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Abstract— The equations of motion governing mobile robots
are dependent on terrain properties such as the coefficient
of friction, and contact model parameters. Estimating these
properties is thus essential for robotic navigation. Ideally any
map estimating terrain properties should run in real time,
mitigate sensor noise, and provide probability distributions of
the aforementioned properties, thus enabling risk-mitigating
navigation and planning. This paper addresses these needs and
proposes a Bayesian inference framework for semantic mapping
which recursively estimates both the terrain surface profile
and a probability distribution for terrain properties using data
from a single RGB-D camera. The proposed framework is
evaluated in simulation against other semantic mapping methods
and is shown to outperform these state-of-the-art methods in
terms of correctly estimating simulated ground-truth terrain
properties when evaluated using a precision-recall curve and
the Kullback-Leibler divergence test. Additionally, the proposed
method is deployed on a physical legged robotic platform in
both indoor and outdoor environments, and we show our method
correctly predicts terrain properties in both cases. The proposed
framework runs in real-time and includes a ROS interface for
easy integration.

Index Terms— Semantic Mapping, Legged Robots.

I. INTRODUCTION

Mapping from images or point clouds enables mobile robots
to perform object avoidance and terrain traversal [1]. Prior
work in mapping for mobile robots has focused on generating
maps by reconstructing the surface geometry in the vicinity
of the robot as a 2.5-D polygonal mesh [2], often referred to
as an elevation map or contact surface. These representations
describe the geometry of the robot’s surroundings, but have
no information regarding the properties of the underlying
terrain such as the friction coefficient. The equations of motion
governing the behavior of mobile robots are a function of
both the internal state of the robot and the properties of the
terrain over which the robot is traversing [3]. As a result, maps
used for robot navigation should include information about
these properties. Work has been done in estimating terrain
properties such as friction or the internal shear coefficients
of granular surfaces from single RGB images [4], [5], [6].
Building semantic maps with terrain property estimates using
these methods has remained a challenge due to the difficulty
of incorporating prior information into these maps.
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Fig. 1: An illustration of the real-time semantic mapping method proposed in
this paper which recursively estimates terrain height and friction properties
from RGB-D images. A triangular mesh represents the probabilistic estimate
of the contact surface of the robot’s surroundings. The proposed algorithm
estimates terrain classes for each face of the triangular mesh using Bayesian
inference and off-the-shelf semantic segmentation networks. Probability dis-
tributions for terrain properties are then computed (shown in the red inlay for
one region). This algorithm runs on several robot systems including Boston
Dynamics’ Spot and Agility Robotics’ Digit.

As illustrated in Fig. 1, the contributions of this paper
are two-fold. First, we develop a novel dataset that is used
to model the relationship between the coefficient of friction
and a variety of terrain classes. Second, we propose a robot-
centric semantic mapping framework by which geometric and
terrain properties are estimated using a closed-form Bayesian
inference algorithm.

The maps generated by this algorithm map 5m around the
robot with discretizations of 2cm and are computed at speeds
between 9Hz ±5Hz. The proposed mapping algorithm is
accessible via an open-source ROS package which takes RGB-
D images and camera pose mean and covariance estimates as
inputs and outputs the semantic map. We use our semantic
mapping framework to estimate the coefficient of friction
both in simulation and in the real-world and show that it
outperforms existing methods from the literature in terms of
accuracy in property estimation.

The remainder of this paper is organized as follows: Section
II summarizes the mapping literature and Section III intro-
duces preliminary concepts used throughout the paper. Section
IV provides an overview of our method and Sections V and VI
pertain to the recursive elevation mapping and recursive terrain
property estimation portions of our algorithm, respectively.
Section VII discusses implementation details and describes our
dataset used to model the coefficient of friction for ten terrain
classes. Section VIII describes the evaluation of our algorithm
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both in simulation and in real-world scenarios. Section IX
follows with concluding remarks and a discussion on future
work.

II. RELATED WORKS

This section describes the existing literature on geometric
and semantic mapping methods with an emphasis on al-
gorithms pertaining to legged locomotion. Geometric maps
represent the interface between free-space and occupied space,
and are used to model the environment around the robot.
Semantic maps include information such as terrain class,
terrain properties, or additional high-level labels within the
representation. Often semantic maps include a geometric rep-
resentation onto which the semantic information is projected,
and thus in these cases, they may contain more information
than geometric maps.

