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Abstract

Medical domain automated text generation is001

an active area of research and development;002

however, evaluating the clinical quality of gen-003

erated reports remains a challenge, especially004

in instances where domain-specific metrics are005

lacking, e.g. histopathology. We propose006

HARE (Histopathology Automated Report007

Evaluation), a novel entity and relation centric008

framework, composed of a benchmark dataset,009

a named entity recognition (NER) model, a rela-010

tion extraction (RE) model, and a novel metric,011

which prioritizes clinically relevant content by012

aligning critical histopathology entities and re-013

lations between reference and generated reports.014

To develop the HARE benchmark, we anno-015

tated 854 de-identified diagnostic histopathol-016

ogy reports from a hospital and 652 reports017

from The Cancer Genome Atlas (TCGA) with018

domain-specific entities and relations. We fine-019

tuned GatorTronS, a domain-adapted language020

model to develop HARE-NER and HARE-021

RE which achieved the highest NER F1-score022

(0.865) and highest RE F1-score (0.988) among023

the tested models. The proposed HARE met-024

ric outperformed traditional metrics including025

ROUGE and Meteor, as well as radiology met-026

rics such as RadGraph-XL, with the highest cor-027

relation and the best regression to expert eval-028

uations (higher than the second best method,029

GREEN, a large language model based radiol-030

ogy report evaluator, by Pearson r = 0.212,031

Spearman ρ = 0.189, Kendall τ = 0.151,032

R2 = 0.23, RMSE = 0.024). We will re-033

lease HARE, datasets, and the models to foster034

advancements in histopathology report genera-035

tion, providing a robust framework for improv-036

ing the quality of reports.037

1 Introduction038

Medical report generation has become an increas-039

ingly active area of research in clinical natural lan-040

guage processing (NLP) with the goal of automat-041

ing the creation of specialized clinical documents042

(Xu et al., 2024; Liu et al., 2025). Among various 043

medical domains, radiology has witnessed the ear- 044

liest and most notable advancements in automated 045

report generation (Hyland et al., 2023; Nicolson 046

et al., 2023; Wu et al., 2024; Bannur et al., 2024). 047

This progress is partly attributed to the develop- 048

ment of domain-specific evaluation metrics that 049

prioritize clinical correctness (Smit et al., 2020; 050

Jain et al., 2021; Delbrouck et al., 2024; Zhao et al., 051

2024). Unlike general-purpose metrics such as 052

BLEU and ROUGE, these specialized metrics as- 053

sess the accuracy of radiologically significant enti- 054

ties and findings, thereby offering a more clinically 055

meaningful measure of report quality (Lin, 2004; 056

Papineni et al., 2002; Zhao et al., 2024) and fa- 057

cilitating the development of accurate generative 058

models. 059

In contrast, the field of histopathology, which in- 060

volves the microscopic examination of tissue sam- 061

ples to diagnose diseases such as cancer, still relies 062

only on general-purpose lexical metrics for evalu- 063

ating automatically generated reports (Chen et al., 064

2023; Guo et al., 2024; Tan et al., 2024; Chen et al., 065

2024). Histopathology reports are semi-structured, 066

terminology-intensive documents that provide de- 067

tailed microscopic evaluations of tissue samples, 068

playing a crucial role in disease diagnosis and guid- 069

ing treatment decisions. Histopathology reports en- 070

compass multiple sections, including descriptions 071

of anatomical sites, cellular morphology, tumor 072

classification, staging, further analyses (e.g. im- 073

munohistochemistry (IHC) markers, special stains, 074

or in situ hybridization (ISH)), and a final diagno- 075

sis/conclusion. 076

Figure 1 shows the difference between the word 077

embeddings of radiology reports (from MIMIC- 078

CXR (Johnson et al., 2019) and IU-Xray (Demner- 079

Fushman et al., 2016) and histopathology reports 080

(used in this study). Histopathology word embed- 081

ding has many areas that are uncovered by radiol- 082

ogy word embeddings, making the histopathology 083
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Figure 1: Scatter and density plot of word embed-

dings for radiology and histopathology reports. The

radiology reports are 1,000 randomly sampled reports

from MIMIC-CXR dataset and IU-X-ray dataset (John-

son et al., 2019; Demner-Fushman et al., 2016). The

histopathology reports are 1,000 randomly sampled re-

ports from both datasets used in this study. Reports are

embedded using a BERT-base model and reduced to two

dimensions using PCA. The density regions highlight

where words from each category are concentrated, with

"Radiology" shown in yellow and "Histopathology" in

blue.

