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Figure 1: RoboTwin 2.0 uses an MLLM-driven pipeline for automatic data synthesis and domain
randomization to boost policy performance, and provides a 50-task bimanual benchmark with
RoboTwin Object Dataset.

ABSTRACT

Synthetic data generation via simulation represents a promising approach for
enhancing robotic manipulation. However, current synthetic datasets remain in-
sufficient for robust bimanual control due to limited scalability in novel task
generation and oversimplified simulations that inadequately capture real-world
complexity. We present RoboTwin 2.0, a scalable framework for automated diverse
synthetic data generation and unified evaluation for bimanual manipulation. We
construct RoboTwin-OD, an object library of 731 instances across 147 categories
with semantic and manipulation labels. Building on this, we design a expert data
generation pipeline by utilizing multimodal large language models to systhesize
task-execution code with simulation-in-the-loop refinement. To improve sim-to-
real transfer, RoboTwin 2.0 applies structured domain randomization over five
factors (clutter, lighting, background, tabletop height, language instructions). Using
this approach, we instantiate 50 bimanual tasks across five robot embodiments.
Experimental results demonstrate a 10.9% improvement in code-generation success
rates. For downstream learning, vision-language-action models trained with our
synthetic data achieve 367% performance improvements in the few-shot setting
and 228% improvements in the zero-shot setting, relative to a 10-demo real-only
baseline. We further evaluate multiple policies across 50 tasks with two difficulty
settings, establishing a comprehensive benchmark to study policy performance.
We release the generator, datasets, and code to support scalable research in robust
bimanual manipulation.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION
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Figure 2: Our Pipeline. Built on RoboTwin-OD and skill APIs, an MLLM guides code generation
with simulation feedback to produce expert programs and domain-randomized trajectories.

Bimanual robotic manipulation is essential for complex tasks such as collaborative assembly, tool
use, and handovers. Training generalizable bimanual policies, particularly vision-language-action
(VLA) foundation models Long et al. (2025), requires datasets that are high quality, diverse, and large
scale. Without sufficient variation in object geometry, scene clutter, lighting, instruction language,
and robot embodiments, learned policies overfit and generalization degrades across environments and
hardware. However, collecting real-world demonstrations at scale remains costly, time-intensive, and
logistically difficult, especially when targeting broad task, object, and embodiment coverage.

Simulation has become an effective way to scale multimodal data collection and enable sim-to-
real transfer Mu et al. (2025); Deng et al. (2025). However, prevailing pipelines exhibit three
persistent limitations: (i) the absence of automated quality control, which admits execution failures
and weak grasps that degrade learning; (ii) shallow domain randomization, producing overly clean,
homogeneous scenes that neglect clutter, illumination changes, and instruction ambiguity—factors
critical for robust transfer; and (iii) limited cross-embodiment coverage, despite substantial differences
in kinematics and grasp strategies across bimanual platforms. For example, low-DoF systems such as
Piper tend to favor lateral grasps, whereas high-DoF arms like Franka support top-down precision
grasps. Current synthetic datasets rarely encode these embodiment-specific affordances and task
constraints, limiting generality.

To address these challenges, we introduce RoboTwin 2.0, a scalable simulation-based framework for
generating high-quality, diverse, and realistic datasets for bimanual manipulation. The framework
comprises: (1) an automated expert pipeline that uses multimodal large language models (MLLMs)
with simulation-in-the-loop feedback to validate and refine task execution code; (2) comprehensive
domain randomization over language, clutter, background textures, lighting, and tabletop layouts
to improve sim-to-real transfer and policy generalization; and (3) embodiment-aware adaptation
that annotates object affordances and generates robot-specific action candidates for heterogeneous
dual-arm kinematics. Building on these components, we introduce three new resources to support
scalable research in bimanual manipulation: (1) the RoboTwin-OD asset library, comprising 731
annotated object instances across 147 categories; (2) an automated data generation pipeline with
comprehensive domain randomization and a pre-collected, open-source dataset of expert trajectories
spanning 50 tasks across five dual-arm robot platforms; and (3) a benchmark for evaluating policy
generalization to cluttered environments and open-ended language goals. Together, these resources
enable the community to train and evaluate robust bimanual manipulation policies under conditions
that closely reflect real-world complexity and diversity.

In summary, our main contributions are as follows: (1) We develop an automated expert data
generation framework that integrates MLLMs with simulation-in-the-loop feedback to ensure high-
quality, expert-level trajectories; (2) We propose a systematic domain randomization strategy that
enhances policy robustness by increasing data diversity and sim-to-real generalization; (3) We
introduce an embodiment-aware adaptation mechanism that generates robot-specific manipulation
candidates based on object affordances; (4) We release the RoboTwin-OD, a large-scale pre-collected
multi-embodiment domain-randomized trajectory dataset, a scalable bimanual data generator, and
a standardized evaluation benchmark to support scalable training and evaluation of generalizable
policies across different robot embodiments, scene configurations, and language instructions.
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2 METHOD

Figure 2 overviews the RoboTwin 2.0 pipeline. A task–code generation module employs MLLMs with
simulation-in-the-loop feedback to synthesize executable plans from natural-language instructions.
The module is grounded in a large object asset library (RoboTwin-OD) and a predefined skill library,
enabling scalable instantiation across diverse objects and manipulation scenarios. A comprehensive
domain-randomization scheme along language, visual, and spatial dimensions further expands
coverage, producing diverse, realistic demonstrations and policies robust to real-world variability.

2.1 EXPERT CODE GENERATION VIA MLLMS AND SIMULATION-IN-THE-LOOP FEEDBACK

We adopt a closed-loop architecture that couples code generation with multimodal execution feedback
(Fig. 3), in contrast to pipelines that depend on manual priors or omit feedback Hua et al.; Wang et al.
(2023). The system comprises two agents: a code-generation agent that translates natural language
instructions into executable programs, and a vision–language model observer that monitors execution
in simulation, detects failures and suggests corrections. Iterative integration of these signals proceeds
until a predefined success criterion is met or a budget limit is reached, yielding robust, self-improving
expert trajectories with minimal human supervision and enabling zero-shot dual-arm manipulation
beyond primitive pick and place.

Iterations > 5

Handover Block

Task info

API List

Function 
Example

def play_once(handover_block):
# Initialize arm tags
left_arm = ArmTag("left"), right_arm = ArmTag("right")
# Step 1: Use left arm to grab the box from top
self.move(self.grasp_actor(actor=self.box,arm_tag=left_arm ...))
self.save_observation(step_name="left_arm_grasps_box")
# Step 2: Move box to handover point using left arm
handover_pose = self.block_middle_pose
self.move(self.place_actor(actor=self.box,arm_tag=left_arm,
target_pose=handover_pose, functional_point_id=1 ...))
self.save_observation(step_name="move_to_handover_point")
#Step 3: Use right arm to grasp the box
self.move(self.grasp_actor(actor=self.box, arm_tag=right_arm ...))
self.move(self.close_gripper(arm_tag=right_arm))
self.move(self.open_gripper(arm_tag=left_arm))
self.save_observation(step_name="right_arm_grasps_box")
# Step 4: Move box to target box using right arm
target_pose = self.target_box.get_functional_point(1, "pose") 
self.move(self.place_actor(actor=self.box, arm_tag=right_arm,
target_pose=target_pose, functional_point_id=0, 
constrain=“free”))
self.save_observation(step_name="box_placed_on_target")
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Figure 3: Expert Code Generation Pipeline.

Input Specification. The code-generation agent is conditioned on four inputs: (1) a general API list;
(2) example function calls; (3) a hierarchical constraint specification; and (4) task information. Each
task is defined by a name (e.g., Handover Block) and a natural-language objective description. These
components jointly guide the synthesis of Python code for task execution.

Initial Code Generation. The code-generation agent synthesizes an initial Python program condi-
tioned on the provided task inputs. It models the program synthesis process as a structured prediction
problem over the space of available API calls, leveraging natural language understanding and few-shot
prompting from task-specific examples. The generated code specifies a stepwise sequence of robot
actions designed to accomplish the target manipulation objective.

Simulated Execution and Logging. Each iteration executes the program ten times in simulation
to account for stochasticity in dynamics, control, and scene layout. After each batch, the system
produces a structured log that records trial outcomes and labels failure cases by cause, such as
unexecutable code, left/right grasp failure, or incorrect object placement.

Multimodal Observation and Error Localization. During execution, a vision–language model
(VLM) monitors all ten trials and performs per-frame analysis to assess stepwise success and localize
failures. Beyond temporal localization, the VLM attributes failure modes to flawed logic, incorrect
API usage, or other systemic causes. This diagnosis enables repairs that target root causes rather than
surface symptoms. Details are provided in Appendix A.10.4.

Code Repair and Iterative Refinement. The agent integrates execution logs and VLM diagnostics to
edit failure-prone instructions, re-testing the program each iteration. The process stops upon meeting
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a success-rate threshold over ten runs in one iteration, or after five consecutive failures, producing
expert-level code with minimal supervision and avoiding indefinite refinement.

2.2 DOMAIN RANDOMIZATION FOR ROBUST ROBOTIC MANIPULATION

To enhance robustness to real-world variability, we randomize five dimensions: (1) cluttered dis-
tractors, (2) background textures, (3) lighting, (4) tabletop height, and (5) language instructions.
This systematic augmentation broadens the training distribution and, critically, equips manipulation
policies with stronger generalization to unseen scenes and instructions (Fig. 4a).

Fixed Scene
Domain Randomization:

Scene Clutter, Lighting, Table Height, Background and Language 11k Textures

(a) Visualization of Domain Randomization (b) Texture Library
Figure 4: Visualization of domain randomization and our texture library.

Scene Clutter. To improve robustness to environmental variation, we augment tabletop scenes
with task-irrelevant distractors sampled from RoboTwin-OD (Section 3.1). Object-level placement
annotations enable a generic API for semantically valid insertion. Physical plausibility is enforced
through collision-aware placement and precomputed volumes. To prevent spurious ambiguity,
distractors that are visually or semantically similar to task-relevant objects are excluded during
sampling. This procedure yields diverse yet unambiguous cluttered scenes for training.

Diverse Background Textures. We randomize tabletops and backgrounds using a curated texture
library. We first collect 1,000 surface descriptions via LLM prompting and web search, then generate
20 images per description with Stable Diffusion v2 Rombach et al. (2022) (20,000 images in total).
Human-in-the-loop filtering yields 11,000 high-quality textures. This library is used in simulation
to increase visual diversity and mitigate overfitting to clean synthetic scenes (Fig. 4b). We further
show in Appendix A.18 that the distribution of our texture library closely matches that of real-world
textures.

Lighting Variation. Real scenes vary in color temperature, source type, count, and placement,
altering appearance and reflections and challenging vision-based manipulation. We randomize light
color, type, intensity, and position within physically plausible ranges. As shown in Fig. 4a (second
row), changes in color temperature markedly affect appearance (e.g., warm vs. cool light on a shoe).
Training under these variations improves robustness to real-world illumination shifts.

