 6 we can see that the success of DPCP-PSGM hinges on how well-conditioned the
matrix B0 is. Specifically, it says that if a lower-bound on the smallest singular is satisfied then
DPCP-PSGM is guaranteed to converge to the correct complement of the inlier without knowledge of
the correct codimension c. From this, we can prove the following Theorem.

Theorem 7 Let B0 ∈ RD×c′ with columns randomly sampled from a unit `2 norm spherical
distribution where c′ ≥ c with c denoting the true codimension of the inliers subspace S that satisfies
Assumption 1. If

1− C1

√
c′

D
− ε√

D
>
√
c′κ(ηO + cO,max − cd) (18)

where κ = maxi
Mµ0

i

βK0/K∗ (1−ri)
and ri =

(1+µ0
i (N(ηX+cX ,max)+M(ηO+cO,max)))

1−µ0
iMcD

β1/K∗ then with

probability at least 1−2 exp(−ε2C2) (whereC1, C2 are absolute constants), Algorithm 1 with a piece-
wise geometrically diminishing step size rule will converge to a matrix B̂∗ such that span(B̂∗) ≡ S⊥.

Note that quantities β,K∗,K0 are used in the step-size update rule that is used as defined in (8) (See
also full version of Theorem 1 in Appendix)). Theorem 7 shows that we can randomly initialize DPCP-
PSGM, with a matrix B̂0 whose number of columns c′ is an overestimate of the true codimension
c of the inliers’ subspace and with columns sampled independently by a uniform distribution over
the unit sphere and recover a matrix that will span the orthogonal complement of S . The probability
of success depends on the geometry of the problem since condition (18) is trivially satisfied (RHS
of (18) tends to 0 since ηO → 0 and cO,max → cd) in the continuous case which incurs a benign
geometry. Moreover, the a less benign geometry would increase the value of (ηO + cO,max − cd)
thus requiring a smaller initial codimension c′ that would lead to larger values the LHS of (18).

5 NUMERICAL SIMULATIONS

In this section we demonstrate the effectiveness of the proposed DPCP formulation and the derived
DPCP-PSGM algorithm in recovering orthogonal complements of subspace of unknown codimension.
We compare the proposed algorithm with previously developed methods i.e., DPCP-IRLS Tsakiris
& Vidal (2018) and the Riemannian Subgradient Method (RSGM) Zhu et al. (2019). Recall that
both DPCP-IRLS and RSGM address DPCP problem by enforcing orthogonality constraints, and
thus both algorithms are quite sensitive if the true codimension of S is not known a priori. Further,
they are both initialized using of spectral initialization i.e., B̂0 ∈ RD×c′ which contains the first c′

eigenvectors of matrix X̃ X̃
>

as its columns, as proposed in Tsakiris & Vidal (2018).

Robustness to outliers in the unknown codimension regime. In this experiment we set the dimen-
sion of the ambient space to D = 200. We randomly generate N inliers uniformly distributed with
unit `2 norm in a d = 195 dimensional subspace (hence for its codimension we have c = D− d = 5).
Following a similar process we generate M outliers that live in the ambient space and are sampled

2For the sake of brevity we assume that the step size has been selected such that existence of the limit is
guaranteed. We refer the reader to the proof of Lemma 8 for further details.
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Figure 2: Distances of the recovered B̂ from the true orthogonal complements S⊥ as recovered by
the proposed DPCP-PSGM algorithm provided an overestimated of the true c i.e., c′ = 10 (left),
RSGM provided the true c (middle) and RSGM provided c′ = 10 (right). Darker colors reflect higher
values of distances while lighter colors indicate successful recoveries ofB.

from a uniform distribution over the unit sphere. Fig. 2, illustrates the distances (see Appendix)
of the recovered matrix B̂ as obtained by the proposed DPCP-PSGM algorithm initialized with an
overestimate c′ = 10 of the true codimension c codimension and two versions of RSGM i.e., RSGM
when it is given as input true c = 5 and RSGM when being incognizant of c and hence it initialized
with a c′ = 10 of cAs is shown in Fig. 2 (right), RSGM fails to recover the correct orthogonal
complement of S when it is provided with an overestimate of the true c which is attributed to spectral
initialization and the imposed orthogonality constraints. On the contrary, DPCP-PSGM displays a
remarkably robust behavior (Fig. 2(middle)) even without knowing the true value of c, performing
similarly to RSGM when the latter knows beforehand the correct codimension (Fig. 2(left)).