reports unsuitable for radiology report evaluation084

metrics. Conventional lexical evaluation metrics085

such as METEOR and BERTScore as well as clin-086

ical relevance based evaluation metrics designed087

for radiology reports are insufficient for assessing088

the quality of automatically generated histopathol-089

ogy reports, as they fail to capture the nuanced090

histopathological details essential for accurate diag-091

nosis and patient management (Banerjee and Lavie,092

2005; Zhang et al., 2019; Smit et al., 2020; Del-093

brouck et al., 2024; Zhao et al., 2024).094

This challenge is further compounded by the095

scarcity of publicly available datasets for specif-096

ically histopathology named entity recognition097

(NER) and relation extraction (RE), which limits098

the ability to train robust models tailored to the099

complexities of histopathological language. There100

is only one NER model and dataset for pathology101

reports; however, these are not publicly available102

(Zeng et al., 2023). This gap underscores the need103

for an entity and relation centric evaluation met-104

ric that can capture the unique characteristics of105

histopathology reports.106

To address this gap, we introduce HARE107

(Histopathology Automated Report Evaluation): a108

novel, entity-focused metric designed to assess the109

clinical quality of generated histopathology reports.110

In Figure 2, the process of computing the score is111

demonstrated. HARE captures domain-specific en- 112

tities (e.g., anatomical sites, IHC markers, descrip- 113

tor and final diagnosis) and relationships between 114

the entities from both candidate and reference re- 115

ports and quantifies their alignment via a cosine 116

similarity measure (Rahutomo et al., 2012). Our ap- 117

proach is grounded in a comprehensive annotation 118

effort on 1,506 real-world diagnostic histopathol- 119

ogy reports sourced from a large teaching hospital 120

and from The Cancer Genome Atlas (TCGA) (Tom- 121

czak et al., 2015). 122

By emphasizing the presence and correctness of 123

domain-specific entities, HARE provides a more 124

clinically oriented benchmark than existing lexical 125

metrics. We validated its effectiveness by demon- 126

strating the higher correlation between HARE 127

scores and expert-derived evaluations of generated 128

reports compared with multiple other available met- 129

rics. By releasing both our annotated dataset and 130

the final trained models (which we call HARE- 131

NER and HARE-RE), we aim to encourage further 132

research in histopathology NLP and to improve the 133

clinical utility and reliability of automated report- 134

generation systems. 135

The primary contributions of this paper are as 136

follows: 137

1. Introduction of a New Metric (HARE): We 138

propose a domain-specific evaluation metric 139

for histopathology report generation that fo- 140

cuses on the detection and alignment of sig- 141

nificant histopathology entities. To our knowl- 142

edge, it is the first dedicated metric for this 143

purpose. 144

2. Histopathology Score Dataset: We collect 145

and provide expert histopathologist scores for 146

automatically-generated reports, demonstrat- 147

ing the real-world validity of HARE metric. 148

3. HARE-NER and HARE-RE: We develop a 149

NER model and a RE model specialized in 150

histopathology, capable of recognizing and 151

relating critical domain-specific entities such 152

as IHC markers, anatomical sites and descrip- 153

tor (for final diagnosis), filling a gap where 154

there is no publicly available histopathology- 155

focused NER model and RE model. 156

4. Open Source: We will release (1) the anno- 157

tated dataset, (2) the final trained NER model, 158

RE model, as well as the alignment model, 159

and (3) HARE score computation code to 160

facilitate further research and development 161

in both NER and report generation in the 162

histopathology domain. 163
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HARE-NER

GatorTronS-UMLS

UMLS Concepts

Entity Recognition and Relation Extraction HARE ScoreEntity Embedding and Alignment

HARE-Score
Right Breast: Grade 3 Invasive ductal carcinoma. 

ER – weak positive, GATA3 - positive, HER2 - negative.

Speciment Site: Right Breast. 

Histological Findings: Presence of atypical ductal structures. Areas 

of necrosis. 

Microscopic Description: High-grade ductal carcinoma in situ (DCIS) 

with comedo necrosis.   

Final Diagnosis: Invasive Ductal Carcinoma, Grade III. 

Expert-Score

Cosine similarity (Invasive ductal carcinoma, 

invasive ductal) = 0.9054
Pathological Diagnosis

Anatomical Site

Diagnosis Descriptor

IHC Modifier

Immunohistochemistry

NER_F1 = 0.6492

   RE_F1 = 0.6667

1.3159

4/5: Correct diagnosis with 

at least one incorrect or 

incomplete description. 

Reference

Candidate

HARE-RE

Figure 2: Illustration of the process of computing the HARE score, a novel entity and relation centric metric for

evaluating histopathology report generation.