Tabletop Heights. We uniformly randomize table height within a plausible range in simulation,
strengthening the policy’s robustness to variations in table height.

Trajectory-Level Diverse Language Instructions. We employ a MLLM to generate task templates
and multiple object descriptions that capture geometry, appearance, and part-level attributes. Each
task and object has several alternative phrasings that can be combined; for each trajectory, we sample
from these pools to compose the instruction. For Move Can Pot, the template “Use a to place A to the
left of B” may yield “Use left arm to place sauce can to the left of gray kitchenpot” or “Use left arm to
place white plastic lid sauce can to the left of kitchenpot for boiling and cooking.” This combinatorial
augmentation produces a large, linguistically varied instruction set and improves generalization to
unseen language and scene configurations (Appendix A.11, A.12).
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Figure 5: Diverse Behaviors.

Aloha-AgileX ARX-X5 Piper Franka UR5

Figure 6: Five RoboTwin 2.0 Embodiments.

2.3 EMBODIMENT-AWARE GRASP ADAPTATION

Differences in DoF and kinematics result in different reachable workspaces and preferred strategies
for a given task. In grasping a can, Franka often adopts an overhead approach, whereas the lower-DoF
Piper favors lateral grasps; consequently, required approaches vary across embodiments (Fig. 5). To
model this variation, we annotate each object with candidate manipulation poses that span multiple
grasp axes and approach directions, capturing both manipulation diversity and robot-specific prefer-
ences. We further improve feasibility via angular perturbations oriented to high-reachability directions.
For each object, candidate grasps are generated from preferred operation directions, randomized
pose perturbations, and parallel motion-planning attempts. In experiment A.2, embodiment-aware
augmentation raises automated data-collection success by 8.3% on average, with gains concentrated
on low-DoF platforms (Aloha-AgileX +13.7%, Piper +22.7%, ARX-X5 +5.6%), while high-DoF
arms (Franka, UR5) exhibit minimal change, consistent with greater kinematic flexibility.

3 ROBOTWIN 2.0 DATA GENERATOR, BENCHMARK AND RDDATASET

3.1 ROBOTWIN-OD: ROBOTWIN OBJECT DATASET

RoboTwin-OD

Rich Manipulation Annotation

Diverse Language Annotation

“green shoe”, “teal sneaker”, “rubber sole 
running shoe”, “blue and green running 
shoe”, “half green half blue sneaker”, “teal 
running shoe with thick beige sole”, etc

Grasp
Point

Object Axis

Functional
Point

041_shoe
base4

Figure 7: RoboTwin-OD. A large-scale object dataset with rich annotations.

We build RoboTwin-OD, an object dataset with rich semantics covering 147 categories and 731
objects: 534 in-house instances across 111 categories reconstructed from RGB-to-3D via the Rodin
platform rod, followed by convex decomposition and mesh merging for physically accurate collisions;
153 objects from 27 categories in Objaverse Deitke et al. (2023); and 44 articulated instances from 9
categories in SAPIEN PartNet-Mobility Xiang et al. (2020). All sources support cluttered scenes, with
Objaverse enhancing the visual and semantic diversity of distractors. We also curate a texture library
for surfaces and backgrounds using generative models with human-in-the-loop filtering. To support
language grounding and robustness across diverse objects, we deploy an automated description
generator with human verification, producing 15 annotations per object that vary in shape, texture,
function, part structure, and granularity. For object-centric interaction, we annotate key point–axis
information, including placement points, functional points, grasp points, and grasp axes, to encode
affordances. Combined with our manipulation API library, these annotations enable generalizable
grasp execution in simulation.
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.3.2 50 TASKS FOR DATA GENERATION AND BENCHMARKING

Building on automated task generation, embodiment-adaptive synthesis, and the RoboTwin-OD asset
library, we define 50 dual-arm collaborative manipulation tasks. Data collection and evaluation are
supported on five robot embodiments, enabling comprehensive cross-embodiment benchmarking;
representative keyframes are shown in Fig. 8. We also release a pre-collected corpus of 100,000+
dual-arm trajectories across these tasks in RoboTwin 2.0.

Figure 8: 50 Bimanual Manipulation Tasks with Multi-Embodiment Support per Task.

4 EXPERIMENT

We design experiments to evaluate RoboTwin 2.0 along four dimensions: (1) automating the genera-
tion of high-quality expert code for novel manipulation tasks; (2) establishing RoboTwin 2.0 as a
standardized benchmark for policy generalization across tasks, scenes, and embodiments; (3) improv-
ing policy robustness to environmental variation via diversified training data; and (4) demonstrating
sim-to-real transfer, whereby RoboTwin 2.0 enables deployment on real robots and confers strong
policy generalization to variations in scene composition and appearance.

4.1 EVALUATION OF AUTOMATED EXPERT CODE GENERATION

To assess whether closed-loop generation improves the quality and efficiency of expert programs, we
evaluate the system on 10 manipulation tasks, each specified by a natural-language instruction. For
each configuration, the code-generation agent emits multiple candidate programs that are executed in
simulation to capture stochasticity in dynamics, control, and perception; task success is defined as the
mean success rate over all executions. Performance is measured by ASR (average success rate), Top5-
ASR (average of top-5 success rate), CR-Iter (average refinement iterations), and Token (average
tokens in generated code). Results for RoboTwin 1.0 and 2.0 are reported in Table 1 under Vanilla
(one-shot generation), FB (feedback-based repair using execution logs), and MM FB (multimodal
feedback with vision–language diagnostics). Per-task success rates are provided in Appendix 11.

Table 1: Overall performance on tasks shared by
RoboTwin 1.0 and 2.0. Per-task success rates are in Ap-
pendix 11.

Method ASR Top5-ASR CR-Iter Token

R1.0 Vanilla 47.4% 57.6% 1.00 1236.6
R1.0 + FB 60.4% 71.4% 2.46 1190.4
R1.0 + MM FB 63.9% 74.2% 2.42 1465.0

R2.0 Vanilla 62.1% 68.0% 1.00 569.4
R2.0 + FB 66.7% 73.6% 1.89 581.6
R2.0 + MM FB 71.3% 78.6% 1.76 839.7

R 1.0 vanilla
R 1.0 + FB

R 1.0 + MM FB
R 2.0 vanilla

R 2.0 + FB
R 2.0 + MM FB

0.0

0.2

0.4
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0.8

1.0

Su
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Figure 9: Success Rate Distribution.
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Across all settings, multimodal feedback improves performance. In RoboTwin 1.0, ASR increases
from 47.4% (Vanilla) to 63.9% (MM FB); in RoboTwin 2.0, from 62.1% to 71.3%. Top5-ASR also
rises, indicating disproportionate gains for the best candidate programs. RoboTwin 2.0 converges
faster than 1.0 (CR-Iter 1.76 vs. 2.42 under MM FB) and reduces token usage, especially in Vanilla
(569.4 vs. 1236.6), reflecting more concise initial code. Figure 9 further shows that feedback narrows
the success-rate distribution and raises the median; with multimodal feedback, RoboTwin 2.0 exhibits
a compact distribution centered above 80%. Overall, three findings emerge: (1) vision–language
feedback not only detects failures but also guides precise repairs; (2) architectural improvements in
RoboTwin 2.0 accelerate convergence and reduce token usage; and (3) combining symbolic execution
logs with perceptual diagnostics yields more reliable, semantically aligned expert data. Together,
these results validate the effectiveness of our closed-loop, self-improving code generation architecture.
Detailed setups, metric definitions, and additional analyses are provided in Appendix A.10.

4.2 ROBOTWIN 2.0 BENCHMARK

We present the RoboTwin 2.0 Benchmark for evaluating policy performance. Results on 50 RoboTwin
tasks are reported in Appendix A.19, and Tab. 2 summarizes the average performance of RGB-
based policies across evaluation settings. To assess generalization, we evaluate all 50 tasks on the
Aloha–AgileX dual-arm platform. For each task, we train on 50 clean expert demonstrations and
test with 100 rollouts under two conditions: Easy (no domain randomization) and Hard (domain
randomization with clutter, lighting, texture, and height variation). We report success rate as the
metric of few-shot adaptability and robustness. Appendix A.13 visualizes the benchmark setup, and
Appendix A.5 details all training protocols.

Table 2: Average Result of RoboTwin 2.0 Benchmark. Full results are in Appendix A.19.

Simulation Tasks RDT Pi0 ACT DP DP3
Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard

Average (in %) 34.5 13.7 46.4 16.3 29.7 1.7 28.0 0.6 55.2 5.0

As shown in Tab. 2, under the Easy condition, ACT and DP perform substantially worse than
the pretrained models RDT and Pi0 (29.7%, 28.0% vs. 34.5%, 46.4%), indicating that vi-
sion–language–action pretraining supplies strong priors that enable rapid policy learning from 50
demonstrations. Compared with RGB-based policies, DP3 attains the best few-shot performance
in Easy (55.2%), highlighting the contribution of 3D information; however, its high success rate
is partly attributable to idealized simulated depth and clean background segmentation. From the
clean to the randomized Hard setting, all methods degrade: the non-pretrained models ACT, DP, and
DP3 drop to 1.7%, 0.6%, and 5.0%, respectively, whereas RDT and Pi0 remain higher at 13.7% and
16.3%. These results indicate that vision–language–action pretraining provides useful priors for scene
generalization and improves robustness to environmental variation, yet robustness under domain shift
remains a central challenge. In conjunction with Secs. 4.3 and 4.4, these findings underscore the
value of RoboTwin 2.0 as both a complementary dataset and a benchmark for systematic evaluation.

4.3 ASSESSING THE IMPACT OF ROBOTWIN 2.0 ON POLICY ROBUSTNESS

We evaluate whether domain-randomized data in RoboTwin 2.0 enhances robustness to environmental
perturbations. RDT and Pi0 are pre-trained on 9,600 expert trajectories drawn from 32 tasks (300
per task) under clean and domain-randomized settings. Off-the-shelf pretrained RDT and Pi0 are
included as reference models without further fine-tuning. Generalization is examined on five unseen
tasks using 50 clean demonstrations per task for single-task training and subsequent fine-tuning. ACT,
DP, RDT, and Pi0 are then evaluated under domain-randomized conditions in previously unseen
environments to quantify robustness. Detailed configurations are provided in Appendix A.4 and A.5.

As shown in Table 3, fine-tuning on clean data yields negligible gains in average success rate
relative to pretrained baselines, indicating that non-randomized data do not improve robustness to
environmental variation. This further suggests that the low simulated performance of pretrained VLA
models is not attributable to a real-to-sim gap, since adding clean simulated data produces no clear
benefit. In contrast, pretraining with RoboTwin 2.0 data substantially improves generalization: RDT
and Pi0 attain relative gains of 31.9% and 29.3%, respectively. Notably, these gains persist even when

7
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Table 3: Evaluating the Impact of RoboTwin 2.0 on Policy Robustness.

