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Abstract
The goal of meta-learning is to train a model
on a variety of learning tasks, such that it can
adapt to new problems within only a few itera-
tions. Here we propose a principled information-
theoretic model that optimally partitions the un-
derlying problem space such that specialized
expert decision-makers solve the resulting sub-
problems. To drive this specialization we im-
pose the same kind of information processing
constraints both on the partitioning and the expert
decision-makers. We argue that this specializa-
tion leads to efficient adaptation to new tasks. To
demonstrate the generality of our approach we
evaluate three meta-learning domains: image clas-
sification, regression, and reinforcement learning.

1. Introduction
Recent machine learning research has shown impressive re-
sults on incredibly diverse tasks from problem classes such
as pattern recognition, reinforcement learning, and genera-
tive model learning (Devlin et al., 2018; Mnih et al., 2015;
Schmidhuber, 2015). These success stories typically have
two computational luxuries in common: a large database
with thousands or even millions of training samples and
a long and extensive training period. Applying these pre-
trained models to new tasks naı̈vely usually leads to poor
performance, as with each new incoming batch of data, ex-
pensive and slow re-learning. In contrast to this, humans
can learn from few examples and excel at adapting quickly
(Jankowski et al., 2011), for example in motor tasks (Braun
et al., 2009) or at learning new visual concepts (Lake et al.,
2015).

Sample-efficient adaptation to new tasks can is a form of
meta-learning or “learning to learn” (Thrun & Pratt, 2012;
Schmidhuber et al., 1997; Caruana, 1997) and is an ongoing
and active field of research–see e.g., (Koch et al., 2015;
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Vinyals et al., 2016; Finn et al., 2017; Ravi & Larochelle,
2017; Ortega et al., 2019; Botvinick et al., 2019; Yao et al.,
2019). Meta-learning has multiple definitions, but a com-
mon point is that the system learns on two levels, each with
different time scales: slow meta-learning across different
tasks, and fast learning to adapt to each task individually.

Here, we propose a novel information-theoretic learning
paradigm for hierarchical meta-learning systems. The
method we propose comes from a single unified frame-
work and can be readily applied to supervised meta-learning
and to meta-reinforcement learning. Our method finds an
optimal soft partitioning of the problem space by imposing
information-theoretic constraints on both the process of ex-
pert selection and on the expert specialization. We argue that
these constraints drive an efficient division of labor in sys-
tems that have limited information processing power, where
we make use of information-theoretic bounded rationality
(Ortega & Braun, 2013). When the model is presented with
previously unseen tasks it assigns them to experts special-
ized on similar tasks – see Figure 1. Additionally, expert
networks specializing in only a subset of the problem space
allow for smaller neural network architectures with only a
few units per layer. To split the problem space and to assign
the partitions to experts, we learn to represent tasks through
a common latent embedding, that is then used by a selector
network to distribute the tasks to the experts.

The outline of this paper is as follows: first, we introduce
bounded rationality and meta-learning, next we introduce
our novel approach and derive applications to classifica-
tion, regression, and reinforcement learning. We evaluate
our method against current meta-learning algorithms and
perform additional ablation studies. Finally, we conclude.

2. Information-Processing Constraints in
Hierarchical Learning Systems

An important concept in decision making is the notion of
utility (Von Neumann & Morgenstern, 2007), where an
agent picks an action a∗x ∈ A such that it maximizes their
utility in some context s ∈ S , i.e., a∗x = arg maxaU(x, a),
where the utility is a function U(x, a) and the states dis-
tribution p(s) is known and fixed. Trying to solve this
optimization problem naı̈vely leads to an exhaustive search
over all possible (a, x) pairs, which is in general a pro-
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Figure 1. Left: The selector assigns the new input encoding to one of the three experts θ0, θ1, or θ2, depending on the similarity of the
input to previous inputs seen by the experts. Right: Our proposed method consists of three main stages. First, we feed the training
dataset Dtrain through a convolutional autoencoder to find a latent representation z(di) for each di ∈ Dtrain, which we get by flattening the
preceding convolutional layer (“flattening layer”). We apply a pooling function to the resulting set of image embeddings which serves as
input to the selection network.

hibitive strategy. Instead of finding an optimal strategy, a
bounded-rational decision-maker optimally trades off ex-
pected utility and the processing costs required to adapt.
In this study we consider the information-theoretic free-
energy principle (Ortega & Braun, 2013) of bounded ra-
tionality, where an upper bound on the Kullback-Leibler
divergence DKL(p(a|x)||p(a)) =

∑
a p(a|x) log p(a|x)

p(a) be-
tween the agent’s prior distribution p(a) and the posterior
policy p(a|x) model the decision-maker’s resources, result-
ing in the following constrained optimization problem:

max
p(a|x)

∑
x,a

p(x)p(a|x)U(x, a) (1)

s.t. Ep(x) [DKL(p(a|x)||p(a))] ≤ B. (2)

This constraint defines a regularization on p(a|x). We can
transform this into an unconstrained variational problem by
introducing a Lagrange multiplier β ∈ R+:

max
p(a|x

Ep(x|a) [U(x, a)]− 1

β
Ep(x) [DKL(p(a|x)||p(a))] .