2 Related Work164

While several evaluation metrics have been pro-165

posed for radiology, the field of histopathology166

remains underexplored. Two most recent notable167

contributions in radiology emphasize the design of168

domain-specific metrics that capture clinical sig-169

nificance: RadGraph-XL and RaTEScore (Jain170

et al., 2021; Zhao et al., 2024).171

2.1 RadGraph-XL172

RadGraph-XL (Delbrouck et al., 2024) is a large-173

scale, expert-annotated dataset created for extract-174

ing clinical entities and relations from radiology175

reports. Building upon its predecessor, RadGraph-176

1.0 (Jain et al., 2021), RadGraph-XL expands anno-177

tations to cover multiple anatomy-modality pairs,178

including chest CT, abdomen/pelvis CT, and brain179

MRI, in addition to existing chest X-ray data. The180

dataset consists of over 2,300 reports annotated181

with 410,000 entities and relations, significantly182

enhancing its scale and diversity.183

RadGraph-XL underscores the importance of184

clinically relevant entities and relationships in185

domain-specific metrics. This principle directly186

informs our work, as we extend it to the histopathol-187

ogy domain by focusing on uniquely critical enti-188

ties such as features of the histopathological report189

including pathological diagnosis and IHC marker190

data.191

2.2 RaTEScore192

RaTEScore (Zhao et al., 2024) is a domain-193

specific evaluation metric designed to assess the194

quality of radiology report generation. Unlike 195

general-purpose metrics such as BLEU or ROUGE, 196

RaTEScore prioritizes clinical accuracy through 197

entity-level assessments. It employs a NER module 198

to extract key medical entities (e.g., anatomy, ab- 199

normalities, diseases) and a synonym disambigua- 200

tion encoding module to address challenges such as 201

medical synonymy and negation. The final metric 202

is computed using the cosine similarity of entity 203

embeddings, with adjustments made to reflect the 204

clinical relevance of specific entity types. 205

To support its development, RaTEScore intro- 206

duced two foundational resources: 207

1. RaTE-NER: A large-scale dataset for med- 208

ical NER, covering nine imaging modalities 209

and 22 anatomical regions. 210

2. RaTE-Eval: A benchmark for evaluating met- 211

rics, including sentence- and paragraph-level 212

human ratings, as well as comparisons involv- 213

ing synthetic reports. 214

RaTEScore demonstrated superior alignment 215

with human preferences, achieving the highest cor- 216

relation scores in evaluations on public datasets 217

such as ReXVal and the RaTE-Eval benchmark. In- 218

spired by RaTEScore’s methodology, our proposed 219

HARE metric adapts the principles of entity recog- 220

nition and embedding similarity to the histopathol- 221

ogy domain, addressing unique challenges such 222

as the interpretation of pathological diagnosis and 223

IHC findings. 224
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2.3 Limitations in Existing Metrics225

Although RadGraph-XL and RaTEScore have sig-226

nificantly advanced the evaluation of radiology227

reports, their applicability is limited to specific228

modalities (e.g., chest X-rays) and radiological con-229

texts. They do not address the unique linguistic230

and clinical knowledge of histopathology, which231

involve detailed morphological assessments and232

IHC findings.233

HARE addresses these limitations by introduc-234

ing an entity-aware evaluation framework tailored235

specifically to the histopathology domain. By em-236

phasizing the detection and alignment of domain-237

specific entities, HARE provides a clinically rel-238

evant metric to assess the quality of generated239

histopathology reports.240

3 Methods241

In this section, we describe the development of242

HARE (Histopathology Automated Report Eval-243

uation), a domain-specific evaluation metric de-244

signed to assess the clinical quality of generated245

histopathology reports. Our methodology involves246

dataset preparation and annotation, NER model and247

RE model training, and the design of the HARE248

metric.249

3.1 Dataset Preparation and Annotation250

We curated two datasets to support the development251

of HARE: reports collected from a hospital and252

publicly available reports from TCGA.253

3.1.1 Hospital Dataset254

We collected 854 fully de-identified/anonymized255

histopathology reports from the pathology depart-256

ment of a large teaching hospital. The reports were257

from cases across a range of tissue types and diag-258

noses. The reports were annotated by two junior259

histopathologists using the Inception annotation260

tool (Klie et al., 2018). Disagreements were re-261

solved by a senior histopathologist. The annota-262

tions focused on histopathology-specific entities,263

including:264

• Anatomical Site: Entities describing specific265

tissue regions or locations, such as breast,266

lung, kidney, lymph nodes etc.267

• Immunohistochemistry (IHC) Markers:268

The presence of immunohistochemical mark-269

ers such as CK20, CDX2, ER, PR, Ki-67.270

• Pathological diagnosis: The pathological di-271

agnosis, such as classical Hodgkin lymphoma.272

• Diagnosis Descriptor: Provides descriptive 273

characteristics of the pathological diagnosis 274

e.g., “raises the possibility of”. 275

• IHC Modifier: Used to modify immuno- 276

histochemical annotations, e.g., “patchy” or 277

“strong”. 278

The relationships annotated were: 279

• IHC Markers - IHC Modifier 280

• Diagnosis - Diagnosis Descriptor 281

Type Hospital TCGA

IHC Markers 6,945 180

IHC Modifier 1,401 173

Pathological Diagnosis 941 882

Anatomical Site 786 794

Diagnosis Descriptor 264 475

Relations 1,826 653

Table 1: Entity and Relation annotation statistics for the

Hospital and TCGA datasets.

3.1.2 TCGA Dataset 282

To increase diversity, we further annotated 652 283

publicly available histopathology reports from the 284

previously published HistGen training and evalua- 285

tion dataset, which is originally sourced from The 286

Cancer Genome Atlas (TCGA) (Guo et al., 2024; 287

Tomczak et al., 2015). The annotation was done 288

in the same manner as the Hospital dataset. We 289

extracted sentences with histopathological descrip- 290

tions, specifically IHC markers and final diagnosis 291

characteristics. The breakdown of the number of 292

annotations for the Hospital and TCGA datasets 293

are summarized in table 1. 294

3.2 HARE-NER and HARE-RE Training 295

General Domain Model Size

BERT(Devlin, 2018) 110M 340M

DeBERTa-v3(He et al., 2021) 70M 435M

Biomedical Domain Model Size

PathologyBERT(Santos et al.,

2023)

110M

BiomedBERT(Tinn et al., 2021) 110M 340M

SapBERT(Liu et al., 2020) 110M

GatorTronS(Yang et al., 2022) 345M

Table 2: Models tested for fine-tuning. The models

are sorted in the order of size. Models with two sizes

indicate different pretrained model variants (e.g., BERT-

base vs. BERT-large).