A. Geometric Mapping

A robot’s surroundings can be geometrically modelled by
constructing representations of the underlying terrain surface
using range sensor data. These range sensors produce sparse
point cloud representations, which must then be converted into
continuous or piecewise structures to be of use for planning.
We organize prior work in geometric mapping into either
volumetric or 2.5-D piecewise-planar categories.

Volumetric representations map the 3D geometry of a scene
using discretized volumes, such as voxelized occupancy grids,
or via Truncated Signed Distance Fields (TSDF) or Euclidean
Signed Distance Fields (ESDF). Voxelized occupancy maps,
for instance, are the three dimensional equivalents to occu-
pancy grid maps. Voxels are given a binary label representing
either free-space or occupied space, and the probability of
each label given new data is updated by applying a Bayes
filter. Such volumetric representations are often memory and
computational resource intensive, but one may address some of
these limitations by applying memory-efficient representations
such as octrees [7]. Other representations, like TSDFs and ES-
DFs, map the distance to the nearest occupied cell rather than
storing the entire volumetric representation of the environment
[8].

Often for legged robotic locomotion and footstep planning,
only a lower-dimensional rather than volumetric representation
is required. Point-foot robots, such as Boston Dynamics’s
Spot, require maps with discretizations on the order of 1cm to
perform footstep planning due to their footprint size [2]. State-
of-the-art volumetric representations with 1cm resolution are
only able to operate at around 1Hz [7].

The most common geometric mapping paradigm in legged
robotics is the elevation map, where a piecewise-planar mesh
is used to represent the terrain [1], [2]. Such maps also
have parallels in the surface reconstruction community [9].
Recently, Bayesian inference has been applied to recursively
update an elevation map to minimize the impact of noise
from the range sensor measurements and robot pose estimation
[2]. Such methods run at 20-100Hz, and have been used for
legged locomotion and footstep planning [1]. One shortcoming
of geometric mapping techniques is that they fail to account

for terrain properties, which are an essential component in
the stability of a legged robotic platform [3]. To compliment
geometric mapping techniques, it is important to include
information on terrain properties via semantic mapping.

B. Semantic Mapping

Semantic mapping is a broad field since high-level labels
are task dependent. Methods predicting terrain properties are
of interest for robotic navigation, and we limit our focus
within semantic mapping to such methods. Semantic labels
or attributes can be represented in abstract topological layers
[10], but it has become commonplace for semantic information
to be estimated from images or point clouds using neural
networks and then projected onto geometric representations
[11]. Visual information has been previously applied to predict
the expected value for the coefficient of friction on roads
[12] and other common terrain types [6], [5], as well as slip
predictions for wheeled robots [13]. Current semantic mapping
methods are non-recursive, meaning they cannot use priors to
refine estimates, and as such, these methods are not robust
while dealing with noisy sensor data.

One common semantic mapping paradigm is traversability
estimation. Traversability mapping has been used to bypass the
need to estimate terrain properties by instead estimating which
regions in the environment a robot can traverse [11], [14].
Such mapping strategies often fail to consider that traversabil-
ity is a function of the robot’s internal state, such as the
acceleration of the robot’s center-of-mass or wheel velocity,
and as such, traversability estimation methods often over-
or under-approximate traversable regions [15]. Recent work
has shown how to incorporate traversibility classifications
into a voxel occupancy grid map using a Bayesian inference
framework to update traversibility estimates based on new
observations [11]. While this represents a large step towards a
recursive framework for semantic mapping, it fails to address
the short-comings associated with the robot-dependent nature
of traversability.

III. PRELIMINARIES

This section introduces notation, geometric concepts, coor-
dinate frames, semantic segmentation, and probability theory
used within this paper. Vectors, written as columns, are typeset
in bold and lowercase, while sets and matrices are typeset in
uppercase. The element i of a vector x is denoted as xi. An n-
dimensional open (resp. closed) interval is denoted by (a, b)n

(resp. [a, b]n). The power set of a set A is denoted as 2A.
Throughout the paper we let f refer to a probability mass or
density function.

A. Geometry
Barycentric coordinate systems specify the location of a

point with respect to the vertices of a b-dimensional simplex.
Given a point p ∈ Ra in Euclidean space, we compute the
corresponding b-dimensional Barycentric coordinate represen-
tation λ ∈ Rb using a change of basis function g : Ra → Rb



[16], with a ≥ b. We test whether a point p lies within a b-
dimensional simplex using the Barycentric coordinates by the
following theorem:

Theorem 1 ([17, (2)]). Let p ∈ Ra be a point in Euclidean
space and let λ ∈ Rb be its corresponding Barycentric
coordinates. Point p lies within the simplex if and only if
λi ∈ (0, 1) for all λi in λ.

