
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Strong Copyright Protection for Language Models via Adaptive Model Fusion

Anonymous Authors1

Abstract
The risk of language models unintentionally repro-
ducing copyrighted material from their training
data has motivated the development of various
protective measures. Simultaneously, model fusi-
on has emerged as a promising approach for com-
bining language models, although its potential for
copyright protection remains unexplored. In this
paper, we demonstrate that model fusion offers an
effective solution for copyright protection for lan-
guage models. Specifically, we propose CP-LLM,
an algorithm that adaptively combines language
models to minimize the reproduction of protec-
ted materials. We show that CP-LLM satisfies the
recently proposed near-access free (NAF) guaran-
tees while also fulfilling a desirable balancing
property to prevent copyright infringement. Our
results demonstrate that CP-LLM significantly re-
duces the memorization of copyrighted content
while maintaining high-quality text generation.

1. Introduction
Large Language Models (LLMs), such as GPT-4 (Achiam
et al., 2023) and Gemini (Team et al., 2023), have made
remarkable progress in automating tasks traditionally re-
quiring human ingenuity, including code generation and
creative writing. However, these advancements also intro-
duce the risk of LLMs reproducing copyrighted material
from their training data (Yu et al., 2023; Meeus et al., 2023;
Carlini et al., 2023; Karamolegkou et al., 2023), posing sub-
stantial legal challenges and leading to multi-million dollar
lawsuits (Henderson et al., 2023). As a result, preventing
copyright infringement in language models has become a
critical concern for researchers and practitioners alike.

One approach to mitigate the risk of memorization involves
curating training data to exclude or deduplicate copyrighted
samples (Akbik et al., 2019; Kandpal et al., 2022; Ippolito

1Anonymous Institution, Anonymous City, Anonymous Regi-
on, Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the ICML 2024 Workshop on
Foundation Models in the Wild. Do not distribute.

& Yu, 2023; Carlini et al., 2023). However, this process is
resource-intensive and may not be entirely effective (Lee
et al., 2023; Ippolito et al., 2023). Additionally, copyrighted
samples often represent high-quality inputs crucial for the
models’ performance (Meeus et al., 2023), making their
exclusion potentially undesirable. In fact, under the fair use
doctrine (17 U.S.C. §107), leveraging protected material
is permitted provided the output does not substitute the
copyrighted work or harm its market (Rahman & Santacana,
2023; Henderson et al., 2023). Nevertheless, naive filtering
approaches are insufficient to guarantee the prevention of
reproducing protected materials (Ippolito et al., 2023).

Recent research has proposed principled methods for trai-
ning or fine-tuning generative models with protected data
while ensuring their outputs are copyright-compliant (Anil
et al., 2022; Vyas et al., 2023; Chu et al., 2024). Notably,
Vyas et al. (2023) introduce a general approach for con-
structing copyright-protected models by fusing generative
models trained on different data sources. However, while
their framework shows promise, it currently lacks practical
algorithms for implementation. Therefore, the literature still
lacks a convincing and practically feasible method for model
fusion aimed at copyright protection in language models.

Parallel to efforts in copyright protection, model fusion for
LLMs is an active area of research. Several papers propose
strategies for aggregating the logits of multiple experts to
enable knowledge-sharing among models (Liu et al., 2021;
Jiang et al., 2023; Gururangan et al., 2023; Wang et al.,
2023; Mavromatis et al., 2024). These advancements sug-
gest the potential for using model fusion techniques to create
copyright-protected models that generate high-quality text.

In this paper, we propose a simple yet highly effective al-
gorithm for copyright-protected model fusion via adaptive
aggregation of logits. Our contributions are twofold:

• In Section 4, we demonstrate how our algorithm natu-
rally follows from the near-access free (NAF) frame-
work (Vyas et al., 2023). Additionally, we show that it
satisfies a balancing property (see Lemma 4.2), which
intuitively explains how our method prevents the re-
gurgitation of copyright-protected material when using
standard greedy decoding strategies.

• In Section 5, we demonstrate the effectiveness of our

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Strong Copyright Protection for Language Models via Adaptive Model Fusion

approach in preventing the model from reproducing
memorized training samples while still generating high-
quality text. Remarkably, our method reduces regur-
gitation by more than 30× compared to copyright-
infringing models and achieves better perplexity than
models that prevent memorization with early stopping.

2. Related Work
Copyright protection of language models Many popular
open-source LLMs are trained on extensive datasets contai-
ning copyrighted material without proper licensing, such as
the BookCorpus dataset (e.g., GPT-3 (Brown et al., 2020))
and the C4 corpus (e.g., LLaMa (Touvron et al., 2023)). Whi-
le efforts have been made to curate datasets with exclusively
licensed content (Kocetkov et al., 2022; Min et al., 2023) or
to remove duplicated copyrighted samples (Kandpal et al.,
2022), these approaches are often resource-intensive and can
degrade model performance. Other methods allow access
to protected material during training and enforce copyright
constraints via post-processing. Notably, Vyas et al. (2023)
introduce the near-access free (NAF) notion, designed to
provide copyright-protection guarantees in the output of
generative models. However, practical implementations of
the NAF framework either only apply to diffusion models
(Golatkar et al., 2023; 2024) or require access to a model
that is copyright-compliant with respect to every protected
material (Li et al., 2024). Finally, several works propose un-
learning copyrighted content from trained models (Chen &
Yang, 2023; Eldan & Russinovich, 2023; Jang et al., 2023;
Kassem et al., 2023); however, these approaches are typical-
ly computationally impractical and require access to model
weights, which is restrictive in real-world scenarios.

Differences between Copyright and Differential Privacy
Differential privacy (DP) limits the influence of single trai-
ning points on the outcome of a model, thereby providing a
measure of privacy protection (Dwork et al., 2014; Abadi
et al., 2016; Anil et al., 2022). However, there are fundamen-
tal differences between privacy and copyright protection.
Importantly, DP focuses on safeguarding individual data
points, while copyright protection addresses the unauthori-
zed reproduction of creative works. We refer the reader to
(Elkin-Koren et al., 2023) for extensive discussions.

3. Preliminaries
We focus on language models p that take a prompt x as
input and return a probability distribution over a sequence
of tokens of variable length T from a fixed alphabet V ,
with yT = EOS representing the end-of-sequence token.
Using the convention that y<0 = ∅, we can factorize p as:
p(y0:T | x) =

∏T
t=0 p(yt | y<t, x). We now introduce a key

assumption underlying our work and motivate our method.

Separability of copyrighted material At the core of our
method is the assumption of the separability of copyrighted
material, discussed by Vyas et al. (2023) for various vision
and language applications. This assumption is akin to those
used in machine unlearning (Bourtoule et al., 2021; Yan
et al., 2022; Dukler et al., 2023; Kumar et al., 2023) and
in works that rely on splitting datasets into safe and unsafe
parts (Golatkar et al., 2021; 2024; Li et al., 2024).

Consider a dataset D and a set of copyright-protected mate-
rials C that could be compromised when training a language
model p on D. The assumption states that we can split the
training data D into two potentially overlapping subsets, D1

and D2, such that each subset contains data associated with
two mutually exclusive sets of copyright-protected materials,
C1 and C2, where C1 ∩ C2 = ∅. This assumption holds, for
instance, when we construct the training data D from multi-
ple data sources that are sufficiently distinct. Consequently,
any language model trained on the subset D1 is protected
from infringing the copyright of materials in C \ C1 ⊇ C2.

Near-Access Freeness (NAF) Given two generative mo-
dels p(1) and p(2) trained on D1 and D2, respectively, the
challenge is to construct a model p that achieves protec-
tion against all copyright-protected materials C. In that
light,Vyas et al. (2023) propose the k-NAF framework as a
quantitative guarantee for copyright protection. Formally, a
model p(.|x) satisfies the k-NAF guarantee if, for any input
prompt x and some user-specified divergence function ∆,

∀x : max
i∈{1,2}

∆(p(.|x) || p(i)(.|x)) ≤ k. (1)

The key intuition behind Equation (1) is that, if the sepa-
rability of copyrighted material holds, the likelihood of
generating copyright-infringing text for any material c ∈ C
is exponentially small for at least one of the models. Thus,
for a model p to satisfy the k-NAF guarantee, it must place
minimal weight on such events.