As shown in Table 2, we experimented with 296
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several transformer-based architectures, includ-297

ing PathologyBERT (Santos et al., 2023) and298

GatorTronS (Yang et al., 2022), which are pre-299

trained on clinical corpora, and BiomedBERT300

(Tinn et al., 2021) which was trained with PubMed301

articles as well as general domain models (BERT302

(Devlin, 2018) and DeBERTa (He et al., 2021) mod-303

els). PathologyBERT is the only publicly available304

model that is trained with pathology reports for305

document classification specifically for breast can-306

cer. SapBERT (Liu et al., 2020) is also included as307

it was further trained with BiomedBERT model for308

entity alignment to Unified Medical Language Sys-309

tem (UMLS), a detailed and widely used ontology310

(National Library of Medicine (US), 2024).311

These models were fine-tuned using our an-312

notated dataset for both NER and RE. For the313

NER task, we trained a token classification model314

based on the pre-trained encoder to recognize315

histopathology-specific entities. For the RE task,316

we trained a sequence classification model with317

entity markers (E1 and E2) based on the same pre-318

trained encoders to capture relationships between319

extracted entities.320

The annotated reports were split into sentences,321

and any sentence longer than 512 tokens was split322

during preprocessing to accommodate model in-323

put constraints. All models were implemented us-324

ing the HuggingFace Transformers library (Wolf,325

2019). Training was conducted on an NVIDIA326

A5000 GPU. For both NER and RE, we used an327

AdamW optimizer with a learning rate of 5× 10−5
328

and a batch size of 4 for 2 epochs. Evaluation was329

performed using standard metrics, F1-score, for330

both tasks, with 10% of the data as a hold-out test331

set.332

For relation extraction, the dataset required ex-333

plicit construction of entity pairs. All positive sam-334

ples (annotated entity relations) and an equal num-335

ber of randomly sampled negative pairs were used336

to construct the training split. For the test split,337

three times as many negative samples as positive338

samples were sampled to ensure robust evaluation.339

Details of the train and test splits are shown in Ta-340

ble 3. The best-performing models for NER and341

RE were selected as the backbone for extracting342

entities and relationships within the HaRE metric.343

3.3 Design of the HARE Metric344

The HARE metric evaluates the quality of gener-345

ated histopathology reports by assessing both the346

alignment of clinically relevant entities and the347

Split Samples Tokens

NER-Train 2,095 157,939

NER-Test 233 17,818

Relation-Train 5,003 430,589

Relation-Test 1,171 104,064

Table 3: Statistics of the train and test datasets used for

NER and RE tasks. Samples represents the number of

samples and Tokens the total tokens (word-piece).

relationships between them in the reference and 348

candidate reports. 349

3.3.1 Entity and Relation Extraction 350

Entities are extracted from both reference and can- 351

didate reports using the trained HARE-NER model. 352

For each token, the model outputs a probability 353

distribution over entity classes; only entities with 354

confidence scores above a threshold of 0.7 are re- 355

tained, ensuring that uncertain predictions are ex- 356

cluded. Relations between recognized entities are 357

then identified using the trained HARE-RE model, 358

which predicts relation types for all candidate entity 359

pairs. The same confidence threshold is applied to 360

relation predictions to retain only high-confidence 361

relations. 362

3.3.2 Entity Embedding and Alignment 363

Extracted entities are embedded in a high- 364

dimensional space using contextual representations 365

from GatorTronS, further fine-tuned with a UMLS- 366

based SapBERT approach to ensure semantic align- 367

ment of similar entities (e.g., lymphovascular inva- 368

sion and vascular invasion). Cosine similarity is 369

computed between all entity pairs from reference 370

and candidate reports. For each entity, the maxi- 371

mum cosine similarity with entities in the other set 372

is calculated. 373

3.3.3 Scoring 374

The HARE metric reports both entity- and relation- 375

level alignment between candidate and reference 376

reports. For entities, precision, recall, and F1-score 377

are computed as follows: 378

Recalle =
1

|Eref|

∑

eref∈Eref

max
ecand∈Ecand

S(eref, ecand) 379

380

Precisione =
1

|Ecand|

∑

ecand∈Ecand

max
eref∈Eref

S(ecand, eref) 381

where Eref and Ecand are the sets of embeddings 382

for reference and candidate entities, and S(u,v) is 383

the cosine similarity between embeddings u and v. 384
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The F1-score for NER is then calculated as the385