Recovery of the true codimension. Here we test DPCP-PSGM on the recovery of the true codimen-
sion c of the inliers’ subspace S. Again, we set D = 200 and generate N = 1500 inliers as before.
We vary the true codimension of S from c = 10 to 20 and consider two different outlier’s ratios
r, defined as r = M

M+N , namely r = 0.6 and r = 0.7. In both cases, DPCP-PSGM is initialized
with the same overestimate of c i.e., c′ = 30. In Fig. 3 we report the estimated codimensions
obtained by DPCP-PSGM for 10 independent trials of the experiments. It can be observed that
DPCP-PSGM achieves 100% for all different codimensions for r = 0.6. Moreover, it shows a
remarkable performance in estimating the correct c’s even in the more challenging case corresponding
to outliers’ ratios equal to 0.7. with the estimated codimensions being close to the true values even
in the cases that it fails to exactly compute c. The results corroborate the theory showing that the
DPCP-PSGM with random initialization biases the solutions of B̂ towards matrices with rank c.

Figure 3: Estimated by DPCP-PSGM codimensions for two dif-
ferent outliers’ ratios r = M

M+N (a) r = 0.6 (left) and (b) r = 0.7
(right)

6 CONCLUSIONS

We proposed a simple frame-
work which allows us to per-
form robust subspace recovery
without requiring a priori knowl-
edge of the subspace codimen-
sion. This is based on Dual Prin-
cipal Component Pursuit (DPCP)
and thus is amenable to han-
dling subspaces of high relative
dimensions. We observed that
a projected subgradient method
(PSGM) induces implicit bias and converges to a matrix that spans a basis of the orthogonal comple-
ment of the inliers subspace even as long as a) we overestimate it codimension, b) lift orthogonality
constraints enforced in previous DPCP formulations and c) use random initialization. Empirical
results that corroborate the developed theory and showcase the merits of our approach.
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A APPENDIX

Theorem 1 (Theorem 3 of Zhu et al. (2018)) Let {b̂k} the sequence generated by the projected
subgradient method in Zhu et al. (2018), with initialization b̂0 such that

θ0 < arctan

(
NcX,min

NηX +MηO

)
(19)

where θ0 denotes the principal angle of b0 from S⊥, and

NcX,min ≥ NηX +MηO (20)

Let µ′ := 1
4max{NcX,min,McO,max} . If µ0 ≤ µ′ and the step size µk is updated according to a

piece-wise geometrically diminishing rule given as

µk =

{
µ0, k < K0

µ0βb(k−K0)/K∗c+1, k ≥ K0
(21)

where β < 1, b·c is the floor function, and K0,K∗ ∈ N are chosen such that

K0 ≥ K♦(µ0),

K∗ ≥
(√

2βµ′ (NcX − (NηX +MηO))
)−1

where,

K♦(µ) :=
tan(θ0)

µ (NcX,min −max{1, tan(θ0} (NηX +MηO))
(22)

then for the angle θk between b̂k and S⊥ it holds

tan(θ0) ≤

{
max{tan(θ0), µ0√

2µ′
}, k < K0

µ0

√
2µ′
βb(k−K0)/K∗c, k ≥ K0

(23)

A.1 PROOF OF LEMMA 2

Lemma 2 In the continuous case, the discrete DPCP problem given in (3) is reformulated as,

min
B∈RD×c′

c′∑
i=1

(
pEµSD−1

[fbi
] + (1− p)EµSD−1∩S

[fbi ]
)
=

c′∑
i=1

‖bi‖2 (pcD + (1− p)cdcos(φi))

s.t. ‖bi‖2 = 1, i = 1, 2, . . . , c′

(24)

where fb : SD−1 → R, fb(z) = |z>b|, φi is the principal angle of bi from the inliers subspace S
and p is the probability of occurrence of an outlier.