Model fusion with LLMs Independent of copyright pro-
tection, combining multiple language models is a popular
research field aimed at achieving knowledge fusion, both at
inference time (Liu et al., 2021; Jiang et al., 2023; Gururan-
gan et al., 2023; Mavromatis et al., 2024) and after training
through the merging of learned weights (Wortsman et al.,
2022; Jin et al., 2022; Hsu et al., 2024). Most relevant to this
paper are the former approaches, which generally define a
model p at inference time by combining multiple models
p(1), · · · , p(K) via a weighted sum of their logits:

log p(yt | y<t, x) :=

K∑
i=1

α
(i)
t log p(i)(. | y<t, x) + c, (2)

with c being a normalizing constant. However, unlike our
algorithm presented in the next section, these approaches do
not enforce p to be close to all models p(i) simultaneously.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Strong Copyright Protection for Language Models via Adaptive Model Fusion

4. Copyright-Protected Model Fusion
We present Copyright-Protected LLM Fusion (CP-LLM),
a simple yet remarkably effective algorithm for copyright
protection in language models via model fusion. Inspired
by the k-NAF framework, we aim to minimize the maxi-
mum KL-divergence from Equation (1). Since achieving
this directly is computationally intractable, we propose an
efficient approximate algorithm that iteratively optimizes
for p(yt|y<t, x) given the history p(y<t|x). We show in
Lemma 4.1 that leveraging the KL-divergence allows us to
derive an update rule in the form of Equation (2), commonly
used in model fusion. Formally, we iteratively define

p(yt | y<t, x) = argmin
p∗

max
i

E
yt∼p∗

log

(
p∗(yt)p(y<t |x)
p(i)(y≤t |x)

)
= argmin

p∗,t
t s.t.

∀i : KL(p∗||p(i)(.|y<t, x)) + log

(
p(y<t |x)
p(i)(y<t |x)

)
≤ t,

(3)
which results in a convex optimization problem. While sol-
ving this problem naively is still computationally intensive,
we overcome this limitation using the following lemma:
Lemma 4.1. The optimal solution p∗ of the optimization
problem in Equation (3) satisfies1

log p∗(yt) = αt log p
(1)(yt|y<t, x)

+ βt log p
(2)(yt|y<t, x) + γt

(4)

for some αt, βt ≥ 0, γt ∈ R.

Consequently, the optimization problem in Equation (3) can
be solved efficiently by performing a grid search over the
parameters αt and βt, and selecting γt as a function of αt

and βt to ensure that the total mass is 1.

4.1. Discussion

CP-LLM adaptively selects αt and βt based on the sequence
history y<t. In particular, the algorithm assigns less weight
to the model that has been more dominant in generating
y<t, which is key for achieving strong copyright protection.
More formally, the following balancing property holds:
Lemma 4.2. (Balancing property) Let y<t be any non-
ending sequence and assume that p(i)(.|y<t, x) has full
support for both i ∈ {1, 2} and p(i)(y<t|x) > p(2)(y<t|x).
Then, either of the two cases is true:

1. E
yt∼p(.|y<t)

log p(1)(y≤t) = E
yt∼p(.|y<t)

log p(2)(y≤t) (5)

2. p(yt|y<t, x) = p(2)(yt|y<t, x) (6)

This balancing property ensures that neither model do-
minates the text generation. As an example, suppose the

1We set log(0) = −∞

generation of a subsequence y<t is strongly dominated
by p(1), such that p(1)(y<t|x) ≫ p(2)(y<t|x). If the first
case in Lemma 4.2 holds, the output distribution of the
copyright-protected model, p(yt|y<t, x), will be much clo-
ser to p(2)(y<t|x) than to p(1)(y<t|x). Conversely, if the
second case holds, then p = p(2), and the generation of yt
will be independent of p(1)(y<t|x). In other words, the next
token generated by p will likely match the most probable
token under the dominant model, p(1)(y<t|x), only if both
p(1) and p(2) are close conditioned on y<t and x, that is,
when the generated sequence is not protected assuming se-
parability of copyrighted material (Section 3). We provide
experimental evidence for this property in Appendix A.4.

Comparison with related works Vyas et al. (2023) pro-
pose CP-∆ as a general strategy for combining two gene-
rative models. However, their approach becomes computa-
tionally intractable when directly applied to the probability
distribution p(.|x) over the entire sequence yT . To address
this, the authors suggest applying CP-∆ token-wise, resul-
ting in the model from Equation (4) with αt = βt = 1/2.
This algorithm has also been used in a slightly different
setting in (Liu et al., 2024). However, as we demonstrate
experimentally in the next section, adaptively choosing αt

and βt is crucial for achieving strong copyright protection.

5. Experiments
5.1. Experimental Setup

We use large pre-trained language models that are common-
ly employed in practical applications. We fine-tune the mo-
dels on two different splits, each containing 3,000 samples.
To assess the copyright protection capabilities of our method,
CP-LLM, we consider an extreme case where each model
is fine-tuned for many epochs (20+, see Appendix D). Con-
sequently, the base models trained on each fine-tuning split
strongly memorize the training data and are, therefore, pro-
ne to generating copyright-infringing text. For experiments
with early-stopped base models, refer to Appendix A.2.

Datasets and Models We evaluate CP-LLM in two sce-
narios. First, we fine-tune the StarCoder 7B (Li et al., 2023)
base model using an instructional dataset for Python2, whe-
re prompts are natural language descriptions of tasks, and
answers are Python code that solves these tasks. Second, we
fine-tune Phi-2 (Javaheripi et al., 2023) on a dataset compri-
sing abstracts from math papers3, with the prompt being the
title of the paper. We also include experiments with GPT-2
XL (Radford et al., 2019) in Appendix A.1. Both code and
text-based tasks represent settings where copyright infringe-
ment is a concern (Yu et al., 2023; Henderson et al., 2023).

2instructional code-search-net-python
3AutoMathText (Zhang et al., 2024)

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Strong Copyright Protection for Language Models via Adaptive Model Fusion

0 100 200 300 400 500
Maximum Exact Matching Length

0

25

50

75

100

125

150

175
Fr

eq
ue

nc
y

, **kwargs):
path_to_csv =
path_to_csv or os.pa
th.join(os.getcwd(),
'video_list.csv')

def _set_node_hw_sync_state(self, v, load=False):
if hasattr(v, "_utype"): v = v._utype(v)
try: t = YANGDynClass(v,base=RestrictedClass
Type(base_type=unicode,
restriction_type="dict_key",
restriction_arg={u'node-in-sync': {'value': 4},
u'node-uninitialized': {'value': 2}, u'node-
unknown': {'value': 1}, u'node-synchronizing':
{'value': 3}, u'node-out-of-sync': {'value':
5}},), is_leaf=True, yang_name="node-hw-sync-
state", rest_name="node-hw-sync-state",
parent=self, path_helper=self._path_helper,
extmethods=self._extmethods, register_paths=False,

(self, aileron

e): route_values = {} if
process_id is not None:
route_values['processId'] =
self._serialize.url('process_id',
process_id,'str') if
behavior_ref_name is not None:
route_values['behaviorRefName'] =
self._serialize.url('behavior_ref_name',
behavior_ref_name,'str') content
= self._serialize.body(behavior

CP-
CP-LLM

(a) Python instructions (StarCoder)

0 25 50 75 100 125 150 175 200
Maximum Exact Matching Length

0

20

40

60

80

100

120

Fr
eq

ue
nc

y delay differential
equation

ation of a product form
stationary distribution
for a d-dimensional
semimartingale reflecting
Brownian motion (SRBM)
that lives in the
nonnegative orthant. The
d-dimensional SRBM data
can be equivalently
specified by d + 1
geometric objects

of the velocity field of

the quantized enveloping
algebra $U_q(\widehat{\ma
thfrak{sl}}_2)$

CP-
CP-LLM

(b) Math abstracts (Phi-2)

Figure 1. Histogram of the exactly matched substring lengths generated by CP-∆ and our method for (a) the Python instructions dataset
and (b) the math abstracts dataset. We highlight the longest substring and one randomly sampled match for each scenario.