harmonic mean of precision and recall:386

F1e = 2 ·
Precisione · Recalle

Precisione + Recalle
387

388 Relation extraction performance is quantified us-389

ing the standard F1-score, computed by comparing390

the set of extracted relations (entity pairs and their391

predicted relation types) in the candidate report392

to those in the reference. Precision and recall are393

calculated based on the overlap of predicted and394

reference relations, and the relation F1-score is re-395

ported as:396

F1r = 2 ·
Precisionr · Recallr

Precisionr + Recallr
397

398 To obtain a comprehensive assessment, the final399

HARE score is defined as the sum of the entity and400

relation F1-scores:401

HARE Score = F1e + F1r402

403 This ensures that both precision and recall are404

considered equally, providing a balanced measure405

of the alignment between ground truth and pre-406

dicted entities. A higher HARE score indicates407

better alignment, reflecting both accurate and com-408

prehensive entity matching.409

3.4 Validation of the HARE Metric410

To validate HARE, we conducted an expert evalua-411

tion of machine-generated histopathology reports.412

We generated reports using GPT4O and GPT4O-413

mini using whole slide images (WSI) downloaded414

from TCGA (Hurst et al., 2024). Due to the volume415

of the images, we processed to lower resolution and416

resized the image to 1024 by 1024 pixels. In to-417

tal, 75 randomly selected images were downloaded418

and used for generating reports. For each image,419

eight sets of reports were generated with different420

levels of specimen site information provided. In to-421

tal, 600 reports were compared to the ground truth422

reports. Experts compared generated reports to423

ground truth (original) reports and assigned scores424

based on diagnostic accuracy and histopathologi-425

cal detail to ensure an objective evaluation of the426

model’s performance in generating histopathology427

reports from WSI.428

The following is the scoring system and the ra-429

tionale for each score level:430

• Scores 5 (Perfect match with ground truth):431

This score is assigned to reports that are iden-432

tical to the reference report in terms of both433

diagnostic accuracy and histopathological de-434

scriptions.435

• Scores 4 (Perfect match diagnosis with at 436

least one wrong description): This score is 437

assigned to reports that correctly identify the 438

diagnosis, but contain at least one minor er- 439

ror in histopathological descriptions. These 440

errors may involve inaccurate terminology or 441

missing morphological features. Although 442

these reports provide a reliable diagnosis, an 443

incomplete or incorrect description reduces 444

their overall quality. 445

• Scores 3 (Correct diagnosis): This score is 446

assigned to reports that accurately determine 447

the correct diagnosis but do not provide any 448

of the detailed histopathological descriptions 449

in the ground truth. 450

• Scores 2 (Broadly correct diagnosis): This 451

score is assigned when reports correctly iden- 452

tify the general disease category but do not 453

specify the exact diagnosis. For example, a 454

report may correctly classify a tumor as ma- 455

lignant but does not differentiate between spe- 456

cific subtypes. These reports provide a useful 457

but incomplete diagnosis, which limits their 458

clinical applicability. 459

• Scores 1 (Incorrect diagnosis with some of 460

the histopathological descriptions match- 461

ing the ground truth): This score is assigned 462

when the report fails to provide the correct 463

diagnosis but includes practical histopatho- 464

logical descriptions that align with the refer- 465

ence report. While some microscopic features 466

are correctly described, the overall diagnostic 467

conclusion is incorrect, greatly reducing the 468

clinical reliability and utility of the report. 469

• Scores 0 (Incorrect diagnosis with no 470

histopathological descriptions matching 471

with ground truth ): This score is assigned to 472

reports that provide neither a correct diagno- 473

sis nor any histopathological descriptions that 474

align with the ground truth. These reports fail 475

to recognize key pathological features and do 476

not contribute to an accurate clinical assess- 477

ment, making them completely unreliable. 478

3.4.1 Metric Comparison 479

HARE scores were compared to expert scores us- 480

ing Pearson’s correlation coefficient, Spearman’s 481

correlation coefficient, and Kendall’s τ . We pro- 482

vide p-values for each correlation value. Addi- 483

tionally, we benchmarked the metric against tra- 484

ditional lexical metrics (BLEU, ROUGE, ME- 485

TEOR, BERTScore) and radiology-specific metrics 486
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(RadGraph-XL, RaTEScore, GREEN) (Papineni487

et al., 2002; Lin, 2004; Banerjee and Lavie, 2005;488

Zhang et al., 2019; Delbrouck et al., 2024; Zhao489

et al., 2024; Ostmeier et al., 2024). We also per-490

formed regression analysis and provided R2 and491

RMSE values to assess the predictive utility of each492

metric against expert scores. For all the metric493

comparison, we normalized the automated metric494

scores to a 0-1 scale and expert evaluation scores495

(originally 0–5) also normalized to 0-1.496

4 Results and Discussion497

4.1 Model Selection: GatorTronS498

Model NER-F1 RE-F1

DeBERTa-v3-xsmall 0.734 0.970

PathologyBERT 0.736 0.783

BERT-large 0.796 0.783

SapBERT 0.798 0.979

BERT-base 0.804 0.783

BiomedBERT-base 0.830 0.783

BiomedBERT-large 0.848 0.783

DeBERTa-v3-large 0.852 0.783

GatorTronS 0.865 0.988

Table 4: Model selection results based on NER and RE

F1-scores on the test set. Models are sorted by NER

F1-score.