Proof We define the discrete measures µX ,µO associated with the inliers and outliers, respectively
as,

µX (z) =
1

N

N∑
j=1

δ(z− oj), µO(z) =
1

M

N∑
j

δ(z− x j) (25)

where δ(·) is the Dirac function. Recall that,∫
z∈SD−1

g(z)δ(z− z0)dµSD−1 = g(z0) (26)

where g : SD−1 → R and µSD−1 is the uniform measure on SD−1.

12
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The DPCP objective for the discrete version of the problem divided by M +N can be written as,

1

M +N

c′∑
i=1

‖X̃
>

bi‖1 =
1

M +N

c′∑
i=1

(
‖X>bi‖1 + ‖O>bi‖1

)
=

1

M +N

c′∑
i

 N∑
j=1

|x>j bi|+
M∑
j=1

|o>j bi|


=

1

M +N

c′∑
i=1

 N∑
j=1

∫
z∈SD−1

|z>bi|δ(z− x j)dµSD−1 +

M∑
j

∫
z∈SD−1

|z>bi|δ(z− oj)dµSD−1


=

1

M +N

c′∑
i=1

∫
z∈SD−1

|z>bi|
N∑
j=1

δ(z− x j)dµSD−1 +

∫
z∈SD−1

|z>bi|
M∑
j

δ(z− oj)dµSD−1


=

c′∑
i=1

(pEµX [fbi
] + (1− p)EµO [fbi

])

Note that µX ,µO arise by discretizing the continuous uniform measures µSD−1 and µSD−1∩S
respectively (µSD−1∩S denotes the uniform measure on SD−1 ∩ S) and p is the probability of
occurrence of an outlier i.e., M

M+N → p as M,N → ∞ ( 1 − p corresponds to the probability of
occurrence of an inlier). That being said, the continuous version of DPCP can be simply stated by
replacing µX ,µO with µSD−1 and µSD−1∩S in equation 27 as follows,

min
B

c′∑
i=1

(
pEµSD−1

[fbi ] + (1− p)EµSD−1∩S
[fbi ]

)
(27)

The RHS of (9) immediately shows up by invoking Proposition 4 in Tsakiris & Vidal (2018).

A.2 PROOF OF LEMMA 3

Lemma 3: A projected subgradient algorithm consisting of the steps described in (10) using a piece-
wise geometrically diminishing step size rule (see (8) in Theorem 1) will almost surely asymptotically
converge to a matrix B̂∗ ∈ RD×c′ whose columns b̂∗i , i = 1, 2, . . . , c′ will be normal vectors of
the inliers’ subspace when randomly initialized with vectors b0i ∈ SD−1, i = 1, 2, . . . , c′ uniformly
distributed over the sphere SD−1.
Proof:

The proof can be trivially obtained by noticing a) that the condition for convergence i.e., inequality
(7) of the projected subgradient algorithm given in Theorem 1 becomes θ0i <

π
2 in the continuous

case (since ηX → 0, ηO → 0, cX,min → cd > 0) and b) the set of unit `2-norm vectors b0i s,
i = 1, 2, . . . , c′ sampled independently by a uniform distribution over the sphere and whose principal
angle θ0i is π