B. Sensors and Coordinate Frames
To simplify exposition, we assume the following:

Assumption 2. An RGB-D camera that is attached to a robot
with known camera intrinsics is used to collect data.

These RGB-D images, camera intrinsics, and an estimated
camera pose are used to compute projected point clouds within
the camera frame. This process is discussed here as well as in
Section III-C. This subsection introduces the notation used
to describe coordinate frames and transformations between
coordinate frames. Note that one could extend the algorithms
presented in this paper to multiple cameras or even LiDAR;
we focus on a single RGB-D camera for simplicity.

We denote a vector to point p in coordinate frame A
as pA. The rotation matrix from coordinate frame A to B
parameterized by the rotation angles q between the two frames
is denoted as RBA(q). Three coordinate frames are used within
the paper: the world frame W , the sensor frame S, and the
mapping frame M . The inertial frame is space-fixed and the
environment is assumed to be static with respect to this frame.
The sensor frame S is located at the center of the camera
with the z-axis pointed out of the camera into the scene. The
transformation from the robot’s center-of-mass to the sensor
frame is static, and we assume that this transformation is
known. Lastly, the mapping frame M is defined in relation to
the location of the robot. Its origin corresponds to the robot’s
center-of-mass projected onto the terrain, the x-axis (resp. y-
axis) is oriented towards the front (resp. left-side) of the robot,
and the z-axis is aligned with the z-axis of the inertial frame.
Given the vector to any range sensor measurement point in
the sensor frame, pS , we transform it into the mapping frame
via an affine transform:

pM = RM
ᵀ

S (q) · pS − tMS (1)

where tMS represents the translation from the sensor frame to
the map frame.

C. Semantic Segmentation
Semantic segmentation assigns class probability scores to

each pixel in an image. The classes in semantic segmentation
are task-dependent. This paper focuses on the list of terrain
classes described in Table I.

It is common to use convolutional neural networks to esti-
mate pixel-wise class probability scores [18]. Let I ∈ Rw×h×3
denote an RGB image, where h,w are the height and width of
the image in pixels. A trained semantic segmentation network
takes an input image and outputs the pixel-wise terrain class
probability scores T ∈ Rw×h×k for k terrain classes in
the form of a k-dimensional Categorical Distribution. The

accuracy of the semantic segmentation depends on the network
used. Note, this is not the emphasis of this paper. We use
the aligned depth image D ∈ Rw×h to project the pixel-
wise terrain class probability scores T into the sensor frame
using the camera intrinsics and the camera projection equation
[19, (10.38)] to obtain a point cloud representation of the
semantically segmented image.

D. Probability
This subsection reviews the Categorical Distribution, the

Dirichlet Distribution, and their relation to one another. We
denote a random variable as z or the vector of random
variables as z. The Categorical Distribution is a discrete k-
dimensional distribution parameterized by a vector θ ∈ [0, 1]k.
The probability mass function of the Categorical Distribution
represents the probability that sample z belongs to class i,
where i ∈ {1, 2, . . . , k}:

f(z = i|θ) = θi (2)

The Dirichlet Distribution is a continuous k-variate prob-
ability distribution which is parameterized by a vector α ∈
Rk≥0 of positive reals. The probability density function of the
Dirichlet Distribution is defined below:

f(θ|α) =
Γ(

∑k
j=1 αj)∑k

j=1 Γ(αj)

k∏
j=1

θ
αj−1
j (3)

where

Γ(αj) =

∫ ∞
0

xαj−1 exp(−x)dx. (4)

Suppose we obtain n measurements Z = {z1, . . . , zn} of
a given region, represented as random variables drawn from
a Categorical Distribution. Our goal is to apply Bayesian
inference to predict the probability that a new measurement
of the same region belongs to terrain class i given prior
measurements Z . That is we want to compute f(z = i|Z,α).
Note, that we have assumed for full generality that f(z|Z,α)
is a function of some hyperparameters α. To do this, one could
compute f(z|Z,α) =