Simulation
Tasks

ACT DP RDT RDT
+Clean

RDT
+Rand.

Pi0 Pi0
+Clean

Pi0
+Rand.

Stack Bowls Two 0.0% 0.0% 30.0% 8.0% 49.0% 41.0% 55.0% 62.0%

Pick Dual Bottles 0.0% 0.0% 13.0% 12.0% 17.0% 12.0% 15.0% 7.0%

Move Can Pot 4.0% 0.0% 12.0% 13.0% 18.0% 21.0% 35.0% 22.0%

Place Object Basket 0.0% 0.0% 17.0% 9.0% 6.0% 2.0% 8.0% 22.0%

Place Shoe 0.0% 0.0% 7.0% 9.0% 30.0% 6.0% 6.0% 18.0%

Open Laptop 0.0% 0.0% 32.0% 21.0% 35.0% 46.0% 33.0% 50.0%

Press Stapler 6.0% 0.0% 24.0% 21.0% 27.0% 29.0% 26.0% 31.0%

Turn Switch 2.0% 1.0% 15.0% 24.0% 16.0% 23.0% 21.0% 21.0%

Average 2.0% 0.1% 18.8% 14.6% 24.8% 22.5% 24.9% 29.1%

downstream training uses only clean, non-randomized data, demonstrating that domain-randomized
pretraining with RoboTwin 2.0 confers robustness to visual and spatial variation. Consequently,
models pretrained with RoboTwin 2.0 adapt to new tasks without additional augmentation or complex
scene variation.

4.4 EVALUATION ON SIM-TO-REAL PERFORMANCE

To assess RoboTwin 2.0’s impact on real-world robustness, we evaluate four bimanual tasks: Stack
Bowls, Handover Block, Pick Bottle, and Click Bell. All experiments use RDT as the policy backbone
on the COBOT-Magic dual-arm platform. We compare three training regimes: (1) 10 real-world
demonstrations collected in clean tabletop environments; (2) the same demonstrations augmented
with 1,000 domain-randomized synthetic trajectories generated under clutter, varied lighting, and
diverse backgrounds; and (3) a synthetic-only model trained on the 1,000 synthetic trajectories. To
improve robustness to camera jitter and calibration error, we apply random 3D perturbations to
simulated camera poses (position and orientation), with translation magnitude bounded by 1 cm.
We evaluate under four configurations: clean vs. cluttered tabletops crossed with seen vs. unseen
backgrounds (Fig. 10). The synthetic-only model excludes seen backgrounds during training, so the
corresponding entries in Table 4 are omitted. This setup tests whether RoboTwin 2.0 supports robust
generalization without additional real-world data from visually complex scenes.

Seen Bg + not Cluttered Unseen Bg + not Cluttered Seen Bg + Cluttered Unseen Bg + Cluttered

Simulation Real World

Figure 10: Real-World Evaluation Configurations and Sim-Real Comparison.

RoboTwin 2.0 augmentation yields substantial robustness improvements in real-world bimanual
policies. In the few-shot setting, which combines 1,000 domain-randomized synthetic trajectories
with 10 real demonstrations, the average success rate across all evaluation configurations increases by
24.4%, with per-configuration gains of 13.5%, 27.5%, 23.5%, and 33.0%. In the zero-shot setting
trained solely on synthetic data, the two unseen-background configurations improve by 21.0% and
20.5%. These gains are larger in visually complex scenes, indicating particular effectiveness under
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Table 4: Real-World Experiment Results. We conduct controlled experiments on 4 dual-arm tasks:
Stack Bowls, Handover Block, Pick Bottle, and Click Bell, each evaluated under 4 different settings.

Real World
Task

Background
Type

Cluttered
or Not

10 Clean
Real

10 Clean Real +
1k RoboTwin 2.0

1k RoboTwin 2.0
(Zero-shot)

Stack Bowls
Seen False 22.0% 64.0% /

True 12.0% 58.0% /

Unseen False 10.0% 50.0% 60.0%
True 12.0% 56.0% 52.0%

Handover Block
Seen False 40.0% 48.0% /

True 16.0% 12.0% /

Unseen False 36.0% 56.0% 56.0%
True 0.0% 36.0% 20.0%

Pick Bottle
Seen False 20.0% 36.0% /

True 8.0% 40.0% /

Unseen False 4.0% 26.0% 10.0%
True 8.0% 28.0% 32.0%

Click Bell
Seen False 36.0% 24.0% /

True 20.0% 56.0% /

Unseen False 12.0% 24.0% 20.0%
True 16.0% 48.0% 14.0%

Average
Seen False 29.5% 43.0%+13.5% /

True 14.0% 41.5%+27.5% /

Unseen False 15.5% 39.0%+23.5% 36.5%+21.0%

True 9.0% 42.0%+33.0% 29.5%+20.5%

challenging conditions. We attribute the improvements to three factors: (1) the high visual and
physical fidelity of RoboTwin 2.0, which enables direct sim-to-real transfer; (2) domain-randomized
synthetic data that conditions policies on environmental variations absent from clean real-world
demonstrations; and (3) large-scale simulation-based randomization that increases scene diversity
and strengthens cross-scene transfer. Overall, these results suggest that a small amount of real-world
data, when combined with rich RoboTwin 2.0 simulation, is sufficient to substantially narrow the
sim-to-real gap.

Table 5: Real robot performance with different sim–real mixtures.

Click Bell Place Empty Cup Stack Bowls Two Average

50 real 15.0% 10.0% 0.0% 8.3%
300 sim + 0 real 35.0% 10.0% 0.0% 15.0%
300 sim + 10 real 40.0% 25.0% 10.0% 25.0%
300 sim + 30 real 55.0% 35.0% 20.0% 36.7%
300 sim + 50 real 65.0% 50.0% 25.0% 46.7%

Beyond the above RDT-based dual-arm experiments, we further study how RoboTwin 2.0 interacts
with larger amounts of real data and a different policy backbone. Specifically, we vary the ratio of
real-world and simulated demonstrations and evaluate the resulting pi0 policies on real robots. On
three tasks (Click Bell, Place Empty Cup, Stack Bowls Two), we compare: (i) 50 real demonstrations
collected in a fixed scene; (ii) 300 domain-randomized simulated demonstrations; and (iii) mixtures
of 300 simulated demonstrations with 0, 10, 30, or 50 real demonstrations. Each model is evaluated
over 20 trials per task in unseen real scenes. As shown in Table 5, simulation-only training already
outperforms real-only training, and adding modest amounts of real data on top of RoboTwin 2.0
simulation leads to consistent gains, reaching 46.7% average success with 300 sim + 50 real demon-
strations. Taken together with the RDT results, these findings indicate that RoboTwin 2.0 not only
enables strong zero-shot transfer, but also continues to provide sizeable benefits in more data-rich
real-world regimes and across different policy architectures.
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5 RELATED WORKS

5.1 DATASETS AND BENCHMARKS FOR ROBOTIC MANIPULATION

Physics-based simulators underpin much of manipulation research. SAPIEN Xiang et al. (2020)
supports dynamic interaction with 2,300+ articulated objects, and ManiSkill2 Gu et al. (2023)
provides millions of demonstrations. Meta-World Yu et al. (2020), CALVIN Mees et al. (2022),
LIBERO Liu et al. (2023), and RoboVerse Geng et al. (2025) target multi-task, language-conditioned,
lifelong, or domain-randomized settings, while RoboCasa Nasiriany et al. (2024) offers large-
scale human demonstrations but lacks automation and a dual-arm focus. On the real-world side,
large datasets such as AgiBot World Bu et al. (2025), RoboMIND Wu et al. (2024), Open X-
Embodiment O’Neill et al. (2024), and Bridge Ebert et al. (2021) bridge sim-to-real with millions of
trajectories.

Building on RoboTwin-1.0 Mu et al. (2025), RoboTwin 2.0 integrates LLM-driven feedback and
systematic domain randomization over visual, physical, and task factors, yielding richer corpora and
stronger generalization (Appendix A.3). Compared with prior OOD manipulation benchmarks such
as GEMBench Garcia et al. (2025) and The Colosseum Pumacay et al. (2024), RoboTwin 2.0 provides
much larger scale and richer domain randomization, with more than 700 assets, over 11k background
textures, and 50 bimanual tasks across five embodiments. It extends domain randomization from
attribute-level and evaluation-time perturbations to large-scale visual and geometric diversity, cluttered
scene composition, and diverse language instructions that are applied consistently during both training
and evaluation.

5.2 ROBOT LEARNING IN MANIPULATION

Task-specific policies Wang et al. (2024); Ke et al. (2024); Ze et al. (2024); Chi et al. (2023); Fu et al.
(2024); Chen et al. (2025a); Liang et al. (2025; 2023; 2024); Wen et al. (2025b;a); Chen et al. (2025b)
excel on individual tasks yet transfer poorly across embodiments. Foundation models trained on
million-scale, multi-robot data generalize better: RT-1 Brohan et al. (2022) unifies vision, language,
and action; RT-2 Brohan et al. (2023) co-fine-tunes vision–language models on web and robot data
for semantic planning; RDT-1B Liu et al. (2024) and π0 Black et al. (2024) use > 1M episodes
to capture diverse bimanual dynamics. OpenVLA Kim et al. and CogACT Li et al. (2024), with
Octo Team et al. (2024), LAPA Ye et al., and OpenVLA-OFT Kim et al. (2025), demonstrate efficient
adaptation to new robots and sensors. We contribute digital-twin data collection and broad domain
randomization to produce realistic datasets that support robust, generalizable bimanual policies.

6 CONCLUSION

This paper introduced RoboTwin 2.0, a scalable simulation framework for generating diverse, high-
fidelity expert data for robust bimanual manipulation. The system integrates MLLM-based expert
code generation, embodiment-adaptive behavior synthesis, and comprehensive domain randomization,
addressing key limitations of prior synthetic data generators. Leveraging an annotated object library
and automated trajectory synthesis, RoboTwin 2.0 produces visually, linguistically, and physically rich
datasets while reducing manual effort. Experiments demonstrate consistent improvements in cluttered
scenes, enhanced generalization to unseen tasks, and reliable cross-embodiment transfer; notably,
few-shot and zero-shot evaluations indicate measurable sim-to-real improvements, showing that
domain-randomized, semantically grounded synthetic data can substantially reduce real-world data
requirements. To support the community, we release as open source RoboTwin-OD, a pre-collected
trajectory dataset, a standardized benchmark, and a scalable data-collection toolchain. RoboTwin 2.0
provides a principled basis for unified benchmarking and scalable sim-to-real pipelines.

