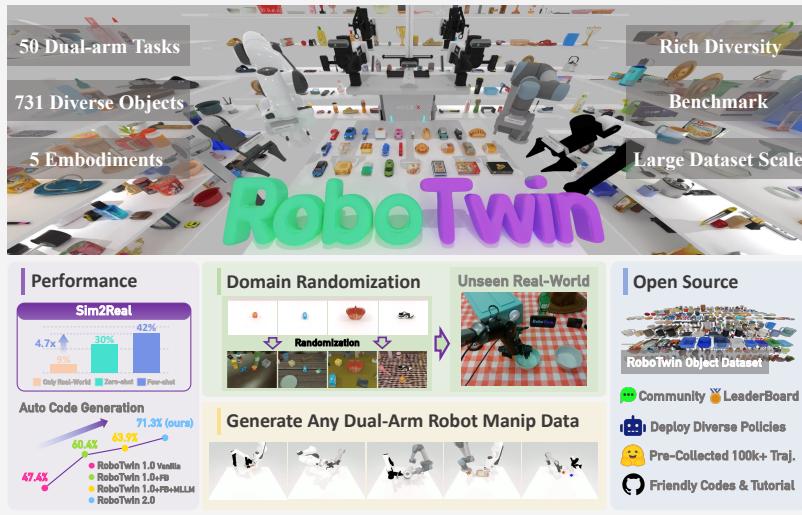


000 001 002 003 004 005 006 007 008 **ROBOTWIN 2.0: A SCALABLE DATA GENERATOR AND** 009 **BENCHMARK WITH STRONG DOMAIN RANDOMIZA-** 010 **TION FOR ROBUST BIMANUAL ROBOTIC MANIPULA-** 011 **TION**

012 **Anonymous authors**

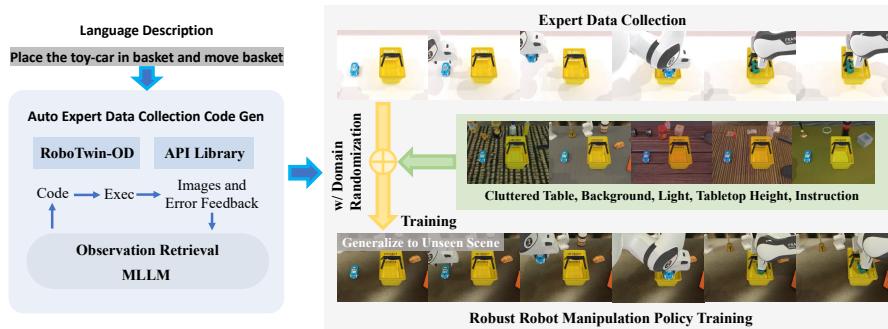
013 Paper under double-blind review



014
015
016
017
018
019
020
021
022
023
024
025
026
027
028 **Figure 1: RoboTwin 2.0** uses an MLLM-driven pipeline for automatic data synthesis and domain
029 randomization to boost policy performance, and provides a 50-task bimanual benchmark with
030 RoboTwin Object Dataset.

031 ABSTRACT

032
033
034 Synthetic data generation via simulation represents a promising approach for
035 enhancing robotic manipulation. However, current synthetic datasets remain insuffi-
036 cient for robust bimanual control due to limited scalability in novel task
037 generation and oversimplified simulations that inadequately capture real-world
038 complexity. We present **RoboTwin 2.0**, a scalable framework for automated diverse
039 synthetic data generation and unified evaluation for bimanual manipulation. We
040 construct RoboTwin-OD, an object library of 731 instances across 147 categories
041 with semantic and manipulation labels. Building on this, we design a expert data
042 generation pipeline by utilizing multimodal large language models to systhesize
043 task-execution code with simulation-in-the-loop refinement. To improve sim-to-
044 real transfer, RoboTwin 2.0 applies structured domain randomization over five
045 factors (clutter, lighting, background, tabletop height, language instructions). Using
046 this approach, we instantiate 50 bimanual tasks across five robot embodiments.
047 Experimental results demonstrate a 10.9% improvement in code-generation success
048 rates. For downstream learning, vision-language-action models trained with our
049 synthetic data achieve 367% performance improvements in the few-shot setting
050 and 228% improvements in the zero-shot setting, relative to a 10-demo real-only
051 baseline. We further evaluate multiple policies across 50 tasks with two difficulty
052 settings, establishing a comprehensive benchmark to study policy performance.
053 We release the generator, datasets, and code to support scalable research in robust
bimanual manipulation.

054
055
056
057
058
059
060
061
062
063
064
065
066
1 INTRODUCTION

067
068
Figure 2: **Our Pipeline.** Built on RoboTwin-OD and skill APIs, an MLLM guides code generation
069 with simulation feedback to produce expert programs and domain-randomized trajectories.

070 Bimanual robotic manipulation is essential for complex tasks such as collaborative assembly, tool
071 use, and handovers. Training generalizable bimanual policies, particularly vision-language-action
072 (VLA) foundation models Long et al. (2025), requires datasets that are high quality, diverse, and large
073 scale. Without sufficient variation in object geometry, scene clutter, lighting, instruction language,
074 and robot embodiments, learned policies overfit and generalization degrades across environments and
075 hardware. However, collecting real-world demonstrations at scale remains costly, time-intensive, and
076 logistically difficult, especially when targeting broad task, object, and embodiment coverage.

077 Simulation has become an effective way to scale multimodal data collection and enable sim-to-
078 real transfer Mu et al. (2025); Deng et al. (2025). However, prevailing pipelines exhibit three
079 persistent limitations: (i) the absence of automated quality control, which admits execution failures
080 and weak grasps that degrade learning; (ii) shallow domain randomization, producing overly clean,
081 homogeneous scenes that neglect clutter, illumination changes, and instruction ambiguity—factors
082 critical for robust transfer; and (iii) limited cross-embodiment coverage, despite substantial differences
083 in kinematics and grasp strategies across bimanual platforms. For example, low-DoF systems such as
084 Piper tend to favor lateral grasps, whereas high-DoF arms like Franka support top-down precision
085 grasps. Current synthetic datasets rarely encode these embodiment-specific affordances and task
086 constraints, limiting generality.

087 To address these challenges, we introduce **RoboTwin 2.0**, a scalable simulation-based framework for
088 generating high-quality, diverse, and realistic datasets for bimanual manipulation. The framework
089 comprises: (1) an automated expert pipeline that uses multimodal large language models (MLLMs)
090 with simulation-in-the-loop feedback to validate and refine task execution code; (2) comprehensive
091 domain randomization over language, clutter, background textures, lighting, and tabletop layouts
092 to improve sim-to-real transfer and policy generalization; and (3) embodiment-aware adaptation
093 that annotates object affordances and generates robot-specific action candidates for heterogeneous
094 dual-arm kinematics. Building on these components, we introduce three new resources to support
095 scalable research in bimanual manipulation: (1) the RoboTwin-OD asset library, comprising 731
096 annotated object instances across 147 categories; (2) an automated data generation pipeline with
097 comprehensive domain randomization and a pre-collected, open-source dataset of expert trajectories
098 spanning 50 tasks across five dual-arm robot platforms; and (3) a benchmark for evaluating policy
099 generalization to cluttered environments and open-ended language goals. Together, these resources
100 enable the community to train and evaluate robust bimanual manipulation policies under conditions
101 that closely reflect real-world complexity and diversity.

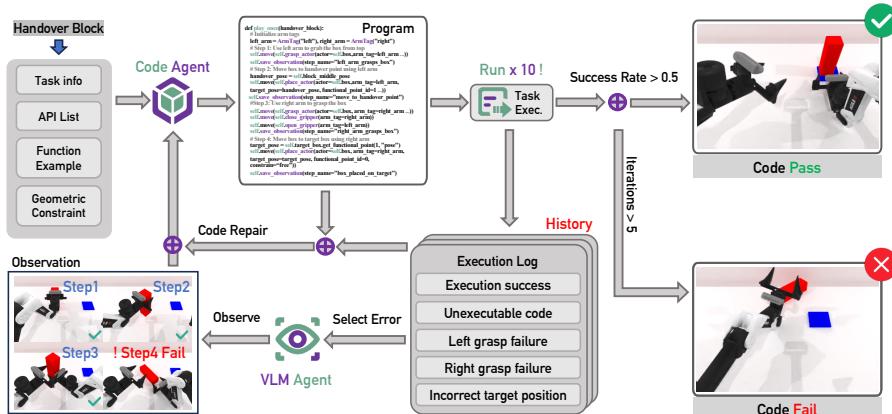
102 In summary, our main contributions are as follows: (1) We develop an automated expert data
103 generation framework that integrates MLLMs with simulation-in-the-loop feedback to ensure high-
104 quality, expert-level trajectories; (2) We propose a systematic domain randomization strategy that
105 enhances policy robustness by increasing data diversity and sim-to-real generalization; (3) We
106 introduce an embodiment-aware adaptation mechanism that generates robot-specific manipulation
107 candidates based on object affordances; (4) We release the RoboTwin-OD, a large-scale pre-collected
108 multi-embodiment domain-randomized trajectory dataset, a scalable bimanual data generator, and
109 a standardized evaluation benchmark to support scalable training and evaluation of generalizable
110 policies across different robot embodiments, scene configurations, and language instructions.

108 **2 METHOD**
 109

110 Figure 2 overviews the RoboTwin 2.0 pipeline. A task–code generation module employs MLLMs with
 111 simulation-in-the-loop feedback to synthesize executable plans from natural-language instructions.
 112 The module is grounded in a large object asset library (RoboTwin-OD) and a predefined skill library,
 113 enabling scalable instantiation across diverse objects and manipulation scenarios. A comprehensive
 114 domain-randomization scheme along language, visual, and spatial dimensions further expands
 115 coverage, producing diverse, realistic demonstrations and policies robust to real-world variability.
 116

117 **2.1 EXPERT CODE GENERATION VIA MLLMs AND SIMULATION-IN-THE-LOOP FEEDBACK**
 118

119 We adopt a closed-loop architecture that couples code generation with multimodal execution feedback
 120 (Fig. 3), in contrast to pipelines that depend on manual priors or omit feedback Hua et al.; Wang et al.
 121 (2023). The system comprises two agents: a code-generation agent that translates natural language
 122 instructions into executable programs, and a vision–language model observer that monitors execution
 123 in simulation, detects failures and suggests corrections. Iterative integration of these signals proceeds
 124 until a predefined success criterion is met or a budget limit is reached, yielding robust, self-improving
 125 expert trajectories with minimal human supervision and enabling zero-shot dual-arm manipulation
 126 beyond primitive pick and place.



141 **Figure 3: Expert Code Generation Pipeline.**

142 **Input Specification.** The code-generation agent is conditioned on four inputs: (1) a general API list;
 143 (2) example function calls; (3) a hierarchical constraint specification; and (4) task information. Each
 144 task is defined by a name (e.g., *Handover Block*) and a natural-language objective description. These
 145 components jointly guide the synthesis of Python code for task execution.

146 **Initial Code Generation.** The code-generation agent synthesizes an initial Python program condi-
 147 tioned on the provided task inputs. It models the program synthesis process as a structured prediction
 148 problem over the space of available API calls, leveraging natural language understanding and few-shot
 149 prompting from task-specific examples. The generated code specifies a stepwise sequence of robot
 150 actions designed to accomplish the target manipulation objective.

151 **Simulated Execution and Logging.** Each iteration executes the program ten times in simulation
 152 to account for stochasticity in dynamics, control, and scene layout. After each batch, the system
 153 produces a structured log that records trial outcomes and labels failure cases by cause, such as
 154 unexecutable code, left/right grasp failure, or incorrect object placement.

155 **Multimodal Observation and Error Localization.** During execution, a vision–language model
 156 (VLM) monitors all ten trials and performs per-frame analysis to assess stepwise success and localize
 157 failures. Beyond temporal localization, the VLM attributes failure modes to flawed logic, incorrect
 158 API usage, or other systemic causes. This diagnosis enables repairs that target root causes rather than
 159 surface symptoms. Details are provided in Appendix A.10.4.

160 **Code Repair and Iterative Refinement.** The agent integrates execution logs and VLM diagnostics to
 161 edit failure-prone instructions, re-testing the program each iteration. The process stops upon meeting

162 a success-rate threshold over ten runs in one iteration, or after five consecutive failures, producing
 163 expert-level code with minimal supervision and avoiding indefinite refinement.
 164

166 2.2 DOMAIN RANDOMIZATION FOR ROBUST ROBOTIC MANIPULATION

168 To enhance robustness to real-world variability, we randomize five dimensions: (1) cluttered dis-
 169 tractors, (2) background textures, (3) lighting, (4) tabletop height, and (5) language instructions.
 170 This systematic augmentation broadens the training distribution and, critically, equips manipulation
 171 policies with stronger generalization to unseen scenes and instructions (Fig. 4a).
 172

185 (a) **Visualization of Domain Randomization** (b) **Texture Library**
 186 Figure 4: **Visualization of domain randomization and our texture library.**

189 **Scene Clutter.** To improve robustness to environmental variation, we augment tabletop scenes
 190 with task-irrelevant distractors sampled from RoboTwin-OD (Section 3.1). Object-level placement
 191 annotations enable a generic API for semantically valid insertion. Physical plausibility is enforced
 192 through collision-aware placement and precomputed volumes. To prevent spurious ambiguity,
 193 distractors that are visually or semantically similar to task-relevant objects are excluded during
 194 sampling. This procedure yields diverse yet unambiguous cluttered scenes for training.

195 **Diverse Background Textures.** We randomize tabletops and backgrounds using a curated texture
 196 library. We first collect 1,000 surface descriptions via LLM prompting and web search, then generate
 197 20 images per description with Stable Diffusion v2 Rombach et al. (2022) (20,000 images in total).
 198 Human-in-the-loop filtering yields 11,000 high-quality textures. This library is used in simulation
 199 to increase visual diversity and mitigate overfitting to clean synthetic scenes (Fig. 4b). We further
 200 show in Appendix A.18 that the distribution of our texture library closely matches that of real-world
 201 textures.

202 **Lighting Variation.** Real scenes vary in color temperature, source type, count, and placement,
 203 altering appearance and reflections and challenging vision-based manipulation. We randomize light
 204 color, type, intensity, and position within physically plausible ranges. As shown in Fig. 4a (second
 205 row), changes in color temperature markedly affect appearance (e.g., warm vs. cool light on a shoe).
 206 Training under these variations improves robustness to real-world illumination shifts.