∫
θ
f(z|θ)f(θ|Z,α)dθ, but this would

require constructing f(θ|Z,α). By applying Bayes Theorem,
one can write

f(z|Z,α) =

∫
θ

f(z|θ)
f(Z|θ,α)f(θ|α)

f(Z|α)
dθ. (5)

Generally, this integral is hard to compute exactly.
To compute a closed form expression for f(z|Z,α), we use

the notion of conjugate prior [20]. In particular, we choose
to represent f(θ|α) as a Dirichlet Distribution, which is the
conjugate prior to the Categorical Distribution f(z|θ). With
this choice, one can prove that f(θ|Z,α) is also Dirichlet
Distribution parameterized by a vector α̃:

α̃j = αj +
∑
zi∈Z

1{zi = j}, (6)

where 1{zi = j} is equal to 1 when the expected terrain
class of measurement zi is class j and is zero otherwise [20].
By using this property in (5), one can prove [20, (3)] the



Fig. 2: A flow diagram illustrating the behavior of Algorithm 1. RGB-D images are semantically segmented using an off-the-shelf semantic segmentation
network. Using the camera’s estimated pose and associated depth image, the pixel-wise probabilistic terrain class estimates are projected into the map. The
height map is updated using a 1D Kalman filter and the terrain class estimates, alongside our novel material property dataset, are used to recursively estimate
terrain properties for each region of the map.

Algorithm 1: Recursive Semantic Mapping

Algorithm:
1 G ← groundPlane() // Sec. V-A

2 V collection of vertices // Sec. V-A

3 Ξ← triangulation(V) // Sec. V-A

4 while robot is running do
5 I,D, q ← getImageAndSensorPose()
6 T ← semanticallySegmentImage(I)
7 PM ← projectImage(T,D, q) // Sec. III-C

8 assign points pM ∈ PM to ξ ∈ Ξ // Alg. 2

9 V ← updateElevationMap(V,Ξ) // Alg. 3

10 Ξ← updateTerrainPrediction(P,Ξ) // Sec. VI

probability that a new measurement of the same region belongs
to terrain class i given prior measurements Z is:

f(z = i|Z,α) =
α̃i∑k
j=1 α̃j

. (7)

IV. SEMANTIC MAPPING AND BAYESIAN INFERENCE

As illustrated in Fig. 2, this section summarizes our robot-
centric semantic mapping algorithm used to estimate the
terrain surface profile and properties using a triangular mesh
representation given an RGB-D camera with known pose
(Algorithm 1). Subsequent sections describe each step of
Algorithm 1 in detail. The mesh is described using two
collections. The first is the collection V ⊂ (R4)m of vertices
v = [vx, vy, vz, vσ2 ], where m is the number of vertices within
the mesh. The first three components of a vertex, vx, vy , and
vz , correspond to the Euclidean position of the vertex with
respect to the mapping frame M , and the last component
vσ2 corresponds to the variance of vz . The second is the
collection Ξ ⊂ V3 × (R3+k)l × Rk≥0 of mesh elements, or
faces, ξ. An element ξ is a collection of three components:
the three vertices whose connecting line segments define the
perimeter of the face, interior points, and a vector of Dirichlet
parameters. The interior points are discussed in Section V-B.

We start by defining a flat ground plane G with zero height
(Line 1). Next, vertices v ∈ V and mesh elements ξ ∈ Ξ

are initialized (Lines 2-3, Section V-A). We retrieve the RGB-
D image, I and D, and camera pose estimate in the world
frame, q, from the robot (Line 5). A semantic segmentation
network takes the RGB image I and outputs pixel-wise terrain
class probability scores, T (Line 6). These pixel-wise scores
are projected into the mapping frame (Line 7, Section III-B)
and assigned as interior points to a mesh element ξ (Line
8, Section V-B). Interior points are used to compute vertex
heights, vertex height covariance, and terrain labels of the
corresponding mesh element ξ. The height map is updated
using the projected points (Line 9, Section V-C). and terrain
properties are recursively updated via the Dirichlet-Categorical
conjugacy relationship (Line 10, Section VI).

V. RECURSIVE ELEVATION MAPPING

This section describes how our algorithm recursively esti-
mates the elevation map given range sensor measurements. We
begin with the initialization of a piece-wise planar triangular
mesh that represents the contact surface. Next we construct
a technique to assign range sensor measurements as interior
points to their corresponding triangular mesh element ξ. Fi-
nally, we describe how to update the elevation map.