ETHICS STATEMENT

Our study investigates simulation-based data generation and policy learning for robotic manipulation.
Experiments were conducted in simulation and in controlled laboratory settings without human
subjects, personally identifiable information, or sensitive biometric data; therefore, institutional
review (IRB) was not required. All physical experiments followed standard lab safety protocols
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(e.g., emergency stop, workspace clearance, tool guards). We release assets and code under research-
friendly licenses and comply with third-party licenses for simulators and object models. To reduce
representational bias, our benchmark includes diverse scenes, clutter levels, lighting conditions, and
multi-embodiment tasks; nevertheless, residual biases may persist (e.g., category coverage, tabletop
assumptions). Potential dual-use risks—such as automating unsafe behaviors—are mitigated by (1)
restricting release to research use, (2) documenting known failure modes, and (3) providing safety
guidelines for real-robot deployment. We disclose compute usage and hardware in the appendix to
support environmental transparency. The authors report no conflicts of interest and adhered to the
ICLR Code of Ethics throughout submission, reviewing interactions, and discussion.

REPRODUCIBILITY STATEMENT

We take several steps to enable reproducibility. The paper specifies model and training details for all
baselines (ACT, DP, DP3, RDT, Pi0) and our methods, including architectures, hyperparameters, and
optimization settings (see Sec. 2 and Sec. 4). We fix random seeds and specify hardware/software
stacks (CUDA/driver, simulator version) to minimize variance; instructions for reproducing tables
and figures from scratch are provided in a README.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

No large language models or AI-assisted tools were used at any stage of this work, including writing,
coding, data processing, analysis, figure generation, or conclusions. All text and code were authored,
reviewed, verified, and tested solely by the authors, who take full responsibility for the content and
any errors.

A.2 EVALUATING EFFICIENCY WITH AND WITHOUT ADAPTIVE GRASPING

Table 6: Overall Performance Comparison between RoboTwin 1.0 and RoboTwin 2.0.

Method Aloha-AgileX Piper Franka UR5 ARX-X5 Average

RoboTwin 1.0 65.1% 2.4% 67.3% 57.6% 68.6% 52.2%
RoboTwin 2.0 78.8% 25.1% 67.2% 57.1% 74.2% 60.5%

Difference +13.7% +22.7% -0.1% -0.5% +5.6% +8.3%

We evaluate embodiment-aware grasp augmentation by measuring automated data-collection success
on 50 RoboTwin 2.0 tasks across five robot embodiments. As shown in Table 6, our pipeline
outperforms the RoboTwin 1.0 baseline, which lacks diverse grasping and candidate augmentation,
with an average gain of 8.3%. Benefits are concentrated on lower-DoF platforms: Aloha-AgileX,
Piper, and ARX-X5 improve by 13.7%, 22.7%, and 5.6%, respectively. High-DoF arms with large
reachable workspaces, such as Franka and UR5 (7-DoF), show little change, consistent with sufficient
kinematic flexibility. These results indicate that augmentation supplies additional feasible grasps that
mitigate planning constraints on low-DoF manipulators. Full results are reported in Appendix A.20.

A.3 BENCHMARKING ROBOTWIN 2.0 AGAINST EXISTING DATASETS

We compare RoboTwin 2.0 against existing benchmarks and datasets across several key dimensions,
including the number of supported tasks, the presence of domain randomization, support for automatic
data generation, and compatibility with vision-language-action (VLA) model training and evaluation.
The comparison is summarized in Table 7.

Table 7: Comparison of RoboTwin 2.0 with previous manipulation benchmarks and datasets.

Benchmark & Dataset #Tasks Domain
Randomization

Auto Data
Generation

VLA Model
Train & Eval

Meta-world Yu et al. (2020) 50 ✕ ✓ ✕
Robosuite Zhu et al. (2020) 9 ✕ ✕ ✕
RoboCasa Yu et al. (2020) 25 ✓ ✕ ✕
Maniskill2 Gu et al. (2023) 20 ✕ ✓ ✕
AutoBio Lan et al. (2025) 16 ✕ ✓ ✓
RoboTwin 1.0 Mu et al. (2025) 14 ✕ ✓ ✓
RoboTwin 2.0 (ours) 50 ✓ ✓ ✓

A.4 DOMAIN RANDOMIZATION SETTING

Domain randomization in all experiments includes cluttered scenes, random lighting, table height
variation (up to 3 cm), unseen language instructions and randomized background textures.

A.5 POLICIES TRAINING DETAILS

We adopt joint angles as the model’s prediction target, formulating action prediction as joint-angle
regression.
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RDT in experiment 4.3 was finetuned for 100,000 steps with a batch size of 16 per GPU on 8 GPUs,
and all single-task fine-tuning was conducted for 10,000 steps with a batch size of 16 per GPU on 4
GPUs. In all cases, we initialize from the publicly released RDT pretrained weights.

Pi0 in experiment 4.3 was pretrained for 100,000 steps with a batch size of 32, and all fine-tuning
was performed for 30,000 steps using the same batch size with LoRA-based fine-tuning. In all cases,
we initialize from the publicly released Pi0 pretrained weights.

ACT was trained under a unified setup with a chunk size of 50, batch size of 8, and single-GPU
training for 6,000 epochs. During deployment, we applied temporal_agg for temporal aggregation
to improve execution stability.

DP was trained for 600 epochs with a batch size of 128 and a planning horizon of 8.

DP3 was trained for 3,000 epochs with a batch size of 256, using a planning horizon of 8 and a point
cloud resolution of 1,024, with precise segmentation of the background and tabletop.

A.6 ABLATION ON DOMAIN RANDOMIZATION FACTORS

To understand which domain randomization factors contribute most to policy robustness, we conduct
an ablation study and report the results in Table 8. For each factor (background, clutter, table height,
lighting), we disable only that factor’s randomization, collect 100 trajectories for training, and then
evaluate the resulting policy under the full domain randomized setting. This isolates the contribution
of each factor while keeping all other conditions fixed. The table reports success rates (in %) for four
representative tasks, with ACT and DP shown as “ACT / DP” in each cell. Disabling background
or clutter randomization leads to the largest performance drops, while turning off height or lighting
randomization results in smaller but still noticeable degradation. When all randomization factors
are disabled, the success rate becomes very low, indicating that our visual domain randomization,
especially in background and clutter, is a primary driver of learning robust behaviors.

Table 8: Ablation on domain randomization factors. Each entry shows success rate (in %) for ACT
/ DP. “BG” denotes background randomization.

Task BG↓ Clutter↓ Height↓ Light↓ All Rand.↓
Adjust Bottle 50 / 49 64 / 91 94 / 89 95 / 98 23 / 0
Beat Block Hammer 3 / 2 4 / 39 3 / 23 7 / 65 3 / 0
Move Can Pot 31 / 4 28 / 29 53 / 37 41 / 34 4 / 0
Stack Bowls Two 14 / 3 35 / 64 29 / 60 36 / 81 0 / 0

Average 24.5 / 14.5 32.8 / 55.8 44.8 / 52.3 44.8 / 69.5 7.5 / 0

A.7 ROBUSTNESS UNDER DYNAMIC SCENE CHANGES

In Sec. 4.4, our notion of robustness refers to robustness to substantial variations in scene layout
and background appearance, rather than arbitrary external disturbances. To make this explicit, we
conduct additional real robot experiments that focus on dynamically changing scenes. On three
real world tasks with pi0, we train two policies: one using 50 real demonstrations collected in a
single fixed scene (“50 real”), and one using 300 domain randomized simulated demonstrations
from RoboTwin 2.0 combined with the same 50 real demonstrations (“300 sim + 50 real”). During
evaluation, we deliberately introduce dynamic perturbations by randomly moving scene objects and
changing the tabletop background between episodes. As shown in Table 9, the policy trained only
on fixed scene real data completely fails in this setting (0.0% success on all three tasks), whereas
the policy trained with RoboTwin 2.0 augmented data maintains a 26.7% average success rate. This
large gap under dynamic scene changes supports our claim that RoboTwin 2.0 significantly improves
policy robustness to realistic visual and spatial variations.

A.8 SUPPORT FOR FLEXIBLE EMBODIMENT COMBINATIONS

Our object-centric, embodiment-agnostic data generation framework enables seamless deployment
across a wide range of dual-arm robotic systems. The pipeline supports flexible embodiment configu-
rations, allowing arbitrary combinations of heterogeneous manipulators and relative arm placements.
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Table 9: Real robot performance under dynamic scene changes. Success rate in %.

Click Bell Place Empty Cup Stack Bowls Two Average

50 real 0.0% 0.0% 0.0% 0.0%
300 sim + 50 real 40.0% 30.0% 10.0% 26.7%

This design ensures compatibility with diverse hardware setups and facilitates extensibility to future
robotic platforms.

Figure 11: Heterogeneous Dual-Arm Control via Object-Centric Manipulation.

To execute high-success-rate manipulation trajectories across different embodiments (see Section 2.3),
we integrate Curobo, a high-performance, GPU-accelerated motion planner that enables efficient and
reliable planning under varied kinematic constraints.

Currently, our framework supports five robotic arms—Franka, Piper, UR5, ARX-X5, and Aloha-
AgileX—along with multiple gripper types, including the Panda gripper and WSG gripper. As
shown in Fig. 11, we demonstrate successful task executions across a variety of dual-arm pairings,
highlighting RoboTwin 2.0’s ability to scale to heterogeneous robot configurations and its readiness
for future real-world deployment.

A.9 IMPROVEMENTS OF ROBOTWIN 2.0 OVER ROBOTWIN 1.0 POLICY CODEBASE

Metric RoboTwin 1.0 RoboTwin 2.0
Prompt Token Length ↓ 5901.0 4719.1
Code Token Length ↓ 1236.6 569.4
Parallelism Control ↑ ✗ ✓
AST Similarity Wen et al. (2019) ↑ 23.72% 44.78%
CodeBLEU Similarity Ren et al. (2020) ↑ 17.18% 18.53%
CodeBERT Similarity Feng et al. (2020) ↑ 97.72% 98.80%
Unixcoder Similarity Guo et al. (2022) ↑ 76.24% 82.21%
Avg. VLM Token Cost (per observation) – 6894

Table 10: Code Generation Efficiency and Quality Comparison. Evaluation of prompt and gener-
ated code characteristics, along with code similarity metrics (AST Structural Similarity, CodeBERT,
Unixcoder cosine similarity) against expert-written code, for RoboTwin 1.0 and RoboTwin 2.0 in
zero-shot generation. The VLM observer cost is also reported for RoboTwin 2.0.

We first quantify the architectural impact of RoboTwin 2.0 in a one-shot generation without code
repair and iterative refinement. Table 10 shows that RoboTwin 2.0 yields significantly shorter
programs (569.4 vs. 1236.6 tokens), with reduced prompt length and higher structural similarity to
human-written code. Crucially, it enables dual-arm parallelism via a unified API abstraction, which
is absent in RoboTwin 1.0.