The list of hyperparameters is included in Appendix D.

Metrics We use perplexity as a generalization metric and
measure copyright infringement by averaging the exact sub-
string matches above the 95th quantile. This focus on quanti-
les addresses the legal concern of copying long text extracts
in real-world applications. Exact substring matching is wide-
ly recognized in the literature for evaluating memorization,
as it clearly indicates copyright infringement in text and
code (Lee et al., 2021; Karamolegkou et al., 2023; Carlini
et al., 2023; Yu et al., 2023). We report these metrics for the
two fine-tuning splits and a test set comprising 500 prompts.

Baseline We compare our method against CP-∆ (Vyas
et al., 2023), using KL divergence as ∆. For CP-LLM, we
construct the grid by uniformly discretizing the interval
[0, 2) with 10 steps and the interval [2, 10] with 9 steps.

5.2. Results

We present a systematic evaluation of our algorithm, de-
monstrating its effectiveness in achieving low perplexity
and generating high-quality outputs while preventing the
reproduction of large text segments from the training data.

CP-LLM significantly reduces regurgitation Table 1
shows that CP-LLM significantly decreases regurgitation in
the code and text task. Specifically, it reduces exact matches
by a factor of 30 (resp. 20) compared to the overfitted models
and by a factor of 3 (resp. 2) compared to CP-∆. These
results are particularly encouraging since we assumed the
separability of copyrighted material without enforcing it.

Furthermore, Figure 1 illustrates the distribution of exact-
ly matched strings obtained by our method and CP-∆. We
observe a more heavy-tailed distribution for CP-∆, signifi-

Table 1. Perplexity (PPL) and Exact Matching (EM) at the 95th
Quantile for StarCoder and Phi-2 across fine-tuning and test splits.
We report results for the overfitted models, CP-∆, and CP-LLM.

StarCoder Phi-2
Model Split PPL EM95 PPL EM95

Overfit
Split 1

Split 1 1.01 2489.28 1.24 1369.16
Split 2 1.13 33.74 1.34 33.55
Test 1.12 65.88 1.35 30.04

Overfit
Split 2

Split 1 1.13 47.88 1.33 29.80
Split 2 1.01 2182.16 1.23 1296.04
Test 1.13 41.38 1.33 32.27

CP-LLM
Split 1 1.20 108.10 1.46 41.76
Split 2 1.20 77.76 1.46 45.96
Test 1.19 50.43 1.49 34.50

CP-∆
Split 1 1.13 295.36 1.41 82.44
Split 2 1.12 274.84 1.41 89.12
Test 1.16 56.26 1.44 36.18

cantly increasing the chances of copyright infringement. For
example, the longest exact match for CP-LLM in the text
task is 62 characters, while the 95th quantile for CP-∆ is 80
characters, with the longest match exceeding 200 characters.

CP-LLM produces high-quality text CP-LLM achieves
low perplexity, comparable to that of the overfitted models,
and outperforming early-stopped models—a standard ap-
proach for reducing memorization (Mireshghallah et al.,
2022) (see Appendix A.2). In Appendix A.2, we also show
that applying our method on top of early-stopped models
further reduces copyright infringement. Finally, our method
produces high-quality text and correct code, as evidenced
by extracts of its generated outputs (see Appendix A.5).

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Strong Copyright Protection for Language Models via Adaptive Model Fusion

Literatur
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mi-

ronov, I., Talwar, K., and Zhang, L. Deep learning with
differential privacy. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications
security, pp. 308–318, 2016.

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter, S.,
and Vollgraf, R. Flair: An easy-to-use framework for state-
of-the-art nlp. In Proceedings of the 2019 conference
of the North American chapter of the association for
computational linguistics (demonstrations), pp. 54–59,
2019.

Anil, R., Ghazi, B., Gupta, V., Kumar, R., and Manurangsi,
P. Large-scale differentially private bert. In Findings of
the Association for Computational Linguistics: EMNLP
2022, pp. 6481–6491, 2022.

Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C. A.,
Jia, H., Travers, A., Zhang, B., Lie, D., and Papernot,
N. Machine unlearning. In 2021 IEEE Symposium on
Security and Privacy (SP), pp. 141–159. IEEE, 2021.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., As-
kell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Carlini, N., Ippolito, D., Jagielski, M., Lee, K., Tramèr, F.,
and Zhang, C. Quantifying memorization across neural
language models. In The Eleventh International Confe-
rence on Learning Representations. OpenReview, 2023.

Chen, J. and Yang, D. Unlearn what you want to forget:
Efficient unlearning for llms. In The 2023 Conference
on Empirical Methods in Natural Language Processing,
2023.

Chu, T., Song, Z., and Yang, C. How to protect copyright
data in optimization of large language models? In Procee-
dings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 17871–17879, 2024.

Dukler, Y., Bowman, B., Achille, A., Golatkar, A., Swami-
nathan, A., and Soatto, S. Safe: Machine unlearning with
shard graphs. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 17108–17118,
2023.

Dwork, C., Roth, A., et al. The algorithmic foundations of
differential privacy. Foundations and Trends® in Theore-
tical Computer Science, 9(3–4):211–407, 2014.

Eldan, R. and Russinovich, M. Who’s harry potter?
approximate unlearning in llms. arXiv preprint ar-
Xiv:2310.02238, 2023.

Elkin-Koren, N., Hacohen, U., Livni, R., and Moran, S.
Can copyright be reduced to privacy? arXiv preprint
arXiv:2305.14822, 2023.

Golatkar, A., Achille, A., Ravichandran, A., Polito, M., and
Soatto, S. Mixed-privacy forgetting in deep networks. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 792–801, 2021.

Golatkar, A., Achille, A., Swaminathan, A., and Soatto,
S. Training data protection with compositional diffusion
models. arXiv preprint arXiv:2308.01937, 2023.

Golatkar, A., Achille, A., Zancato, L., Wang, Y.-X., Swa-
minathan, A., and Soatto, S. Cpr: Retrieval augmented
generation for copyright protection. arXiv e-prints, pp.
arXiv–2403, 2024.

Gururangan, S., Li, M., Lewis, M., Shi, W., Althoff, T.,
Smith, N. A., and Zettlemoyer, L. Scaling expert langua-
ge models with unsupervised domain discovery. arXiv
preprint arXiv:2303.14177, 2023.

Henderson, P., Li, X., Jurafsky, D., Hashimoto, T., Lemley,
M. A., and Liang, P. Foundation models and fair use.
arXiv preprint arXiv:2303.15715, 2023.

Hsu, C.-J., Chen, Y.-C., Liao, F.-T., Ho, P.-C., Wang, Y.-H.,
Hsu, P.-C., and Shiu, D.-s. Let’s fuse step by step: A
generative fusion decoding algorithm with llms for multi-
modal text recognition. arXiv preprint arXiv:2405.14259,
2024.

Ippolito, D. and Yu, Y. W. Donottrain: A metadata standard
for indicating consent for machine learning. In Procee-
dings of the 40th International Conference on Machine
Learning, 2023.

Ippolito, D., Tramèr, F., Nasr, M., Zhang, C., Jagielski, M.,
Lee, K., Choquette-Choo, C. A., and Carlini, N. Preven-
ting generation of verbatim memorization in language
models gives a false sense of privacy. In Proceedings
of the 16th International Natural Language Generation
Conference, pp. 28–53. Association for Computational
Linguistics, 2023.