(3)
For β → ∞ we recover the maximum utility solution
and for β → 0 the agent can only act according to the
prior. The optimal prior in this case is the marginal
p(a) =

∑
x∈X p(x)p(a|x) (Ortega & Braun, 2013).

Aggregating bounded-rational agents by a selection policy
allows for solving optimization problems that exceed the ca-
pabilities of the individual decision-makers (Genewein et al.,
2015). To achieve this, the search space is split into parti-
tions such that each partition can be solved by a decision-
maker. A two-stage mechanism is introduced: The first
stage is an expert selection policy p(m|x) that chooses an
expert m given a state x and the second stage chooses an
action according to the expert’s posterior policy p(a|x,m).
The optimization problem given by Equation (3) can be
extended to incorporate a trade-off between computational

costs and utility in both stages:

max
p(a|x,m),p(m|x)

E[U(x, a)]− 1

β1
I(X;M)− 1

β2
I(A;X|M)

(4)
where β1 is the resource parameter for the expert selection
stage and β2 for the experts. I(·; ·) is the mutual information
between the two random variables. To measure a decision-
maker’s performance on terms of the utility vs. cost trade
off we use the free-energy difference defined as

∆Fpar = Ep[U]− 1

β
DKL(p||q), (5)

where p is the posterior and q the decision-maker’s prior
policy. The marginal distribution p(a|x) defines a mixture-
of-experts (Jordan & Jacobs, 1994; Jacobs et al., 1991) pol-
icy given by the posterior distributions p(a|s,m) weighted
by the responsibilities determined by the Bayesian posterior
p(x|m). Note that p(x|m) is not determined by a given
likelihood model, but is the result of the optimization pro-
cess (4).

3. Meta Learning
We can divide Meta-learning algorithms roughly into Metric-
Learning (Koch et al., 2015; Vinyals et al., 2016; Snell et al.,
2017), Optimizer Learning (Ravi & Larochelle, 2017; Finn
et al., 2017; Zintgraf et al., 2018; Rothfuss et al., 2018), and
Task Decomposition Models (Lan et al., 2019; Vezhnevets
et al., 2019). Our approach depicted in Figure 1 can be seen
as a member of the latter group.

3.1. Meta Supervised Learning

In a supervised learning task we are usually interested in a
dataset consisting of multiple input and output pairs D =
{(xi, yi)}Ni=1 and the learner’s task is to find a function f(x)
that maps from input to output, for example through a deep
neural network. To do this, we split the dataset into training
and test sets and fit a set of parameters θ on the training data
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and evaluate on test data using the learned function fθ(x).
In meta-learning, we are instead working with meta-datasets
D, each containing regular datasets split into training and
test sets. We thus have different sets for meta-training, meta-
validation, and meta-test, i.e., D = {Dtrain, Dval, Dtest}.
The goal is to train a learning procedure (the meta-learner)
that can take as input one of its training sets Dtrain and
produce a classifier (the learner) that achieves low prediction
error on its corresponding test setDtest. The meta-learning is
then updated using performance measure based the learner’s
performance on Dval. This may not always be the case, but
our work (among others, e.g., (Finn et al., 2017)) follow
this paradigm. The rationale being that the meta-learner is
trained such that it implicitly optimizes the base learner’s
generalization capabilities.

3.2. Meta Reinforcement Learning

First, we give a short introduction to reinforcement learning
in general, and then we show how this definition can be
extended to meta reinforcement learning problems. We
model sequential decision problems by defining a Markov
Decision Process as a tuple (S,A, P, r), where S is the set
of states, A the set of actions, P : S × A × S → [0, 1] is
the transition probability, and r : S × A → R is a reward
function. The aim is to find the parameter θ of a policy πθ
that maximizes the expected reward:

θ∗ = arg max
θ

Eπθ

[ ∞∑
t=0

r(st, at)

]
︸ ︷︷ ︸

J(πθ)

. (6)

We define r(τ) =
∑∞
t=0 r(st, at) as the cumulative reward

of trajectory τ = {(st, at)}∞i=0, which is sampled by act-
ing according to the policy π, i.e., (s, a) ∼ π(·|s), and
st+1 ∼ P (·|st, at). We model learning in this environment
as reinforcement learning (Sutton & Barto, 2018), where
an agent interacts with an environment over some (discrete)
time steps t. At each time step t, the agent finds itself in
a state st and selects an action at according to the policy
π(at|st). In return, the environment transitions to the next
state st+1 and generates a scalar reward rt. This process
continues until the agent reaches a terminal state after which
the process restarts. The goal of the agent is to maximize
the expected return from each state st, which is typically de-
fined as the infinite horizon discounted sum of the rewards.