These improvements stem from the structured prompting and geometric API modularization designed
into RoboTwin 2.0. Higher AST similarity (+21.06%), CodeBERT similarity (+1.08%), and Unix-
coder alignment (+5.97%) indicate that RoboTwin 2.0 not only reduces code size but also improves
semantic clarity and functional alignment.

In addition, RoboTwin 2.0 integrates a VLM observer, a plug-and-play module triggered only when
execution fails. To quantify its overhead, we estimated VLM usage via the Kimi API (assuming each
image = 1,024 tokens) over three representative tasks: the average cost was 6,295 input tokens and
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599 output tokens, totaling 6,894 tokens. While this introduces moderate overhead, the VLM enables
RoboTwin 2.0 to catch and correct errors invisible to execution logging, significantly enhancing
robustness and overall task success. Importantly, the observer remains optional and can be disabled
when prioritizing token efficiency.

A.10 EXPERIMENTAL DETAILS AND METRIC DEFINITIONS FOR CODE GENERATION

We use the DeepSeek-V3 model for program synthesis and the moonshot-v1-32k-vision-preview
model for multimodal error localization and verification. These models were selected for their
strong performance in language reasoning and visual understanding while maintaining efficiency
suitable for large-scale iterative refinement. The success rate of the i-th program is computed as
Ri =

1
M

∑M
j=1 si,j , and the final success rate for a given task under a specific system variant is then

defined as Rtask = 1
N

∑N
i=1 Ri.

A.10.1 METRIC DEFINITIONS

We report the following metrics across all tasks:

ASR is the average of R_task across all 10 tasks. It reflects overall task performance across all
generated programs.

Top5-ASR is the mean success rate computed using only the top 5 highest-performing programs per
task. This metric estimates system potential under a best-of-selection strategy.

CR-Iter indicates the average number of feedback iterations required per task before reaching a
success rate above 50% or exhausting the iteration budget.

Token denotes the average number of tokens of policy code generated by the language model per
task. It serves as a proxy for computational cost and LLM inference budget.

These metrics jointly evaluate both the reliability and efficiency of the expert data generation pipeline
under varying conditions of feedback, model capability, and refinement strategy.

A.10.2 TASK-SPECIFIC PERFORMANCE COMPARISON ON CODE GENERATION

We compare the code generation success rates of RoboTwin 2.0 and RoboTwin 1.0 across all tasks.
As shown, RoboTwin 2.0 consistently matches or outperforms the baseline on the majority of tasks,
demonstrating the effectiveness of our multimodal feedback and refinement pipeline.

Table 11: Task-Specific Performance Comparison between RoboTwin 2.0 and RoboTwin 1.0.
R1.0/R2.0: RoboTwin 1.0 / 2.0. Bold numbers indicate the best result for each task.

Task R1.0 Vanilla R1.0 + FB R1.0 + MM FB R2.0 Vanilla R2.0 + FB R2.0 + MMFB

beat_block_hammer 16% 48% 56% 23% 34% 53%
handover_block 2% 41% 45% 17% 50% 27%
pick_diverse_bottles 65% 65% 64% 60% 60% 62%
pick_dual_bottles 99% 99% 100% 100% 100% 100%
place_container_plate 66% 79% 91% 84% 84% 82%
place_dual_shoes 19% 22% 25% 0% 2% 22%
place_empty_cup 90% 90% 100% 61% 61% 85%
place_shoe 72% 90% 90% 100% 100% 100%
stack_blocks_three 1% 2% 4% 76% 76% 82%
stack_blocks_two 44% 68% 64% 100% 100% 100%

A.10.3 PER-TASK SUCCESS RATES OF CODE GENERATION

We report the success rates of all tasks in Tab. 12.
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Table 12: Per-task success rates of our proposed R2.0 + MM FB algorithm on all RoboTwin
2.0-supported tasks.

Task Rate Task Rate Task Rate Task Rate

Adjust Bottle 100% Beat Block Hammer 53% Blocks Ranking Rgb 80% Blocks Ranking Size 80%
Click Alarmclock 0% Click Bell 10% Dump Bin Bigbin 0% Grab Roller 74%
Handover Block 27% Handover Mic 0% Hanging Mug 0% Lift Pot 40%
Move Can Pot 30% Move Pillbottle Pad 50% Move Playingcard Away 90% Move Stapler Pad 100%
Open Laptop 0% Open Microwave 0% Pick Diverse Bottles 62% Pick Dual Bottles 100%
Place A2B Left 50% Place A2B Right 60% Place Bread Basket 0% Place Bread Skillet 0%
Place Can Basket 0% Place Cans Plasticbox 100% Place Container Plate 82% Place Dual Shoes 22%
Place Empty Cup 85% Place Fan 70% Place Burger Fries 100% Place Mouse Pad 100%
Place Object Basket 0% Place Object Scale 80% Place Object Stand 90% Place Phone Stand 0%
Place Shoe 100% Press Stapler 0% Put Bottles Dustbin 0% Put Object Cabinet 0%
Rotate Qrcode 80% Scan Object 0% Shake Bottle 0% Shake Bottle Horizontally 0%
Stack Blocks Three 82% Stack Blocks Two 100% Stack Bowls Three 20% Stack Bowls Two 30%
Stamp Seal 20% Turn Switch 0% Avg Success Rate 43.34%

A.10.4 MULTIMODAL OBSERVATION AND ERROR LOCALIZATION

To further investigate the capability of the VLM observer, we manually curated a dataset of 130
execution sequences, including 101 failed trials and 29 successful trials. Each sequence consists of
the natural language task instruction, a series of visual observations, and policy code. This dataset
enables us to evaluate both binary error detection and fine-grained error localization.

Error Detection. The VLM observer was first tasked with evaluating whether a robotic execution
successfully completed the instructed task. The confusion matrix is as follows: TP = 16, FP = 61, TN
= 40, FN = 13. The derived performance metrics are: Accuracy = 0.431, Precision = 0.208, Recall
= 0.552, and F1-score = 0.302. These results suggest that while the VLM observer is reasonably
sensitive in identifying execution failures (recall), its tendency to over-predict errors leads to a high
false positive rate.

Error Localization. For failed executions, we further tested whether the VLM observer could
correctly localize the program step or code snippet that led to failure. Among the 40 true negative
samples (correctly identified failed trials), the observer successfully pinpointed the failure step in 12
cases, yielding a localization accuracy of 30%. This indicates that, while the observer shows promising
diagnostic ability, there remains significant room for improvement in reliable error attribution.

Case Study. We illustrate one successful case of VLM observer reasoning. Given a task instruction
and five visual observations, the observer produced a step-by-step analysis:

Step 1: The left arm successfully picks up the mug from the left side.
Step 2: The left arm successfully places the mug at the middle position.
Step 3: The right arm successfully picks up the mug from the middle position.
Step 4: The right arm attempts to hang the mug on the rack but fails.
Step 5: The right arm is in the process of moving away after attempting to hang the mug.
The overall task was not successfully completed. The failure occurred in Step 4, where the right arm
attempted to hang the mug on the rack but did not succeed. The mug is not properly positioned on
the rack. The error message in the code indicates an AttributeError: ’list’ object has no attribute ’p’.
This error occurs in the line where the target_point is being set to middle_target_pose.p. The issue is
likely due to the fact that middle_target_pose is a list, and lists do not have an attribute ’p’. The code
should be modified to correctly access the position data from the middle_target_pose list.
To fix the error, the code should be updated to access the position data correctly. For example, if
middle_target_pose is a list containing the position and orientation, the position data should be
accessed using middle_target_pose[0] instead of middle_target_pose.p. Additionally, the failure in
Step 4 could be due to the incorrect position or orientation of the mug when attempting to hang it on
the rack. The code should be reviewed to ensure that the mug is positioned and oriented correctly
before executing the hanging motion.

Failure Modes. Despite these successes, we also observed cases where the VLM observer fails.
Misclassifications primarily occur in failed executions: the observer may hallucinate correct outcomes
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or overlook subtle orientation errors. For instance, in a stacking task where boxes are misaligned, the
observer sometimes marks the execution as successful if all boxes are placed on top of each other.
Similarly, in tasks requiring fine-grained pose accuracy (e.g., placing shoes in the correct orientation),
small but critical errors may be ignored. Furthermore, failures stemming from invisible factors—such
as incorrect grasp axis parameters—remain challenging for purely vision-based observers to diagnose.

A.10.5 LLM-GENERATED CODE AND HUMAN-WRITTEN CODE CASE STUDY

LLM-Generated Code (gpt_place_shoe)

class gpt_place_shoe(place_shoe):
def play_once(self):

# Initial observation
self.save_camera_images(task_name="place_shoe", step_name="

step1_initial_scene_state", generate_num_id="generate_num_0")

# Get the shoe’s position to determine which arm to use
shoe_pose = self.shoe.get_pose()
shoe_position = shoe_pose.p
arm_tag = ArmTag("left" if shoe_position[0] < 0 else "right")

# Grasp the shoe
self.move(self.grasp_actor(actor=self.shoe, arm_tag=arm_tag,

pre_grasp_dis=0.1, grasp_dis=0))
self.save_camera_images(task_name="place_shoe", step_name="

step2_shoe_grasped", generate_num_id="generate_num_0")

# Lift the shoe up to avoid collision
self.move(self.move_by_displacement(arm_tag=arm_tag, z=0.07,

move_axis=’world’))
self.save_camera_images(task_name="place_shoe", step_name="

step3_shoe_lifted", generate_num_id="generate_num_0")

# Get target pose from the top functional point of the target block
target_pose = self.target_block.get_functional_point(1, "pose")

# Place the shoe on the target block with head towards left side
self.move(self.place_actor(actor=self.shoe, arm_tag=arm_tag,

target_pose=target_pose, functional_point_id=0, pre_dis=0.1,
dis=0.02, is_open=True, constrain="align", pre_dis_axis=’fp’))

self.save_camera_images(task_name="place_shoe", step_name="
step4_shoe_placed", generate_num_id="generate_num_0")

# Lift the gripper up after placing
self.move(self.move_by_displacement(arm_tag=arm_tag, z=0.07,

move_axis=’world’))

# Return arm to origin
self.move(self.back_to_origin(arm_tag=arm_tag))

# Final observation
self.move(self.save_camera_images(task_name="place_shoe", step_name

="step5_final_scene_state", generate_num_id="generate_num_0"))

Listing 1: LLM-Generated Code for gpt_place_shoe Task

Human-Written Code (place_shoe)

class place_shoe(base_task):
def play_once(self):

# Get the shoe’s position to determine which arm to use
shoe_pose = self.shoe.get_pose().p
arm_tag = ArmTag("left" if shoe_pose[0] < 0 else "right")
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# Grasp the shoe with specified pre-grasp distance and gripper
position

self.move(self.grasp_actor(self.shoe, arm_tag=arm_tag,
pre_grasp_dis=0.1, gripper_pos=0))

# Lift the shoe up by 0.07 meters in z-direction
self.move(self.move_by_displacement(arm_tag=arm_tag, z=0.07))

# Get target_block’s functional point as target pose
target_pose = self.target_block.get_functional_point(0)

# Place the shoe on the target_block with alignment constraint and
specified pre-placement distance

self.move(self.place_actor(self.shoe, arm_tag=arm_tag, target_pose=
target_pose, functional_point_id=0, pre_dis=0.12, constrain="
align"))

# Open the gripper to release the shoe
self.move(self.open_gripper(arm_tag=arm_tag))

Listing 2: Human-Written Code for place_shoe Task

The LLM generated code tends to be more verbose, explicitly logging intermediate visual states
and detailing parameters (e.g., pre_dis_axis=’fp’, is_open=True), while human-written
scripts are more minimal, omitting intermediate steps and favoring compact execution. Despite
functional similarity, the structural differences illustrate that MLLM-generated programs are not
only executable but emphasize step-by-step clarity, contributing to more robust feedback and
repair.