Jain, N., Chiang, P.-y., Wen, Y., Kirchenbauer, J., Chu,
H.-M., Somepalli, G., Bartoldson, B. R., Kailkhura, B.,
Schwarzschild, A., Saha, A., et al. Neftune: Noisy em-
beddings improve instruction finetuning. arXiv preprint
arXiv:2310.05914, 2023.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Strong Copyright Protection for Language Models via Adaptive Model Fusion

Jang, J., Yoon, D., Yang, S., Cha, S., Lee, M., Logeswaran,
L., and Seo, M. Knowledge unlearning for mitigating pri-
vacy risks in language models. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 14389–14408,
2023.

Javaheripi, M., Bubeck, S., Abdin, M., Aneja, J., Bubeck,
S., Mendes, C. C. T., Chen, W., Del Giorno, A., Eldan,
R., Gopi, S., et al. Phi-2: The surprising power of small
language models. Microsoft Research Blog, 2023.

Jiang, D., Ren, X., and Lin, B. Y. Llm-blender: Ensembling
large language models with pairwise ranking and genera-
tive fusion. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 14165–14178, 2023.

Jin, X., Ren, X., Preotiuc-Pietro, D., and Cheng, P. Data-
less knowledge fusion by merging weights of language
models. In The Eleventh International Conference on
Learning Representations, 2022.

Kandpal, N., Wallace, E., and Raffel, C. Deduplicating
training data mitigates privacy risks in language models.
In International Conference on Machine Learning, pp.
10697–10707. PMLR, 2022.

Karamolegkou, A., Li, J., Zhou, L., and Søgaard, A. Copy-
right violations and large language models. In Procee-
dings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pp. 7403–7412, 2023.

Kassem, A., Mahmoud, O., and Saad, S. Preserving privacy
through dememorization: An unlearning technique for
mitigating memorization risks in language models. In
Proceedings of the 2023 Conference on Empirical Me-
thods in Natural Language Processing, pp. 4360–4379,
2023.

Kocetkov, D., Li, R., Allal, L. B., Li, J., Mou, C., Ferrandis,
C. M., Jernite, Y., Mitchell, M., Hughes, S., Wolf, T.,
et al. The stack: 3 tb of permissively licensed source code.
arXiv preprint arXiv:2211.15533, 2022.

Kumar, V. B., Gangadharaiah, R., and Roth, D. Privacy
adhering machine un-learning in nlp. In Findings of
the Association for Computational Linguistics: IJCNLP-
AACL 2023 (Findings), pp. 268–277, 2023.

Lee, K., Ippolito, D., Nystrom, A., Zhang, C., Eck, D.,
Callison-Burch, C., and Carlini, N. Deduplicating trai-
ning data makes language models better. arXiv preprint
arXiv:2107.06499, 2021.

Lee, K., Cooper, A. F., and Grimmelmann, J. Talkin”bout ai
generation: Copyright and the generative-ai supply chain.
arXiv preprint arXiv:2309.08133, 2023.

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D.,
Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., et al.
Starcoder: may the source be with you! arXiv preprint
arXiv:2305.06161, 2023.

Li, T., Liu, Q., Pang, T., Du, C., Guo, Q., Liu, Y., and Lin,
M. Purifying large language models by ensembling a
small language model. arXiv preprint arXiv:2402.14845,
2024.

Liu, A., Sap, M., Lu, X., Swayamdipta, S., Bhagavatula,
C., Smith, N. A., and Choi, Y. Dexperts: Decoding-time
controlled text generation with experts and anti-experts.
In Proceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Processing
(Volume 1: Long Papers), 2021.

Liu, A., Han, X., Wang, Y., Tsvetkov, Y., Choi, Y., and
Smith, N. A. Tuning language models by proxy. arXiv
preprint arXiv:2401.08565, 2024.

Mavromatis, C., Karypis, P., and Karypis, G. Pack of llms:
Model fusion at test-time via perplexity optimization.
arXiv preprint arXiv:2404.11531, 2024.

Meeus, M., Jain, S., Rei, M., and de Montjoye, Y.-A.
Did the neurons read your book? document-level
membership inference for large language models.
ArXiv, abs/2310.15007, 2023. URL https:
//api.semanticscholar.org/CorpusID:
264591425.

Min, S., Gururangan, S., Wallace, E., Shi, W., Hajishirzi,
H., Smith, N. A., and Zettlemoyer, L. Silo language
models: Isolating legal risk in a nonparametric datastore.
In The Twelfth International Conference on Learning
Representations, 2023.

Mireshghallah, F., Uniyal, A., Wang, T., Evans, D., and
Berg-Kirkpatrick, T. Memorization in nlp fine-tuning
methods. arXiv preprint arXiv:2205.12506, 2022.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Suts-
kever, I., Dean, J., and Ghemawat, S. Language models
are unsupervised multitask learners. In OSDI’04: Sixth
Symposium on Operating System Design and Implemen-
tation, pp. 137–150, 2019.

Rahman, N. and Santacana, E. Beyond fair use: Legal risk
evaluation for training llms on copyrighted text. In ICML
Workshop on Generative AI and Law, 2023.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,
J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023.

6

https://api.semanticscholar.org/CorpusID:264591425
https://api.semanticscholar.org/CorpusID:264591425
https://api.semanticscholar.org/CorpusID:264591425

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Strong Copyright Protection for Language Models via Adaptive Model Fusion

Tirumala, K., Markosyan, A., Zettlemoyer, L., and Aghaja-
nyan, A. Memorization without overfitting: Analyzing
the training dynamics of large language models. Ad-
vances in Neural Information Processing Systems, 35:
38274–38290, 2022.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Vyas, N., Kakade, S. M., and Barak, B. On provable co-
pyright protection for generative models. In Internatio-
nal Conference on Machine Learning, pp. 35277–35299.
PMLR, 2023.

Wang, H., Polo, F. M., Sun, Y., Kundu, S., Xing, E., and
Yurochkin, M. Fusing models with complementary ex-
pertise. In Annual Conference on Neural Information
Processing Systems, 2023.

Wortsman, M., Ilharco, G., Gadre, S. Y., Roelofs, R.,
Gontijo-Lopes, R., Morcos, A. S., Namkoong, H., Farha-
di, A., Carmon, Y., Kornblith, S., et al. Model soups: ave-
raging weights of multiple fine-tuned models improves
accuracy without increasing inference time. In Interna-
tional conference on machine learning, pp. 23965–23998.
PMLR, 2022.

Yan, H., Li, X., Guo, Z., Li, H., Li, F., and Lin, X. Arcane:
An efficient architecture for exact machine unlearning. In
IJCAI, volume 6, pp. 19, 2022.

Yu, Z., Wu, Y., Zhang, N., Wang, C., Vorobeychik, Y., and
Xiao, C. CodeIPPrompt: Intellectual property infringe-
ment assessment of code language models. In Krau-
se, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato,
S., and Scarlett, J. (eds.), Proceedings of the 40th In-
ternational Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp.
40373–40389. PMLR, 23–29 Jul 2023. URL https://
proceedings.mlr.press/v202/yu23g.html.

Zhang, Y., Luo, Y., Yuan, Y., and Yao, A. C. Autonomous da-
ta selection with language models for mathematical texts.
In ICLR 2024 Workshop on Navigating and Addressing
Data Problems for Foundation Models, 2024.

7

https://proceedings.mlr.press/v202/yu23g.html
https://proceedings.mlr.press/v202/yu23g.html

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Strong Copyright Protection for Language Models via Adaptive Model Fusion

Appendices
The following appendices provide additional results and discussions, deferred proofs, and experimental details.

A. Additional experiments
A.1. Experiments with GPT-2 XL

We present additional results with GPT-2 XL, a 1.5B parameter version of GPT-2. This model is smaller than the ones
discussed in the main text, and thus, we expect that it exhibits lower memorization rates (Tirumala et al., 2022).

Table 2 shows a similar trend compared to the results from Section 5. Specifically, the CP-∆ baseline demonstrates
memorization of strings that are twice as large as those produced by our method. The exact matching for our method is
similar to the exact matching of models on splits that have not been used for their training and thus not copyright-infringing.
Furthermore, both our method and CP-∆ show competitive perplexity.