In meta reinforcement learning the problem is given by a set
of tasks ti ∈ T , where MDP ti = (S,A, Pi, ri) define tasks
ti as described earlier. We are now interested in finding
a set of policies Θ that maximizes the average cumulative
reward across all tasks in T and generalizes well to new
tasks sampled from a different set of tasks T ′.

Algorithm 1 Expert Networks for Supervised Meta-
Learning.

1: Input: Data Distribution p(D), number of samples K,
batch-size M , training episodes N

2: Hyper-parameters: resource parameters β1, β2, learn-
ing rates ηx, ηx for selector and experts

3: Initialize parameters θ, ϑ
4: for i = 0, 1, 2, ..., N do
5: Sample batch of M datasets Di ∼ p(D), each con-

sisting of a training dataset Dmeta-train and a meta-
validation dataset Dmeta-val with 2K samples each

6: for D ∈ Di do
7: Find Latent Embedding z(Dmeta-train)
8: Select expert m ∼ pθ(m|z(Dmeta-train)

9: Compute f̂(m,Dval)
10: end for
11: Update selection parameters θ with f̂(m,Dval)
12: Update Autoencoder with positive samples in Di

13: Update experts m with assigned Dmeta-train
14: end for
15: return θ, ϑ

4. Expert Networks for Meta-Learning
Information-theoretic bounded rationality postulates that
hierarchies and abstractions emerge when agents have only
limited access to computational resources (Genewein et al.,
2015), e.g., limited sampling complexity (Hihn et al., 2018)
or limited representational power (Hihn et al., 2019). We
will show that forming such abstractions equips an agent
with the ability of learning the underlying problem structure
and thus enables learning of unseen but similar concepts.
The method we propose comes out of a unified optimization
principle and has the following important features:

1. A regularization mechanism to enforce the emergence
of expert policies.

2. A task compression mechanism to extract relevant task
information.

3. A selection mechanism to find the most efficient expert
for a given task.

4. A regularization mechanism to improve generalization
capabilities.

4.1. Latent Task Embeddings

Note that the selector assigns a complete dataset to an ex-
pert and that this can be seen as a meta-learning task, as
described in (Ravi & Larochelle, 2017). To do so, we must
find a feature vector z(d) of the dataset d. This feature
vector must fulfill the following desiderata: 1) invariance
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against permutation of data points in d, 2) high representa-
tional capacity, 3) efficient computability, and 4) constant
dimensionality regardless of sample size K. In the fol-
lowing we propose such features for image classification,
regression, and reinforcement learning problems.

For image classification we propose to pass the positive
images in the dataset through a convolutional autoencoder
and use the outputs of the bottleneck layer. Convolutional
Autoencoders are generative models that learn to reconstruct
their inputs by minimizing the Mean-Squared-Error between
the input and the reconstructed image (see e.g., (Chen
et al., 2019)). In this way we get similar embeddings z(d)
for similar inputs belonging to the same class. The latent
representation is computed for each positive sample in d
and then passed through a pooling function h(z(d)) to find
a single embedding for the complete dataset–see figure 1
for an overview of our proposed model. While in principle
functions such as mean, max, and min can be used, we
found that max-pooling yields the best results. The authors
of (Yao et al., 2019) propose a similar feature set.

For regression we define a similar feature vector. We trans-
form the K training data points into a feature vector z(d) by
binning the points intoN bins according to their x value and
collecting the y value. If more than one point falls into the
same bin, we average the y values, thus providing invariance
against the order of the data points in Dtrain. We use this
feature vector to assign each data set to an expert according
to pθ(x|z(d)).

In the reinforcement learning setting we use a dynamic re-
current neural network (RNN) with LSTM units (Hochreiter
& Schmidhuber, 1997) to classify trajectories. We feed the
RNN with (st, at, rt, t) tuples to describe the underlying
Markov Decision Process describing the task. At t = 0 we
sample the expert x according to the learned prior distribu-
tion p(x), as there is no information available so far. The
authors of (Lan et al., 2019) propose a similar feature set.