Our experiments demonstrated that GatorTronS499

outperforms other models, both general-purpose500

and biomedical, in extracting entities and relations501

from histopathology reports. As shown in Table 4,502

GatorTronS achieved the highest NER F1 (0.865)503

and RE F1-score (0.979), surpassing the next-best504

model, DeBERTa-v3-large (NER F1 = 0.852, RE505

F1 = 0.783). Notably, models with an RE F1 of506

0.783 failed to identify any relations for all test in-507

puts, highlighting a limitation of these architectures508

in this domain.509

This result underscores the efficacy of510

GatorTronS in addressing the complexities511

inherent to histopathology text. Its extensive pre-512

training on large-scale synthetic clinical corpora513

provides it with a comprehensive understanding514

of domain-specific language, abbreviations, and515

nuanced terminology.516

4.2 Majority of Generated Reports Lack517

Clinical Alignment518

Despite advances in text generation methods, ex-519

pert evaluations reveal a significant misalignment520

Score Count

0 369

1 71

2 90

3 62

4 8

5 0

Table 5: Distribution of expert evaluation scores for

generated histopathology reports. Scores represent the

degree of alignment with the reference reports, with

higher scores indicating better alignment.

between system-generated reports and clinical re- 521

quirements. As shown in Table 5, 369 out of 600 522

generated reports (61.5%) received a score of 0 523

and 71 reports received a score of 1 (11.8%), in- 524

dicating 73.3% of the reports had an incorrect di- 525

agnosis. Only eight reports attained a score of 4, 526

while none achieved the perfect score of 5. Scores 527

with partially correct diagnosis, broadly correct di- 528

agnosis, and correct diagnosis (Score 2, 3, and 4) 529

accounted for 160 reports (26.7%). When we com- 530

pared the HARE and other scores to expert scores, 531

we excluded reports with 0 scores to have more bal- 532

anced representation of the scores. These findings 533

highlight a significant limitation in the diagnostic 534

accuracy of the generative model utilized, with a 535

substantial proportion of reports failing to predict 536

reliable pathological interpretations. 537

The high percentage of incorrect diagnoses and 538

the lack of accurate microscopic descriptions can 539

be attributed to several factors. One major limi- 540

tation can be the use of a single, low-resolution 541

WSI, which could restrict the model’s ability to 542

discern detailed morphological features essential 543

for histopathological evaluation. Histopatholo- 544

gists analyze WSIs at multiple magnification lev- 545

els (low-power magnification for architectural pat- 546

terns, high-power for cellular details such as nu- 547

clear atypia, and mitotic figures), which is crucial to 548

make an accurate pathological diagnosis. This lim- 549

itation can hinder the model’s capacity to generate 550

precise microscopic descriptions and accurately dif- 551

ferentiate pathological entities. Furthermore, only 552

one WSI was provided per case, whilst in most 553

cases multiple WSIs were utilized as part of the ac- 554

tual diagnostic process to generate the ground truth 555

report. Finally, critical contextual information (e.g., 556

clinical history or anatomical site information) was 557

not provided all the time. 558
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Method r r p-val ρ ρ p-val τ τ p-val R2 RMSE

ROUGE-L 0.048 0.470 0.030 0.647 0.025 0.616 0.002 0.169

BLEU 0.077 0.241 0.106 0.108 0.099 0.107 0.006 0.168

BERTScore 0.203 0.002 0.180 0.006 0.141 0.005 0.041 0.165

METEOR 0.265 4.51e-05 0.179 0.006 0.136 0.007 0.070 0.163

RaTEScore 0.372 5.36e-09 0.350 4.81e-08 0.276 4.60e-08 0.138 0.157

RadGraph-XL 0.427 1.22e-11 0.425 1.43e-11 0.351 8.51e-11 0.182 0.153

GREEN 0.438 2.90e-12 0.482 7.58e-15 0.410 2.18e-13 0.192 0.152

HARE (Ours) 0.650 4.26e-29 0.671 1.51e-31 0.561 5.68e-27 0.422 0.128

Table 6: Comparison of evaluation methods based on Pearson correlation (r), Spearman (ρ), and Kendall’s τ with

their p-values, and regression performance (R2 and RMSE). Methods are sorted by Pearson correlation r.