Table 2. Perplexity (PPL) and Exact Matching (EM) at the 95th Quantile for GPT-2 XL across fine-tuning and test splits. We report results
for the overfitted (copyright-unsafe) models, the baseline CP-∆, and our method CP-LLM.

GPT-2 XL (Math abstracts)
Model Split PPL EM95

Overfit
Split 1

Split 1 1.10 1521.76
Split 2 1.44 38.48
Test 1.44 39.80

Overfit
Split 2

Split 1 1.45 37.14
Split 2 1.28 1344.20
Test 1.45 39.18

CP-LLM
Split 1 1.51 45.24
Split 2 1.51 57.61
Test 1.51 40.48

CP-∆
Split 1 1.48 72.54
Split 2 1.47 113.20
Test 1.49 42.79

A.2. Experiments with early-stopped models

In this section, we present experimental results with early-stopped models. Specifically, we stop fine-tuning upon detecting
an increase in memorization, as is a common practice in the literature (Mireshghallah et al., 2022). Table 3 shows that the
early-stopped models exhibit higher perplexity (i.e., worse) compared to CP-LLM applied to heavily overfitted models (refer
to the main results in Table 1). Moreover, early-stopped models show similar exact memorization at the 95th quantile than
CP-LLM, particularly for the text-based task.

Additionally, we apply both the baseline CP-∆ and CP-LLM on top of the early-stopped models. We observe that CP-LLM
further reduces regurgitation of memorized training samples (e.g., StarCoder by a factor of 3) and, in some cases, improves
perplexity (e.g., Phi-2), while consistently outperforming CP-∆.

A.3. Ablation studies for the grid size

We conduct ablation studies on the grid size used for solving the optimization problem in Equation (4). Specifically, we
maintain 9 steps in the interval [2, 10] and study the sensitivity of our method to the number of steps in the interval [0, 2).
Table 4 shows the perplexity and average exact matching (above the 95th and 99th quantiles) for different numbers of
steps. Remarkably, we observe similar levels of memorization while perplexity decreases (i.e., better) for smaller grids.
Additionally, note that using smaller grids significantly accelerates the decoding process.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Strong Copyright Protection for Language Models via Adaptive Model Fusion

Table 3. Perplexity (PPL) and Exact Matching (EM) at the 95th Quantile for StarCoder, Phi-2, and GPT-2 XL across fine-tuning and test
splits. We report results for the early-stopped (ES) models, the baseline CP-∆, and our method CP-LLM.

StarCoder (Python) Phi-2 (Math abstracts) GPT-2 XL (Math abstracts)
Model Split PPL EM95 PPL EM95 PPL EM95

ES Split 1
Split 1 1.26 159.36 1.56 41.71 1.79 65.83
Split 2 1.30 39.23 1.60 41.08 1.78 41.68
Test 1.30 51.71 1.60 42.35 1.82 39.68

ES Split 2
Split 1 1.25 31.96 1.66 45.71 1.60 38.60
Split 2 1.24 145.04 1.67 46.56 1.59 60.60
Test 1.27 43.74 1.67 40.88 1.60 40.78

Ours
Split 1 1.29 55.19 1.58 44.10 1.69 43.82
Split 2 1.30 45.04 1.61 43.58 1.71 51.62
Test 1.29 49.43 1.59 41.62 1.73 43.78

CP-∆
Split 1 1.29 74.04 1.50 44.77 1.70 50.14
Split 2 1.30 59.00 1.54 46.96 1.70 49.00
Test 1.30 59.00 1.55 42.38 1.70 43.00

Table 4. Ablation Study: Perplexity (PPL) and Exact Matching (EM) at the 95th and 99th quantiles for StarCoder and Phi-2 with different
grid sizes.

StarCoder Phi-2
Grid Size Split PPL EM95 EM99 PPL EM95 EM99

2 + 9
Split 1 1.09 98.96 204.60 1.18 45.56 54.80
Split 2 1.10 87.27 134.60 1.18 44.39 54.60
Test 1.09 50.44 103.40 1.19 34.65 42.20

5 + 9
Split 1 1.18 102.08 219.00 1.39 45.30 55.50
Split 2 1.18 81.68 180.33 1.40 45.90 57.40
Test 1.18 46.84 88.80 1.40 33.84 45.33

10 + 9
Split 1 1.20 108.10 224.40 1.46 41.76 52.00
Split 2 1.20 77.76 139.60 1.46 45.96 55.40
Test 1.19 50.43 95.00 1.49 34.50 42.20

20 + 9
Split 1 1.20 102.04 247.60 1.51 44.82 59.80
Split 2 1.20 78.39 139.60 1.51 46.57 56.60
Test 1.20 46.65 82.80 1.54 35.29 43.80

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Strong Copyright Protection for Language Models via Adaptive Model Fusion

A.4. Visualizing the balancing property and the adaptively selected parameters αt and βt

In Figure 2, we plot the log densities log p(y≤t|x), log p(1)(y≤t|x), and log p(2)(y≤t|x) for both CP-LLM and CP-∆ for
a sequence generated by both models from a prompt x contained in the second fine-tuning data split. As we can see,
for CP-LLM, the balancing property from Lemma 4.2 ensures that the generated sequence has approximately the same
log probability for both base models, log p(1)(y≤t|x) ≈ log p(2)(y≤t|x). In contrast, the sequence generated by CP-∆
occurs more likely under log p(2)(y≤t|x), which overfitted on the prompt x, than log p(1)(y≤t|x). This makes CP-∆ more
vulnerable to replicating text memorized by log p(2)(y≤t|x), as we observed in our experimental results.

0 20 40 60 80 100 120 140
Generated Token

200

175

150

125

100

75

50

25

0
Se

qu
en

ce
 L

og
-L

ik
el

ih
oo

d

CP-LLM
p(1)

CP-LLM

p(2)
CP-LLM

CP-
p(1)

CP- }
p(2)

CP-

Figure 2. Log-likelihood for the sequence produced by CP-LLM and CP-∆, and the corresponding base models p(1) and p(2) at each
token in greedy decoding. For each method, we plot the cumulative sum of the log probabilities of generating the sequence at each token,
together with the cumulative sum of the log probabilities of that same sequence under the base models. Due to the balancing property,
CP-LLM achieves log p(1)(y≤t|x) ≈ log p(2)(y≤t|x) at all steps of the generation, indicating that the tokens produced by CP-LLM
are roughly equally likely under both base models, hence preventing the reproduction of memorized samples. In contrast, CP-∆ places
significantly more weight on the second model p(2), as evidenced by the much higher log-likelihood of the generated tokens under p(2)

compared to p(1). This increases the likelihood of reproducing memorized samples from p(2).

In Figure 3, we illustrate how the parameters αt and βt adaptively change during the generation of an output via greedy
decoding. We observe the consequences of the balancing property (Lemma 4.2): when one model heavily dominates the
generation process, our algorithm increases the weight of the other model to prevent the regurgitation of copyrighted
material.

0
2
4
6
8

10

0
2
4
6
8

10

25 50 75 100 125 150 175 200
Generated Token

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

20 40 60 80 100 120 140 160
Generated Token

0
2
4
6
8

10

Figure 3. Evolution of the parameters αt and βt during greedy decoding. We randomly sampled six examples of text generated by our
method CP-LLM, combining overfitted Phi-2 models on the math abstract dataset. When the parameters plateau at the end of the sequence,
CP-LLM only generates the padding token.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Strong Copyright Protection for Language Models via Adaptive Model Fusion

A.5. Examples of outputs generated by CP-LLM

In this section, we present output examples generated by our method and compare them with outputs from the copyright-
infringing overfitted model, the baseline CP-∆, the early-stopped model, and the base model without fine-tuning. All
examples are randomly sampled from the fine-tuning datasets.