4.2. Specialization in Supervised Learning

Combining multiple experts can often be beneficial
(Kuncheva, 2004), e.g. in Mixture-of-Experts (Yuksel et al.,
2012) or Multiple Classifier Systems (Bellmann et al., 2018).
Our method can be interpreted as a member of this family
of algorithms.

We define the utility as the negative prediction loss, i.e.
U(fx(d), y) = −L(fx(d), y), where fx(d) is the prediction
of the expert x given the input data point d (in the following
we will use the shorthand ŷx) and y is the ground truth. We
define the cross-entropy loss L(ŷx, y, ) = −

∑
i yi log ŷix

as a performance measure for classification and the mean
squared error L(ŷx, y) =

∑
i(ŷi − yi)2 for regression. The

Algorithm 2 Expert Networks for Meta-Reinforcement
Learning.

1: Input: Environment Distributions p(T ) and p(T ′),
number of roll-outs K, batch-size M , training episodes
N , number of tuples L used for expert selection

2: Hyper-parameters: resource parameters β1, β2, learn-
ing rates ηx, ηx for selector and experts

3: Initialize parameters θ, ϑ
4: for i = 1, 2, 3, ..., N do
5: Sample batch of M environments Etrain

i ∼ p(T ) and
Eval
i ∼ p(T ′)

6: for E ∈ Etrain
i do

7: for k = 1, 2, 3, ..., K do
8: Collect τ = {(xt, at, rt, t)}Lt=1 tuples by fol-

lowing random expert
9: Select expert m ∼ pθ(m|τ) with RNN policy

10: Collect trajectory τk = {(xt, at, rt, t)}Tt=L by
following pϑ(a|x,m)

11: end for
12: Compute Ft =

∑T
l=0 γ

lf(xt+l,mt+l, at+l) for
trajectories τ

13: where f(x,m, a) = rtrain(x, a) −
1
β2

log pϑ(a|x,m)
p(a|m) .

14: end for
15: Compute F̄t =

∑T
l=0 γ

lf̄(xt+l,mt+l) with
16: f̄(x,m) = Epϑ(a|x,m)

[
rval(x, a)− 1

β2
log p(a|x,m)

p(a|m)

]
17: Update selection parameters θ with F̄ collected in

batch i
18: Update experts m with roll-outs collected in batch i
19: end for
20: return θ, ϑ

objective for expert selection thus is given by

max
θ

Epθ(x|d)
[
f̂ − 1

β1
log

pθ(x|d)

p(x)

]
, (7)

where f̂ = Epϑ(ŷx|x,s)
[
−L(ŷx, y)− 1

β2
log pϑ(ŷx|s,x)

p(ŷx|x)

]
,

i.e. the free energy of the expert and θ, ϑ are the parameters
of the selection policy and the expert policies, respectively.
Analogously, the action selection objective for each expert
x is defined by

max
ϑ

Epϑ(ŷx|x,s)
[
−L(ŷx, y)− 1

β2
log

pϑ(ŷx|s, x)

p(ŷx|x)

]
. (8)

This regularization technique can be seen as a form of output
regularization (Pereyra et al., 2017).

4.3. Specialization in Reinforcement Learning

In the following we will derive our algorithm for special-
ization in hierarchical reinforcement learning agents. Note
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that in the reinforcement learning setup the reward func-
tion r(x, a) defines the utility U(x, a). In maximum en-
tropy RL (see e.g., Haarnoja et al. (2017) (Haarnoja et al.,
2017)) the regularization penalizes deviation from a fixed
uniformly distributed prior, but in a more general setting we
can discourage deviation from an arbitrary prior policy by
optimizing for:

max
p

Ep

[ ∞∑
t=0

γt
(
r(xt, at)−

1

β
log

p(at|xt)
p(a)

)]
, (9)

where β trades off between reward and entropy, such that
β →∞ recovers the standard RL value function and β → 0
recovers the value function under a random policy.

To optimize the objective (9) we define two separate kinds
of value function, Vφ for the selector and one value function
Vϕ for each expert. Thus, each expert is an actor-critic with
separate actor and critic networks. Similarly, the selector
has an actor-critic architecture, where the actor network
selects experts and the critic learns to predict the expected
free energy of the experts depending on a state variable. The
selector’s policy is represented by pθ, while each expert’s
policy is represented by a distribution pϑ.