4.3 HARE Outperforms Existing Metrics in559

Capturing Clinical Relevance560

Table 6 summarizes the performance of all evalua-561

tion metrics against expert pathologist scores using562

multiple statistical measures. HARE achieved the563

highest Pearson correlation (0.650), Spearman cor-564

relation (0.671) and Kendall τ (0.561), all with565

strong statistical significance. HARE also demon-566

strated the highest coefficient of determination567

(R2 = 0.422) and the lowest root mean squared568

error (RMSE = 0.128), indicating both high align-569

ment and predictive accuracy with respect to expert570

score.571

These results surpass those of GREEN, the next-572

best metric, which leverages a large language573

model (RadLlama2-7b) as an evaluator. Moreover,574

HARE is significantly more computationally effi-575

cient: on 600 candidate reports, GREEN required576

2 hours and 2 minutes for evaluation, while HARE577

completed the same analysis in 242 seconds on an578

A5000 24GB GPU. This efficiency, combined with579

robust performance, underscores HARE’s practical580

viability and interpretability as an evaluation metric581

for histopathology report generation.582

In contrast, although they are widely used in583

histopathology report evaluation, lexical metrics584

such as ROUGE-L (r = 0.048, ρ = 0.030,585

τ = 0.025) and BLEU (r = 0.078, ρ = 0.106,586

τ = 0.099) showed minimal correlation and high587

RMSE, further underscoring their inability to as-588

sess clinically relevant content in histopathology.589

HARE’s effectiveness originates from its focus590

on histopathology entity-level alignment, which591

ensures that key clinical features, such as patholog-592

ical diagnosis, are appropriately prioritized. Unlike593

traditional lexical metrics, HARE incorporates se-594

mantic similarity measures tailored to pathology-595

specific terminology by incorporating descriptor596

and modifier entities, making it robust to linguistic 597

variations. By capturing both semantic and clini- 598

cal correctness, HARE offers a more accurate and 599

reliable evaluation of generated histopathology re- 600

ports. 601

The implications of HARE’s performance are 602

significant. Its strong correlation with expert evalu- 603

ations indicates that it is a reliable proxy for clini- 604

cal relevance and accuracy of the generated reports. 605

HARE can guide iterative improvements in report 606

generation models, ensuring that future systems 607

better align with clinical requirements. 608

5 Conclusion 609

In this work, we proposed HARE, a novel entity 610

and relation centric evaluation metric specifically 611

designed to assess the clinical quality of machine- 612

generated histopathology reports. HARE addresses 613

the critical gap in domain-specific evaluation by 614

prioritizing clinical relevance. HARE effectively 615

aligns with expert evaluations, outperforming ex- 616

isting metrics such as ROUGE and RaTEScore. 617

Our findings reveal that even the proprietary mul- 618

timodal large language models, such as GPT4O, 619

struggle to produce clinically accurate histopathol- 620

ogy reports. Although we have not tested a compre- 621

hensive list of models trained for histopathology re- 622

ports such as HistGen and WsiCaption, HARE can 623

be a robust framework for evaluating these models 624

(Guo et al., 2024; Chen et al., 2024). HARE’s su- 625

perior performance underscores the importance of 626

domain-specific evaluation metrics in bridging the 627

gap between automated report generation and clini- 628

cal expectations. By making HARE publicly avail- 629

able, along with the annotations and models, we 630

aim to facilitate advancements in both report gener- 631

ation and evaluation methodologies in histopathol- 632

ogy and related fields. 633
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Limitation634

Scope of clinical entities and relations: The cur-635

rent implementation of HARE primarily addresses636

a set of core histopathology entities and relatively637

simple binary relations. More nuanced or higher-638

order clinical relationships, as well as rare or emerg-639

ing entity types, remain underrepresented. Expand-640

ing both the entity and relation taxonomies to better641

reflect the complexity of real-world histopathol-642

ogy reporting is an important and interesting future643

work we plan to explore.644

Negation and uncertainty handling: While645

HARE captures explicit clinical entities, it does646

not yet explicitly handle negation or uncertainty647

(e.g., “no evidence of malignancy,” “cannot rule648

out invasion”). These linguistic phenomena are649

important for accurate clinical interpretation and650

could be incorporated into future extensions of the651

metric.652

Breadth of expert evaluation models: For the653

generation of reports used in the expert evaluation,654

we utilized only two closed source models, GPT-4o655

and GPT-4o-mini. As the primary scope of this656

work was the development of the evaluation metric,657

a broader evaluation across more generative models658

remains to be explored in future work.659

Broader Impacts and Ethics Statement660

All histopathology reports used in this study were661

de-identified to protect patient privacy and ensure662

compliance with ethical and legal standards. No663

personally identifiable information (PII) was used664

in the development of the HARE framework. Our665

work does not raise any major ethical concerns.666

HARE is designed for evaluation and research pur-667

poses only and is not intended for direct use in668

clinical decision-making.669

While HARE provides a reliable metric for eval-670

uating the quality of generated histopathology re-671

ports, it does not address potential biases or hallu-672

cinations in the underlying text generation models.673

Therefore, any use of automated text generation674

systems in clinical workflows should include rig-675

orous human oversight to mitigate risks, such as676

incorrect diagnoses or misleading conclusions.677
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Appendix860

A Word cloud representations of861

radiology and histopathology reports862

Figure 3: Word clouds of radiology reports. The radiol-

ogy reports are 1,000 randomly sampled reports from

MIMIC-CXR dataset and IU-X-ray dataset (Johnson

et al., 2019; Demner-Fushman et al., 2016). The size

of each word represents its relative frequency in the

corresponding category.

Figure 4: Word clouds of histopathology reports. The

histopathology reports are 1,000 randomly sampled re-

ports from our datasets. The size of each word repre-

sents its relative frequency in the corresponding cate-

gory.