A.11 TASK INSTRUCTION AND OBJECT DESCRIPTION EXAMPLE

Instruction Templates (task: ‘Pick Dual Bottles’)

"Use {a} to place {A} left of {B}.", "Set {A} to the left of {B}.", "Move {A} beside

{B} using {a}.", "Place {A} on {B}’s left side.", "Using {a}, position {A} next to

{B}.", "Stick {A} on the left of {B}.", "Use {a} and place {A} on {B}’s left.", etc

Object Description

# object id - ‘001_bottle/0’:

"red bottle", "red soda bottle", "plastic red bottle", "red bottle with yellow label",

"red plastic bottle with smooth surface", "yellow text printed on red bottle surface",

"red bottle with white label design and markings", "red bottle with white sealing and

brown top screw cap", etc

# object id - ‘039_mug/0’:

"black mug", "dark coffee mug", "sleek black mug", "black ceramic mug", "single-handle

mug", "smooth black surface mug", "medium-sized drinking mug", "round mug with curved

side", "dark mug with sturdy handle", "solid black mug with smooth finish", etc

A.12 PROMPTS FOR GENERATING TASK INSTRUCTIONS AND OBJECT DESCRIPTIONS

# Task Instruction Template
- Goal: Generate task instruction template
- Requirements:
- Generate 60 items. Vary in sentence length and structure
- Use natural action verbs (grab, slide, place)

- split
- 50 items for training
- 10 items for evaluation
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## Schema Requirements
- Goal: Use placeholders for objects in instructions
- Requirements:
- Format: {X} for objects defined in schema
- Include all object placeholders ({A-Z}) in every instruction
- Omit arm references and placeholders ({a-z}) in 50% of instructions
- Ensure natural flow when placeholders are replaced with actual values

# Object Description
- Goal: Generate natural object descriptions for robotic manipulation
- Requirements:
- Generate 15 items. Vary in sentence length and structure
- Use natural oral language
- Include essential physical properties (color, shape, size, texture)
- Use noun-focused phrases
- For multi-part objects, use structures like ‘X with Y’

- split
- 12 items for training
- 3 items for evaluation

# Episode
An episode is a specified task, in which each task may have different

objects to be manipulated,
resulting in the same task template being reused by replacing the

placeholders with specific objects.
For example:
{A} -> ‘medium-sized yellow bottle’
{A} -> ‘green drink bottle with bold labels’

General Task -> Specific Episode:
{A} -> bottle/0.glb
{A} -> bottle/1.glb

The number of task instructions for an episode can be calculated by:
Episode_num = TaskInstruction_num * ObjectDescription_num

Listing 3: Prompts for Generating Task Instructions and Object Descriptions

A.13 VISUALIZATION OF ROBOTWIN 2.0 BENCHMARK SETTING

We visualize the simulation settings of the RoboTwin 2.0 benchmark in Fig. 12. All models are
trained on 50 clean (non-randomized) demonstrations per task (blue). For evaluation, the Easy setting
also uses clean environments, while the Hard setting employs domain-randomized environments
(green).

Train (Easy + Hard)

Eval (Easy) Eval (Hard)

Figure 12: Visualization of RoboTwin 2.0 Benchmark Settings.

A.14 VISUALIZATION OF RENDERED MESHES AND COLLISION SHAPES OF OBJECTS IN
ROBOTWIN-OD

To illustrate how complex geometries are handled, we visualize both the rendered meshes and
collision shapes for five representative objects in Fig. 14, including those with internal cavities such
as mugs. Their holes and fine structural details are preserved in the final assets. Specifically, after
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generating each object via AIGC, we perform convex decomposition in Blender and then merge
the resulting parts to obtain smooth, physically stable collision bodies that are compatible with the
SAPIEN simulator.

bowl hammer

shoe-box mug

bookcase

Figure 13: Visualization of RoboTwin-OD Objects.

A.15 SAPIEN-IPC–BASED TACTILE DATA ACQUISITION SETUP

We build our simulated tactile data acquisition pipeline on top of the SAPIEN-IPC framework, which
provides a flexible and scalable environment for generating high-fidelity contact interactions.

Figure 14: Visualization of Tactile Data Acquisition.

A.16 USER STUDY ON INSTRUCTION NATURALNESS

To further evaluate the naturalness of our LLM-generated instructions, we conduct a user study on
the 567 objects with textual descriptions in RoboTwin-OD. For each object, we first generate 15
candidate instructions using an LLM, as described in Sec. 3.1. We then ask 5 volunteers to write
additional natural-language descriptions for each object, yielding in total 20 descriptions per object
(15 LLM-generated and 5 human-written).

A separate group of 5 volunteers is then presented with the 20 descriptions for each object and asked
to select the one that is most likely written by a human. Since 5 out of 20 descriptions are human-
authored, the ground-truth proportion of human-written descriptions in the pool is 25%. Table 13
reports the success rate of each volunteer in correctly identifying a human-written description.

The average success rate is 23.8%, which is very close to the 25% ground-truth proportion. This
near-chance performance indicates that human annotators have difficulty distinguishing between
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Table 13: Success rate of volunteers in identifying human-written instructions among mixed pools of
human- and LLM-generated descriptions. Chance level corresponds to 25%.

Vol. 1 Vol. 2 Vol. 3 Vol. 4 Vol. 5 Average

Success rate (%) 21.0 19.9 26.1 27.2 22.9 23.8

Table 14: CLIP-based global distribution matching and coverage between our 11k background
texture library and real-world textures from DTD. We extract ViT-B/32 CLIP features for 11k
textures from our library and 5,640 real textures from DTD. Coverage is measured as nearest-neighbor
cosine similarity from each real texture to our texture pool.

#Ours #Real FID ↓ mean ↑ median ↑ p10 ↑ p90 ↑ min / max

Ours vs. DTD 11,000 5,640 -0.36 0.839 0.848 0.749 0.914 0.544 / 0.979

human-written and LLM-generated instructions, suggesting that our instruction pool is linguistically
close to natural human descriptions rather than being obviously synthetic or overly templated.

A.17 CONTROL FREQUENCY AND CONTROLLER IMPLEMENTATION

RoboTwin 2.0 is built on the SAPIEN simulator, where each simulation step corresponds to 0.004
seconds of real time. In our default data collection setting, we record one sample every 15 simulation
steps, which gives an effective sampling rate of approximately 16.67 Hz (this rate can be adjusted
via configuration parameters). The temporal spacing of policy inputs and outputs therefore naturally
aligns with this sampling interval.

For policy execution in both simulation and on real robots, we interpolate the predicted actions to
match the underlying low level controller frequencies. When the policy outputs joint space actions,
we use TOPP based interpolation to generate time parameterized joint trajectories; when the policy
outputs end effector poses, we use trajectory planning to construct smooth Cartesian motion. In our
setup, the controller runs at 250 Hz in simulation and at 30 Hz on the real robot, so the interpolated
trajectories bridge the gap between the policy output rate (∼ 16.67 Hz) and the higher frequency
control loops.

A.18 TEXTURE DISTRIBUTION VS. REAL-WORLD BACKGROUNDS

To evaluate whether our 11k background texture library reasonably approximates real-world back-
ground statistics, we perform an analysis in a pretrained CLIP feature space. Specifically, we extract
ViT-B/32 CLIP Radford et al. (2021) embeddings (OpenAI weights) for two sets of backgrounds:
(i) our 11k textures from the background library and (ii) 5,640 real textures from the Describable
Textures Dataset (DTD) Cimpoi et al. (2014), a widely used real-world texture benchmark contain-
ing in-the-wild images annotated with human-describable attributes (e.g., “banded”, “wrinkled”,
“cracked”). We then (1) approximate each set by a Gaussian in CLIP space and compute a CLIP-FID
between our textures and DTD, and (2) evaluate coverage by, for each real (DTD) texture, finding its
nearest neighbor in our pool and recording the cosine similarity between their CLIP embeddings.

As summarized in Tab. 14, the CLIP-FID between our texture library and DTD is essentially zero
(−0.36, within numerical noise), indicating that the first- and second-order statistics of our textures
are almost identical to those of real textures in this feature space. Moreover, the nearest-neighbor
cosine similarity from DTD to our library exhibits a high mean (0.839) and median (0.848), with
the 90th percentile reaching 0.914, meaning that at least 90% of real textures have a very close
counterpart in our pool. Even the worst-case real sample still attains a cosine similarity of 0.544 to its
closest neighbor, so we do not observe any real textures that are nearly orthogonal to our manifold in
CLIP space. Overall, these results indicate that our curated texture library is not an artificial or overly
narrow distribution, but instead provides a high-coverage, globally well-matched approximation to
real-world background statistics.
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A.19 FULL ROBOTWIN 2.0 BENCHMARK

We report the evaluation results of five policies on the RoboTwin 2.0 benchmark under the Easy and
Hard settings. Note that these two settings differ only in evaluation conditions, while the training
setup remains identical.

Table 15: RoboTwin 2.0 Simulation Benchmark (clean vs randomized, 50+ tasks).