In standard reinforcement learning a common technique
to update a parametric policy representation pω(a|x) with
parameters ω, is to use policy gradients that optimize the
cumulative reward J(ω) = E [pω(a|x)Vψ(x)] expected un-
der the critic’s prediction Vψ(x), by following the gradient
∇ωJ(ω) = E [∇ω log pω(a|x)Vψ(x)] . This policy gradient
formulation (Sutton et al., 2000) is prone to producing high
variance gradients. A common technique to reduce the vari-
ance is to formulate the updates using the advantage func-
tion instead of the reward (Arulkumaran et al., 2017). The
advantage function A(a, x) is a measure of how well a cer-
tain action a performs in a state x compared to the average
performance in that state, i.e., A(a, x) = Q(x, a)− Vψ(x).
Here, V (x) is the value function and is a measure of how
well the agent performs in state x, and Q(x, a) is an esti-
mate of the cumulative reward achieved in state x when the
agent executes action a. Instead of learning the value and
the Q function, we can approximate the advantage function
solely based on the critic’s estimate Vψ(x) by noting that
Q(xt, at) ≈ r(xt, at)+γVψ(xt+1). Similar to the standard
policy update based on the advantage function, the expert se-
lection stage can be formulated by optimizing the expected
advantage Epϑ(a|x,m) [Am(x, a)] for expert m with

Am(xt, at) = f(xt,m, at) + γVϕ(xt+1)− Vϕ(xt). (10)

Accordingly, we can define an expected advantage function
E
[
pθ(m|x)Ā(x,m)

]
for the selector with

Ā(x,m) = Epϑ(a|x,m) [Am(x, a)] , (11)

where mt denotes the expert m selected at time t. We
estimate the double expectation by Monte Carlo sampling,

OMNIGLOT FEW-SHOT

ONE CONV. BLOCK BASELINES METHODS

PRE-TRAINING MAML MATCHING NETS MAML MATCHING NETS

K % Acc % Acc % Acc % Acc % Acc

1 50.6 (± 0.03) 81.2 (± 0.03) 52.7 (± 0.05) 95.2 (± 0.03) 95.0 (± 0.01)
5 54.1 (± 0.09) 88.0 (± 0.01) 55.3 (± 0.04) 99.0 (± 0.01) 98.7 (± 0.01)
10 55.8 (± 0.02) 89.2 (± 0.01) 60.9 (± 0.06) 99.2 (± 0.01) 99.4 (± 0.01)

OUR METHOD

NUMBER OF EXPERTS

2 4

% Acc I(M;X) % Acc I(M;X)

1 66.4 (± 0.02) 0.99 (± 0.01) 75.8 (± 0.02) 1.96 (± 0.01)
5 67.3 (± 0.01) 0.93 (± 0.01) 75.5 (± 0.01) 1.95 (± 0.10)
10 76.2 (± 0.04) 0.95 (± 0.30) 86.7 (± 0.01) 1.90 (± 0.03)

8 16

% Acc I(M;X) % Acc I(M;X)

1 77.3 (± 0.01) 2.5 (± 0.02) 82.8 (± 0.01) 3.2 (± 0.03)
5 78.4 (± 0.01) 2.7 (± 0.01) 85.2 (± 0.01) 3.3 (± 0.02)
10 90.1 (± 0.01) 2.8 (± 0.02) 95.9 (± 0.01) 3.1 (± 0.02)

Table 1. Classification accuracy after 10 gradient steps on the vali-
dation data. Adding experts consistently improves performance,
obtaining the best results with an ensemble of 16 experts. Pre-
training refers to a single expert system trained on the complete
dataset. Our method outperforms the pre-training, Matching Nets,
and the MAML baseline (see Section 5.1 for experimental details),
when the network architecture is reduced to a single convolution
block. This corresponds to our expert network architecture. Using
the suggested architectures by the respective studies, we achieve
classification accuracy ≥ 95%.

where in practice we use a single (x,m, a) tuple for f̂(x,m),
which enables us to employ our algorithm in an on-line
optimization fashion.

In the RL setup the reward function r(x, a) defines the
utility U(x, a). To optimize the objective we define value
functions, Vφ for the selector and one value function Vϕ
for each expert. Thus, the selector and each expert is an
actor-critic architecture. We define a discounted free energy
as

Ft =

T∑
l=0

γl
(
r(xt+l, at+l)−

1

β2
log

pϑ(at+l|xt+l,mt+l)

p(at+l|mt+l)

)
,

(12)
which we learn through a value function Vϕ for each expert.
We define the selector’s discounted free energy

F̄t =

T∑
l=0

γlf̄(xt+l,mt+l), (13)

with f̄(x,m) = Epϑ(a|x,m)[r(x, a)− 1
β2

log pϑ(a|x,m)
p(a|m) ] that

is learned through the selector’s value function Vφ. Now let
pθ(m|x) be the selection policy and pϑ(a|x,m) the expert
policy. The expert selection stage is optimizing the expected
advantage E [pϑ(a|x,m)Am(x, a)] for expert m with

Am(xt, at) = f(xt,m, at) + γVϕ(xt+1)− Vϕ(xt). (14)

Accordingly, we define an expected advantage function
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Figure 2. The single expert system is not able to learn the structure
of the sine wave, where the two expert can capture the periodic
structure. The lower figure shows how the error decreases as
we add more experts in the classification and regression setting,
indicating successful specialization and expert selection.