207 **Tabletop Heights.** We uniformly randomize table height within a plausible range in simulation,
 208 strengthening the policy’s robustness to variations in table height.

209 **Trajectory-Level Diverse Language Instructions.** We employ a MLLM to generate task templates
 210 and multiple object descriptions that capture geometry, appearance, and part-level attributes. Each
 211 task and object has several alternative phrasings that can be combined; for each trajectory, we sample
 212 from these pools to compose the instruction. For *Move Can Pot*, the template “Use a to place A to the
 213 left of B” may yield “Use left arm to place sauce can to the left of gray kitchenpot” or “Use left arm to
 214 place white plastic lid sauce can to the left of kitchenpot for boiling and cooking.” This combinatorial
 215 augmentation produces a large, linguistically varied instruction set and improves generalization to
 unseen language and scene configurations (Appendix A.11, A.12).

Figure 5: Diverse Behaviors.

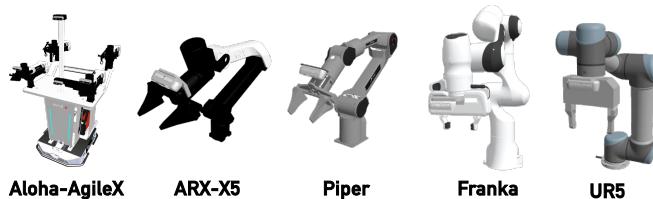


Figure 6: Five RoboTwin 2.0 Embodiments.

2.3 EMBODIMENT-AWARE GRASP ADAPTATION

Differences in DoF and kinematics result in different reachable workspaces and preferred strategies for a given task. In grasping a can, Franka often adopts an overhead approach, whereas the lower-DoF Piper favors lateral grasps; consequently, required approaches vary across embodiments (Fig. 5). To model this variation, we annotate each object with candidate manipulation poses that span multiple grasp axes and approach directions, capturing both manipulation diversity and robot-specific preferences. We further improve feasibility via angular perturbations oriented to high-reachability directions. For each object, candidate grasps are generated from preferred operation directions, randomized pose perturbations, and parallel motion-planning attempts. In experiment A.2, embodiment-aware augmentation raises automated data-collection success by 8.3% on average, with gains concentrated on low-DoF platforms (Aloha-AgileX +13.7%, Piper +22.7%, ARX-X5 +5.6%), while high-DoF arms (Franka, UR5) exhibit minimal change, consistent with greater kinematic flexibility.

3 ROBOTWIN 2.0 DATA GENERATOR, BENCHMARK AND RDDATASET

3.1 ROBOTWIN-OD: ROBOTWIN OBJECT DATASET

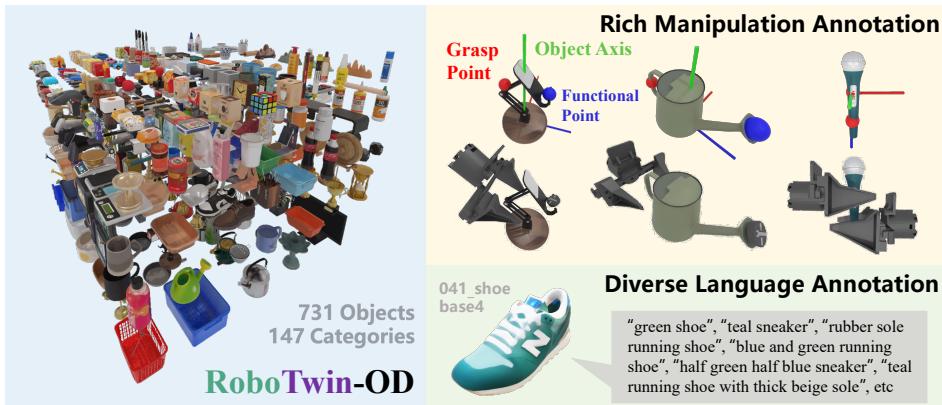


Figure 7: RoboTwin-OD. A large-scale object dataset with rich annotations.

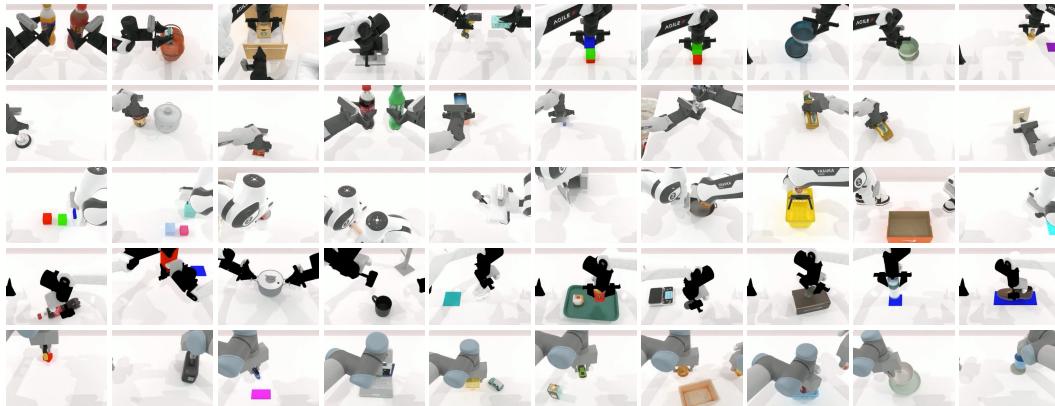
We build RoboTwin-OD, an object dataset with rich semantics covering 147 categories and 731 objects: 534 in-house instances across 111 categories reconstructed from RGB-to-3D via the Rodin platform rod, followed by convex decomposition and mesh merging for physically accurate collisions; 153 objects from 27 categories in Objaverse Deitke et al. (2023); and 44 articulated instances from 9 categories in SAPIEN PartNet-Mobility Xiang et al. (2020). All sources support cluttered scenes, with Objaverse enhancing the visual and semantic diversity of distractors. We also curate a texture library for surfaces and backgrounds using generative models with human-in-the-loop filtering. To support language grounding and robustness across diverse objects, we deploy an automated description generator with human verification, producing 15 annotations per object that vary in shape, texture, function, part structure, and granularity. For object-centric interaction, we annotate key point-axis information, including placement points, functional points, grasp points, and grasp axes, to encode affordances. Combined with our manipulation API library, these annotations enable generalizable grasp execution in simulation.

270
271

3.2 50 TASKS FOR DATA GENERATION AND BENCHMARKING

272
273
274
275
276
277

Building on automated task generation, embodiment-adaptive synthesis, and the RoboTwin-OD asset library, we define 50 dual-arm collaborative manipulation tasks. Data collection and evaluation are supported on five robot embodiments, enabling comprehensive cross-embodiment benchmarking; representative keyframes are shown in Fig. 8. We also release a pre-collected corpus of 100,000+ dual-arm trajectories across these tasks in RoboTwin 2.0.

291
292Figure 8: **50 Bimanual Manipulation Tasks with Multi-Embodiment Support per Task.**293
294

4 EXPERIMENT

295
296
297
298
299
300
301

We design experiments to evaluate RoboTwin 2.0 along four dimensions: (1) automating the generation of high-quality expert code for novel manipulation tasks; (2) establishing RoboTwin 2.0 as a standardized benchmark for policy generalization across tasks, scenes, and embodiments; (3) improving policy robustness to environmental variation via diversified training data; and (4) demonstrating sim-to-real transfer, whereby RoboTwin 2.0 enables deployment on real robots and confers strong policy generalization to variations in scene composition and appearance.

302
303
304
305
306
307
308
309
310
311
312
313

4.1 EVALUATION OF AUTOMATED EXPERT CODE GENERATION

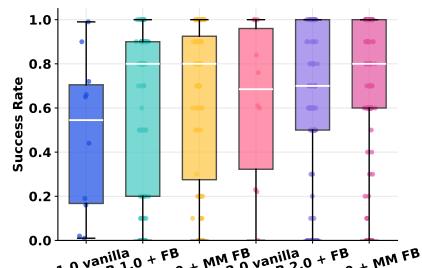
To assess whether closed-loop generation improves the quality and efficiency of expert programs, we evaluate the system on 10 manipulation tasks, each specified by a natural-language instruction. For each configuration, the code-generation agent emits multiple candidate programs that are executed in simulation to capture stochasticity in dynamics, control, and perception; task success is defined as the mean success rate over all executions. Performance is measured by **ASR** (average success rate), **Top5-ASR** (average of top-5 success rate), **CR-Iter** (average refinement iterations), and **Token** (average tokens in generated code). Results for RoboTwin 1.0 and 2.0 are reported in Table 1 under *Vanilla* (one-shot generation), *FB* (feedback-based repair using execution logs), and *MM FB* (multimodal feedback with vision-language diagnostics). Per-task success rates are provided in Appendix 11.

314
315
316
317

Table 1: **Overall performance on tasks shared by RoboTwin 1.0 and 2.0.** Per-task success rates are in Appendix 11.

318
319
320
321
322
323

Method	ASR	Top5-ASR	CR-Iter	Token
R1.0 Vanilla	47.4%	57.6%	1.00	1236.6
R1.0 + FB	60.4%	71.4%	2.46	1190.4
R1.0 + MM FB	63.9%	74.2%	2.42	1465.0
R2.0 Vanilla	62.1%	68.0%	1.00	569.4
R2.0 + FB	66.7%	73.6%	1.89	581.6
R2.0 + MM FB	71.3%	78.6%	1.76	839.7

Figure 9: **Success Rate Distribution.**

324 Across all settings, multimodal feedback improves performance. In RoboTwin 1.0, ASR increases
 325 from 47.4% (Vanilla) to 63.9% (MM FB); in RoboTwin 2.0, from 62.1% to 71.3%. Top5-ASR also
 326 rises, indicating disproportionate gains for the best candidate programs. RoboTwin 2.0 converges
 327 faster than 1.0 (CR-Iter 1.76 vs. 2.42 under MM FB) and reduces token usage, especially in Vanilla
 328 (569.4 vs. 1236.6), reflecting more concise initial code. Figure 9 further shows that feedback narrows
 329 the success-rate distribution and raises the median; with multimodal feedback, RoboTwin 2.0 exhibits
 330 a compact distribution centered above 80%. Overall, three findings emerge: (1) vision–language
 331 feedback not only detects failures but also guides precise repairs; (2) architectural improvements in
 332 RoboTwin 2.0 accelerate convergence and reduce token usage; and (3) combining symbolic execution
 333 logs with perceptual diagnostics yields more reliable, semantically aligned expert data. Together,
 334 these results validate the effectiveness of our closed-loop, self-improving code generation architecture.
 335 Detailed setups, metric definitions, and additional analyses are provided in Appendix A.10.

336 4.2 ROBOTWIN 2.0 BENCHMARK

337 We present the RoboTwin 2.0 Benchmark for evaluating policy performance. Results on 50 RoboTwin
 338 tasks are reported in Appendix A.19, and Tab. 2 summarizes the average performance of RGB-
 339 based policies across evaluation settings. To assess generalization, we evaluate all 50 tasks on the
 340 Aloha–AgileX dual-arm platform. For each task, we train on 50 clean expert demonstrations and
 341 test with 100 rollouts under two conditions: *Easy* (no domain randomization) and *Hard* (domain
 342 randomization with clutter, lighting, texture, and height variation). We report success rate as the
 343 metric of few-shot adaptability and robustness. Appendix A.13 visualizes the benchmark setup, and
 344 Appendix A.5 details all training protocols.

345 Table 2: **Average Result of RoboTwin 2.0 Benchmark.** Full results are in Appendix A.19.

346 Simulation Tasks	347 RDT		348 Pi0		349 ACT		350 DP		351 DP3	
	352 Easy	353 Hard	354 Easy	355 Hard	356 Easy	357 Hard	358 Easy	359 Hard	360 Easy	361 Hard
<i>Average (in %)</i>	34.5	13.7	46.4	16.3	29.7	1.7	28.0	0.6	55.2	5.0

352 As shown in Tab. 2, under the Easy condition, ACT and DP perform substantially worse than
 353 the pretrained models RDT and Pi0 (29.7%, 28.0% vs. 34.5%, 46.4%), indicating that vi-
 354 sion–language–action pretraining supplies strong priors that enable rapid policy learning from 50
 355 demonstrations. Compared with RGB-based policies, DP3 attains the best few-shot performance
 356 in Easy (55.2%), highlighting the contribution of 3D information; however, its high success rate
 357 is partly attributable to idealized simulated depth and clean background segmentation. From the
 358 clean to the randomized Hard setting, all methods degrade: the non-pretrained models ACT, DP, and
 359 DP3 drop to 1.7%, 0.6%, and 5.0%, respectively, whereas RDT and Pi0 remain higher at 13.7% and
 360 16.3%. These results indicate that vision–language–action pretraining provides useful priors for scene
 361 generalization and improves robustness to environmental variation, yet robustness under domain shift
 362 remains a central challenge. In conjunction with Secs. 4.3 and 4.4, these findings underscore the
 363 value of RoboTwin 2.0 as both a complementary dataset and a benchmark for systematic evaluation.

364 4.3 ASSESSING THE IMPACT OF ROBOTWIN 2.0 ON POLICY ROBUSTNESS

365 We evaluate whether domain-randomized data in RoboTwin 2.0 enhances robustness to environmental
 366 perturbations. RDT and Pi0 are pre-trained on 9,600 expert trajectories drawn from 32 tasks (300
 367 per task) under clean and domain-randomized settings. Off-the-shelf pretrained RDT and Pi0 are
 368 included as reference models without further fine-tuning. Generalization is examined on five unseen
 369 tasks using 50 clean demonstrations per task for single-task training and subsequent fine-tuning. ACT,
 370 DP, RDT, and Pi0 are then evaluated under domain-randomized conditions in previously unseen
 371 environments to quantify robustness. Detailed configurations are provided in Appendix A.4 and A.5.