These visualizations provide insight into the863

linguistic differences between radiology and864

histopathology reports, highlighting the special-865

ized vocabulary and diagnostic focus within each866

domain. Larger words represent higher relative867

frequency. The word cloud visualization for radi-868

ology reports highlights key terms such as "pleu-869

ral effusion", "pneumothorax", "cardiopulmonary"870

and "atelectasis", indicating these are more com-871

mon findings and diagnostic terminology used in872

radiology (see Figure 3). Figure 4 illustrates a873

word cloud generated from 1,000 randomly sam-874

pled histopathology reports from our datasets. Fre-875

quent occurring terms such as "tumor", "lymph876

node", "B cell", "negative", "biopsy", and "stain-877

ing", reflect key features and diagnostic language878

used in histopathology reports. Compared to radi- 879

ology reports, histopathology reports exhibit more 880

granular terminology related to cellular morphol- 881

ogy and pathology-specific descriptors. 882

B Report Examples 883

We provide example annotated histopathology re- 884

ports from both the Hospital and TCGA datasets. 885

These examples illustrate not only the complex- 886

ity and diversity of histopathology reporting, but 887

also the breadth of clinically significant entities and 888

inter-entity relationships captured by our annota- 889

tion schema. Key entity types include pathological 890

diagnosis, anatomical site, histological findings, 891

immunohistochemistry markers, descriptors, and 892

modifiers. 893

In addition to highlighting individual entities, 894

these examples also depict the relationships be- 895

tween entities, such as associations between 896

anatomical sites and diagnostic findings, or be- 897

tween immunohistochemistry results and corre- 898

sponding pathological diagnoses. Modeling both 899

entity-level information and their relationships is 900

essential for accurately representing the clinical rea- 901

soning process in histopathology and for evaluating 902

the fidelity of automated report generation. 903

Visualizing these examples demonstrates the 904

level of annotation granularity and relational struc- 905

ture necessary for effective evaluation, and serves 906

as a benchmark for downstream clinical NLP appli- 907

cations in entity recognition and relation extraction. 908

C Empirical anslysis of NER and RE 909

errors 910

To empirically assess the impact of errors in NER 911

and RE, we conducted an ablation study evaluat- 912

ing several variants of the HARE metric under dif- 913

ferent entity and relation confidence thresholding 914

schemes. Specifically, we compared: 915

1. HARE_ERROR: HARE applied using only 916

low-confidence (i.e., likely incorrect) NER 917

and RE outputs by inverting the threshold 918

2. HARE_No_Threshold: HARE applied with 919

no confidence threshold, including all pre- 920

dicted entities and relations 921

3. HARE_0.7_Threshold: our default approach, 922

which applies a confidence threshold of 0.7 to 923

retain only high-confidence entities and rela- 924

tions 925

Table 7 presents the results. The 926

HARE_ERROR variant demonstrates very 927
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Core biopsies from left level 4 neck lymph node : Classical Hodgkin lymphoma. Supplementary report to follow. Sections show core 

biopsies of a lymph node in which the normal architecture is partially effaced by a mixed infiltrate comprising lymphocytes , histiocytes 

and numerous large atypical cells. The atypical cells have prominent nucleoli and many are multinucleated. There is no necrosis and no 

granulomas are seen. Immunohistochemical staining shows the large atypical cells are strongly positive for CD30 with Golgi 

accentuation. There is also weak positive staining for CD15 and Pax5 . There is no staining for CD20 , CD79a and ALK. CD3 

staining shows the majority of the lymphocytes in the background are medium-sized T-cells. Staining for EBERish is pending. 

Overall the morphological and immunohistochemical features are those of a classical Hodgkin lymphoma. Additional 

immunohistochemical staining shows the large atypical cells are EBERish positive. 

Pathological Diagnosis Anatomical Site Diagnosis Descriptor IHC Modifier Immunohistochemistry

Figure 5: Example of an annotated histopathology report from the Hospital. The report details a diagnosis of

classical Hodgkin lymphoma in a lymph node, with corresponding entity-level annotations highlighting pathological

diagnosis, anatomical site, immunohistochemical findings, and key descriptors.

Diagnosis: Left kidney, partial nephrectomy due to a 5.1cm unifocal renal cell carcinoma, chromophobe type, Fuhrman grade 3/4. 

No sarcomatoid features identified, and no extra-capsular invasion. Light microscope examination shows solid sheets of eosinophilic and 

clear cells with focal punched-out perinuclear clearing, consistent with the diagnosis of chromophobe carcinoma. Immunostains show 

reactivity for CK7, no reactivity for c-Kit or RCC, supporting a diagnosis of chromophobe carcinoma. 

Pathological Diagnosis Anatomical Site Diagnosis Descriptor IHC Modifier Immunohistochemistry

Figure 6: Example of an annotated histopathology report from the TCGA. The report presents a case of left kidney

partial nephrectomy for chromophobe renal cell carcinoma, with entity annotations for pathological diagnosis,

anatomical site, diagnostic descriptors, immunohistochemistry markers, and modifiers.

Method r r p-val ρ ρ p-val τ τ p-val R2 RMSE

HARE_ERROR 0.045 0.495 0.043 0.512 0.038 0.508 0.002 0.169

HARE_No_Threshold 0.624 2.53e-26 0.657 5.99e-30 0.534 9.85e-26 0.389 0.132

HARE_0.7_Threshold 0.650 4.26e-29 0.671 1.51e-31 0.561 5.68e-27 0.422 0.128

Table 7: Comparison of evaluation methods based on Pearson correlation (r), Spearman (ρ), and Kendall’s τ

with their p-values, and regression performance (R2 and RMSE). Methods are sorted by Pearson correlation r.

HARE_ERROR is the one with inverted confidence threshold. HARE_No_Threshold is the one without threshold.

HARE_0.7_Threshold is our method.
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poor correlation with expert scores across all928

statistical measures, underscoring the critical im-929

portance of accurate entity recognition and relation930

extraction. Removing the threshold altogether931

(HARE_No_Threshold) moderately improves932

performance but still underperforms relative to933

our approach. The HARE_0.7_Threshold, our934

approach, achieves the highest correlation and935

lowest RMSE, validating our choice of threshold936

and the metric’s design, which effectively mitigates937

the impact of noisy or uncertain predictions.938

These findings highlight that HARE’s strong939

correlation with expert assessments depends crit-940

ically on accurate entity recognition and relation941

extraction. It also shows that the chosen confidence942

thresholding scheme is a key mechanism for main-943

taining robustness to NER and RE errors.944
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