E
[
pθ(m|x)Ā(x,m)

]
for the selector with

Ā(x,m) = Epϑ(a|x,m) [Am(x, a)] . (15)

We find the policy parameters by gradient descent on the
objectives.

5. Results
5.1. Sinusoid Regression

We adopt this task from (Finn et al., 2017). In this K-shot
problem, each task consists of learning to predict a function
of the form y = a · sin(x + b), with both a ∈ [0.1, 5] and
b ∈ [0, 2π] chosen uniformly, and the goal of the learner is
to find y given x based on only K pairs of (x, y). Given
that the underlying function changes in each iteration it
is impossible to solve this problem with a single learner.
Our results show that by combing expert networks, we are
able to reduce the generalization error iteratively as we
add more experts to our system–see Figure 2 where we
also show how the system is able to capture the underlying
problem structure as we add more experts. In Figure 4 we
visualize how the selector’s partition of the problem space
looks like. The shape of the emerged clusters indicates
that the selection is mainly based on the amplitude a of

the current sine function, indicating that from an adaptation
point-of-view it is more efficient to group sine functions
based on amplitude a instead of phase b. We can also see
that an expert specializes on the low values for b as it covers
the upper region of the a× b space. The selection network
splits this region among multiple experts if we increase the
set of experts to 8 or more.

5.2. Few-Shot Classification

The Omniglot dataset (Lake et al., 2011) consists of over
1600 characters from 50 alphabets. As each character has
only 20 samples each drawn by a different person, this forms
a challenging meta-learning benchmark.

The selection policy now selects experts based on their free-
energy that is computed over datasets Dval and the selection
policy depends on the training datasets Dtrain:

max
θ

Epθ(m|Dtrain)

[
f̂(m,Dval)−

1

β1
log

pθ(m|Dtrain)

p(m)

]
,

(16)
where f̂(m,Dval) := Epϑ(ŷ|m,x)

[
− L(ŷ, y) −

1
β2

log pϑ(ŷ|x,m)
p(ŷ|m)

]
is the free energy of expert m on

dataset Dval, L(ŷ, y) is loss function, and (x, y) ∈ Dval.
The experts optimize their free energy objective on the
training dataset Dtrain defined by

max
ϑ

Epϑ(ŷ|m,x)
[
−L(ŷ, y)− 1

β2
log

pϑ(ŷ|x,m)

p(ŷ|m)

]
, (17)

where (x, y) ∈ Dtrain.

We train the learner on a subset of the dataset (≈ 80%,
i.e., ≈ 1300 classes) and evaluate the remaining ≈ 300
classes, thus investigating the generalization. In each train-
ing episode we build the datasetsDtrain andDval by selecting
a target class ct and sampling K positive and K negative
samples. To generate negative samples, we draw K images
randomly out of the remaining N − 1 classes. We present
the selection network with the feature presentation of the
K positive training samples (see Figure 1), but evaluate the
experts’ performance on the 2K test samples in Dval. In this
way, the free energy of the experts becomes a generalization
measure. Using this optimization scheme, we train the net-
works to become experts in recognizing a subset of classes.
After a proper expert is selected we train that expert using
the 2K samples from the training dataset.

We consider three experimental setups: 1) how does a
learner with only a single hidden layer perform when trained
nı̈vely compared to with sophisticated methods such as
MAML (Finn et al., 2017) and Matching Nets (Vinyals
et al., 2016) as a baseline? 2) does the system benefit from
adding more experts and if so, at what rate? and 3) how does
our method compare to the aforementioned algorithms? Re-
garding 1) we note that introducing constraints by reducing
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Figure 3. In each Meta-Update Step we sample N tasks from the training task set T and update the agents. After training we evaluate
their performance on a tasks from the meta test set T ′. Rewards are normalized to [0, 1] and the episode horizon is 100 time steps.
The agent achieves higher reward when adding more experts while the information-processing of the selection and of the expert stage
increases, indicating that the added experts specialize successfully. We achieve comparable result to MAML (Finn et al., 2017), Proximal
Meta-Policy Search (Pro-MPS) (Rothfuss et al., 2018), and GrBAL (Nagabandi et al., 2018). Shaded areas and error bars represent one
standard deviation. In Table 7 in the Appendix we give experimental details.
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Figure 4. Here we show the soft-partition found by the selection
policy for the sine prediction problem, where each color represents
an expert. We can see that the selection policy becomes increas-
ingly more precise as we provide more points per dataset to the
system.

the representational power of the models does not facilitate
specialization is it would by explicit information-processing
constraints. In the bottom row of Figure 2 we address ques-
tion 2). We can interpret this curve as the rate-utility curve
showing the trade-off between information processing and
expected utility (transparent area represents one standard
deviation), where increasing I(X;M) improves adaptation.
The improvement gain grows logarithmically, which is con-
sistent with what rate-distortion theory would suggest. In
Table 1 we present empirical results addressing question 3).