372 As shown in Table 3, fine-tuning on clean data yields negligible gains in average success rate
 373 relative to pretrained baselines, indicating that non-randomized data do not improve robustness to
 374 environmental variation. This further suggests that the low simulated performance of pretrained VLA
 375 models is not attributable to a real-to-sim gap, since adding clean simulated data produces no clear
 376 benefit. In contrast, pretraining with RoboTwin 2.0 data substantially improves generalization: RDT
 377 and Pi0 attain relative gains of 31.9% and 29.3%, respectively. Notably, these gains persist even when

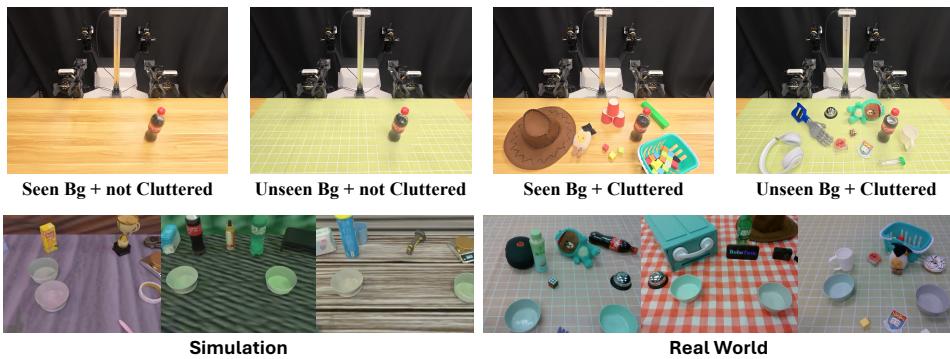
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
378 Table 3: **Evaluating the Impact of RoboTwin 2.0 on Policy Robustness.**

Simulation Tasks	ACT	DP	RDT	RDT +Clean	RDT +Rand.	Pi0	Pi0 +Clean	Pi0 +Rand.
Stack Bowls Two	0.0%	0.0%	30.0%	8.0%	49.0%	41.0%	55.0%	62.0%
Pick Dual Bottles	0.0%	0.0%	13.0%	12.0%	17.0%	12.0%	15.0%	7.0%
Move Can Pot	4.0%	0.0%	12.0%	13.0%	18.0%	21.0%	35.0%	22.0%
Place Object Basket	0.0%	0.0%	17.0%	9.0%	6.0%	2.0%	8.0%	22.0%
Place Shoe	0.0%	0.0%	7.0%	9.0%	30.0%	6.0%	6.0%	18.0%
Open Laptop	0.0%	0.0%	32.0%	21.0%	35.0%	46.0%	33.0%	50.0%
Press Stapler	6.0%	0.0%	24.0%	21.0%	27.0%	29.0%	26.0%	31.0%
Turn Switch	2.0%	1.0%	15.0%	24.0%	16.0%	23.0%	21.0%	21.0%
<i>Average</i>	2.0%	0.1%	18.8%	14.6%	24.8%	22.5%	24.9%	29.1%

395 downstream training uses only clean, non-randomized data, demonstrating that domain-randomized
396 pretraining with RoboTwin 2.0 confers robustness to visual and spatial variation. Consequently,
397 models pretrained with RoboTwin 2.0 adapt to new tasks without additional augmentation or complex
398 scene variation.

4.4 EVALUATION ON SIM-TO-REAL PERFORMANCE

402 To assess RoboTwin 2.0’s impact on real-world robustness, we evaluate four bimanual tasks: *Stack*
403 *Bowls*, *Handover Block*, *Pick Bottle*, and *Click Bell*. All experiments use RDT as the policy backbone
404 on the COBOT-Magic dual-arm platform. We compare three training regimes: (1) 10 real-world
405 demonstrations collected in clean tabletop environments; (2) the same demonstrations augmented
406 with 1,000 domain-randomized synthetic trajectories generated under clutter, varied lighting, and
407 diverse backgrounds; and (3) a synthetic-only model trained on the 1,000 synthetic trajectories. To
408 improve robustness to camera jitter and calibration error, we apply random 3D perturbations to
409 simulated camera poses (position and orientation), with translation magnitude bounded by 1 cm.
410 We evaluate under four configurations: clean vs. cluttered tabletops crossed with seen vs. unseen
411 backgrounds (Fig. 10). The synthetic-only model excludes seen backgrounds during training, so the
412 corresponding entries in Table 4 are omitted. This setup tests whether RoboTwin 2.0 supports robust
413 generalization without additional real-world data from visually complex scenes.

425
426
427
428
429
430
431
Figure 10: **Real-World Evaluation Configurations and Sim-Real Comparison.**

432 RoboTwin 2.0 augmentation yields substantial robustness improvements in real-world bimanual
433 policies. In the few-shot setting, which combines 1,000 domain-randomized synthetic trajectories
434 with 10 real demonstrations, the average success rate across all evaluation configurations increases by
435 24.4%, with per-configuration gains of 13.5%, 27.5%, 23.5%, and 33.0%. In the zero-shot setting
436 trained solely on synthetic data, the two unseen-background configurations improve by 21.0% and
437 20.5%. These gains are larger in visually complex scenes, indicating particular effectiveness under

432 **Table 4: Real-World Experiment Results.** We conduct controlled experiments on 4 dual-arm tasks:
 433 *Stack Bowls*, *Handover Block*, *Pick Bottle*, and *Click Bell*, each evaluated under 4 different settings.

435	436	Real World Task	Background Type	Cluttered or Not	10 Clean Real	10 Clean Real + 1k RoboTwin 2.0	1k RoboTwin 2.0 (Zero-shot)
437	Stack Bowls	Seen	False	22.0%	64.0%	/	/
438			True	12.0%	58.0%	/	/
439		Unseen	False	10.0%	50.0%	60.0%	52.0%
440			True	12.0%	56.0%		
441	Handover Block	Seen	False	40.0%	48.0%	/	/
442			True	16.0%	12.0%	/	/
443		Unseen	False	36.0%	56.0%	56.0%	
444			True	0.0%	36.0%	20.0%	
445	Pick Bottle	Seen	False	20.0%	36.0%	/	/
446			True	8.0%	40.0%	/	/
447		Unseen	False	4.0%	26.0%	10.0%	
448			True	8.0%	28.0%	32.0%	
449	Click Bell	Seen	False	36.0%	24.0%	/	/
450			True	20.0%	56.0%	/	/
451		Unseen	False	12.0%	24.0%	20.0%	
452			True	16.0%	48.0%	14.0%	
453	Average	Seen	False	29.5%	43.0% <small>+13.5%</small>	/	/
454			True	14.0%	41.5% <small>+27.5%</small>	/	/
455		Unseen	False	15.5%	39.0% <small>+23.5%</small>	36.5% <small>+21.0%</small>	
456			True	9.0%	42.0% <small>+33.0%</small>	29.5% <small>+20.5%</small>	

457 challenging conditions. We attribute the improvements to three factors: (1) the high visual and
 458 physical fidelity of RoboTwin 2.0, which enables direct sim-to-real transfer; (2) domain-randomized
 459 synthetic data that conditions policies on environmental variations absent from clean real-world
 460 demonstrations; and (3) large-scale simulation-based randomization that increases scene diversity
 461 and strengthens cross-scene transfer. Overall, these results suggest that a small amount of real-world
 462 data, when combined with rich RoboTwin 2.0 simulation, is sufficient to substantially narrow the
 463 sim-to-real gap.

466 **Table 5: Real robot performance with different sim–real mixtures.**

468	Click Bell	Place Empty Cup	Stack Bowls Two	Average
469	50 real	15.0%	10.0%	0.0%
470	300 sim + 0 real	35.0%	10.0%	0.0%
471	300 sim + 10 real	40.0%	25.0%	10.0%
472	300 sim + 30 real	55.0%	35.0%	20.0%
473	300 sim + 50 real	65.0%	50.0%	25.0%
474				46.7%

475 Beyond the above RDT-based dual-arm experiments, we further study how RoboTwin 2.0 interacts
 476 with larger amounts of real data and a different policy backbone. Specifically, we vary the ratio of
 477 real-world and simulated demonstrations and evaluate the resulting pi0 policies on real robots. On
 478 three tasks (*Click Bell*, *Place Empty Cup*, *Stack Bowls Two*), we compare: (i) 50 real demonstrations
 479 collected in a fixed scene; (ii) 300 domain-randomized simulated demonstrations; and (iii) mixtures
 480 of 300 simulated demonstrations with 0, 10, 30, or 50 real demonstrations. Each model is evaluated
 481 over 20 trials per task in unseen real scenes. As shown in Table 5, simulation-only training already
 482 outperforms real-only training, and adding modest amounts of real data on top of RoboTwin 2.0
 483 simulation leads to consistent gains, reaching 46.7% average success with 300 sim + 50 real demon-
 484 strations. Taken together with the RDT results, these findings indicate that RoboTwin 2.0 not only
 485 enables strong zero-shot transfer, but also continues to provide sizeable benefits in more data-rich
 real-world regimes and across different policy architectures.

486

5 RELATED WORKS

487

5.1 DATASETS AND BENCHMARKS FOR ROBOTIC MANIPULATION

490 Physics-based simulators underpin much of manipulation research. SAPIEN Xiang et al. (2020)
 491 supports dynamic interaction with 2,300+ articulated objects, and ManiSkill2 Gu et al. (2023)
 492 provides millions of demonstrations. Meta-World Yu et al. (2020), CALVIN Mees et al. (2022),
 493 LIBERO Liu et al. (2023), and RoboVerse Geng et al. (2025) target multi-task, language-conditioned,
 494 lifelong, or domain-randomized settings, while RoboCasa Nasiriany et al. (2024) offers large-
 495 scale human demonstrations but lacks automation and a dual-arm focus. On the real-world side,
 496 large datasets such as AgiBot World Bu et al. (2025), RoboMIND Wu et al. (2024), Open X-
 497 Embodiment O’Neill et al. (2024), and Bridge Ebert et al. (2021) bridge sim-to-real with millions of
 498 trajectories.

499 Building on RoboTwin-1.0 Mu et al. (2025), RoboTwin 2.0 integrates LLM-driven feedback and
 500 systematic domain randomization over visual, physical, and task factors, yielding richer corpora and
 501 stronger generalization (Appendix A.3). Compared with prior OOD manipulation benchmarks such
 502 as GEMBench Garcia et al. (2025) and The Colosseum Pumacay et al. (2024), RoboTwin 2.0 provides
 503 much larger scale and richer domain randomization, with more than 700 assets, over 11k background
 504 textures, and 50 bimanual tasks across five embodiments. It extends domain randomization from
 505 attribute-level and evaluation-time perturbations to large-scale visual and geometric diversity, cluttered
 506 scene composition, and diverse language instructions that are applied consistently during both training
 507 and evaluation.

508

5.2 ROBOT LEARNING IN MANIPULATION

510 Task-specific policies Wang et al. (2024); Ke et al. (2024); Ze et al. (2024); Chi et al. (2023); Fu et al.
 511 (2024); Chen et al. (2025a); Liang et al. (2025; 2023; 2024); Wen et al. (2025b;a); Chen et al. (2025b)
 512 excel on individual tasks yet transfer poorly across embodiments. Foundation models trained on
 513 million-scale, multi-robot data generalize better: RT-1 Brohan et al. (2022) unifies vision, language,
 514 and action; RT-2 Brohan et al. (2023) co-fine-tunes vision–language models on web and robot data
 515 for semantic planning; RDT-1B Liu et al. (2024) and π_0 Black et al. (2024) use $> 1M$ episodes
 516 to capture diverse bimanual dynamics. OpenVLA Kim et al. and CogACT Li et al. (2024), with
 517 Octo Team et al. (2024), LAPA Ye et al., and OpenVLA-OFT Kim et al. (2025), demonstrate efficient
 518 adaptation to new robots and sensors. We contribute digital-twin data collection and broad domain
 519 randomization to produce realistic datasets that support robust, generalizable bimanual policies.

520

6 CONCLUSION

521 This paper introduced RoboTwin 2.0, a scalable simulation framework for generating diverse, high-
 522 fidelity expert data for robust bimanual manipulation. The system integrates MLLM-based expert
 523 code generation, embodiment-adaptive behavior synthesis, and comprehensive domain randomization,
 524 addressing key limitations of prior synthetic data generators. Leveraging an annotated object library
 525 and automated trajectory synthesis, RoboTwin 2.0 produces visually, linguistically, and physically rich
 526 datasets while reducing manual effort. Experiments demonstrate consistent improvements in cluttered
 527 scenes, enhanced generalization to unseen tasks, and reliable cross-embodiment transfer; notably,
 528 few-shot and zero-shot evaluations indicate measurable sim-to-real improvements, showing that
 529 domain-randomized, semantically grounded synthetic data can substantially reduce real-world data
 530 requirements. To support the community, we release as open source RoboTwin-OD, a pre-collected
 531 trajectory dataset, a standardized benchmark, and a scalable data-collection toolchain. RoboTwin 2.0
 532 provides a principled basis for unified benchmarking and scalable sim-to-real pipelines.

533

ETHICS STATEMENT

534 Our study investigates simulation-based data generation and policy learning for robotic manipulation.
 535 Experiments were conducted in simulation and in controlled laboratory settings without human
 536 subjects, personally identifiable information, or sensitive biometric data; therefore, institutional
 537 review (IRB) was not required. All physical experiments followed standard lab safety protocols

(e.g., emergency stop, workspace clearance, tool guards). We release assets and code under research-friendly licenses and comply with third-party licenses for simulators and object models. To reduce representational bias, our benchmark includes diverse scenes, clutter levels, lighting conditions, and multi-embodiment tasks; nevertheless, residual biases may persist (e.g., category coverage, tabletop assumptions). Potential dual-use risks—such as automating unsafe behaviors—are mitigated by (1) restricting release to research use, (2) documenting known failure modes, and (3) providing safety guidelines for real-robot deployment. We disclose compute usage and hardware in the appendix to support environmental transparency. The authors report no conflicts of interest and adhered to the ICLR Code of Ethics throughout submission, reviewing interactions, and discussion.

REPRODUCIBILITY STATEMENT

We take several steps to enable reproducibility. The paper specifies model and training details for all baselines (ACT, DP, DP3, RDT, Pi0) and our methods, including architectures, hyperparameters, and optimization settings (see Sec. 2 and Sec. 4). We fix random seeds and specify hardware/software stacks (CUDA/driver, simulator version) to minimize variance; instructions for reproducing tables and figures from scratch are provided in a README.

REFERENCES

Rodin platform. URL <https://hyper3d.ai/>.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. *pi_0*: A vision-language-action flow model for general robot control. *arXiv preprint arXiv:2410.24164*, 2024.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. *arXiv preprint arXiv:2212.06817*, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action models transfer web knowledge to robotic control. *arXiv preprint arXiv:2307.15818*, 2023.

Qingwen Bu, Jisong Cai, Li Chen, Xiuqi Cui, Yan Ding, Siyuan Feng, Shenyuan Gao, Xindong He, Xu Huang, Shu Jiang, et al. Agibot world colosseo: A large-scale manipulation platform for scalable and intelligent embodied systems. *arXiv preprint arXiv:2503.06669*, 2025.

