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ABSTRACT

When model predictions inform downstream decisions, a natural question is un-
der what conditions can the decision-makers simply respond to the predictions as
if they were the true outcomes. The recently proposed notion of decision cali-
bration (Zhao et al., 2021) addresses this by requiring predictions to be unbiased
conditional on the best-response actions induced by the predictions. This relax-
ation of classical calibration avoids the exponential sample complexity in high-
dimensional outcome spaces. However, existing guarantees are limited to linear
losses. A natural strategy for nonlinear losses is to embed outcomes ¥ into an
m-dimensional feature space ¢(y) and approximate losses linearly in ¢(y). Yet
even simple nonlinear functions can demand exponentially large or infinite fea-
ture dimensions, raising the open question of whether decision calibration can
be achieved with complexity independent of the feature dimension m. We be-
gin with a negative result: even verifying decision calibration under standard
deterministic best response inherently requires sample complexity polynomial
in m. To overcome this barrier, we study a smooth variant where agents fol-
low quantal responses. This smooth relaxation admits dimension-free algorithms:
given poly(|.A|,1/€) samples and any initial predictor p, our introducded algo-
rithm efficiently test and achieve decision calibration for broad function classes
which can be well-approximated by bounded-norm functions in (possibly infinite-
dimensional) separable RKHS, including piecewise linear and Cobb—Douglas loss
functions.

1 INTRODUCTION

Machine learning models increasingly underpin decisions in high-stakes scenarios, such as med-
ical diagnosis and financial forecasting. In these settings, model predictions inform downstream
decision-makers who act to optimize their utilities. Formally, there is an underlying distribution D
over the spaces of covariates X and outcomes ), and the goal is to learn a predictor p: X — Y
that supports decision-making. Given an action set .4, a decision-maker follows a decision rule
k: X — A(A) that utilizes predictions to minimize the expected loss incurred by a loss function
¢: A x )Y — R. Often, these scenarios encompass not just a single, known loss function but rather
a broad class of potential loss functions £. For instance, different stakeholders in healthcare might
prioritize different aspects of the outcome, while financial investors vary in their tolerance for risk.

When should a decision-maker treat a prediction p(x) as if it were the true outcome y? Calibration
provides a principled answer. A predictor is calibrated if, conditioned on every output value v, the
true outcome is on average equal to v. That is, E[Y | p(X) = v] = v.

While calibration can be trivially achieved with a constant predictor p(z) = E[Y], such predictors
are uninformative. In practice, calibration is often enforced via post-processing to simultaneously
recalibrate the model and reduce its mean square error of prediction. If the loss function £(a,y)
is linear in y, decision-makers can treat predictions as reliable substitutes for outcomes. Best re-
sponses computed from calibrated predictions are indeed optimal actions for true outcomes, given
the information from p(X) (Foster & Vohra, 1999; Noarov et al., 2023). However, achieving cali-
bration in high-dimensional outcome spaces is computationally and statistically intractable, because
it requires exponentially many samples to verify the unbiasedness of prediction over exponentially
many events of {p(z) = v} (Gopalan et al., 2024a).
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To circumvent this curse of dimensionality, Zhao et al. (2021) introduced the weaker notion of
decision calibration. Unbiased predictions are only required for events relevant to action selection.
As aresult, decision calibration ensures that predictions p(z) yield loss estimates that are statistically
indistinguishable from the true losses from the perspective of decision-makers. For a loss function
¢ € L and a decision rule &, a predictor p is decision calibrated if

E(m,y)wDEaNk(m) [g(av y)] = E(m,y)wDEaNk(m) [g(av P(x))] .

Notably, both the verification and the post-processing algorithm for decision calibration cost polyno-
mial time under high-dimensional settings. However, prior work on calibration for decision-making
(e.g., Foster & Vohra (1999); Zhao et al. (2021); Noarov et al. (2023)) have focused primarily on
linear loss functions. We defer additional discussion of related work to Appendix E. Linearity is cru-
cial for optimality of best-response actions to calibrated predictions. Yet, many real-world decision-
making scenarios naturally involve non-linearities. For example, risk-averse investors penalize large
losses more heavily. Clinicians have risk-sensitive objectives that assign greater weight to severe
medical outcomes.

A natural strategy is to linearize loss functions through a feature expansion ¢ : ) — H, such
that the loss function ¢(a,y) can be expressed (or well approximated) as a linear operator in the

higher-dimensional space H:
g(aﬁ y) = <T',g(a), ¢<y)>H

In this paper, we learn a decision calibrated predictor p : X — H such that p(z) induces loss
estimates indistinguishable from those of ¢(y). However, practical loss function classes—such
as certain subclasses of Lipschitz functions—typically require exponentially large dimensions of
feature expansion. Therefore, the computational and statistical complexity of decision calibration
are still intractable. To address this challenge, we develop the framework of dimension-free decision
calibration, which extends decision calibration to broad classes of non-linear loss functions without
incurring dependence of sample complexity on the dimension of the feature space H.