5.3. Meta Reinforcement Learning

We create a set of RL tasks by sampling the parameters for
the Inverted Double Pendulum problem (Sutton, 1996) im-
plemented in OpenAI Gym (Brockman et al., 2016), where
the task is to balance a two-link pendulum in an upward
position. We modify inertia, motor torques, reward func-
tion, goal position and invert the control signal – see Ta-
ble 7 for details. We build the meta task set T ′ on the

same environment, but change the parameter distribution
and range, providing new but similar reinforcement learning
problems. During training, we sample M environments
in each episode and perform updates as described earlier.
During evaluation, we measure the system’s performance
on tasks sampled from T ′– see results in Figure 3, where we
can see improving performance as more experts are added
and the increasing mutual information in the selection stage
indicates precise partitioning.

The expert policies are trained on the meta-training environ-
ment policies, but evaluated on unseen but similar validation
environments. In this setting we define the discounted free
energy F̄t with

f̄(x,m) = Epϑ(a|x,m)

[
rval(x, a)− 1

β2
log

p(a|x,m)

p(a|m)

]
,

where rval is a reward function defined by a validation envi-
ronment (see Figure 3 for details).

6. Related Work
The hierarchical structure we employ is related to Mixture
of Experts (MoE) models. (Jacobs et al., 1991; Jordan &
Jacobs, 1994) introduced MoE as tree structured models for
complex classification and regression problems, where the
underlying approach is a divide and conquer paradigm. As
in our approach, three main building blocks define MoEs:
gates, experts, and a probabilistic weighting to combine
expert predictions. Learning proceeds by finding a soft
partitioning of the input space and assigning partitions to
experts performing well on the partition. In this setting,
the model response is then a sum of the experts’ outputs,
weighted by how confident the gate is in the expert’s opinion
(see (Yuksel et al., 2012) for an overview). This paradigm
has seen recent interest in the field of machine learning,
see e.g., (Aljundi et al., 2017; Rosenbaum et al., 2019;
Jerfel et al., 2019; Shazeer et al., 2017). The approach we
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propose allows learning such models, but also has appli-
cations to more general decision-making settings such as
reinforcement learning.

Our approach belongs to a wider class of models that use
information constraints for regularization to deal more effi-
ciently with learning and decision-making problems (Mar-
tius et al., 2013; Leibfried et al., 2017; Grau-Moya et al.,
2017; Achiam et al., 2017; Hihn et al., 2018; Grau-Moya
et al., 2019). One such prominent approach is Trust Region
Policy Optimization (TRPO) (Schulman et al., 2015). The
main idea is to constrain each update step to a trust region
around the current state of the system. This region is defined
by DKL(πnew||πold) between the old policy and the new pol-
icy, providing a theoretic monotonic policy improvement
guarantee. In our approach we define this region by DKL
between the agent’s posterior and prior policy, thus allowing
to learn this region and to adapt it over time. This basic idea
has been extend to meta-learning by (Rothfuss et al., 2018),
which we use to compare our method against in meta-rl
experiments.

Most other methods for meta-learning such as the work of
(Finn et al., 2017) and (Ravi & Larochelle, 2017) find an
initial parametrization of a single learner, such that the agent
can adapt quickly to new problems. This initialization repre-
sents prior knowledge and can be regarded as an abstraction
over related tasks and our method takes this idea one step
further by finding a possibly disjunct set of such compressed
task properties. Another way of thinking of such abstrac-
tions by lossy compression is to go from a task-specific
posterior to a task-agnostic prior strategy. By having a set of
priors the task specific information is available more locally
then with a single prior, as in MAML (Finn et al., 2017) and
the work of (Ravi & Larochelle, 2017). In principle, this
can help to adapt within fewer iterations. Thus our method
can be seen as the general case of such monolithic meta-
learning algorithms. Instead of learning similarities within
a problem, we can also try to learn similarities between
different problems (e.g., different classification datasets),
as is described in the work of (Yao et al., 2019). In this
way, the partitioning is governed by different tasks, where
our study however focuses on discovering meta-information
within the same task family, where the meta-partitioning is
determined solely by the optimization process and can thus
potentially discover unknown dynamics and relations within
a task family.