Tianxing Chen, Yao Mu, Zhixuan Liang, Zanxin Chen, Shijia Peng, Qiangyu Chen, Mingkun Xu, Ruizhen Hu, Hongyuan Zhang, Xuelong Li, et al. G3flow: Generative 3d semantic flow for pose-aware and generalizable object manipulation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 1735–1744, 2025a.

Tianxing Chen, Kaixuan Wang, Zhaohui Yang, Yuhao Zhang, Zanxin Chen, Baijun Chen, Wanxi Dong, Ziyuan Liu, Dong Chen, Tianshuo Yang, et al. Benchmarking generalizable bimanual manipulation: Robotwin dual-arm collaboration challenge at cvpr 2025 meis workshop. *arXiv preprint arXiv:2506.23351*, 2025b.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The International Journal of Robotics Research*, pp. 02783649241273668, 2023.

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing textures in the wild. In *Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)*, 2014.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of annotated 3d objects. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 13142–13153, 2023.

594 Shengliang Deng, Mi Yan, Songlin Wei, Haixin Ma, Yuxin Yang, Jiayi Chen, Zhiqi Zhang, Taoyu
 595 Yang, Xuheng Zhang, Heming Cui, et al. Graspvla: a grasping foundation model pre-trained on
 596 billion-scale synthetic action data. *arXiv preprint arXiv:2505.03233*, 2025.

597

598 Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Georgakis, Kostas
 599 Daniilidis, Chelsea Finn, and Sergey Levine. Bridge data: Boosting generalization of robotic skills
 600 with cross-domain datasets. *arXiv preprint arXiv:2109.13396*, 2021.

601

602 Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
 603 Qin, Ting Liu, Dixin Jiang, et al. Codebert: A pre-trained model for programming and natural
 604 languages. *arXiv preprint arXiv:2002.08155*, 2020.

605

606 Zipeng Fu, Tony Z Zhao, and Chelsea Finn. Mobile aloha: Learning bimanual mobile manipulation
 607 with low-cost whole-body teleoperation. *arXiv preprint arXiv:2401.02117*, 2024.

608

609 Ricardo Garcia, Shizhe Chen, and Cordelia Schmid. Towards generalizable vision-language robotic
 610 manipulation: A benchmark and llm-guided 3d policy. In *International Conference on Robotics
 and Automation (ICRA)*, 2025.

611

612 Haoran Geng, Feishi Wang, Songlin Wei, Yuyang Li, Bangjun Wang, Boshi An, Charlie Tianyue
 613 Cheng, Haozhe Lou, Peihao Li, Yen-Jen Wang, et al. Roboverse: Towards a unified plat-
 614 form, dataset and benchmark for scalable and generalizable robot learning. *arXiv preprint
 arXiv:2504.18904*, 2025.

615

616 Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone Tao,
 617 Xinyue Wei, Yunchao Yao, et al. Maniskill2: A unified benchmark for generalizable manipulation
 618 skills. In *The Eleventh International Conference on Learning Representations*, 2023.

619

620 Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. Unixcoder: Unified
 621 cross-modal pre-training for code representation. *arXiv preprint arXiv:2203.03850*, 2022.

622

623 Pu Hua, Minghuan Liu, Annabella Macaluso, Yunfeng Lin, Weinan Zhang, Huazhe Xu, and Lirui
 624 Wang. Gensim2: Scaling robot data generation with multi-modal and reasoning llms. In *8th
 Annual Conference on Robot Learning*.

625

626 Tsung-Wei Ke, Nikolaos Gkanatsios, and Katerina Fragkiadaki. 3d diffuser actor: Policy diffusion
 627 with 3d scene representations. *arXiv preprint arXiv:2402.10885*, 2024.

628

629 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 630 Rafael Rafailov, Ethan P Foster, Pannag R Sanketi, Quan Vuong, et al. Openvla: An open-source
 631 vision-language-action model. In *8th Annual Conference on Robot Learning*.

632

633 Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Optimizing
 634 speed and success. *arXiv preprint arXiv:2502.19645*, 2025.

635

636 Zhiqian Lan, Yuxuan Jiang, Ruiqi Wang, Xuanbing Xie, Rongkui Zhang, Yicheng Zhu, Peihang
 637 Li, Tianshuo Yang, Tianxing Chen, Haoyu Gao, et al. Autobio: A simulation and benchmark for
 638 robotic automation in digital biology laboratory. *arXiv preprint arXiv:2505.14030*, 2025.

639

640 Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng,
 641 Sicheng Xu, Yizhong Zhang, et al. Cogact: A foundational vision-language-action model for
 642 synergizing cognition and action in robotic manipulation. *arXiv preprint arXiv:2411.19650*, 2024.

643

644 Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdiffuser:
 645 Diffusion models as adaptive self-evolving planners. In *International Conference on Machine
 646 Learning*, pp. 20725–20745. PMLR, 2023.

647

648 Zhixuan Liang, Yao Mu, Hengbo Ma, Masayoshi Tomizuka, Mingyu Ding, and Ping Luo. Skilldif-
 649 fuser: Interpretable hierarchical planning via skill abstractions in diffusion-based task execution.
 650 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 651 16467–16476, 2024.

648 Zhixuan Liang, Yao Mu, Yixiao Wang, Tianxing Chen, Wenqi Shao, Wei Zhan, Masayoshi Tomizuka,
 649 Ping Luo, and Mingyu Ding. Dexhanddiff: Interaction-aware diffusion planning for adaptive dex-
 650 terous manipulation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 651 pp. 1745–1755, 2025.

652 Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
 653 Benchmarking knowledge transfer for lifelong robot learning. *Advances in Neural Information
 654 Processing Systems*, 36:44776–44791, 2023.

655 Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang
 656 Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. *arXiv preprint
 657 arXiv:2410.07864*, 2024.

658 Xiaoxiao Long, Qingrui Zhao, Kaiwen Zhang, Zihao Zhang, Dingrui Wang, Yumeng Liu, Zhengjie
 659 Shu, Yi Lu, Shouzheng Wang, Xinzhe Wei, Wei Li, Wei Yin, Yao Yao, Jia Pan, Qiu Shen, Ruigang
 660 Yang, Xun Cao, and Qionghai Dai. A survey: Learning embodied intelligence from physical
 661 simulators and world models, 2025. URL <https://arxiv.org/abs/2507.00917>.

662 Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
 663 language-conditioned policy learning for long-horizon robot manipulation tasks. *IEEE Robotics
 664 and Automation Letters*, 7(3):7327–7334, 2022.

665 Yao Mu, Tianxing Chen, Zanxin Chen, Shijia Peng, Zhiqian Lan, Zeyu Gao, Zhixuan Liang, Qiaojun
 666 Yu, Yude Zou, Mingkun Xu, et al. Robotwin: Dual-arm robot benchmark with generative digital
 667 twins. *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 2025.

668 Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
 669 Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for generalist
 670 robots. In *Robotics: Science and Systems (RSS)*, 2024.

671 Abby O'Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
 672 Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
 673 Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In *2024 IEEE
 674 International Conference on Robotics and Automation (ICRA)*, pp. 6892–6903. IEEE, 2024.

675 Wilbert Pumacay, Ishika Singh, Jiafei Duan, Ranjay Krishna, Jesse Thomason, and Dieter Fox. The
 676 colosseum: A benchmark for evaluating generalization for robotic manipulation. *arXiv preprint
 677 arXiv:2402.08191*, 2024.

678 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 679 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 680 models from natural language supervision. In *International conference on machine learning*, pp.
 681 8748–8763. PMLR, 2021.

682 Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou,
 683 Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis.
 684 *arXiv preprint arXiv:2009.10297*, 2020.

685 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 686 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Confer-
 687 ence on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, June 2022.

688 Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
 689 Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
 690 policy. *arXiv preprint arXiv:2405.12213*, 2024.

691 Chenxi Wang, Hongjie Fang, Hao-Shu Fang, and Cewu Lu. Rise: 3d perception makes real-world
 692 robot imitation simple and effective. In *2024 IEEE/RSJ International Conference on Intelligent
 693 Robots and Systems (IROS)*, pp. 2870–2877. IEEE, 2024.

694 Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang, Yian Wang, Katerina Fragkiadaki, Zackory
 695 Erickson, David Held, and Chuang Gan. Robogen: Towards unleashing infinite data for automated
 696 robot learning via generative simulation, 2023.

702 Junjie Wen, Yichen Zhu, Jinming Li, Zhibin Tang, Chaomin Shen, and Feifei Feng. Dexvla:
 703 Vision-language model with plug-in diffusion expert for general robot control. *arXiv preprint*
 704 *arXiv:2502.05855*, 2025a.

705 Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Zhibin Tang, Kun Wu, Zhiyuan Xu, Ning Liu, Ran
 706 Cheng, Chaomin Shen, Yixin Peng, Feifei Feng, and Jian Tang. Tinyvla: Toward fast, data-efficient
 707 vision-language-action models for robotic manipulation. *IEEE Robotics and Automation Letters*,
 708 10(4):3988–3995, 2025b. doi: 10.1109/LRA.2025.3544909.

709 Wu Wen, Xiaobo Xue, Ya Li, Peng Gu, and Jianfeng Xu. Code similarity detection using ast and
 710 textual information. *International Journal of Performability Engineering*, 15(10):2683, 2019.

711 Kun Wu, Chengkai Hou, Jiaming Liu, Zhengping Che, Xiaozhu Ju, Zhuqin Yang, Meng Li, Yinuo
 712 Zhao, Zhiyuan Xu, Guang Yang, et al. Robomind: Benchmark on multi-embodiment intelligence
 713 normative data for robot manipulation. *arXiv preprint arXiv:2412.13877*, 2024.

714 Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
 715 Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interactive environment.
 716 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 717 11097–11107, 2020.

718 Seonghyeon Ye, Joel Jang, Byeongguk Jeon, Se June Joo, Jianwei Yang, Baolin Peng, Ajay Mandlekar,
 719 Reuben Tan, Yu-Wei Chao, Bill Yuchen Lin, et al. Latent action pretraining from videos. In *CoRL*
 720 *2024 Workshop on Whole-body Control and Bimanual Manipulation: Applications in Humanoids*
 721 *and Beyond*.

722 Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
 723 Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
 724 In *Conference on robot learning*, pp. 1094–1100. PMLR, 2020.

725 Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
 726 policy. *arXiv e-prints*, pp. arXiv–2403, 2024.

727 Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martín-Martín, Abhishek Joshi, Soroush Nasiriany,
 728 and Yifeng Zhu. robosuite: A modular simulation framework and benchmark for robot learning.
 729 *arXiv preprint arXiv:2009.12293*, 2020.

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX**
757758 **A.1 THE USE OF LARGE LANGUAGE MODELS**
759760 No large language models or AI-assisted tools were used at any stage of this work, including writing,
761 coding, data processing, analysis, figure generation, or conclusions. All text and code were authored,
762 reviewed, verified, and tested solely by the authors, who take full responsibility for the content and
763 any errors.764 **A.2 EVALUATING EFFICIENCY WITH AND WITHOUT ADAPTIVE GRASPING**
766767 **Table 6: Overall Performance Comparison between RoboTwin 1.0 and RoboTwin 2.0.**
768

Method	Aloha-AgileX	Piper	Franka	UR5	ARX-X5	Average
RoboTwin 1.0	65.1%	2.4%	67.3%	57.6%	68.6%	52.2%
RoboTwin 2.0	78.8%	25.1%	67.2%	57.1%	74.2%	60.5%
<i>Difference</i>	+13.7%	+22.7%	-0.1%	-0.5%	+5.6%	+8.3%

775 We evaluate embodiment-aware grasp augmentation by measuring automated data-collection success
776 on 50 RoboTwin 2.0 tasks across five robot embodiments. As shown in Table 6, our pipeline
777 outperforms the RoboTwin 1.0 baseline, which lacks diverse grasping and candidate augmentation,
778 with an average gain of 8.3%. Benefits are concentrated on lower-DoF platforms: Aloha-AgileX,
779 Piper, and ARX-X5 improve by 13.7%, 22.7%, and 5.6%, respectively. High-DoF arms with large
780 reachable workspaces, such as Franka and UR5 (7-DoF), show little change, consistent with sufficient
781 kinematic flexibility. These results indicate that augmentation supplies additional feasible grasps that
782 mitigate planning constraints on low-DoF manipulators. Full results are reported in Appendix A.20.
783784 **A.3 BENCHMARKING ROBOTWIN 2.0 AGAINST EXISTING DATASETS**
785786 We compare RoboTwin 2.0 against existing benchmarks and datasets across several key dimensions,
787 including the number of supported tasks, the presence of domain randomization, support for automatic
788 data generation, and compatibility with vision-language-action (VLA) model training and evaluation.
789 The comparison is summarized in Table 7.790 **Table 7: Comparison of RoboTwin 2.0 with previous manipulation benchmarks and datasets.**
791

Benchmark & Dataset	#Tasks	Domain Randomization	Auto Data Generation	VLA Model Train & Eval
Meta-world Yu et al. (2020)	50	✗	✓	✗
Robosuite Zhu et al. (2020)	9	✗	✗	✗
RoboCasa Yu et al. (2020)	25	✓	✗	✗
Maniskill2 Gu et al. (2023)	20	✗	✓	✗
AutoBio Lan et al. (2025)	16	✗	✓	✓
RoboTwin 1.0 Mu et al. (2025)	14	✗	✓	✓
RoboTwin 2.0 (ours)	50	✓	✓	✓

801 **A.4 DOMAIN RANDOMIZATION SETTING**
802803 Domain randomization in all experiments includes cluttered scenes, random lighting, table height
804 variation (up to 3 cm), unseen language instructions and randomized background textures.
805806 **A.5 POLICIES TRAINING DETAILS**
807808 We adopt joint angles as the model’s prediction target, formulating action prediction as joint-angle
809 regression.

RDT in experiment 4.3 was finetuned for 100,000 steps with a batch size of 16 per GPU on 8 GPUs, and all single-task fine-tuning was conducted for 10,000 steps with a batch size of 16 per GPU on 4 GPUs. In all cases, we initialize from the publicly released RDT pretrained weights.

Pi0 in experiment 4.3 was pretrained for 100,000 steps with a batch size of 32, and all fine-tuning was performed for 30,000 steps using the same batch size with LoRA-based fine-tuning. In all cases, we initialize from the publicly released Pi0 pretrained weights.