A. Mesh Initialization
At startup, we define a flat ground plane G with zero height

(Line 1) and initialize a grid pattern of evenly-spaced vertices
v ∈ V with zero height and zero variance (Line 2). The
set of faces ξ ∈ Ξ are initialized (Line 3) by triangulating
these vertices into a set of equal-sized, isosceles, right-angled
triangles. The set of interior points of each face is initialized
as an empty set and the Dirichlet parameters are initialized as
a vector of zeros.

B. Point Assignment
Interior points represent the set of points pM whose pro-

jection lie within the 2-dimensional simplex defined by the
perimeter of ξ. The process by which points are projected and
assigned as interior points is described in Alg. 2. The camera
on the robot collects RGB-D images that are semantically



Algorithm 2: Assign points pM ∈ PM to ξ ∈ Ξ

Requires : PM , V , Ξ
1 for pM ∈ PM do
2 for ξ ∈ Ξ do
3 p̃M , ṽ ← groundPlaneProjection(ξ,pM )
4 λ← computeBarycentricCoords(p̃M , ṽ)
5 if for all λi ∈ λ, λi ∈ [0, 1] then
6 ξ ← add interior point pM

segmented using a neural network (Section III-C) before being
projected into the mapping frame as a point cloud PM ⊂
(R3+k)n (Lines 5-7, Alg. 1) made up of n points (Section
III-B). The first three components of a point pM ∈ PM
correspond to the Euclidean coordinates of the point in the
mapping frame, while the last k components correspond to
the terrain class probability score output from the semantic
segmentation network. Next, we project points pM ∈ PM and
the mesh vertex coordinates v ∈ V onto the ground plane
G by projecting pM and v onto their first two coordinates.
We obtain the projected point p̃M = [px, py] as well as the
three projected vertices ṽi = [vxi, vyi] of a mesh element
ξ for each i ∈ {1, 2, 3}. Given p̃ and ṽ, we compute the
Barycentric coordinates λ = [λ1, λ2, λ3] using the following
linear transform (Line 4, Alg. 2):λ1λ2

λ3

 =

 1 1 1
vx1 vx2 vx3
vy1 vy2 vy3

−1  1
px
py

 . (8)

We apply Theorem 1 to determine whether to assign a point
as an interior point to mesh element ξ (Line 6, Alg. 2).

C. Elevation Map Computation
Next we describe how Algorithm 3 recursively estimates

the elevation map given the range sensor measurements (Line
9, Alg. 1). These interior points from the preceding section
are now used to update the elevation map.

For a vertex v ∈ V , we take the interior points from the
surrounding mesh elements (Line 5, Alg. 3) and apply a 1-
dimensional Kalman filter update to estimate the mean height
vz and variance vσz of the vertex. Given the depth image
used to compute the point cloud PM has sensor noise, there
is variance in the Euclidean coordinates of pM ∈ PM . Once
assigned to a mesh element, the elevation map depends only
on the height of the points pM ∈ PM , so we only consider
the variance of the third Euclidean coordinate.

Recall that the third component of pM , which we denote
pM,3 describes its height. By the error propagation law [21],
the variance of pM,3 is computed (Line 7, Alg. 3):

σ2 = JsΣsJ
ᵀ
s + JpΣpJ

ᵀ
p , (9)

where Σs and Σp are the range sensor measurement noise and
the sensor pose covariance matrix, respectively, and Js and Jp,
are constructed by taking the following partial derivatives:

Js :=
∂pM,3

∂pS
= (RMᵀ

S (q))3 (10)

Algorithm 3: Update Elevation Map
Requires : V , Ξ

1 q ← cameraPose()
2 Σs ← sensorNoiseModel()
3 Σp ← robotPoseCovariance()
4 for v ∈ V do
5 P̄M ← getSurroundingInteriorPoints(v,Ξ)
6 for p̄M ∈ P̄M do
7 p̄M,3, σ

2 ← heightVariance(p̄M , q,Σs,Σp)
8 vz, vσ2 ← 1DKalmanFilter(p̄M,3, σ

2)

Return : V,Ξ

Jp :=
∂pM,3

∂RMS (q)
= (RMᵀ

S (q))3 × pS , (11)

where (RMᵀ
S (q))3 denotes the third row of RMᵀ

S (q) and ×
denotes the cross product. The mean and variance of the vertex
height, vz and vσ2 , are updated using a 1-dimensional Kalman
filter (Line 8, Alg. 3) for all the interior points from the
surrounding mesh elements:

vz ←
vz · σ2 + z · vσ2

σ2 + vσ2

(12)

vσ2 ← vσ2 · σ2

vσ2 + σ2
. (13)