7. Discussion
We have introduced and evaluated a novel hierarchical
information-theoretic approach to meta-learning. In par-
ticular, we leveraged an information-theoretic approach to
bounded rationality. Although our method is widely applica-
ble, it suffers from low sample efficiency in the RL domain.

A research direction would be to combine our system with
model-based RL which is known to improve sample effi-
ciency. Another research direction would be to investigate
the performance of our system in continual adaption tasks,
such as in (Yao et al., 2019). Another limitation is the re-
striction to binary meta classification tasks, which we leave
for feature work.

The results show that our method can identify sub-regions
of the problem set and solve them efficiently with expert
networks. In effect, this equips the system with initializa-
tions covering the problem space and thus enables it to
adapt quickly to new but similar tasks. To reliably identify
such tasks, we have proposed feature extraction methods for
classification, regression, and reinforcement learning, that
could be simply be replaced and improved in future work.
The strength of our model is that it follows from simple
principles that can be applied to a large range of problems.
Moreover, the system performance can be interpreted in
terms of the information processing of the selection stage
and the expert decision-makers. We have shown empirically
that our method achieves results comparable to recent meta-
learning algorithms, such as MAML (Finn et al., 2017),
Matching Nets (Vinyals et al., 2016), and Proximal Meta-
Policy Search (Rothfuss et al., 2018).
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Appendix
Few-Shot Classification Experimental details: We fol-
lowed the design of (Vinyals et al., 2016) but reduce the
number of blocks to one. We used a single convolutional
block consisting of 32 3×3 filters with strided convolutions
followed by a batch normalization layer and a ReLu non-
linearity. During training we used a meta-batch size of 16.
The convolutional autoencoder is a 3 layer network consist-
ing of 16, 16, and 4 filters each with size 3×3 with strided
convolutions followed by a leaky ReLu non-linearity. The
layers are mirrored by de-convolotional layers to reconstruct
the image. This results in an image embedding with dimen-
sionality 64. The selection network is a two layer network
with 32 units each, followed by a ReLu non-linearity, a
dropout layer (Srivastava et al., 2014) per layer. We aug-
ment the dataset by rotating each image in 90, 180, and 270
degrees resulting in 80 images per class. We also normalize
the images two be in (0,1) range. We evaluate our method
by resetting the system to the state after training and allow
for 10 gradient updates and report the final accuracy. To
evaluate MAML on 2-wayN -shot omniglot dataset we used
a inner learning rate of α = 0.05 and one inner update step
per iteration for all settings. We used a single convolutional
block followed by a fully connected layer with 64 units and
a ReLU non-linearity. Note, that we reduce the number of
layers to make the tests comparable. Using the suggested
architectures by (Finn et al., 2017) we achieve classification
accuracy ≥ 95%. To generate this figure, we ran 10-fold
cross-validation on the whole dataset and show the aver-
aged performance metric and the standard-deviation across
the folds. In both settings, ”0 bits” corresponds to a single
expert, i.e., a single neural network trained on the task.

Meta-RL Experimental details: The selector’s actor and
critic net are build of RNNs with 200 hidden units each.
The critic is trained to minimize the Huber loss between
the prediction and the cumulative reward. The experts are
two layer networks with 64 units each followed by ReLu
non-linearities and used to learn the parameters of a Gaus-
sian distribution. The critics have the same architecture
(except for the output dimensionality). The control signal
a is continuous in the interval [-1,1] and is generated by
neural network that outputs µ and log(σ) of a gaussian. The
action is then sampled by re-parameterizing the distribution
to p(a) = µ + exp(σ)ε, where ε ∼ N (0, 1), so that the
distribution is differentiable w.r.t to the network outputs.
We average the results over 10 random seeds and trained for
1000 episodes each with a batch of 64 environments.

Task Distribution
Paramater T T ′

Distance Penalty [10−3, 10−1] [10−3, 10−2]
Goal Position [0.3, 0.4] [0, 3]
Start Position [-0.15, 0.15] [-0.25, 0.25]
Motor Torques [0, 5] [0, 3]
Inverted Control p = 0.5 p = 0.5
Gravity [0.01, 4.9] [4.9, 9.8]
Motor Actuation [185, 215] [175, 225]

Table 2. Environment Parameters for the Meta-RL Setting.

Regression Experimental details: For regression we use
a two layer selection network with 16 units each followed
by tanh non-linearities. The experts are shallow neural
networks with a single hidden layer that learn log-variance
and mean of a Gaussian distribution which they use for
prediction. We use the “Huber Loss” instead of MSE as it is
more robust (Balasundaram & Meena, 2019). We optimize
all networks using Adam (Kingma & Ba, 2014).
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