Simulation Task RDT Pi0 ACT DP DP3
Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard

Adjust Bottle 81% 75% 90% 56% 97% 23% 97% 0% 99% 3%
Beat Block Hammer 77% 37% 43% 21% 56% 3% 42% 0% 72% 8%
Blocks Ranking RGB 3% 0% 19% 5% 1% 0% 0% 0% 3% 0%
Blocks Ranking Size 0% 0% 7% 1% 0% 0% 1% 0% 2% 0%

Click Alarmclock 61% 12% 63% 11% 32% 4% 61% 5% 77% 14%
Click Bell 80% 9% 44% 3% 58% 3% 54% 0% 90% 0%

Dump Bin Bigbin 64% 32% 83% 24% 68% 1% 49% 0% 85% 53%
Grab Roller 74% 43% 96% 80% 94% 25% 98% 0% 98% 2%

Handover Block 45% 14% 45% 8% 42% 0% 10% 0% 70% 0%
Handover Mic 90% 31% 98% 13% 85% 0% 53% 0% 100% 3%
Hanging Mug 23% 16% 11% 3% 7% 0% 8% 0% 17% 1%

Lift Pot 72% 9% 84% 36% 88% 0% 39% 0% 97% 0%
Move Can Pot 25% 12% 58% 21% 22% 4% 39% 0% 70% 6%

Move Pillbottle Pad 8% 0% 21% 1% 0% 0% 1% 0% 41% 0%
Move Playingcard Away 43% 11% 53% 22% 36% 0% 47% 0% 68% 3%

Move Stapler Pad 2% 0% 0% 2% 0% 0% 1% 0% 12% 0%
Open Laptop 59% 32% 85% 46% 56% 0% 49% 0% 82% 7%

Open Microwave 37% 20% 80% 50% 86% 0% 5% 0% 61% 22%
Pick Diverse Bottles 2% 0% 27% 6% 7% 0% 6% 0% 52% 1%

Pick Dual Bottles 42% 13% 57% 12% 31% 0% 24% 0% 60% 1%
Place A2B Left 3% 1% 31% 1% 1% 0% 2% 0% 46% 2%

Place A2B Right 1% 1% 27% 6% 0% 0% 13% 0% 49% 0%
Place Bread Basket 10% 2% 17% 4% 6% 0% 14% 0% 26% 1%
Place Bread Skillet 5% 1% 23% 1% 7% 0% 11% 0% 19% 0%
Place Burger Fries 50% 27% 80% 4% 49% 0% 72% 0% 72% 18%
Place Can Basket 19% 6% 41% 5% 1% 0% 18% 0% 67% 2%

Place Cans Plasticbox 6% 5% 34% 2% 16% 0% 40% 0% 48% 3%
Place Container Plate 78% 17% 88% 45% 72% 1% 41% 0% 86% 1%

Place Dual Shoes 4% 4% 15% 0% 9% 0% 8% 0% 13% 0%
Place Empty Cup 56% 7% 37% 11% 61% 0% 37% 0% 65% 1%

Place Fan 12% 2% 20% 10% 1% 0% 3% 0% 36% 1%
Place Mouse Pad 1% 0% 7% 1% 0% 0% 0% 0% 4% 1%

Place Object Basket 33% 17% 16% 2% 15% 0% 15% 0% 65% 0%
Place Object Scale 1% 0% 10% 0% 0% 0% 1% 0% 15% 0%
Place Object Stand 15% 5% 36% 11% 1% 0% 22% 0% 60% 0%
Place Phone Stand 15% 6% 35% 7% 2% 0% 13% 0% 44% 2%

Place Shoe 35% 7% 28% 6% 5% 0% 23% 0% 58% 2%
Press Stapler 41% 24% 62% 29% 31% 6% 6% 0% 69% 3%

Put Bottles Dustbin 21% 4% 54% 13% 27% 1% 22% 0% 60% 21%
Put Object Cabinet 33% 18% 68% 18% 15% 0% 42% 0% 72% 1%

Rotate QRcode 50% 5% 68% 15% 1% 0% 13% 0% 74% 1%
Scan Object 4% 1% 18% 1% 2% 0% 9% 0% 31% 1%

Shake Bottle Horizontally 84% 51% 99% 51% 63% 4% 59% 18% 100% 25%
Shake Bottle 74% 45% 97% 60% 74% 10% 65% 8% 98% 19%

Stack Blocks Three 2% 0% 17% 0% 0% 0% 0% 0% 1% 0%
Stack Blocks Two 21% 2% 42% 1% 25% 0% 7% 0% 24% 0%
Stack Bowls Three 51% 17% 66% 24% 48% 0% 63% 0% 57% 5%
Stack Bowls Two 76% 30% 91% 41% 82% 0% 61% 0% 83% 6%

Stamp Seal 1% 0% 3% 4% 2% 0% 2% 0% 18% 0%
Turn Switch 35% 15% 27% 23% 5% 2% 36% 1% 46% 8%

Average (%) 34.5 13.7 46.4 16.3 29.7 1.7 28.0 0.6 55.2 5.0
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A.20 SUCCESS RATES OF DIFFERENT EMBODIMENTS ON ROBOTWIN 2.0 TASKS

Table 16 reports the success rates of five robot embodiments across the 50 RoboTwin 2.0 tasks, using
the same set of expert programs for data generation.

Table 16: Success Rates of Different Embodiments on RoboTwin 2.0 Tasks.

RoboTwin1.0 RoboTwin2.0
Task Name Aloha ARX Franka Piper UR5 Aloha ARX Franka Piper UR5

Adjust Bottle 92% 88% 39% 0% 7% 93% 94% 34% 0% 12%
Beat Block Hammer 68% 86% 95% 0% 86% 64% 93% 98% 15% 90%
Blocks Ranking Rgb 92% 98% 96% 0% 82% 96% 97% 99% 13% 53%
Blocks Ranking Size 90% 95% 92% 0% 60% 96% 97% 89% 7% 38%
Click Alarmclock 89% 99% 100% 0% 95% 92% 99% 100% 0% 95%
Click Bell 100% 100% 100% 9% 100% 100% 100% 100% 91% 100%
Dump Bin Bigbin 85% 98% 90% 0% 82% 84% 100% 84% 9% 80%
Grab Roller 95% 69% 99% 0% 80% 95% 69% 99% 7% 81%
Handover Block 1% 3% 0% 0% 4% 83% 81% 0% 44% 0%
Handover Mic 62% 80% 92% 28% 0% 87% 98% 84% 65% 14%
Hanging Mug 68% 76% 5% 0% 12% 63% 73% 11% 0% 11%
Lift Pot 27% 50% 24% 5% 40% 27% 50% 36% 31% 40%
Move Can Pot 18% 0% 37% 2% 4% 93% 65% 92% 96% 99%
Move Pillbottle Pad 30% 52% 15% 0% 35% 67% 90% 69% 47% 86%
Move Playingcard Away 93% 100% 100% 0% 87% 99% 100% 100% 63% 66%
Move Stapler Pad 94% 92% 88% 0% 95% 92% 96% 89% 13% 75%
Open Laptop 76% 91% 78% 14% 55% 82% 92% 77% 23% 51%
Open Microwave 65% 85% 75% 5% 33% 96% 80% 59% 2% 23%
Pick Diverse Bottles 11% 1% 0% 0% 0% 51% 2% 0% 27% 4%
Pick Dual Bottles 8% 3% 0% 0% 0% 92% 6% 0% 81% 7%
Place A2B Left 65% 75% 70% 0% 72% 80% 88% 64% 29% 76%
Place A2B Right 70% 68% 68% 0% 69% 81% 82% 64% 31% 66%
Place Bread Basket 91% 91% 69% 0% 78% 89% 88% 62% 1% 67%
Place Bread Skillet 31% 28% 42% 0% 42% 34% 26% 42% 0% 37%
Place Can Basket 47% 1% 38% 0% 11% 70% 28% 61% 0% 3%
Place Cans Plasticbox 96% 93% 98% 0% 11% 100% 96% 85% 0% 82%
Place Container Plate 86% 85% 83% 0% 82% 89% 86% 86% 37% 81%
Place Dual Shoes 73% 28% 36% 0% 40% 77% 31% 41% 1% 32%
Place Empty Cup 92% 100% 100% 0% 100% 92% 100% 100% 4% 100%
Place Fan 93% 96% 75% 0% 85% 95% 93% 83% 0% 65%
Place Burger Fries 96% 95% 85% 0% 78% 97% 98% 80% 36% 74%
Place Mouse Pad 100% 80% 99% 2% 96% 99% 89% 100% 23% 73%
Place Object Basket 68% 13% 68% 0% 30% 74% 14% 61% 0% 7%
Place Object Scale 77% 93% 94% 0% 87% 78% 92% 82% 2% 76%
Place Object Stand 90% 92% 81% 0% 90% 97% 99% 81% 9% 92%
Place Phone Stand 66% 78% 52% 22% 44% 66% 78% 45% 53% 49%
Place Shoe 87% 85% 70% 0% 97% 84% 85% 74% 7% 91%
Press Stapler 87% 96% 99% 0% 77% 98% 96% 100% 59% 72%
Put Bottles Dustbin 0% 0% 0% 0% 0% 71% 1% 0% 56% 0%
Put Object Cabinet 13% 56% 43% 0% 0% 14% 24% 55% 0% 0%
Rotate Qrcode 78% 83% 98% 0% 81% 75% 74% 94% 0% 67%
Scan Object 8% 13% 21% 0% 8% 4% 45% 26% 0% 19%
Shake Bottle 62% 95% 82% 1% 98% 89% 94% 85% 74% 97%
Shake Bottle Horizontally 64% 93% 81% 1% 97% 90% 94% 85% 74% 98%
Stack Blocks Three 98% 97% 95% 0% 83% 94% 96% 80% 0% 51%
Stack Blocks Two 99% 99% 100% 0% 94% 98% 99% 96% 2% 68%
Stack Bowls Three 27% 64% 76% 0% 76% 43% 58% 82% 0% 81%
Stack Bowls Two 63% 84% 88% 0% 94% 78% 82% 88% 4% 94%
Stamp Seal 46% 91% 95% 0% 100% 56% 91% 4% 37% 100%
Turn Switch 27% 3% 51% 28% 10% 74% 3% 36% 81% 10%

Average 65.3% 68.8% 67.6% 2.3% 57.7% 78.8% 74.2% 67.2% 25.1% 57.1%
Difference / / / / / +13.5% +5.4% -0.4% +22.8% -0.6%
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A.21 50 ROBOTWIN 2.0 TASKS DESCRIPTIONS

We list detailed 50 RoboTwin 2.0 tasks descriptions in Tab. 17.

Table 17: Task descriptions.