2 form the inliers’ subspace has measure 0. �

A.3 PROOF OF THEOREM 5

Lemma 4 The PSGM iterates b̂ki , i = 1, 2, . . . , c′, k = 1, 2, . . . given in (10), when randomly
initialized with b̂0i s, i = 1, 2, . . . , c′ that are independently drawn from a spherical distribution
with unit `2 norm converge almost surely to c′ normal vectors of the inliers subspace S denoted as
b̂∗i , i = 1, 2, . . . , c′ that are given by

b̂∗i =
PS⊥(b̂0i )
‖PS⊥(b̂0i )‖2

, i = 1, 2, . . . , c′ (28)
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Proof Let us assume b0i = b̂0i . The iterates of subgradients steps of PSGM can be written in the
following form,

b1i = (1− µ0
i pcD)b̂

0
i − µ0

i (1− p)cdŝ
b2i = (1− µ1

i pcD)b̂
1
i − µ1

i (1− p)cdŝ
... =

...

bKi = (1− µK−1i pcD)b̂
K−1
i − µK−1i (1− p)cdŝ

(29)

By projecting each update of PSGM onto S⊥ and since PS⊥(bki ) = ‖bki ‖PS⊥(b̂ki ) we have,

PS⊥(b
k+1
i ) =

(1− µki pcD)
‖bki ‖

PS⊥(bki ) (30)

We can thus easily derive the following form for PS⊥(bKi ),

PS⊥(bKi ) =

(
K−1∏
k=1

(1− µki pcD)
‖bki ‖2

)
PS⊥(b0i ) (31)

We know from Theorem 1 and Lemma 3 when DPCP-PSGM is initialized with b0i , i = 1, 2, . . . , c′s
randomly drawn according according to a spherical distribution then it will almost surely converge
as K → ∞ to vectors b̂∗i , i = 1, 2, . . . , c′ i.e., b̂Ki → b̂∗i where b̂∗i ∈ S⊥. Hence PS⊥(b̂Ki ) → b̂∗i
as K → ∞. Note that from Theorem 1 we have that µki 6= 1

pcD
∀k = {1, 2, . . . ,K} hence∏K−1

k=1
(1−µk

i pcD)

‖b̂ki ‖2
6= 0. From 31 and after projecting on the unit sphere and we thus have

b̂∗i =
PS⊥ (b̂0i )

‖PS⊥ (b̂0i )‖2
.

Theorem 5 Let B̂0 ∈ RD×c′ where c′ ≥ c with c denoting the true codimension of the inliers
subspace S , consisting of unit `2 norm column vectors b̂0i ∈ SD−1, i = 1, 2, . . . , c′ that are indepen-
dently drawn from uniform distribution over the sphere SD−1. A PSGM algorithm initialized with
B̂0 will almost surely converge to a matrix B̂∗ such that span(B̂∗) ≡ S⊥.

Proof From Lemma 4 we have that for each initial unit norm vector b0i which corresponds to the ith

column ofB0 will almost surely converge to b̂∗i =
PS⊥ (b̂0i )

‖PS⊥ (b̂0i )‖2
. We can thus writeB∗ = PS⊥(B0)Γ

where Γ is a full-rank diagonal matrix given be Γ = diag( 1
‖PS⊥ (b̂01)‖2

, 2
‖PS⊥ (b̂02)‖2

, . . . , 1
‖PS⊥ (b̂0

c′ )‖2
).

Note that PS⊥ is a linear projection and thus we can write PS⊥(B0) = BS⊥B
>
S⊥ where BS⊥RD×c

is an orthonormal matrix which spans S⊥. Note that the probability of sampling a low-rank matrix
B0 = [b01, b

0
2, . . . , b

0
c′ ] when columns b0i s are randomly and independently drawn from a spherical

distribution is zero. We thus haveB∗ = BS⊥B
>
S⊥B

0Γ with rank(B∗) = c.

Lemma 6 If σc′(B0) > ‖∆̂‖2 then the rank of matrixB0 − ∆̂ equals c′.