ACT was trained under a unified setup with a chunk size of 50, batch size of 8, and single-GPU training for 6,000 epochs. During deployment, we applied `temporal_agg` for temporal aggregation to improve execution stability.

DP was trained for 600 epochs with a batch size of 128 and a planning horizon of 8.

DP3 was trained for 3,000 epochs with a batch size of 256, using a planning horizon of 8 and a point cloud resolution of 1,024, with precise segmentation of the background and tabletop.

A.6 ABLATION ON DOMAIN RANDOMIZATION FACTORS

To understand which domain randomization factors contribute most to policy robustness, we conduct an ablation study and report the results in Table 8. For each factor (background, clutter, table height, lighting), we disable only that factor’s randomization, collect 100 trajectories for training, and then evaluate the resulting policy under the full domain randomized setting. This isolates the contribution of each factor while keeping all other conditions fixed. The table reports success rates (in %) for four representative tasks, with ACT and DP shown as “ACT / DP” in each cell. Disabling background or clutter randomization leads to the largest performance drops, while turning off height or lighting randomization results in smaller but still noticeable degradation. When all randomization factors are disabled, the success rate becomes very low, indicating that our visual domain randomization, especially in background and clutter, is a primary driver of learning robust behaviors.

Table 8: **Ablation on domain randomization factors.** Each entry shows success rate (in %) for ACT / DP. “BG” denotes background randomization.

Task	BG↓	Clutter↓	Height↓	Light↓	All Rand.↓
Adjust Bottle	50 / 49	64 / 91	94 / 89	95 / 98	23 / 0
Beat Block Hammer	3 / 2	4 / 39	3 / 23	7 / 65	3 / 0
Move Can Pot	31 / 4	28 / 29	53 / 37	41 / 34	4 / 0
Stack Bowls Two	14 / 3	35 / 64	29 / 60	36 / 81	0 / 0
Average	24.5 / 14.5	32.8 / 55.8	44.8 / 52.3	44.8 / 69.5	7.5 / 0

A.7 ROBUSTNESS UNDER DYNAMIC SCENE CHANGES

In Sec. 4.4, our notion of robustness refers to robustness to substantial variations in scene layout and background appearance, rather than arbitrary external disturbances. To make this explicit, we conduct additional real robot experiments that focus on dynamically changing scenes. On three real world tasks with pi0, we train two policies: one using 50 real demonstrations collected in a single fixed scene (“50 real”), and one using 300 domain randomized simulated demonstrations from RoboTwin 2.0 combined with the same 50 real demonstrations (“300 sim + 50 real”). During evaluation, we deliberately introduce dynamic perturbations by randomly moving scene objects and changing the tabletop background between episodes. As shown in Table 9, the policy trained only on fixed scene real data completely fails in this setting (0.0% success on all three tasks), whereas the policy trained with RoboTwin 2.0 augmented data maintains a 26.7% average success rate. This large gap under dynamic scene changes supports our claim that RoboTwin 2.0 significantly improves policy robustness to realistic visual and spatial variations.

A.8 SUPPORT FOR FLEXIBLE EMBODIMENT COMBINATIONS

Our object-centric, embodiment-agnostic data generation framework enables seamless deployment across a wide range of dual-arm robotic systems. The pipeline supports flexible embodiment configurations, allowing arbitrary combinations of heterogeneous manipulators and relative arm placements.

864 Table 9: **Real robot performance under dynamic scene changes.** Success rate in %.
865

	Click Bell	Place Empty Cup	Stack Bowls Two	Average
50 real	0.0%	0.0%	0.0%	0.0%
300 sim + 50 real	40.0%	30.0%	10.0%	26.7%

866
867
868
869
870
871 This design ensures compatibility with diverse hardware setups and facilitates extensibility to future
872 robotic platforms.
873874 Figure 11: **Heterogeneous Dual-Arm Control via Object-Centric Manipulation.**
875876 To execute high-success-rate manipulation trajectories across different embodiments (see Section 2.3),
877 we integrate Curobo, a high-performance, GPU-accelerated motion planner that enables efficient and
878 reliable planning under varied kinematic constraints.
879880 Currently, our framework supports five robotic arms—Franka, Piper, UR5, ARX-X5, and Aloha-
881 AgileX—along with multiple gripper types, including the Panda gripper and WSG gripper. As
882 shown in Fig. 11, we demonstrate successful task executions across a variety of dual-arm pairings,
883 highlighting RoboTwin 2.0’s ability to scale to heterogeneous robot configurations and its readiness
884 for future real-world deployment.
885886 A.9 IMPROVEMENTS OF ROBOTWIN 2.0 OVER ROBOTWIN 1.0 POLICY CODEBASE
887

Metric	RoboTwin 1.0	RoboTwin 2.0
Prompt Token Length ↓	5901.0	4719.1
Code Token Length ↓	1236.6	569.4
Parallelism Control ↑	✗	✓
AST Similarity Wen et al. (2019) ↑	23.72%	44.78%
CodeBLEU Similarity Ren et al. (2020) ↑	17.18%	18.53%
CodeBERT Similarity Feng et al. (2020) ↑	97.72%	98.80%
Unixcoder Similarity Guo et al. (2022) ↑	76.24%	82.21%
Avg. VLM Token Cost (per observation)	—	6894

888 Table 10: **Code Generation Efficiency and Quality Comparison.** Evaluation of prompt and generated
889 code characteristics, along with code similarity metrics (AST Structural Similarity, CodeBERT,
890 Unixcoder cosine similarity) against expert-written code, for RoboTwin 1.0 and RoboTwin 2.0 in
891 zero-shot generation. The VLM observer cost is also reported for RoboTwin 2.0.
892893 We first quantify the architectural impact of RoboTwin 2.0 in a one-shot generation without code
894 repair and iterative refinement. Table 10 shows that RoboTwin 2.0 yields significantly shorter
895 programs (569.4 vs. 1236.6 tokens), with reduced prompt length and higher structural similarity to
896 human-written code. Crucially, it enables dual-arm parallelism via a unified API abstraction, which
897 is absent in RoboTwin 1.0.
898899 These improvements stem from the structured prompting and geometric API modularization designed
900 into RoboTwin 2.0. Higher AST similarity (+21.06%), CodeBERT similarity (+1.08%), and Unix-
901 coder alignment (+5.97%) indicate that RoboTwin 2.0 not only reduces code size but also improves
902 semantic clarity and functional alignment.
903904 In addition, RoboTwin 2.0 integrates a **VLM observer**, a plug-and-play module triggered only when
905 execution fails. To quantify its overhead, we estimated VLM usage via the Kimi API (assuming each
906 image = 1,024 tokens) over three representative tasks: the average cost was 6,295 input tokens and
907

918 599 output tokens, totaling **6,894 tokens**. While this introduces moderate overhead, the VLM enables
 919 RoboTwin 2.0 to catch and correct errors invisible to execution logging, significantly enhancing
 920 robustness and overall task success. Importantly, the observer remains optional and can be disabled
 921 when prioritizing token efficiency.

923 A.10 EXPERIMENTAL DETAILS AND METRIC DEFINITIONS FOR CODE GENERATION

925 We use the *DeepSeek-V3* model for program synthesis and the *moonshot-v1-32k-vision-preview*
 926 model for multimodal error localization and verification. These models were selected for their
 927 strong performance in language reasoning and visual understanding while maintaining efficiency
 928 suitable for large-scale iterative refinement. The success rate of the i -th program is computed as
 929 $R_i = \frac{1}{M} \sum_{j=1}^M s_{i,j}$, and the final success rate for a given task under a specific system variant is then
 930 defined as $R_{\text{task}} = \frac{1}{N} \sum_{i=1}^N R_i$.

933 A.10.1 METRIC DEFINITIONS

935 We report the following metrics across all tasks:

936 **ASR** is the average of R_{task} across all 10 tasks. It reflects overall task performance across all
 937 generated programs.

938 **Top5-ASR** is the mean success rate computed using only the top 5 highest-performing programs per
 939 task. This metric estimates system potential under a best-of-selection strategy.

941 **CR-Iter** indicates the average number of feedback iterations required per task before reaching a
 942 success rate above 50% or exhausting the iteration budget.

943 **Token** denotes the average number of tokens of policy code generated by the language model per
 944 task. It serves as a proxy for computational cost and LLM inference budget.

946 These metrics jointly evaluate both the reliability and efficiency of the expert data generation pipeline
 947 under varying conditions of feedback, model capability, and refinement strategy.

948 A.10.2 TASK-SPECIFIC PERFORMANCE COMPARISON ON CODE GENERATION

950 We compare the code generation success rates of RoboTwin 2.0 and RoboTwin 1.0 across all tasks.
 951 As shown, RoboTwin 2.0 consistently matches or outperforms the baseline on the majority of tasks,
 952 demonstrating the effectiveness of our multimodal feedback and refinement pipeline.

954 Table 11: Task-Specific Performance Comparison between RoboTwin 2.0 and RoboTwin 1.0.
 955 R1.0/R2.0: RoboTwin 1.0 / 2.0. Bold numbers indicate the best result for each task.

957 Task	R1.0 Vanilla	R1.0 + FB	R1.0 + MM FB	R2.0 Vanilla	R2.0 + FB	R2.0 + MMFB
959 beat_block_hammer	16%	48%	56%	23%	34%	53%
960 handover_block	2%	41%	45%	17%	50%	27%
961 pick_diverse_bottles	65%	65%	64%	60%	60%	62%
962 pick_dual_bottles	99%	99%	100%	100%	100%	100%
963 place_container_plate	66%	79%	91%	84%	84%	82%
964 place_dual_shoes	19%	22%	25%	0%	2%	22%
965 place_empty_cup	90%	90%	100%	61%	61%	85%
966 place_shoe	72%	90%	90%	100%	100%	100%
967 stack_blocks_three	1%	2%	4%	76%	76%	82%
968 stack_blocks_two	44%	68%	64%	100%	100%	100%

970 A.10.3 PER-TASK SUCCESS RATES OF CODE GENERATION

971 We report the success rates of all tasks in Tab. 12.

972
973
974
Table 12: **Per-task success rates of our proposed R2.0 + MM FB algorithm on all RoboTwin
2.0-supported tasks.**

975 Task	976 Rate	977 Task	978 Rate	979 Task	980 Rate	981 Task	982 Rate	983 Task	984 Rate	985 Avg Success Rate	986 83.34%
Adjust Bottle	100%	Beat Block Hammer	53%	Blocks Ranking Rgb	80%	Blocks Ranking Size	80%				
Click Alarmclock	0%	Click Bell	10%	Dump Bin Bigbin	0%	Grab Roller	74%				
Handover Block	27%	Handover Mic	0%	Hanging Mug	0%	Lift Pot	40%				
Move Can Pot	30%	Move Pillbottle Pad	50%	Move Playingcard Away	90%	Move Stapler Pad	100%				
Open Laptop	0%	Open Microwave	0%	Pick Diverse Bottles	62%	Pick Dual Bottles	100%				
Place A2B Left	50%	Place A2B Right	60%	Place Bread Basket	0%	Place Bread Skillet	0%				
Place Can Basket	0%	Place Cans Plasticbox	100%	Place Container Plate	82%	Place Dual Shoes	22%				
Place Empty Cup	85%	Place Fan	70%	Place Burger Fries	100%	Place Mouse Pad	100%				
Place Object Basket	0%	Place Object Scale	80%	Place Object Stand	90%	Place Phone Stand	0%				
Place Shoe	100%	Press Stapler	0%	Put Bottles Dustbin	0%	Put Object Cabinet	0%				
Rotate Qrcode	80%	Scan Object	0%	Shake Bottle	0%	Shake Bottle Horizontally	0%				
Stack Blocks Three	82%	Stack Blocks Two	100%	Stack Bowls Three	20%	Stack Bowls Two	30%				
Stamp Seal	20%	Turn Switch	0%	<i>Avg Success Rate</i>		<i>83.34%</i>					

987
A.10.4 MULTIMODAL OBSERVATION AND ERROR LOCALIZATION988
To further investigate the capability of the VLM observer, we manually curated a dataset of 130
989 execution sequences, including 101 failed trials and 29 successful trials. Each sequence consists of
990 the natural language task instruction, a series of visual observations, and policy code. This dataset
991 enables us to evaluate both binary error detection and fine-grained error localization.
992993
Error Detection. The VLM observer was first tasked with evaluating whether a robotic execution
994 successfully completed the instructed task. The confusion matrix is as follows: TP = 16, FP = 61, TN
995 = 40, FN = 13. The derived performance metrics are: Accuracy = 0.431, Precision = 0.208, Recall
996 = 0.552, and F1-score = 0.302. These results suggest that while the VLM observer is reasonably
997 sensitive in identifying execution failures (recall), its tendency to over-predict errors leads to a high
998 false positive rate.
9991000
Error Localization. For failed executions, we further tested whether the VLM observer could
1001 correctly localize the program step or code snippet that led to failure. Among the 40 true negative
1002 samples (correctly identified failed trials), the observer successfully pinpointed the failure step in 12
1003 cases, yielding a localization accuracy of 30%. This indicates that, while the observer shows promising
1004 diagnostic ability, there remains significant room for improvement in reliable error attribution.
10051006
Case Study. We illustrate one successful case of VLM observer reasoning. Given a task instruction
1007 and five visual observations, the observer produced a step-by-step analysis:1008
Step 1: The left arm successfully picks up the mug from the left side.
1009
Step 2: The left arm successfully places the mug at the middle position.
1010
Step 3: The right arm successfully picks up the mug from the middle position.
1011
Step 4: The right arm attempts to hang the mug on the rack but fails.
1012
Step 5: The right arm is in the process of moving away after attempting to hang the mug.
1013
The overall task was not successfully completed. The failure occurred in Step 4, where the right arm
1014 attempted to hang the mug on the rack but did not succeed. The mug is not properly positioned on
1015 the rack. The error message in the code indicates an `AttributeError`: 'list' object has no attribute 'p'.
1016 This error occurs in the line where the `target_point` is being set to `middle_target_pose.p`. The issue is
1017 likely due to the fact that `middle_target_pose` is a list, and lists do not have an attribute 'p'. The code
1018 should be modified to correctly access the position data from the `middle_target_pose` list.
1019 To fix the error, the code should be updated to access the position data correctly. For example, if
1020 `middle_target_pose` is a list containing the position and orientation, the position data should be
1021 accessed using `middle_target_pose[0]` instead of `middle_target_pose.p`. Additionally, the failure in
1022 Step 4 could be due to the incorrect position or orientation of the mug when attempting to hang it on
1023 the rack. The code should be reviewed to ensure that the mug is positioned and oriented correctly
1024 before executing the hanging motion.1025
Failure Modes. Despite these successes, we also observed cases where the VLM observer fails.
Misclassifications primarily occur in failed executions: the observer may hallucinate correct outcomes