VI. RECURSIVE TERRAIN PROPERTY ESTIMATION

The objective of our semantic mapping algorithm is to
estimate the distribution of terrain properties of the environ-
ment around the robot. Motivated by prior work [4], [13],
we use data to construct a conditional probability distribution,
f(ψ | z = i), of terrain property, ψ, conditioned on a terrain
class estimate for a region z = i. Using this model, given Z
measurements of a region that is interior to ξ, we then apply
the Law of Total Probability to compute this region’s predicted
terrain property:

f(ψ | Z,α) =
k∑
i=1

f(ψ | z = i)f(z = i | Z,α) (14)

Note, this paper is interested in estimating the friction coeffi-
cient; however, the presented theory can be extended to other
terrain properties of interest. We next discuss the components
of (14) before presenting a closed-form solution for recursively
estimating the coefficient of friction within our semantic map
(Line 10, Alg. 1).

Following Section V-B, semantically segmented pixels Z
are projected into the mapping frame and assigned as interior
points to mesh elements ξ. Recall from Sections III-C, III-
D and (2), the pixel-wise terrain class probability generated
from a semantic segmentation network represent parameters θ,
which are used to update α via (6). For each mesh element,
we compute f(z = i | Z,α) using (7).

Terrain properties are not constant across a terrain class and
thus should not be estimated by a single value. Rather, these
properties should be modelled using a conditional probability



distribution f(ψ | z = i). This model is fit using data collected
from each class. As we show in Section VII, we create a well-
fit model by selecting an appropriate mean µi and variance
σ2
i for a unimodal Gaussian distribution f(ψ | z = i) =
N (µi, σ

2
i ).

Substituting (7) and the formula for the unimodal Gaussian
into (14) gives a closed-form estimate for the terrain properties
within a mesh element:

f(ψ | Z,α) =
k∑
i=1

αi∑k
j=1 αj

N (µi, σ
2
i ). (15)

This is a multimodal Gaussian distribution where each mode is
weighted relative to the recursively updated terrain class like-
lihood. Note that (15) can be extended to use terrain property
models other than the unimodal Gaussian distribution.

VII. IMPLEMENTATION

This section describes the implementation of our algorithm.
Algorithm 1 is implemented in C++ and includes a Robot
Operating System (ROS) interface1. Our implementation fea-
tures noise models for the Realsense RGB-D camera and
an interface to include additional sensor noise models. We
evaluated our method on a desktop with a 3.1GHz Ryzen 3600
processor, 32GB of RAM and an Nvidia RTX 2080 Ti GPU.

We use (14) to estimate terrain properties from semantically
segmented RGB-D images. This requires a model relating
terrain class to terrain properties. The dataset published in
[22] is insufficient to compute a probabilistic model as it only
contains approximately three friction measurements per terrain
class, and neither the Gaussian friction model proposed in
[5] nor their friction data is currently publicly available. To
compute a probabilistic model we introduce a novel dataset
of friction measurements across ten terrain classes and make
this data publicly accessible.2 We discuss the steps for data
collection and subsequent model fitting in the following para-
graphs.

Our primary focus in this paper is on estimating the coeffi-
cient of friction. We built a device to measure the coefficient
of friction using the pulling force measured using a load cell,
the known weight of the device, and g = 9.81ms2 :

µ =
Fpull
mg

. (16)

Approximately ten thousand data samples were collected and
the data was post-processed using a low-pass filter to remove
measurement noise from the load cell. To model f(ψ |
z = i), we fit the unimodal Gaussian, Weibull, and log-
normal distributions, and we assessed the goodness-of-fit for
each distribution using the Kolmogorov-Smirnov test [23].
The unimodal Gaussian distribution had the highest average
Kolmogorov-Smirnov score across all terrain classes demon-
strating that the Gaussian model generalized the best over the
entire dataset. We therefore use the unimodal Gaussian model
to model f(ψ | z = i). Table I contains the mean and variance
parameters of each unimodal Gaussian distribution for each
terrain class of interest.