Proof LetA = B0−∆̂. From singular value perturbation inequalities we have |σi(A)−σi(B0)| ≤
‖∆̂‖2, for i = 1, 2, . . . , c′. Hence it holds,

− ‖∆̂‖2 ≤ σi(A)− σi(B0) (32)

If σc′(B0) > ‖∆̂‖2 then from equation 32 we get

σc′(A) > 0 (33)

hence the matrixB0 − ∆̂ will be full-rank.
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A.4 PROOF OF THEOREM 7

We first give the following Lemmas:

Lemma 7 For the `2 norm of e i,kO for any k = 1, 2, . . . ,K and i = 1, 2, . . . , c′ it holds,

‖e i,kO ‖2 ≤ ηO + cO,max − cd (34)

Proof

‖e i,kO ‖2 = ‖ob − cdb‖2 = ‖ 1

M
OSgn(O>b)− cdb‖2

= ‖ 1

M
(I− bb>)OSgn(O>b) + 1

M
bb>OSgn(O>b)− cdb‖2

≤ ‖ 1

M
(I− bb>)OSgn(O>b)‖2 + (

1

M
‖O>b‖1 − cd)‖b‖2

≤ ηO + cO,max − cd

(35)

where we have used the fact that ‖b‖2 = 1.

Lemma 8 Let the step size of Algorithm 1 (DPCP-PSGM) µki being updated following the piecewise
geometrically diminishing step size rule with

β <

(
1− µ0

iMcD
1 + µ0

i (N(ηX + cX ,max) +M(ηO + cO,max))

)K∗
.

For the spectral norm of ∆̂ it holds ‖∆̂‖2 ≤
√
c′κ(ηO+cO,max−cd) where κ = maxi

Mµ0
i

βK0/K∗ (1−ri)

and ri =
(1+µ0

i (N(ηX+cX ,max)+M(ηO+cO,max)))
1−µ0

iMcD
β1/K∗ .

Proof We first bound the `2 norm of vectors bji s. We have that ∀i = 1, 2, . . . , c′ and j = 1, 2, . . . ,K
it holds

bj+1
i = b̂ji − µ

j
i

(
XSgn(X>b̂ji ) +OSgn(O>b̂ji )

)
(36)

We define the quantities

ηX := max
b∈SD−1

1

N
‖(PS − b̂ji b̂

j,>
i )XSgn(X>b̂ji )‖2 (37)

cX,max := max
b∈SD−1

1

N
‖X>b̂ji‖1 (38)

‖b̂ji‖2 = 1 hence

‖bj+1
i ‖2 ≤ 1 + µji‖XSgn(X>b̂ji ) +OSgn(O>b̂ji‖2

≤ 1 + µji

(
‖XSgn(X>b̂ji )‖2 + ‖OSgn(O>b̂ji )‖2

)
≤ 1 + µji (‖(PS − b̂ji b̂

j,>
i )XSgn(X>b̂ji )‖2 + ‖(b̂

j
i b̂
j,>
i )XSgn(X>b̂ji )‖2

+ ‖
(
1− b̂ji b̂

j,>
i

)
OSgn(O>b̂ji )‖2 + ‖b̂

j
i b̂

j,>
i OSgn(O>b̂ji )‖2)

≤ 1 + µji (N(ηX + cX ,max) +M(ηO + cO,max))

Due to equation 39 and since µji follows a non-increasing path as j → k, the scalar term∏k
j=0

‖bj
i‖2

(1−µj
iMcD)

is bounded above as follows,

k∏
j=0

‖bji‖2
(1− µjiMcD)

≤

((
1 + µ0

i (N(ηX + cX ,max) +M(ηO + cO,max))
)

1− µ0
iMcD

)k
(39)
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We now focus on the geometrically diminishing step size rule given in equation 8. We have µki =
µ0
iβ
bk−K0/K∗c+1 < µ0

iβ
(k−K0)/K∗ for k ≥ K0 and µ0

iβ
(k−K0)/K∗ > µ0

i for k < K0. Hence we
can get the following upper bound

lim
K→∞

K−1∑
k=0

k∏
j=0

‖bji‖2
(1− µjiMcD)

µkiM <

M lim
K→∞

K−1∑
k=0

((
1 + µ0

i (N(ηX + cX ,max) +M(ηO + cO,max))
)