1026 or overlook subtle orientation errors. For instance, in a stacking task where boxes are misaligned, the
 1027 observer sometimes marks the execution as successful if all boxes are placed on top of each other.
 1028 Similarly, in tasks requiring fine-grained pose accuracy (e.g., placing shoes in the correct orientation),
 1029 small but critical errors may be ignored. Furthermore, failures stemming from invisible factors—such
 1030 as incorrect grasp axis parameters—remain challenging for purely vision-based observers to diagnose.
 1031

1032 A.10.5 LLM-GENERATED CODE AND HUMAN-WRITTEN CODE CASE STUDY

1033 **LLM-Generated Code (gpt_place_shoe)**

```
1035 class gpt_place_shoe(place_shoe):
1036     def play_once(self):
1037         # Initial observation
1038         self.save_camera_images(task_name="place_shoe", step_name="step1_initial_scene_state", generate_num_id="generate_num_0")
1039
1040         # Get the shoe's position to determine which arm to use
1041         shoe_pose = self.shoe.get_pose()
1042         shoe_position = shoe_pose.p
1043         arm_tag = ArmTag("left" if shoe_position[0] < 0 else "right")
1044
1045         # Grasp the shoe
1046         self.move(self.grasp_actor(actor=self.shoe, arm_tag=arm_tag,
1047                   pre_grasp_dis=0.1, grasp_dis=0))
1048         self.save_camera_images(task_name="place_shoe", step_name="step2_shoe_grasped", generate_num_id="generate_num_0")
1049
1050         # Lift the shoe up to avoid collision
1051         self.move(self.move_by_displacement(arm_tag=arm_tag, z=0.07,
1052                   move_axis='world'))
1053         self.save_camera_images(task_name="place_shoe", step_name="step3_shoe_lifted", generate_num_id="generate_num_0")
1054
1055         # Get target pose from the top functional point of the target block
1056         target_pose = self.target_block.get_functional_point(1, "pose")
1057
1058         # Place the shoe on the target block with head towards left side
1059         self.move(self.place_actor(actor=self.shoe, arm_tag=arm_tag,
1060                   target_pose=target_pose, functional_point_id=0, pre_dis=0.1,
1061                   dis=0.02, is_open=True, constrain="align", pre_dis_axis='fp'))
1062         self.save_camera_images(task_name="place_shoe", step_name="step4_shoe_placed", generate_num_id="generate_num_0")
1063
1064         # Lift the gripper up after placing
1065         self.move(self.move_by_displacement(arm_tag=arm_tag, z=0.07,
1066                   move_axis='world'))
1067
1068         # Return arm to origin
1069         self.move(self.back_to_origin(arm_tag=arm_tag))
1070
1071         # Final observation
1072         self.move(self.save_camera_images(task_name="place_shoe", step_name="step5_final_scene_state", generate_num_id="generate_num_0"))
```

1072 **Listing 1: LLM-Generated Code for gpt_place_shoe Task**

1073 **Human-Written Code (place_shoe)**

```
1074 class place_shoe(base_task):
1075     def play_once(self):
1076         # Get the shoe's position to determine which arm to use
1077         shoe_pose = self.shoe.get_pose().p
1078         arm_tag = ArmTag("left" if shoe_pose[0] < 0 else "right")
```

```

1080     # Grasp the shoe with specified pre-grasp distance and gripper
1081     # position
1082     self.move(self.grasp_actor(self.shoe, arm_tag=arm_tag,
1083               pre_grasp_dis=0.1, gripper_pos=0))
1084
1085     # Lift the shoe up by 0.07 meters in z-direction
1086     self.move(self.move_by_displacement(arm_tag=arm_tag, z=0.07))
1087
1088     # Get target_block's functional point as target pose
1089     target_pose = self.target_block.get_functional_point(0)
1090
1091     # Place the shoe on the target_block with alignment constraint and
1092     # specified pre-placement distance
1093     self.move(self.place_actor(self.shoe, arm_tag=arm_tag, target_pose=
1094               target_pose, functional_point_id=0, pre_dis=0.12, constrain="align"))
1095
1096     # Open the gripper to release the shoe
1097     self.move(self.open_gripper(arm_tag=arm_tag))

```

Listing 2: Human-Written Code for place_shoe Task

The LLM generated code tends to be more verbose, explicitly logging intermediate visual states and detailing parameters (e.g., `pre_dis_axis='fp'`, `is_open=True`), while human-written scripts are more minimal, omitting intermediate steps and favoring compact execution. Despite functional similarity, the structural differences illustrate that **MLLM-generated programs are not only executable but emphasize step-by-step clarity**, contributing to more robust feedback and repair.

A.11 TASK INSTRUCTION AND OBJECT DESCRIPTION EXAMPLE

Instruction Templates (task: ‘Pick Dual Bottles’)

```

1109 "Use {a} to place {A} left of {B}.", "Set {A} to the left of {B}.", "Move {A} beside
1110 {B} using {a}.", "Place {A} on {B}'s left side.", "Using {a}, position {A} next to
1111 {B}.", "Stick {A} on the left of {B}.", "Use {a} and place {A} on {B}'s left.", etc
1112

```

Object Description

```

1113
1114
1115     # object id - '001_bottle/0':
1116     "red bottle", "red soda bottle", "plastic red bottle", "red bottle with yellow label",
1117     "red plastic bottle with smooth surface", "yellow text printed on red bottle surface",
1118     "red bottle with white label design and markings", "red bottle with white sealing and
1119     brown top screw cap", etc
1120     # object id - '039_mug/0':
1121     "black mug", "dark coffee mug", "sleek black mug", "black ceramic mug", "single-handle
1122     mug", "smooth black surface mug", "medium-sized drinking mug", "round mug with curved
1123     side", "dark mug with sturdy handle", "solid black mug with smooth finish", etc

```

A.12 PROMPTS FOR GENERATING TASK INSTRUCTIONS AND OBJECT DESCRIPTIONS

```

1127 # Task Instruction Template
1128 - Goal: Generate task instruction template
1129 - Requirements:
1130   - Generate 60 items. Vary in sentence length and structure
1131   - Use natural action verbs (grab, slide, place)
1132 - split
1133   - 50 items for training
   - 10 items for evaluation

```

```

1134 ## Schema Requirements
1135 - Goal: Use placeholders for objects in instructions
1136 - Requirements:
1137   - Format: {X} for objects defined in schema
1138   - Include all object placeholders ({A-Z}) in every instruction
1139   - Omit arm references and placeholders ({a-z}) in 50% of instructions
1140   - Ensure natural flow when placeholders are replaced with actual values
1141
1142 # Object Description
1143 - Goal: Generate natural object descriptions for robotic manipulation
1144 - Requirements:
1145   - Generate 15 items. Vary in sentence length and structure
1146   - Use natural oral language
1147   - Include essential physical properties (color, shape, size, texture)
1148   - Use noun-focused phrases
1149   - For multi-part objects, use structures like 'X with Y'
1150 - split
1151   - 12 items for training
1152   - 3 items for evaluation
1153
1154 # Episode
1155 An episode is a specified task, in which each task may have different
1156   objects to be manipulated,
1157   resulting in the same task template being reused by replacing the
1158   placeholders with specific objects.
1159 For example:
1160   {A} -> 'medium-sized yellow bottle'
1161   {A} -> 'green drink bottle with bold labels'
1162
1163 General Task -> Specific Episode:
1164   {A} -> bottle/0.glb
1165   {A} -> bottle/1.glb
1166
1167 The number of task instructions for an episode can be calculated by:
1168   Episode_num = TaskInstruction_num * ObjectDescription_num

```

Listing 3: Prompts for Generating Task Instructions and Object Descriptions

A.13 VISUALIZATION OF ROBOTWIN 2.0 BENCHMARK SETTING

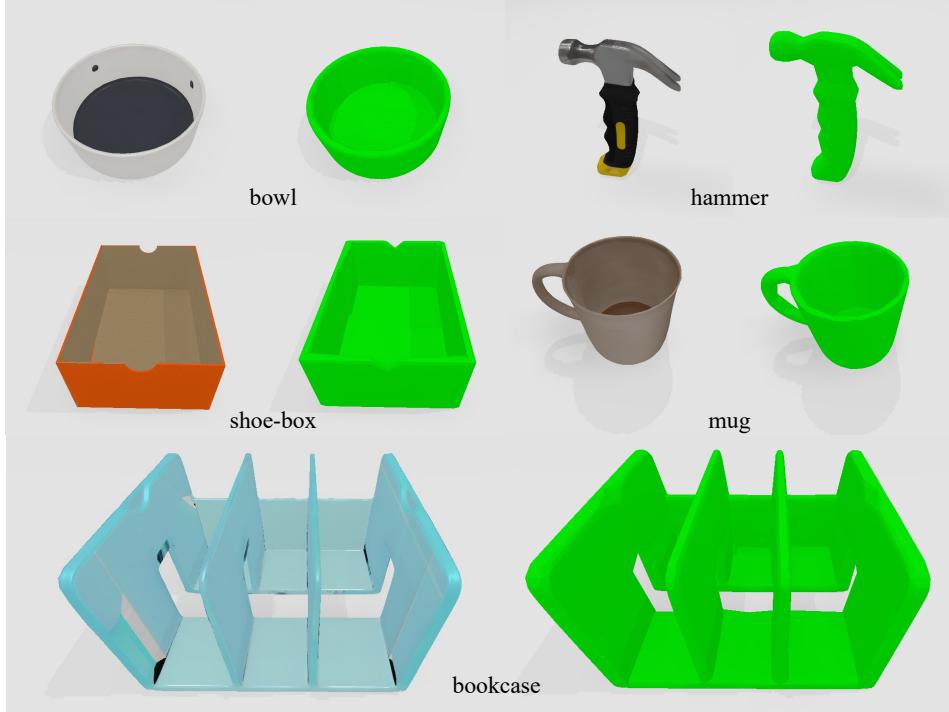
We visualize the simulation settings of the RoboTwin 2.0 benchmark in Fig. 12. All models are trained on 50 clean (non-randomized) demonstrations per task (blue). For evaluation, the *Easy* setting also uses clean environments, while the *Hard* setting employs domain-randomized environments (green).

Figure 12: Visualization of RoboTwin 2.0 Benchmark Settings.

A.14 VISUALIZATION OF RENDERED MESHES AND COLLISION SHAPES OF OBJECTS IN ROBOTWIN-OD

To illustrate how complex geometries are handled, we visualize both the rendered meshes and collision shapes for five representative objects in Fig. 14, including those with internal cavities such as mugs. Their holes and fine structural details are preserved in the final assets. Specifically, after

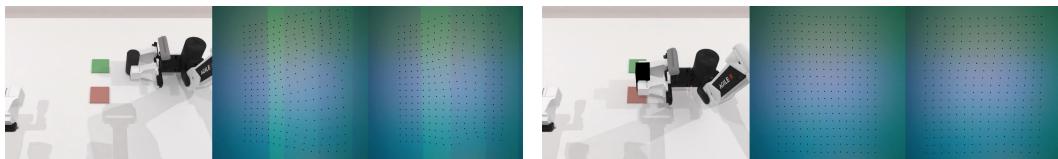
1188 generating each object via AIGC, we perform convex decomposition in Blender and then merge
 1189 the resulting parts to obtain smooth, physically stable collision bodies that are compatible with the
 1190 SAPIEN simulator.
 1191



1215 **Figure 13: Visualization of RoboTwin-OD Objects.**

1217 A.15 SAPIEN-IPC-BASED TACTILE DATA ACQUISITION SETUP

1219 We build our simulated tactile data acquisition pipeline on top of the SAPIEN-IPC framework, which
 1220 provides a flexible and scalable environment for generating high-fidelity contact interactions.



1227 **Figure 14: Visualization of Tactile Data Acquisition.**

1229 A.16 USER STUDY ON INSTRUCTION NATURALNESS

1231 To further evaluate the naturalness of our LLM-generated instructions, we conduct a user study on
 1232 the 567 objects with textual descriptions in RoboTwin-OD. For each object, we first generate 15
 1233 candidate instructions using an LLM, as described in Sec. 3.1. We then ask 5 volunteers to write
 1234 additional natural-language descriptions for each object, yielding in total 20 descriptions per object
 1235 (15 LLM-generated and 5 human-written).

1236 A separate group of 5 volunteers is then presented with the 20 descriptions for each object and asked
 1237 to select the one that is *most likely* written by a human. Since 5 out of 20 descriptions are human-
 1238 authored, the ground-truth proportion of human-written descriptions in the pool is 25%. Table 13
 1239 reports the success rate of each volunteer in correctly identifying a human-written description.

1241 The average success rate is 23.8%, which is very close to the 25% ground-truth proportion. This
 near-chance performance indicates that human annotators have difficulty distinguishing between

1242 Table 13: Success rate of volunteers in identifying human-written instructions among mixed pools of
 1243 human- and LLM-generated descriptions. Chance level corresponds to 25%.

	Vol. 1	Vol. 2	Vol. 3	Vol. 4	Vol. 5	Average
Success rate (%)	21.0	19.9	26.1	27.2	22.9	23.8

1248 Table 14: **CLIP-based global distribution matching and coverage between our 11k background**
 1249 **texture library and real-world textures from DTD.** We extract ViT-B/32 CLIP features for 11k
 1250 textures from our library and 5,640 real textures from DTD. Coverage is measured as nearest-neighbor
 1251 cosine similarity from each real texture to our texture pool.

	#Ours	#Real	FID \downarrow	mean \uparrow	median \uparrow	p10 \uparrow	p90 \uparrow	min / max
Ours vs. DTD	11,000	5,640	-0.36	0.839	0.848	0.749	0.914	0.544 / 0.979

1257 human-written and LLM-generated instructions, suggesting that our instruction pool is linguistically
 1258 close to natural human descriptions rather than being obviously synthetic or overly templated.

1260 A.17 CONTROL FREQUENCY AND CONTROLLER IMPLEMENTATION

1262 RoboTwin 2.0 is built on the SAPIEN simulator, where each simulation step corresponds to 0.004
 1263 seconds of real time. In our default data collection setting, we record one sample every 15 simulation
 1264 steps, which gives an effective sampling rate of approximately 16.67 Hz (this rate can be adjusted
 1265 via configuration parameters). The temporal spacing of policy inputs and outputs therefore naturally
 1266 aligns with this sampling interval.