1https://github.com/roahmlab/sel_map
2https://github.com/roahmlab/terrain_friction_dataset

Terrain Class Coefficient of Friction Gaussian Parameters
µ σ

Concrete 0.543 0.065
Grass 0.577 0.077

Pebbles 0.428 0.059
Rocks 0.478 0.113
Wood 0.372 0.055

Rubber 0.616 0.048
Rug 0.583 0.068

Snow 0.390 0.071
Ice 0.192 0.046

Laminated Flooring 0.311 0.045

TABLE I: Unimodal Gaussian parameters computed from coefficient of
friction data collected across multiple terrain classes.

VIII. RESULTS

We evaluate the performance of our mapping framework
in the Carla simulation environment [24] and on a physical
legged robot. In simulation, we compare our method against
two baselines representing state-of-the-art terrain property
estimation methods and illustrate that our method outperforms
both baselines. We also demonstrate our method in real-
world indoor and outdoor environments on a quadruped robot
and compare it to a state-of-the-art traversability estimation
method. A supplementary video demonstrates the proposed
mapping framework on the Spot quadruped.

A. Computational Performance Evaluation
We ran Alg. 1 using a 1m×1m mesh and varied mesh ele-

ment lengths with random input images and associated ground-
truth semantic segmentations to evaluate the computational
speed and memory requirements. Approximately 45-55MB
of memory is required to store the mesh. With 1cm mesh
element lengths, Algorithm 1 takes 527ms to run, of which the
semantic segmentation network from [25] takes 477ms (Alg. 1
Lines 6-7), and the elevation map and terrain property update
takes 50ms (Alg. 1 Lines 8-10). These computation times were
computed by averaging across 300 trials. The computation
time for semantic segmentation is network dependent, and
using Fast-SCNN [26] the total computation time is reduced to
approximately 200ms. A thorough evaluation of the computa-
tional times for Algorithm 1 with two semantic segmentation
networks, [25] and [26], and varying mesh element lengths is
given in Figure 4.

B. Simulation
We evaluate our terrain property estimation method in the

Carla simulation environment [24] where ground truth terrain
property information is provided on a per-class basis. The
ground truth distribution for the coefficient of friction for each
class is a unimodal Gaussian using the coefficient of friction
models computed in Section VII. Within Carla, we collect
RGB-D information from a camera mounted on the front of a
car. To estimate terrain class, we use the pre-trained semantic
segmentation network presented in [25] and trained on the
ADE20K dataset.

We use coefficient of friction estimates to compare our
method against two baselines representing the state of the art
in the terrain property estimation literature. The first baseline,
denoted as the Unimodal Non-Recursive method, estimates the

https://github.com/roahmlab/sel_map
https://github.com/roahmlab/terrain_friction_dataset


Method KL Score (↓) Average
Precision (↑) Average

Accuracy (↑)

Uni-Modal
Non-Recursive 42.3 0.59 0.58

Multi-Modal
Non-Recursive 3.7 0.99 0.93

Ours 2.4 0.99 0.95

TABLE II: The Kullback-Leibler divergence scores, average precision, and
average accuracy of the two baselines and our method when applied to the
Carla simulation environment. Arrows depict whether a high (↑) or low (↓)
score is desired. A bolded score indicates the best performing method in each
criteria.

coefficient of friction by taking the most likely terrain class
for a given mesh element at each instance in time and uses the
unimodal Gaussian model with parameters from Table I. This
baseline is representative of methods such as those presented
in [12], [6], [27], which estimate the expected value of the
coefficient of friction using convolutional neural networks. The
second baseline, denoted as the Multimodal Non-Recursive
method, uses the full categorical distribution of a given seman-
tically segmented mesh element to estimate the coefficient of
friction as a multi-modal Gaussian distribution. This equates to
using (15) to compute the coefficient of friction directly from
the pixel-wise categorical scores outputted from the semantic
segmentation network. This baseline is representative of the
state of the art methods [13], [5] that use the terrain class
to estimate terrain properties from RGB-D images. These
methods do not employ a recursive framework to update
belief in terrain classifications. We ran our algorithm and the
baselines offline using the data collected within Carla and
compared these estimates with the ground-truth distributions
using a precision-recall curve (Fig. 3) and their Kullback-
Leibler divergence scores (Table II).

Note, the lower the Kullback-Leibler divergence score, the
more similar two distributions are. From Table II, one can
see that the first baseline performed poorly for the Carla
dataset. The score for the second baseline is lower than
the first’s, indicating the coefficient of friction distribution
estimate of the second baseline is more similar to the ground-
truth distribution. Lastly, our proposed method performed
best on the Kullback-Leibler divergence test and demonstrates
that the coefficient of friction distribution estimated using
our proposed method is the most similar to the ground-truth
distribution.