1− µ0
iMcD

)k
µ0
iβ

(k−K0)/K∗

≡ lim
K→∞

K−1∑
k=0

M
1

βK0/K∗
µ0
i

((
1 + µ0

i (N(ηX + cX ,max) +M(ηO + cO,max))
)

1− µ0
iMcD

β1/K∗

)k

The series S =
∑K−1
k=0

(
(1+µ0

i (N(ηX+cX ,max)+M(ηO+cO,max)))
1−µ0

iMcD
β1/K∗

)k
is geometric and if

β <

(
1− µ0

iMcD
(1 + µ0

i (N(ηX + cX ,max) +M(ηO + cO,max)))

)K∗
(40)

it converges as K →∞ to 1
1−ri where ri =

(1+µ0
i (N(ηX+cX ,max)+M(ηO+cO,max)))

1−µ0
iMcD

β1/K∗ .

Let us now bound the `2 norms of the columns of ∆̂. From Lemma 7 we have ‖e i,kO ‖2 ≤ ηO +

cO,max − cd. We can easily thus derive that ‖δ̂i‖2 ≤ κ(ηO + cO,max − cd). For the spectral norm
of ∆̂ we thus have

‖∆̂‖2 = sup
x 6=0

‖∆̂x‖2
‖x‖2

= sup
x 6=0

‖
∑c′

i=1 δ̂ixi‖2
‖x‖2

≤ sup
x 6=0

∑c′

i=1 ‖δ̂i‖2|xi|
‖x‖2

≤ max
i
‖δ̂i‖2sup

x 6=0

‖x‖1
‖x‖2

≤ κ(ηO + cO,max − cd)
√
c′

(41)

Where the last inequality arises since ‖x‖1 ≤
√
c′‖x‖2.

We then give the Theorem.

Theorem 9 (Theorem 5.58 of Vershynin (2010)) LetB be a D × d matrix (D ≥ d) whose columns
bi are independent sub-gaussian isotropic random vectors in RD with ‖bi‖2 =

√
D almost surely.

Then for every t ≥ 0 the inequality
√
D − C

√
d− t ≤ σmin(B) ≤ σmax(B) ≤

√
D + C

√
d+ t (42)

with probability at least 1−2 exp(−ct2), whereC = C ′k, c = c′K > 0 depend only on the subgaussian
norm K = maxj ‖bi‖ψ2 of the columns.

The proof of Theorem 7 follows next.

Theorem 7 Let B0 ∈ RD×c′ with columns randomly sampled from a unit `2 norm spherical
distribution where c′ ≥ c with c denoting the true codimension of the inliers subspace S that satisfies
Assumption 1. If

1− C1

√
c′

D
− ε√

D
>
√
c′κ(ηO + cO,max − cd) (43)

where κ = maxi
Mµ0

i

βK0/K∗ (1−ri)
and ri =

(1+µ0
i (N(ηX+cX ,max)+M(ηO+cO,max)))

1−µ0
iMcD

β1/K∗ then with

probability at least 1 − 2 exp(−ε2C2) (where C1, C2 are absolute constants), Algorithm 1 with a
geometrically diminishing step size rule will converge to a matrix B̂∗ such that span(B̂∗) ≡ S⊥.
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Table 1: Results on Washinghton DC AVIRIS hyperspectral image
Methods F1-scores

r = 80% r = 90%

DPCP-PSGM (unknown c) 0.994 0.993
RSGM (unknown c) 0 0
DPCP-IRLS (unknown c) 0 0
RSGM (c = 5) 0.999 0.993
DPCP-IRLS c = 5 1 0.995

Proof By Assumption 1 we have that all columns of B0 will satisfy the sufficient condition for
convergence of DPCP-PSGM (Algorithm 1) to a normal vector of S . From Lemma 6 and we use the
inequality σc′(B0) > ‖∆̂‖2 which ensures full-rankness of B̂∗, which is the key ingredient in order
to prove that span(B̂∗) = S⊥. We can then Use Theorem 9 for matrixB0. Note that columns ofB0

are drawn independently and are uniformly distributed on the unit sphere. Hence, columns ofB0 are
sampled by subgaussian distribution and the LHS of the inequality of the theorem appears if we scale
with 1√

D
so that to create unit-norm columns and use LHS of the inequality of Theorem 7. The RHS

of the inequality is due to the upper bound of ‖∆̂‖2 as stated in Lemma 8. The absolute constants
C1, C2 depend only the subgaussian norm of the uniform distribution (they is no dependency on the
dimensions of the problem).