1267 For policy execution in both simulation and on real robots, we interpolate the predicted actions to
 1268 match the underlying low level controller frequencies. When the policy outputs joint space actions,
 1269 we use TOPP based interpolation to generate time parameterized joint trajectories; when the policy
 1270 outputs end effector poses, we use trajectory planning to construct smooth Cartesian motion. In our
 1271 setup, the controller runs at 250 Hz in simulation and at 30 Hz on the real robot, so the interpolated
 1272 trajectories bridge the gap between the policy output rate (~ 16.67 Hz) and the higher frequency
 1273 control loops.

1275 A.18 TEXTURE DISTRIBUTION VS. REAL-WORLD BACKGROUNDS

1277 To evaluate whether our 11k background texture library reasonably approximates real-world back-
 1278 ground statistics, we perform an analysis in a pretrained CLIP feature space. Specifically, we extract
 1279 ViT-B/32 CLIP Radford et al. (2021) embeddings (OpenAI weights) for two sets of backgrounds:
 1280 (i) our 11k textures from the background library and (ii) 5,640 real textures from the Describable
 1281 Textures Dataset (DTD) Cimpoi et al. (2014), a widely used real-world texture benchmark contain-
 1282 ing in-the-wild images annotated with human-describable attributes (e.g., “banded”, “wrinkled”,
 1283 “cracked”). We then (1) approximate each set by a Gaussian in CLIP space and compute a CLIP-FID
 1284 between our textures and DTD, and (2) evaluate coverage by, for each real (DTD) texture, finding its
 1285 nearest neighbor in our pool and recording the cosine similarity between their CLIP embeddings.

1286 As summarized in Tab. 14, the CLIP-FID between our texture library and DTD is essentially zero
 1287 (-0.36 , within numerical noise), indicating that the first- and second-order statistics of our textures
 1288 are almost identical to those of real textures in this feature space. Moreover, the nearest-neighbor
 1289 cosine similarity from DTD to our library exhibits a high mean (0.839) and median (0.848), with
 1290 the 90th percentile reaching 0.914, meaning that at least 90% of real textures have a very close
 1291 counterpart in our pool. Even the worst-case real sample still attains a cosine similarity of 0.544 to its
 1292 closest neighbor, so we do not observe any real textures that are nearly orthogonal to our manifold in
 1293 CLIP space. Overall, these results indicate that our curated texture library is not an artificial or overly
 1294 narrow distribution, but instead provides a high-coverage, globally well-matched approximation to
 1295 real-world background statistics.

A.19 FULL ROBOTWIN 2.0 BENCHMARK

We report the evaluation results of five policies on the RoboTwin 2.0 benchmark under the *Easy* and *Hard* settings. Note that these two settings differ only in evaluation conditions, while the training setup remains identical.

Table 15: **RoboTwin 2.0 Simulation Benchmark (clean vs randomized, 50+ tasks).**

Simulation Task	RDT		Pi0		ACT		DP		DP3	
	Easy	Hard								
Adjust Bottle	81%	75%	90%	56%	97%	23%	97%	0%	99%	3%
Beat Block Hammer	77%	37%	43%	21%	56%	3%	42%	0%	72%	8%
Blocks Ranking RGB	3%	0%	19%	5%	1%	0%	0%	0%	3%	0%
Blocks Ranking Size	0%	0%	7%	1%	0%	0%	1%	0%	2%	0%
Click Alarmclock	61%	12%	63%	11%	32%	4%	61%	5%	77%	14%
Click Bell	80%	9%	44%	3%	58%	3%	54%	0%	90%	0%
Dump Bin Bigbin	64%	32%	83%	24%	68%	1%	49%	0%	85%	53%
Grab Roller	74%	43%	96%	80%	94%	25%	98%	0%	98%	2%
Handover Block	45%	14%	45%	8%	42%	0%	10%	0%	70%	0%
Handover Mic	90%	31%	98%	13%	85%	0%	53%	0%	100%	3%
Hanging Mug	23%	16%	11%	3%	7%	0%	8%	0%	17%	1%
Lift Pot	72%	9%	84%	36%	88%	0%	39%	0%	97%	0%
Move Can Pot	25%	12%	58%	21%	22%	4%	39%	0%	70%	6%
Move Pillbottle Pad	8%	0%	21%	1%	0%	0%	1%	0%	41%	0%
Move Playingcard Away	43%	11%	53%	22%	36%	0%	47%	0%	68%	3%
Move Stapler Pad	2%	0%	0%	2%	0%	0%	1%	0%	12%	0%
Open Laptop	59%	32%	85%	46%	56%	0%	49%	0%	82%	7%
Open Microwave	37%	20%	80%	50%	86%	0%	5%	0%	61%	22%
Pick Diverse Bottles	2%	0%	27%	6%	7%	0%	6%	0%	52%	1%
Pick Dual Bottles	42%	13%	57%	12%	31%	0%	24%	0%	60%	1%
Place A2B Left	3%	1%	31%	1%	1%	0%	2%	0%	46%	2%
Place A2B Right	1%	1%	27%	6%	0%	0%	13%	0%	49%	0%
Place Bread Basket	10%	2%	17%	4%	6%	0%	14%	0%	26%	1%
Place Bread Skillet	5%	1%	23%	1%	7%	0%	11%	0%	19%	0%
Place Burger Fries	50%	27%	80%	4%	49%	0%	72%	0%	72%	18%
Place Can Basket	19%	6%	41%	5%	1%	0%	18%	0%	67%	2%
Place Cans Plasticbox	6%	5%	34%	2%	16%	0%	40%	0%	48%	3%
Place Container Plate	78%	17%	88%	45%	72%	1%	41%	0%	86%	1%
Place Dual Shoes	4%	4%	15%	0%	9%	0%	8%	0%	13%	0%
Place Empty Cup	56%	7%	37%	11%	61%	0%	37%	0%	65%	1%
Place Fan	12%	2%	20%	10%	1%	0%	3%	0%	36%	1%
Place Mouse Pad	1%	0%	7%	1%	0%	0%	0%	0%	4%	1%
Place Object Basket	33%	17%	16%	2%	15%	0%	15%	0%	65%	0%
Place Object Scale	1%	0%	10%	0%	0%	0%	1%	0%	15%	0%
Place Object Stand	15%	5%	36%	11%	1%	0%	22%	0%	60%	0%
Place Phone Stand	15%	6%	35%	7%	2%	0%	13%	0%	44%	2%
Place Shoe	35%	7%	28%	6%	5%	0%	23%	0%	58%	2%
Press Stapler	41%	24%	62%	29%	31%	6%	6%	0%	69%	3%
Put Bottles Dustbin	21%	4%	54%	13%	27%	1%	22%	0%	60%	21%
Put Object Cabinet	33%	18%	68%	18%	15%	0%	42%	0%	72%	1%
Rotate QRcode	50%	5%	68%	15%	1%	0%	13%	0%	74%	1%
Scan Object	4%	1%	18%	1%	2%	0%	9%	0%	31%	1%
Shake Bottle Horizontally	84%	51%	99%	51%	63%	4%	59%	18%	100%	25%
Shake Bottle	74%	45%	97%	60%	74%	10%	65%	8%	98%	19%
Stack Blocks Three	2%	0%	17%	0%	0%	0%	0%	0%	1%	0%
Stack Blocks Two	21%	2%	42%	1%	25%	0%	7%	0%	24%	0%
Stack Bowls Three	51%	17%	66%	24%	48%	0%	63%	0%	57%	5%
Stack Bowls Two	76%	30%	91%	41%	82%	0%	61%	0%	83%	6%
Stamp Seal	1%	0%	3%	4%	2%	0%	2%	0%	18%	0%
Turn Switch	35%	15%	27%	23%	5%	2%	36%	1%	46%	8%
Average (%)	34.5	13.7	46.4	16.3	29.7	1.7	28.0	0.6	55.2	5.0

1350 A.20 SUCCESS RATES OF DIFFERENT EMBODIMENTS ON ROBOTWIN 2.0 TASKS
13511352 Table 16 reports the success rates of five robot embodiments across the 50 RoboTwin 2.0 tasks, using
1353 the same set of expert programs for data generation.
13541355 Table 16: Success Rates of Different Embodiments on RoboTwin 2.0 Tasks.
1356

1357 Task Name	1358 RoboTwin1.0					1359 RoboTwin2.0				
	1360 Aloha	1361 ARX	1362 Franka	1363 Piper	1364 UR5	1365 Aloha	1366 ARX	1367 Franka	1368 Piper	1369 UR5
1370 <i>Adjust Bottle</i>	92%	88%	39%	0%	7%	93%	94%	34%	0%	12%
1371 <i>Beat Block Hammer</i>	68%	86%	95%	0%	86%	64%	93%	98%	15%	90%
1372 <i>Blocks Ranking Rgb</i>	92%	98%	96%	0%	82%	96%	97%	99%	13%	53%
1373 <i>Blocks Ranking Size</i>	90%	95%	92%	0%	60%	96%	97%	89%	7%	38%
1374 <i>Click Alarmclock</i>	89%	99%	100%	0%	95%	92%	99%	100%	0%	95%
1375 <i>Click Bell</i>	100%	100%	100%	9%	100%	100%	100%	100%	91%	100%
1376 <i>Dump Bin Bigbin</i>	85%	98%	90%	0%	82%	84%	100%	84%	9%	80%
1377 <i>Grab Roller</i>	95%	69%	99%	0%	80%	95%	69%	99%	7%	81%
1378 <i>Handover Block</i>	1%	3%	0%	0%	4%	83%	81%	0%	44%	0%
1379 <i>Handover Mic</i>	62%	80%	92%	28%	0%	87%	98%	84%	65%	14%
1380 <i>Hanging Mug</i>	68%	76%	5%	0%	12%	63%	73%	11%	0%	11%
1381 <i>Lift Pot</i>	27%	50%	24%	5%	40%	27%	50%	36%	31%	40%
1382 <i>Move Can Pot</i>	18%	0%	37%	2%	4%	93%	65%	92%	96%	99%
1383 <i>Move Pillbottle Pad</i>	30%	52%	15%	0%	35%	67%	90%	69%	47%	86%
1384 <i>Move Playingcard Away</i>	93%	100%	100%	0%	87%	99%	100%	100%	63%	66%
1385 <i>Move Stapler Pad</i>	94%	92%	88%	0%	95%	92%	96%	89%	13%	75%
1386 <i>Open Laptop</i>	76%	91%	78%	14%	55%	82%	92%	77%	23%	51%
1387 <i>Open Microwave</i>	65%	85%	75%	5%	33%	96%	80%	59%	2%	23%
1388 <i>Pick Diverse Bottles</i>	11%	1%	0%	0%	0%	51%	2%	0%	27%	4%
1389 <i>Pick Dual Bottles</i>	8%	3%	0%	0%	0%	92%	6%	0%	81%	7%
1390 <i>Place A2B Left</i>	65%	75%	70%	0%	72%	80%	88%	64%	29%	76%
1391 <i>Place A2B Right</i>	70%	68%	68%	0%	69%	81%	82%	64%	31%	66%
1392 <i>Place Bread Basket</i>	91%	91%	69%	0%	78%	89%	88%	62%	1%	67%
1393 <i>Place Bread Skillet</i>	31%	28%	42%	0%	42%	34%	26%	42%	0%	37%
1394 <i>Place Can Basket</i>	47%	1%	38%	0%	11%	70%	28%	61%	0%	3%
1395 <i>Place Cans Plasticbox</i>	96%	93%	98%	0%	11%	100%	96%	85%	0%	82%
1396 <i>Place Container Plate</i>	86%	85%	83%	0%	82%	89%	86%	86%	37%	81%
1397 <i>Place Dual Shoes</i>	73%	28%	36%	0%	40%	77%	31%	41%	1%	32%
1398 <i>Place Empty Cup</i>	92%	100%	100%	0%	100%	92%	100%	100%	4%	100%
1399 <i>Place Fan</i>	93%	96%	75%	0%	85%	95%	93%	83%	0%	65%
1400 <i>Place Burger Fries</i>	96%	95%	85%	0%	78%	97%	98%	80%	36%	74%
1401 <i>Place Mouse Pad</i>	100%	80%	99%	2%	96%	99%	89%	100%	23%	73%
1402 <i>Place Object Basket</i>	68%	13%	68%	0%	30%	74%	14%	61%	0%	7%
1403 <i>Place Object Scale</i>	77%	93%	94%	0%	87%	78%	92%	82%	2%	76%
1404 <i>Place Object Stand</i>	90%	92%	81%	0%	90%	97%	99%	81%	9%	92%
1405 <i>Place Phone Stand</i>	66%	78%	52%	22%	44%	66%	78%	45%	53%	49%
1406 <i>Place Shoe</i>	87%	85%	70%	0%	97%	84%	85%	74%	7%	91%
1407 <i>Press Stapler</i>	87%	96%	99%	0%	77%	98%	96%	100%	59%	72%
1408 <i>Put Bottles Dustbin</i>	0%	0%	0%	0%	0%	71%	1%	0%	56%	0%
1409 <i>Put Object Cabinet</i>	13%	56%	43%	0%	0%	14%	24%	55%	0%	0%
1410 <i>Rotate Qrcode</i>	78%	83%	98%	0%	81%	75%	74%	94%	0%	67%
1411 <i>Scan Object</i>	8%	13%	21%	0%	8%	4%	45%	26%	0%	19%
1412 <i>Shake Bottle</i>	62%	95%	82%	1%	98%	89%	94%	85%	74%	97%
1413 <i>Shake Bottle Horizontally</i>	64%	93%	81%	1%	97%	90%	94%	85%	74%	98%
1414 <i>Stack Blocks Three</i>	98%	97%	95%	0%	83%	94%	96%	80%	0%	51%
1415 <i>Stack Blocks Two</i>	99%	99%	100%	0%	94%	98%	99%	96%	2%	68%
1416 <i>Stack Bowls Three</i>	27%	64%	76%	0%	76%	43%	58%	82%	0%	81%
1417 <i>Stack Bowls Two</i>	63%	84%	88%	0%	94%	78%	82%	88%	4%	94%
1418 <i>Stamp Seal</i>	46%	91%	95%	0%	100%	56%	91%	4%	37%	100%
1419 <i>Turn Switch</i>	27%	3%	51%	28%	10%	74%	3%	36%	81%	10%
1420 <i>Average Difference</i>	65.3%	68.8%	67.6%	2.3%	57.7%	78.8%	74.2%	67.2%	25.1%	57.1%
1421	/	/	/	/	/	+13.5%	+5.4%	-0.4%	+22.8%	-0.6%