The precision-recall curve summarizes the trade-off between
the true positive rate and the positive predicted value and is
used to evaluate the performance of a multi-class classifier.
We use the average precision to evaluate the performance
on the precision-recall curve as seen in Figure 3. A higher
average precision indicates a more accurate classifier. For this
evaluation, we divide the range of coefficient of friction values
into low friction (µ ≤ 0.5) and high friction (µ > 0.5)
categories and compare the ability of our method and and
the Multimodal Non-Recursive method to correctly predict
whether a given mesh element falls within the low or high
friction category. The results for Unimodal Non-Recursive
method is omitted due to poor performance.

Table II includes the performance of all methods using the
three quantitative metrics. Due to class imbalance within the

Fig. 3: The Precision-Recall curve for terrain property estimation within
the Carla simulator. We compare our method against the Multimodal Non-
Recursive baseline for regions of high friction coefficients (µ > 0.5), plotted
using a solid line, and low friction coefficients (µ ≤ 0.5), plotted using
a dashed line. Our method’s performance is comparable to the baseline for
regions of high friction, however, for regions of low friction our method
significantly outperforms the baseline.

Fig. 4: Computation times of Algorithm 1 for a 10m×10m mesh with varying
mesh element lengths using two off-the-shelf semantic segmentation networks,
Resnet-50 [25] and Context-Encoding Resnet-50 [28], as well as the baseline
algorithm assuming ground-truth semantically segmented images. The ground-
truth label experiments use a pre-generated semantic segmentation image,
representing the speed of Algorithm 1 without considering the time required
for semantic segmentation (Line 6) and represents an lower bound on the
speed of our algorithm. Error bars represent one standard deviation.

simulation environment, more high-friction terrain classes are
present in the data. The baselines perform better for high-
friction classes, but even with this class imbalance our method
matches or outperforms both baselines across all evaluation
criteria. This shows our method is able to better predict
the terrain friction properties than previous terrain estimation
methods from the literature.

C. Real-World
We ran our method on the Spot quadruped using an on-

board Realsense D435 RGB-D camera. Experiments were
conducted both indoors and outdoors with a variety of ter-
rain classes. We compared our method to a state-of-the-art
traversability mapping framework [11] to demonstrate the
utility of our semantic mapping algorithm when compared
to a traversability estimation algorithm. Figure 5 illustrates
the performance of both algorithms on a variety of examples
across different terrains. On an icy surface (Fig. 5a), for
instance, our method is able to predict the low friction of the
surface, while the traversability estimate assumes the surface
is safe to walk on and provides no additional information
regarding the surface. Similarly, Figs. 5b and 5c illustrate



Fig. 5: Each column depicts the performance of our proposed mapping
algorithm (second row, the first column uses the Context-Encoding ResNet-
50 trained on the Pascal dataset while the remaining columns use the
RenNet-50 trained on ADE20K for terrain classification) when compared to
a traversability estimation algorithm [11] (third row) applied on the scenes
depicted in the top row. Traversability estimation sometimes believes that a
region is traversable when it is not, such as an icy surface (Fig. 5a). In other
scenarios, it believes that an area is intraversable when it is traversable such
as on hills (Figs. 5b) and near low vegetation (Fig. 5c). Our method makes
no claims about traversability, instead it estimates the probability distribution
of terrain properties for each mesh element along with the terrain geometry.

that the traversability estimation incorrectly classifies regions
which are traversable as intraversable while our method is able
to predict the terrain geometry and properties. When no terrain
class from Table I is estimated within a mesh element, we
make no friction estimate and color the mesh element grey
(second row, Fig. 5). Traversability depends on the means
of robot locomotion and other robot-dependent factors. In an
effort to generalize, traversability estimation methods often
over- or under-approximate traversable regions, supporting the
conclusions reached by [15]. In contrast, our method provides
more information than binary traversability labels which better
informs robots about their environment.

IX. CONCLUSIONS

We propose a Bayesian inference framework for real-time
elevation mapping and terrain property estimation from RGB-
D images. Our method outperforms other algorithms both in
simulation and the real-world. Unlike traversability methods,
our algorithm provides terrain property information that can
enable robots to adjust their locomotion to traverse regions of
low friction rather than just avoid them.
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