B EXPERIMENTAL DETAILS AND ADDITIONAL MATERIAL

All experiments were conducted on a MacBook Pro 2.6GhZ 6-Core Intel Core i7, memory 16GB 2667
Mhz DDR using Matlab2019B. For computational purposes and in order to avoid fine-tuning of the
piecewise geometrically diminishing (PGD) step size, the modified backtracking line-search (MBLS)
step-size rule was adopted for DPCP-PSGM as proposed in Zhu et al. (2018). We define the distance
between two subspaces spanned by matricesB andA as dist(B,A) = minQ∈O(D,c) ‖B −AQ‖F
where O(D, c) denotes the Stiefel manifold of orthogonal matrices of rank c. Note that dist(B,A) =
0 ⇐⇒ span(B) ≡ span(A) (see Zhu et al. (2019)).

B.1 OUTLIERS PURSUIT IN WASHINGTON DC MALL AVIRIS HSI

Hyperspectral images (HSIs) provide rich spectral information as compared to RGB images capturing
a wide range of the electromagnetic spectrum. Washington DC Mall AVIRIS HSI contains contiguous
spectral bands captured at 0.4 to 2.4µm region of visible and infrared spectrum, Giampouras et al.
(2019). In this experiments we randomly choose 10 out of its 210 spectral bands. Due to high
coherence in the both the spectral and the spatial domain, pixels of HSIs admit representations in
low-dimensional subspaces. Here, we use a 100×100 segment of the hyperspectral image selecting
randomly 10 out of its D = 210 spectral bands. We form a matrix X̃ of size 10 × 10000 whose
columns correspond to different points in the 10-dimensional ambient space. Then we corrupt
columns of X̃ by replacing them with outliers that are generated uniformly at random with unit `2
norm for two different outliers’ ratios i.e., r = 0.8 and r = 0.9. In the corrupted X̃ , the remaining
clear pixels are considered as the inliers. Table 1 displays the F1 scores obtained by DPCP-PSGM,
RSGM and DPCP-IRLS algorithm. The latter two algorithms are evaluated in two scenarios: a)
codimension is initialized c′ = 5 and b) c′ = 10. Given the singular value distribution of the initial
image, we infer that the dimension d of the inliers’ subspace is less or equal than 5.

Hence, c′ = 5 (recall c = D − d) is close to the true codimension value while c′ = 10 is an
overestimate thereof. From Table 1, we can see that the proposed DPCP-PSGM succeeds in both
outliers’ ratios regardless its unawareness of the true codimension value. On the other hand, DPCP-
IRLS and RSGM fail when initialized with c = 10 and this is attributed to the restrictions induced
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(a) (b) (c)

(d) (e) (f)

Figure 4: (a) False RGB color image of the clean version of Washington Mall AVIRIS HSI, (b)
corrupted by outliers depicted with red and inliers correpsonding the non-red pixels (c) annotated
outliers as recoverd by the proposed DPCP-PSGM method initialized with c′ = 10 (d) RSGM with
c′ = 10, (e) RSGM with c′ = 5 and (f) DPCP-IRLS with c′ = 5.

due to the orthogonality constraints they both impose. In Fig. 4 we provide annotated versions of the
clean HSI, its corrupted by outliers version for outliers’ ratio r = 90%, and the annotated outliers as
recovered by the proposed DPCP-PSGM, RSGM, RSGM with c′ = 5 and DPCP-IRLS with c′ = 5.
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