Figures 4, 6, and 5 show outputs generated for the Python instructional dataset. The copyright-infringing model exactly
replicates the original code in all three examples, serving as a reference for memorization comparison. The CP-∆ algorithm
produces code closely resembling the original, with a nearly exact full match in Figure 4 and 5, and an exact reproduction of
a comment with a link in Figure 6. In contrast, CP-LLM generates significantly different code that is correct and arguably of
higher quality, incorporating exception handling and new features, such as the selection of different statistics in Figure 5.
The early-stopped model produces low-quality code, often oversimplifying tasks (Figure 4 and 5) and committing syntax
errors, such as an open quotation in Figure 6. Finally, the base model often fails to generate code and produces natural or
nonsensical text instead (Figure 4 and 5), highlighting the necessity of fine-tuning in the first place, but also can generate a
correct output as in Figure 6.

Figures 7, 8 and 9 illustrate outputs generated for the task of producing abstracts from math paper titles. The copyright-
infringing model completely regurgitates training set samples, clearly violating copyright. Both CP-LLM and CP-∆ generate
reasonable, high-quality text; however, CP-∆ reproduces at least twice as much memorized text as CP-LLM. Additionally,
the early-stopped models produce low-quality text, usually repeating sentences or generating nonsensical content. Finally,
the base model fails to generate coherent text.

Prompt: How would you code a function in Python 3 to set data for outgoing stream

Copyright-infringing model:
1 def set_data(self, data, addr=0):
2 if self._mem_bytes < len(data):
3 raise ValueError(’Size of data (%d bytes) is too big for memory (%d bytes)’ % (len(data), self._mem_bytes))
4 self._intf.write(self._conf[’base_addr’] + self._spi_mem_offset + addr, data)
5

CP-LLM:
1 def set_data(self, data):
2 if self._data_bytes:
3 self._buf.write(data)
4 return
5 try:
6 self._buf = BytesIO(data)
7 except TypeError:
8 self._buf = StringIO(data)
9

CP-∆:
1 def set_data(self, data, addr=0):
2 if self._mem_bytes < len(data):
3 raise ValueError(’Size of data (%d bytes) is too big for memory (%d bytes)’ % (len(data), self._mem_bytes))
4 self._intf.write(self._conf[’base_addr’] + addr, data)
5

Early-stopped model:
1 def set_data(self, data):
2 self.data = data
3 self.update()
4

Base model:
¡details¿¡summary¿¡b¿Answer¡/b¿ ¡/summary¿ ¡p¿ Answer: B “‘python stream.data = data “‘ ¡/p¿ ¡/details¿ — Q10.
Which of the following is a valid way to create a dictionary in Python 3? - [] ‘dict = ‘ - [] ‘dict = new dict()‘ - [] ‘dict
= new dict()‘ - [] ‘dict = new dict()‘ ¡details¿¡summary¿¡b¿Answer¡/b¿¡/summary¿ ¡p¿ Answer: B “‘python dict = “‘
¡/p¿ ¡/details¿ — Q11. [...]

Figure 4. Example of text generated by the overfitted, copyright-infringing model, CP-LLM, CP-∆, the early-stopped model, and the base
model for the Python instructional dataset using StarCode models.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Strong Copyright Protection for Language Models via Adaptive Model Fusion

Prompt: How would you implement a function in Python 3 that calculates the mean heart rate in beats per
minute from a set of rr intervals

Copyright-infringing model:
1 def calc_mean_hr(rr, fs=None, min_rr=None, max_rr=None, rr_units=’samples’):
2 if not len(rr):
3 return 0
4 if min_rr is not None:
5 rr = rr[rr > min_rr]
6 if max_rr is not None:
7 rr = rr[rr < max_rr]
8 mean_rr = np.mean(rr)
9 mean_hr = 60 / mean_rr

10 # Convert to bpm
11 if rr_units == ’samples’:
12 mean_hr = mean_hr * fs
13 return mean_hr
14

CP-LLM:
1 def calc_mean_hr(self, rr, fs=None, window=None, n_fft=None, mean_type=’mean’, **kwargs):
2 if not self.is_rr_set(rr):
3 return
4 if fs is None:
5 fs = self.fs
6 if window is None:
7 window = self.window
8 if n_fft is None:
9 n_fft = self.n_fft

10 if mean_type ==’mean’:
11 mean = np.mean(rr)
12 elif mean_type ==’median’:
13 mean = np.median(rr)
14 elif mean_type ==’mode’:
15 mean = np.mode(rr)
16 else:
17 raise ValueError(
18 "Unknown mean_type: {}".format(mean_type))
19 mean_hr = 60 / self.duration(fs=fs, window=window, n_fft=n_fft) * mean
20 return mean_hr
21

CP-∆:
1 def calc_mean_hr(rr, fs=None, min_rr=None, max_rr=None, rr_units=’samples’):
2 if not len(rr):
3 return 0
4 if min_rr is not None:
5 rr = rr[rr > min_rr]
6 if max_rr is not None:
7 rr = rr[rr < max_rr]
8 mean_rr = np.mean(rr)
9 mean_hr = 60 / mean_rr

10 # Convert to bpm
11 if rr_units ==’samples’:
12 mean_hr = mean_hr * fs
13 return mean_hr
14

Early-stopped model:
1 def mean_rr_interval(rr_intervals):
2 mean_rr_interval = 0
3 if len(rr_intervals) > 0:
4 mean_rr_interval = sum(rr_intervals) / len(rr_intervals)
5 return mean_rr_interval
6

Base model:
The file format is a simple text file with one number per line. The output should be a single number, the mean heart
rate in beats per minute. The program should be able to handle a file with any number of lines. The program should be
able to handle a file with no lines. The program should be able to handle a file with a single line. The program should
be able to handle a file with a single number. [...]

Figure 5. Example of text generated by the overfitted, copyright-infringing model, CP-LLM, CP-∆, the early-stopped model, and the base
model for the Python instructional dataset using StarCode models.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Strong Copyright Protection for Language Models via Adaptive Model Fusion

Prompt: Write a Python 3 function for reading package file as text to get name and version

Copyright-infringing model:
1 def read_file(filename):
2 # intentionally *not* adding an encoding option to open
3 # see here:
4 # https://github.com/pypa/virtualenv/issues/201#issuecomment-3145690
5 here = os.path.abspath(os.path.dirname(__file__))
6 with codecs.open(os.path.join(here, ’graphql_compiler’, filename), ’r’) as f:
7 return f.read()
8

CP-LLM:
1 def read_file(path):
2 # intentionally ignoring errors here, as we want to know if the file exists
3 package_file = open(path, "r")
4 package_content = package_file.read()
5 package_file.close()
6 match = re.search(r"ˆname:.* version:.*", package_content)
7 if match:
8 name = match.group(1)
9 version = match.group(2)

10 return name, version
11 else:
12 raise RuntimeError("Unable to determine package name and version from {}".format(path))
13

CP-∆:
1 def read_file(filename):
2 # intentionally *not* adding an encoding option to open
3 # see here:
4 # https://github.com/pypa/virtualenv/issues/201#issuecomment-3145690
5 here = os.path.abspath(os.path.dirname(__file__))
6 with open(os.path.join(here, ’VERSION’)) as f:
7 version = f.read().strip()
8 return version
9

Early-stopped model:
1 def read_package_file(filename):
2 with open(filename, ’r’) as f:
3 content = f.read()
4 match = re.search(r’\s*name\s*=\s*([\’"])(.*?)\1, content)
5 if match is not None:
6 name = match.group(2)
7 else:
8 raise RuntimeError(’Could not find package name in %s’ % filename)
9 match = re.search(r’\s*version\s*=\s*([\’"])(.*?)\1’, content)

10 if match is not None:
11 version = match.group(2)
12 else:
13 raise RuntimeError(’Could not find package version in %s’ % filename)
14 return name, version
15

Base model:
1 def read_pkg_file(filename):
2 with open(filename, ’r’) as f:
3 return f.read()
4 def get_name_and_version(filename):
5 pkg_file = read_pkg_file(filename)
6 name_and_version = re.search(r’name\\s*=\\s*\\’(.*?)\\’’, pkg_file)
7 if name_and_version:
8 return name_and_version.group(1)
9 else:

10 raise ValueError(’Could not find name in package file’)
11

Figure 6. Example of text generated by the overfitted, copyright-infringing model, CP-LLM, CP-∆, the early-stopped model, and the base
model for the Python instructional dataset using StarCode models.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Strong Copyright Protection for Language Models via Adaptive Model Fusion

Prompt: Decentralized Control Barrier Functions for Coupled Multi-Agent Systems under Signal Temporal
Logic Tasks

Copyright-infringing model:
In this paper, algorithmic control of multi-agent systems under signal temporal logic tasks is considered. The signal
temporal logic is a formalism that is used to express time and space constraints for dynamical systems. Recent
methods to solve the control synthesis problem for single-agent systems under signal temporal logic tasks are,
however, subject to a high computational complexity. Methods for multi-agent systems scale at least linearly with the
number of agents and induce even higher computational burdens. We propose a computationally-efficient control
strategy to solve the multi-agent control synthesis problem that results in a robust satisfaction of a set of signal
temporal logic tasks. In particular, a decentralized feedback control law is proposed that is based on time-varying
control barrier functions. The obtained control law is discontinuous and formal guarantees are provided by nonsmooth
analysis. Simulations show the efficacy of the presented method.

CP-LLM:
In this paper, algorithms for multi-agent systems under signal temporal logic are considered. Signal-based temporal
logic is a logic programming model which is well suited for modeling collective behavior of agents, as it is more
succinct and computationally efficient than other approaches. However, signal-based logic is also known to be
computationally hard. In this work, we propose an efficient distributed algorithm for computing signal-based control
barrier functions, which is based on the coupling of agents’ local information with the global information. Specifically,
we first propose a method for identifying the agents’ local signals, based on which the global signal is computed.
Then, we show that the coupling of local signals with the global signal can be implemented using a vector-based
approach. The proposed method is computationally efficient and robust to noise.

CP-∆:
In this paper, algorithms for multi-agent systems under signal temporal logic tasks are considered. The signal temporal
logic is a formalism that is used to express time and space constraints for dynamical systems. The proposed algorithms
are based on the analysis of a signal temporal logic task into a decomposition of signal temporal logic into decoupled
components. Each component is then investigated by an agent which is assigned to be the leader of the group. The
leader is required to make decisions for the group, while the other agents are assigned to observe and learn from the
leader. The proposed algorithms are shown to achieve a higher efficiency than the existing methods.

Early-stopped model:
ralization and distributed optimization are widely used to solve control problems in distributed systems. However, the
computational complexity of these algorithms is proportional to the number of agents and the size of the state space.
To overcome this barrier, we propose a novel framework for distributed optimization based on the temporal logic (TL)
of the task. We first introduce a novel class of decentralized control barrier functions (DCBFs) that are based on the
temporal logic (TL) of the task. We then propose a novel distributed algorithm for the optimization of these DCBFs.
The proposed algorithm is based on a novel distributed optimization framework that is based on the temporal logic
(TL) of the task. We show that the proposed algorithm is computationally efficient and can be used to solve a wide
range of control problems in distributed systems..

Base model:
the following: 1. Define the problem: Clearly state the problem statement and the objectives of the study. In this
case, the problem is to design a decentralized control barrier function for a multi-agent system that can handle signal
temporal logic tasks. 2. Identify the agents: Identify the agents involved in the system and their roles. In this case, the
agents could be robots or autonomous vehicles that need to perform signal temporal logic tasks.3. Define the control
barrier function: [...] Follow-up exercises:1. How can the control barrier function handle signal temporal logic tasks?
Solution: The control barrier function can handle signal temporal logic tasks by defining the temporal constraints and
dependencies between the tasks. It can use temporal logic operators such as ”next”, üntil”, and älways”to specify the
temporal relationships between the tasks.

Figure 7. Example of text generated by the overfitted, copyright-infringing model, CP-LLM, CP-∆, the early-stopped model, and the base
model for the math abstracts dataset using Phi-2 models. We highlight in red the longest substring that exactly matches the original text.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Strong Copyright Protection for Language Models via Adaptive Model Fusion

Prompt: Synchronization transition of heterogeneously coupled oscillators on scale-free networks

Copyright-infringing model:
We investigate the synchronization transition of the modified Kuramoto model where the oscillators form a scale-free
network with degree exponent λ. An oscillator of degree ki is coupled to its neighboring oscillators with asymmetric
and degree-dependent coupling in the form of Λkη−1

i . By invoking the mean-field approach, we determine the
synchronization transition point Jc, which is zero (finite) when η > λ − 2 (η < λ − 2). We find eight different
synchronization transition behaviors depending on the values of η and λ, and derive the critical exponents associated
with the order parameter and the finite-size scaling in each case. The synchronization transition is also studied from
the perspective of cluster formation of synchronized vertices. The cluster-size distribution and the largest cluster size
as a function of the system size are derived for each case using the generating function technique. Our analytic results
are confirmed by numerical simulations.

CP-LLM:
We investigate the dynamical synchronization of the modified Kuramoto model with respect to the random potential.
The coupling strength of each oscillator is modified to achieve a particular dynamical state. We prove that the modified
Kuramoto model converges to the Kuramoto model in the limit of weak coupling. We also characterize the critical
dynamics for the synchronization transition. In particular, we determine the critical exponents for the synchronization
transition of the modified Kuramoto model.

CP-∆:
We investigate the synchronization transition of the modified Kuramoto model where the oscillators form a scale-free
network with degree distribution f . An interesting feature of the network is that the degree distribution at any node is
independent of the node’s degree. We determine the critical value c for the synchronization transition of the Kuramoto
model, where c is the coupling strength. It is found that the synchronization transition of the Kuramoto model does
not occur for f ≤ 0 and f ≥ 0 only when c is sufficiently large. The critical value c is determined by the coupling
strength of the network. Moreover, we observe that the synchronization transition of the Kuramoto model occurs for
f ≥ 0 only when c is at least

√
d where d is the diameter of the network.

Early-stopped model:
of the form Ω(t) =

∑n
i=1 fi(t), where fi is the frequency of the oscillator at time t. We show that the transition from

the synchronous regime to the asynchronous regime is governed by a nonlinear scaling law, which is a generalization
of the scaling law for the synchronous regime. We also show that the transition is governed by a nonlinear scaling
exponent, which is a generalization of the scaling exponent for the synchronous regime. We also show that the
transition is governed by a nonlinear scaling exponent for the asynchronous regime. We also show that the transition is
governed by a nonlinear scaling exponent for the synchronous regime..

Base model:
In the early 2000s, he was a member of the research team that discovered the first evidence of a scale-free network in
the brain. In the early 2010s, he was a member of the research team that discovered the first evidence of a scale-free
network in the brain. In the early 2010s, he was a member of the research team that discovered the first evidence of a
scale-free network in the brain. In the early 2010s, he was a member of the research team that discovered the first
evidence of a scale-free network in the brain. In the early 2010s, he was a member of the research team that discovered
the first evidence of a scale-free network in the brain. In the early 2010s, he was a member of the research team that
discovered the first evidence of a scale-free network in the brain. In the early 2010s, he was a member of the research
team that discovered the first evidence of a scale-free network in the brain

Figure 8. Example of text generated by the overfitted, copyright-infringing model, CP-LLM, CP-∆, the early-stopped model, and the base
model for the math abstracts dataset using Phi-2 models. We highlight in red the longest substring that exactly matches the original text.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Strong Copyright Protection for Language Models via Adaptive Model Fusion

Prompt: Triangles in randomly perturbed graphs

Copyright-infringing model:
We study the problem of finding pairwise vertex-disjoint triangles in the randomly perturbed graph model, which is the
union of any n-vertex graph G satisfying a given minimum degree condition and the binomial random graph G(n, p).
We prove that asymptotically almost surely G ∪G(n, p) contains at least min{δ(G), ⌊n/3⌋} pairwise vertex-disjoint
triangles, provided p ≥ C log n/n, where C is a large enough constant. This is a perturbed version of an old result of
Dirac.Our result is asymptotically optimal and answers a question of Han, Morris, and Treglown [RSA, 2021, no. 3,
480–516] in a strong form.