Task Name Description
Adjust Bottle Pick up the bottle on the table upright with the correct arm.
Beat Block Hammer Grab the hammer and hit the block.
Blocks Ranking RGB Order red, green, blue blocks from left to right.
Blocks Ranking Size Order three blocks by size, largest to smallest, left to right.
Click Alarmclock Click the center of the top button of the alarm clock.
Click Bell Click the bell’s top center.
Dump Bin Bigbin Pour balls from the small bin into the big bin.
Grab Roller Use both arms to grab the roller on the table.
Handover Block Take the red block, hand it to the other arm, and place it on the pad.
Handover Mic One arm passes the microphone to the other arm.
Hanging Mug Left arm places mug; right arm picks it up and hangs it on the rack.
Lift Pot Use the arms to lift the pot.
Move Can Pot Pick up the can and move it next to the pot.
Move Playingcard Away Move the playing card farther away from the table.
Move Stapler Pad Move the stapler to a colored mat with the correct arm.
Open Laptop Open the laptop with one arm.
Open Microwave Open the microwave with one arm.
Pick Diverse Bottles Pick up one bottle with each arm.
Pick Dual Bottles Pick up one bottle with each arm.
Place A2B Left Place object A to the left of object B.
Place A2B Right Place object A to the right of object B.
Place Bread Basket One bread: one arm to basket; two: both arms to basket.
Place Bread Skillet Put the bread into the skillet with one arm.
Place Burger Fries Use both arms to place burger and fries on the tray.
Place Can Basket One arm puts can in basket; other arm lifts basket.
Place Cans Plasticbox Use both arms to place cans into the plastic box.
Place Container Plate Place the container on the plate.
Place Dual Shoes Both arms place two shoes in box with tips facing left.
Place Empty Cup Place the empty cup on the coaster with one arm.
Place Fan Place the fan on the colored mat facing the robot.
Place Mouse Pad Place the mouse on a colored mat.
Place Object Basket One arm puts object in basket; other arm moves basket slightly away.
Place Object Scale Place the object on the scale with one arm.
Place Object Stand Place the object on the stand with the correct arm.
Place Phone Stand Place the phone on the phone stand.
Place Shoe Place the shoe from table onto the mat.
Press Stapler Press the stapler with one arm.
Put Bottles Dustbin Put bottles into the dustbin left of the table.
Put Object Cabinet Open drawer with one arm; use other arm to put object inside.
Rotate QRcode Rotate the QR board so the QR code faces the robot.
Scan Object One arm holds scanner; other holds object; scan the object.
Shake Bottle Horizontally Shake the bottle horizontally with the correct arm.
Shake Bottle Shake the bottle with the correct arm.
Stack Blocks Three Stack blue on green on red at the center.
Stack Blocks Two Stack green on red at the center.
Stack Bowls Three Stack three bowls.
Stack Bowls Two Stack two bowls.
Stamp Seal Stamp the specific color mat with the stamp.
Turn Switch Click the switch with the arm.
Move Pillbottle Pad Place the pill bottle onto the pad.
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A.22 EXAMPLE: EXPERT CODE GENERATION PIPELINE FOR HANDOVER_BLOCK .

To make the pipeline in Fig. 3 more concrete, we use the handover_block task as a running
example.

Inputs and assumptions (first round). In the first round, the inputs to the Code Agent include:

1. Task description. A natural language specification of the task, for example:

“Use the left arm to pick up the block, move it to the handover position between
the two arms, then use the right arm to grasp the block and place it at the target
location.”

2. API list. A fixed set of commonly used, high level, and strongly encapsulated APIs (listed
in Appendix A.23), which hide low level motion planning details from the agent.

3. API usage examples. A small collection of curated examples that demonstrate how to
use these APIs for typical scenarios and tasks, serving as in context guidance for the Code
Agent.

4. Object calibration and functional points. Structured information about calibrated points
and axes on the objects, including:

• several grasp points on the block (for left arm and right arm grasps),
• functional points on the block (for alignment and placement),
• the functional point of the target placement location.

Given these inputs, the Code Agent produces executable expert control code that calls the high level
APIs to complete the task.

Outputs and iterative refinement. We then execute the generated code in simulation to test data
generation, as illustrated in Fig. 3 (10 test rollouts in our default setting). For each rollout, we log:

• whether the rollout succeeds or fails,

• the failure type (for example, Left grasp failure, Right grasp failure,
Incorrect target position),

• any runtime errors,

• snapshot images of the scene after key steps.

If the data generation success rate is above a predefined threshold (50% in Fig. 3), we accept the code
as a valid expert policy for data collection. If the success rate is below the threshold, we feed all
interaction logs (failures, error messages, and snapshot descriptions) back to the Code Agent, which
then iteratively refines the code to fix the identified issues. This loop continues until the generated
code reaches the required success rate.

A.23 ROBOTWIN 2.0 PROMPT

# You can directly use the actors provided in the actor_list.
# For example, if actor_list contains ["self.hammer", "self.block"],
# you can directly write:
object1 = self.hammer
object2 = self.block

# ----------------------------------------------------------
# Using ArmTag class to represent arms
# ----------------------------------------------------------
arm_tag = ArmTag("left") # Left arm
arm_tag = ArmTag("right") # Right arm

# Example of selecting an arm based on conditions:
arm_tag = ArmTag("left" if actor_position[0] < 0 else "right")

# ----------------------------------------------------------
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# Functional points on actors
# ----------------------------------------------------------
# Each actor in the environment may have multiple functional points
# that are useful for different interactions.
# Functional points provide precise locations for interactions like
# grasping, placing, or aligning objects.

# To get a functional point from an actor:
functional_point_pose = actor.get_functional_point(point_id, "pose")
position = functional_point_pose.p # [x, y, z]
orientation = functional_point_pose.q # [qw, qx, qy, qz]

# ----------------------------------------------------------
# Stacking one object on top of another
# ----------------------------------------------------------
# Example: placing current_actor on top of last_actor using a
# functional point as target_pose.
target_pose = self.last_actor.get_functional_point(point_id, "pose")

self.move(
self.place_actor(

actor=self.current_actor, # The object to be placed
target_pose=target_pose, # Pose acquired from last_actor
arm_tag=arm_tag,
functional_point_id=0, # Align functional point 0 (or as needed)
pre_dis=0.1,
dis=0.02,
pre_dis_axis="fp", # Use functional point direction

)
)

# ----------------------------------------------------------
# Actors of type "pose" in actor_list
# ----------------------------------------------------------
# For all actors in actor_list that are of type "pose", such as
# middle_pose or actor_target_pose, these are already Pose objects
# (or lists of Pose). You do NOT need to call .get_pose() again.
# You can pass them directly as target_pose.

# Example: place self.box at self.actor_pose (already a Pose)
self.move(

self.place_actor(
actor=self.box,
target_pose=self.actor_pose, # already a Pose
arm_tag=grasp_arm_tag,
functional_point_id=0, # if the actor has functional points
pre_dis=0,
dis=0, # dis = 0 if is_open is False
is_open=False, # gripper will not open after placing
constrain="free", # "align" only if pose is constrained
pre_dis_axis=’fp’, # use functional point direction

)
)

# Note:
# For the target_actor, it is an actor, not a Pose, so you need to call
# get_pose() to get its pose, or call get_functional_point() to get
# a functional point.

# ----------------------------------------------------------
# Selecting an arm for grasping based on actor position
# ----------------------------------------------------------
# Get the actor’s pose
actor_pose = self.actor.get_pose()
actor_position = actor_pose.p # [x, y, z]
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# Select arm based on x-position
arm_tag = ArmTag("left" if actor_position[0] < 0 else "right")

# Grasp actor with selected arm
self.move(

self.grasp_actor(
actor=self.actor,
arm_tag=arm_tag

)
)

# ----------------------------------------------------------
# Basic grasping API examples
# ----------------------------------------------------------
# Grasp an actor with specified pre-grasp distance and grasp distance
self.move(

self.grasp_actor(
actor=self.actor,
arm_tag=arm_tag, # ArmTag("left") or ArmTag("right")
pre_grasp_dis=0.1,
grasp_dis=0

)
)

# ----------------------------------------------------------
# Grasp-and-lift example
# ----------------------------------------------------------
# Grasp the object
self.move(

self.grasp_actor(
actor=self.actor,
arm_tag=arm_tag, # ArmTag("left") or ArmTag("right")
pre_grasp_dis=0.1,
grasp_dis=0

)
)

# Lift the object up (always lift after grasping to avoid collision)
self.move(

self.move_by_displacement(
arm_tag=arm_tag,
z=0.07, # Move 7cm upward
move_axis=’world’ # Move in world coordinates

)
)

# ----------------------------------------------------------
# Gripper control examples
# ----------------------------------------------------------
# Open gripper fully
self.move(

self.open_gripper(
arm_tag=arm_tag,
pos=1.0 # fully open

)
)

# Open gripper halfway
self.move(

self.open_gripper(
arm_tag=arm_tag,
pos=0.5

)
)
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# Close gripper fully
self.move(

self.close_gripper(
arm_tag=arm_tag,
pos=0.0 # fully close

)
)

# Close gripper halfway
self.move(

self.close_gripper(
arm_tag=arm_tag,
pos=0.5

)
)

# ----------------------------------------------------------
# Placing objects at a target location
# ----------------------------------------------------------
# Place an object at a specific target pose
self.move(

self.place_actor(
actor=self.actor,
arm_tag=arm_tag,
target_pose=self.target_pose, # retrieved from the actor list
functional_point_id=0, # if the actor has functional points
pre_dis=0.1,
dis=0.02, # dis = 0 if is_open is False
is_open=True, # True to release object after placing
pre_dis_axis=’fp’, # use functional point direction

)
)

# Lift the gripper up after placing (only needed if is_open is True)
self.move(

self.move_by_displacement(
arm_tag=arm_tag,
z=0.07, # Move 7cm upward
move_axis=’world’

)
)

# ----------------------------------------------------------
# Placing with functional point alignment
# ----------------------------------------------------------
# Place the object by aligning functional point 0 with the target pose
self.move(

self.place_actor(
actor=self.actor,
arm_tag=arm_tag,
target_pose=target_pose,
functional_point_id=0, # align this functional point
pre_dis=0.1,
dis=0.02,
pre_dis_axis=’fp’ # use functional point direction

)
)

# ----------------------------------------------------------
# Dual-arm coordination examples
# ----------------------------------------------------------
# Move both arms simultaneously to grasp objects
left_arm_tag = ArmTag("left")
right_arm_tag = ArmTag("right")
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self.move(
self.grasp_actor(actor=self.left_actor, arm_tag=left_arm_tag),
self.grasp_actor(actor=self.right_actor, arm_tag=right_arm_tag)

)

# Lift both actors up after grasping
self.move(

self.move_by_displacement(arm_tag=left_arm_tag, z=0.07),
self.move_by_displacement(arm_tag=right_arm_tag, z=0.07)

)

# ----------------------------------------------------------
# Place left object while moving right arm back to origin
# ----------------------------------------------------------
move_arm_tag = ArmTag("left") # arm placing the object
back_arm_tag = ArmTag("right") # arm returning to origin

self.move(
self.place_actor(

actor=self.left_actor,
arm_tag=move_arm_tag,
target_pose=target_pose,
pre_dis_axis="fp",

),
self.back_to_origin(arm_tag=back_arm_tag)

)

# ----------------------------------------------------------
# Returning arms to their initial positions
# ----------------------------------------------------------
# Return a single arm to origin
self.move(self.back_to_origin(arm_tag=arm_tag))

# Return both arms to origin simultaneously
left_arm_tag = ArmTag("left")
right_arm_tag = ArmTag("right")

self.move(
self.back_to_origin(arm_tag=left_arm_tag),
self.back_to_origin(arm_tag=right_arm_tag)

)

Listing 4: LLM-Generated Examples for Actor, Functional Point, and Arm Control APIs
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