1404 A.21 50 ROBOTWIN 2.0 TASKS DESCRIPTIONS
14051406 We list detailed 50 RoboTwin 2.0 tasks descriptions in Tab. 17.
14071408 Table 17: Task descriptions.
1409

1410 Task Name	1411 Description
1412 Adjust Bottle	Pick up the bottle on the table upright with the correct arm.
1413 Beat Block Hammer	Grab the hammer and hit the block.
1414 Blocks Ranking RGB	Order red, green, blue blocks from left to right.
1415 Blocks Ranking Size	Order three blocks by size, largest to smallest, left to right.
1416 Click Alarmclock	Click the center of the top button of the alarm clock.
1417 Click Bell	Click the bell's top center.
1418 Dump Bin Bigbin	Pour balls from the small bin into the big bin.
1419 Grab Roller	Use both arms to grab the roller on the table.
1420 Handover Block	Take the red block, hand it to the other arm, and place it on the pad.
1421 Handover Mic	One arm passes the microphone to the other arm.
1422 Hanging Mug	Left arm places mug; right arm picks it up and hangs it on the rack.
1423 Lift Pot	Use the arms to lift the pot.
1424 Move Can Pot	Pick up the can and move it next to the pot.
1425 Move Playingcard Away	Move the playing card farther away from the table.
1426 Move Stapler Pad	Move the stapler to a colored mat with the correct arm.
1427 Open Laptop	Open the laptop with one arm.
1428 Open Microwave	Open the microwave with one arm.
1429 Pick Diverse Bottles	Pick up one bottle with each arm.
1430 Pick Dual Bottles	Pick up one bottle with each arm.
1431 Place A2B Left	Place object A to the left of object B.
1432 Place A2B Right	Place object A to the right of object B.
1433 Place Bread Basket	One bread: one arm to basket; two: both arms to basket.
1434 Place Bread Skillet	Put the bread into the skillet with one arm.
1435 Place Burger Fries	Use both arms to place burger and fries on the tray.
1436 Place Can Basket	One arm puts can in basket; other arm lifts basket.
1437 Place Cans Plasticbox	Use both arms to place cans into the plastic box.
1438 Place Container Plate	Place the container on the plate.
1439 Place Dual Shoes	Both arms place two shoes in box with tips facing left.
1440 Place Empty Cup	Place the empty cup on the coaster with one arm.
1441 Place Fan	Place the fan on the colored mat facing the robot.
1442 Place Mouse Pad	Place the mouse on a colored mat.
1443 Place Object Basket	One arm puts object in basket; other arm moves basket slightly away.
1444 Place Object Scale	Place the object on the scale with one arm.
1445 Place Object Stand	Place the object on the stand with the correct arm.
1446 Place Phone Stand	Place the phone on the phone stand.
1447 Place Shoe	Place the shoe from table onto the mat.
1448 Press Stapler	Press the stapler with one arm.
1449 Put Bottles Dustbin	Put bottles into the dustbin left of the table.
1450 Put Object Cabinet	Open drawer with one arm; use other arm to put object inside.
1451 Rotate QRcode	Rotate the QR board so the QR code faces the robot.
1452 Scan Object	One arm holds scanner; other holds object; scan the object.
1453 Shake Bottle Horizontally	Shake the bottle horizontally with the correct arm.
1454 Shake Bottle	Shake the bottle with the correct arm.
1455 Stack Blocks Three	Stack blue on green on red at the center.
1456 Stack Blocks Two	Stack green on red at the center.
1457 Stack Bowls Three	Stack three bowls.
1458 Stack Bowls Two	Stack two bowls.
1459 Stamp Seal	Stamp the specific color mat with the stamp.
1460 Turn Switch	Click the switch with the arm.
1461 Move Pillbottle Pad	Place the pill bottle onto the pad.

1458 A.22 EXAMPLE: EXPERT CODE GENERATION PIPELINE FOR `HANOVER_BLOCK`.
 1459

1460 To make the pipeline in Fig. 3 more concrete, we use the `handover_block` task as a running
 1461 example.

1462 **Inputs and assumptions (first round).** In the first round, the inputs to the Code Agent include:
 1463

- 1464 **Task description.** A natural language specification of the task, for example:
 1465 “Use the left arm to pick up the block, move it to the handover position between
 1466 the two arms, then use the right arm to grasp the block and place it at the target
 1467 location.”
- 1468 **API list.** A fixed set of commonly used, high level, and strongly encapsulated APIs (listed
 1469 in Appendix A.23), which hide low level motion planning details from the agent.
- 1471 **API usage examples.** A small collection of curated examples that demonstrate how to
 1472 use these APIs for typical scenarios and tasks, serving as in context guidance for the Code
 1473 Agent.
- 1474 **Object calibration and functional points.** Structured information about calibrated points
 1475 and axes on the objects, including:
 - 1476 several grasp points on the block (for left arm and right arm grasps),
 - 1477 functional points on the block (for alignment and placement),
 - 1478 the functional point of the target placement location.

1480 Given these inputs, the Code Agent produces executable expert control code that calls the high level
 1481 APIs to complete the task.

1482 **Outputs and iterative refinement.** We then execute the generated code in simulation to test data
 1483 generation, as illustrated in Fig. 3 (10 test rollouts in our default setting). For each rollout, we log:
 1484

- 1485 • whether the rollout succeeds or fails,
- 1486 • the failure type (for example, `Left grasp failure`, `Right grasp failure`,
 1487 `Incorrect target position`),
- 1488 • any runtime errors,
- 1489 • snapshot images of the scene after key steps.

1491 If the data generation success rate is above a predefined threshold (50% in Fig. 3), we accept the code
 1492 as a valid expert policy for data collection. If the success rate is below the threshold, we feed all
 1493 interaction logs (failures, error messages, and snapshot descriptions) back to the Code Agent, which
 1494 then iteratively refines the code to fix the identified issues. This loop continues until the generated
 1495 code reaches the required success rate.
 1496

1497 A.23 ROBOTWIN 2.0 PROMPT
 1498

```
1499 # You can directly use the actors provided in the actor_list.  

1500 # For example, if actor_list contains ["self.hammer", "self.block"],  

1501 # you can directly write:  

1502 object1 = self.hammer  

1503 object2 = self.block  

1504  

1505 # -----  

1506 # Using ArmTag class to represent arms  

1507 # -----  

1508 arm_tag = ArmTag("left") # Left arm  

1509 arm_tag = ArmTag("right") # Right arm  

1510  

1511 # Example of selecting an arm based on conditions:  

1512 arm_tag = ArmTag("left" if actor_position[0] < 0 else "right")  

1513  

1514 # -----
```

```

1512 # Functional points on actors
1513 # -----
1514 # Each actor in the environment may have multiple functional points
1515 # that are useful for different interactions.
1516 # Functional points provide precise locations for interactions like
1517 # grasping, placing, or aligning objects.
1518
1519 # To get a functional point from an actor:
1520 functional_point_pose = actor.get_functional_point(point_id, "pose")
1521 position = functional_point_pose.p # [x, y, z]
1522 orientation = functional_point_pose.q # [qw, qx, qy, qz]
1523
1524 # -----
1525 # Stacking one object on top of another
1526 # -----
1527 # Example: placing current_actor on top of last_actor using a
1528 # functional point as target_pose.
1529 target_pose = self.last_actor.get_functional_point(point_id, "pose")
1530
1531 self.move(
1532     self.place_actor(
1533         actor=self.current_actor, # The object to be placed
1534         target_pose=target_pose, # Pose acquired from last_actor
1535         arm_tag=arm_tag,
1536         functional_point_id=0, # Align functional point 0 (or as needed)
1537         pre_dis=0.1,
1538         dis=0.02,
1539         pre_dis_axis="fp", # Use functional point direction
1540     )
1541 )
1542
1543 # -----
1544 # Actors of type "pose" in actor_list
1545 # -----
1546 # For all actors in actor_list that are of type "pose", such as
1547 # middle_pose or actor_target_pose, these are already Pose objects
1548 # (or lists of Pose). You do NOT need to call .get_pose() again.
1549 # You can pass them directly as target_pose.
1550
1551 # Example: place self.box at self.actor_pose (already a Pose)
1552 self.move(
1553     self.place_actor(
1554         actor=self.box,
1555         target_pose=self.actor_pose, # already a Pose
1556         arm_tag=grasp_arm_tag,
1557         functional_point_id=0, # if the actor has functional points
1558         pre_dis=0,
1559         dis=0, # dis = 0 if is_open is False
1560         is_open=False, # gripper will not open after placing
1561         constrain="free", # "align" only if pose is constrained
1562         pre_dis_axis='fp', # use functional point direction
1563     )
1564 )
1565
1566 # Note:
1567 # For the target_actor, it is an actor, not a Pose, so you need to call
1568 # get_pose() to get its pose, or call get_functional_point() to get
1569 # a functional point.
1570
1571 # -----
1572 # Selecting an arm for grasping based on actor position
1573 # -----
1574 # Get the actor's pose
1575 actor_pose = self.actor.get_pose()
1576 actor_position = actor_pose.p # [x, y, z]

```

```

1566
1567 # Select arm based on x-position
1568 arm_tag = ArmTag("left" if actor_position[0] < 0 else "right")
1569
1570 # Grasp actor with selected arm
1571 self.move(
1572     self.grasp_actor(
1573         actor=self.actor,
1574         arm_tag=arm_tag
1575     )
1576 )
1577 # -----
1578 # Basic grasping API examples
1579 # -----
1580 # Grasp an actor with specified pre-grasp distance and grasp distance
1581 self.move(
1582     self.grasp_actor(
1583         actor=self.actor,
1584         arm_tag=arm_tag, # ArmTag("left") or ArmTag("right")
1585         pre_grasp_diss=0.1,
1586         grasp_dis=0
1587     )
1588 )
1589 # -----
1590 # Grasp-and-lift example
1591 # -----
1592 # Grasp the object
1593 self.move(
1594     self.grasp_actor(
1595         actor=self.actor,
1596         arm_tag=arm_tag, # ArmTag("left") or ArmTag("right")
1597         pre_grasp_diss=0.1,
1598         grasp_dis=0
1599     )
1600 )
1601 # Lift the object up (always lift after grasping to avoid collision)
1602 self.move(
1603     self.move_by_displacement(
1604         arm_tag=arm_tag,
1605         z=0.07, # Move 7cm upward
1606         move_axis='world' # Move in world coordinates
1607     )
1608 )
1609 # -----
1610 # Gripper control examples
1611 # -----
1612 # Open gripper fully
1613 self.move(
1614     self.open_gripper(
1615         arm_tag=arm_tag,
1616         pos=1.0 # fully open
1617     )
1618 )
1619 # Open gripper halfway
1620 self.move(
1621     self.open_gripper(
1622         arm_tag=arm_tag,
1623         pos=0.5
1624     )
1625 )

```

```

1620
1621     # Close gripper fully
1622     self.move(
1623         self.close_gripper(
1624             arm_tag=arm_tag,
1625             pos=0.0 # fully close
1626         )
1627     )
1628
1629     # Close gripper halfway
1630     self.move(
1631         self.close_gripper(
1632             arm_tag=arm_tag,
1633             pos=0.5
1634         )
1635     )
1636
1637     # -----
1638     # Placing objects at a target location
1639     # -----
1640     # Place an object at a specific target pose
1641     self.move(
1642         self.place_actor(
1643             actor=self.actor,
1644             arm_tag=arm_tag,
1645             target_pose=self.target_pose, # retrieved from the actor list
1646             functional_point_id=0, # if the actor has functional points
1647             pre_dis=0.1,
1648             dis=0.02, # dis = 0 if is_open is False
1649             is_open=True, # True to release object after placing
1650             pre_dis_axis='fp', # use functional point direction
1651         )
1652     )
1653
1654     # Lift the gripper up after placing (only needed if is_open is True)
1655     self.move(
1656         self.move_by_displacement(
1657             arm_tag=arm_tag,
1658             z=0.07, # Move 7cm upward
1659             move_axis='world'
1660         )
1661     )
1662
1663     # -----
1664     # Placing with functional point alignment
1665     # -----
1666     # Place the object by aligning functional point 0 with the target pose
1667     self.move(
1668         self.place_actor(
1669             actor=self.actor,
1670             arm_tag=arm_tag,
1671             target_pose=target_pose,
1672             functional_point_id=0, # align this functional point
1673             pre_dis=0.1,
1674             dis=0.02,
1675             pre_dis_axis='fp' # use functional point direction
1676         )
1677     )
1678
1679     # -----
1680     # Dual-arm coordination examples
1681     # -----
1682     # Move both arms simultaneously to grasp objects
1683     left_arm_tag = ArmTag("left")
1684     right_arm_tag = ArmTag("right")

```

```

1674
1675     self.move(
1676         self.grasp_actor(actor=self.left_actor, arm_tag=left_arm_tag),
1677         self.grasp_actor(actor=self.right_actor, arm_tag=right_arm_tag)
1678     )
1679
1680     # Lift both actors up after grasping
1681     self.move(
1682         self.move_by_displacement(arm_tag=left_arm_tag, z=0.07),
1683         self.move_by_displacement(arm_tag=right_arm_tag, z=0.07)
1684     )
1685
1686     # -----
1687     # Place left object while moving right arm back to origin
1688     # -----
1689     move_arm_tag = ArmTag("left") # arm placing the object
1690     back_arm_tag = ArmTag("right") # arm returning to origin
1691
1692     self.move(
1693         self.place_actor(
1694             actor=self.left_actor,
1695             arm_tag=move_arm_tag,
1696             target_pose=target_pose,
1697             pre_dis_axis="fp",
1698         ),
1699         self.back_to_origin(arm_tag=back_arm_tag)
1700     )
1701
1702     # -----
1703     # Returning arms to their initial positions
1704     # -----
1705     # Return a single arm to origin
1706     self.move(self.back_to_origin(arm_tag=arm_tag))
1707
1708     # Return both arms to origin simultaneously
1709     left_arm_tag = ArmTag("left")
1710     right_arm_tag = ArmTag("right")
1711
1712     self.move(
1713         self.back_to_origin(arm_tag=left_arm_tag),
1714         self.back_to_origin(arm_tag=right_arm_tag)
1715     )

```

Listing 4: LLM-Generated Examples for Actor, Functional Point, and Arm Control APIs

```

1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

```