CP-LLM:
We study the problem of finding pairwise disjoint triangles in the randomly perturbed version of the n-vertex graph.
We prove that for p ≥ 2 and n ≥ 3, any solution can be computed in polynomial time. For p = 1 and n ≥ 2, the
problem is NP-hard and currently not known to be solvable. However, we show that for p > 2 and n ≥ 3, the problem
is decidable in polynomial time. Our proof relies on the fact that the problem is decidable for p-groups that are
2-element sets (that is, groups whose automorphism group is trivial).

CP-∆:
We study the problem of finding pairwise vertex-disjoint triangles in the randomly perturbed graph model, which is
the maximum number of edges of a graph with n vertices and where any two vertices are adjacent if and only if they
are adjacent in the graph. We prove that the number of pairwise vertex-disjoint triangles is bounded by 3n

2 for any
fixed k and 1

2 for any fixed r. Our result is almost optimal and answers a question of Han, Li, and Zhang. We also
prove a lower bound of 3n

2 for the case when r = 2 and 1
2 for any fixed k..

Early-stopped model:
We study the problem of finding a set of triangles in a graph of randomly perturbed vertices. We show that the problem
is NP-complete, and that the best known approximation ratio is 1

2 . We also show that the problem is NP-complete for
graphs with a large number of vertices. We show that the problem is NP-complete for graphs with a small number
of vertices, and that the best known approximation ratio is 1

2 . We also show that the problem is NP-complete for
graphs with a large number of edges, and that the best known approximation ratio is 1

2 . We show that the problem is
NP-complete for graphs with a small number of edges, and that the best known approximation ratio is 1

2 . We also show
that the problem is NP-complete for graphs with a large number of edges, and that the best known approximation ratio
is 1

2 .

Base model:
References External links Graph drawing

Figure 9. Example of text generated by the overfitted, copyright-infringing model, CP-LLM, CP-∆, the early-stopped model, and the base
model for the math abstracts dataset using Phi-2 models. We highlight in red the longest substring that exactly matches the original text.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Strong Copyright Protection for Language Models via Adaptive Model Fusion

B. Limitations
The NAF theory relies on the separability of copyrighted material assumption (Section 3). Ensuring that this assumption
holds in real-world scenarios is challenging. In a naive implementation, it could necessitate the data curator having an oracle
capable of perfectly detecting whether a passage is copyrighted. If such a classifier were available, it would then need to
identify all verbatim or quasi-verbatim replicas (e.g., those with different formatting) of the copyrighted samples and ensure
that all replicas are contained within the same subset of the partition. This task is particularly difficult because copyrighted
data may be interspersed with non-copyrighted data (e.g., when long copyrighted passages are quoted)4.

Currently, there is no theoretical understanding of how the NAF guarantees degrade if the separability assumption is
partially violated. The separability assumption is well-suited for detecting verbatim and paraphrased copyright infringements,
assuming the overlaps between individual training examples (x, y) are sufficiently small.

Moreover, our work currently lacks a thorough comparison of the problem-solving capabilities between our method and the
baselines. Although we observe highly competitive perplexity and promising output examples from CP-LLM, we leave the
evaluation of whether these generations consistently enable practitioners to solve specific tasks for immediate future work.

C. Proofs
Proof of Lemma 4.1 The statement in Lemma 4.1 is a direct consequence of classical convex optimization. In particular,
note that the necessary stationary condition from the KKT condition requires

∀yt ∈ V :
∑
i

λi

(
log p∗(yt)− log p(i)(yt|y<t, x)) + 1

)
+ µ− uyt

= 0 (7)

for some dual variables λi, uyt≥0 and µ ∈ R. Moreover, by the complementary slackness condition,

λi

(
KL(p∗||p(i)(.|y<t, x)) + γi − t

)
= 0 and uytp

∗(yt) = 0. (8)

and in particular it is easy to verify that λi > 0 for at least one i ∈ {1, 2}.

C.1. Proof of Lemma 4.2

Under the assumption that both p(1) and p(2) have full support, either of the following two cases holds true for p∗:

• The constraint from Equation (4) is tight for both i ∈ {1, 2} and thus the following two terms match. In this case,
condition (1) from Lemma 4.2 holds.

KL(p∗||p(1)(.|y<t, x)) + log

(
p(y<t |x)
p(i)(y<t |x)

)
= KL(p∗||p(2)(.|y<t, x)) + log

(
p(y<t |x)
p(i)(y<t |x)

)
(9)

• The optimal solution equals to p∗ = p(1) or p∗ = p(2). Assume by contradiction that the former is true, and thus
p∗ = p(1). We have that

KL(p∗||p(2)(.|y<t, x)) + log

(
p(y<t |x)

p(2)(y<t |x)

)
> KL(p(2)(.|y<t, x)||p(2)(.|y<t, x)) + log

(
p(y<t |x)

p(2)(y<t |x)

)
(10)

= log

(
p(y<t |x)

p(2)(y<t |x)

)
> log

(
p(y<t |x)

p(1)(y<t |x)

)
= KL(p∗||p(1)(.|y<t, x)) + log

(
p(y<t |x)

p(2)(y<t |x)

)
. (11)

Thus, p∗ cannot be the optimal solution, and thus p∗ = p(2)(.|y<t, x). Hence the second condition from Lemma 4.2
holds.

Finally, note that if p(i)(yt|y<t, x) = 0 for some yt, we necessarily have that p∗(yt) = 0. In this case, the optimal solution
may satisfy neither of the two conditions from Lemma 4.2.

4Note that the deduplication process may not be sufficient to eliminate the need for an oracle, as general knowledge is often highly
replicated across the training set.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Strong Copyright Protection for Language Models via Adaptive Model Fusion

D. Implementation Details
D.1. Fine-tuning details

We fine-tuned our models using a setup inspired by the repository finetuning-harness, available under the MIT License5.
The training was performed on A100 GPUs.

The main hyperparameters for our fine-tuning process are listed in Table 5. We fine-tuned our models with Neptune noise

Table 5. Main Hyperparameters for Fine-Tuning

Hyperparameter Value

Sequence Length 2048
Batch Size 1
Learning Rate 5e-5
Gradient Accumulation Steps 1
Optimizer AdamW (8-bit)
Warmup Steps 50
Neptune Noise α = 5.0

(Jain et al., 2023) set to α = 5.0. We did not perform any low-rank adaptation.

For the overfitted, copyright-unsafe models, we trained StarCoder for 20 epochs, Phi-2 for 50 epochs, and GPT-2 XL for 20
epochs.

D.2. Decoding details

We decode with greedy search and in batches of size 50. For the code task, the maximum sequence length is 2048 tokens,
and for the text task, it is 1024 tokens. This configuration is used both for our method and CP-∆.

D.3. Datasets

We use one code-based and one text-based dataset in our experiments, both downloadable from HuggingFace. The code-
based dataset6 is an instructional dataset for Python, containing two types of tasks: (1) generating a description of a given
code, and (2) generating code that solves a given task. For our experiments, we only consider instances of the latter. We
removed the docstring from all instances since its content was repeated across samples, compromising our assumption
on the separability of copyrighted material (Section 3). The annotation procedure used templates and NLP techniques to
generate human-like instructions and responses7.

For the text-based experiments, we use the AutoMathText dataset8 (Zhang et al., 2024). This dataset compiles an extensive
set of mathematical texts from arXiv, OpenWebMath, RedPajama, Algebraic Stack, etc., with titles generated by the
state-of-the-art open-source language model Qwen-72B9.

For both tasks, we created two independent fine-tuning splits, each comprising 3,000 examples.

5GitHub Repository
6Nan-Do/instructional code-search-net-python
7Visit the GitHub repository for additional details.
8math-ai/AutoMathText
9Visit the GitHub repository for additional details.

18

https://github.com/cassanof/finetuning-harness/