Our contributions.

1. Lower bound under deterministic best response. The standard “hard-max” best response de-
cision rule selects the action which minimizes the loss assuming the outcome is perfectly pre-
dicted. For a m-dimensional feature space H, we show that auditing decision calibration re-
quires 2(/m) samples. The lower bound is proved by constructing two nearly indistinguishable
distributions—one decision calibrated and the other miscalibrated—using the fact that there ex-
ist d points that can be shattered by halfspaces in a d-dimensional space. To the best of our
knowledge, this is the first lower bound of statistical complexity established for decision cali-
bration. Our lower bound provides evidence that non-trivial dimension-free decision calibration
algorithms do not exist under the deterministic best response decision rule.

2. Dimension-free auditing under smooth best response. We then consider quantal response, a
smooth optimal decision rule that stochastically select actions according to loss estimates. Quan-
tal response has been extensively studied in economics and decision theory (McFadden et al.,
1976; McKelvey & Palfrey, 1995), as it naturally captures bounded rationality and accounts for
probabilistic decision-making.

- e—B(re(a),p(@))n
Fpe(@,a) = S e Al p@)n

For quantal response, we show that there exists a dimension-free auditing algorithm. With high
probability, it can identify a loss function witnessing an e€/2-decision calibration error whenever
the predictor has e-decision calibration error, using only poly(|.4|,1/¢) samples, independent
of m. This sharp dimension-free guarantee is achieved through a carefully designed pseudomet-
ric whose covering number remains bounded, whereas the covering number under the standard
metric would be infinite when m is unbounded.

3. Dimension-free algorithm for decision calibration. Building on this auditing tool, we de-
sign a patching procedure that post-processes any predictor into one that is e-decision calibrated,
without worsening its mean square error. This guarantee applies broadly to function classes rep-
resentable or well-approximated by bounded-norm functions in an RKHS, including piecewise
linear and Cobb—Douglas functions. Notably, in terms of e-dependence, our algorithm improves
upon the finite-sample version of the algorithm in Zhao et al. (2021). Our sample complexity
scales as 1 /€%, compared to 1/¢% in their algorithm.
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2 PRELIMINARIES

Notations We consider the prediction problem for decision making with a feature space X" and a
compact convex outcome space ) C R?. Let D denote the distribution over X x ). Given any
dataset D = {(x;,y;)}7 that is drawn i.i.d from D and any function ¢ : X x J) — R, define the
empirical expectation as Ep[i(z,y)] = = 3" | 1(x;, y;). For any integer n, we use [n] to denote
the class {1,--- ,n}.

2.1 LOSS FUNCTIONS AND UNIFORM APPROXIMATIONS

We model downstream decision makers as having a finite action space .4 and a loss function ¢ :
AxY — [0, 1], which maps an action-outcome pair to a bounded loss. Let £ denote a family of such
loss functions. To handle nonlinear losses, we adopt a standard approach of approximating them via
a feature mapping ¢ : YV — H, where H is a (possibly infinite-dimensional) feature space. The idea
is to approximate each ¢ € L by a linear function of ¢(y). Once this approximation is established,
we show in the following sections that decision calibration becomes achievable for such loss classes.
When the feature space is finite-dimensional, we write H = R™ with dim(#) = m < co. We also
consider the case where H is a separable reproducing kernel Hilbert space (RKHS), which has a
countable orthonormal basis, and dim(#) can be co.

We formally define this approximation framework as follows:

Definition 2.1. Let ¢ : YV — H be a feature map and L a family of loss functions. We say that
¢ provides a (dim(H), A, €)-uniform approximation to L if for every ¢ € L, there exists a function
ro: A — H such that |(r¢(a), p(y))u — £(a,y)| < eand ||re(a)llg < Aforalla € Aandy € ).

Intuitively, Definition 2.1 requires the function ¢(a,-) : ) — R to be uniformly approximated by
functions g, : ) — R that are linear in some feature space for any a. We provide two families of
functions from the economics literature as examples that are linear in an infinite-dimensional feature
space in Appendix F.

2.2 PREDICTORS AND LOSS ESTIMATORS

We now define the notion of a predictor given a feature mapping ¢ : YV — H. A predictor is a
function p : X — H, interpreted as estimating the conditional expectation E[¢(y) | x]. Since the
feature space H can be high-dimensional or even infinite-dimensional, the predictor p(x) can be
complex and may lack an intuitive interpretation for downstream decision makers.

To address this, we do not expose the predictor directly. Instead, we use it to construct a loss
estimator f,, which takes as input a context z, an action a, and a loss function ¢, and outputs an
estimate of the expected loss ¢(a, y) given x. We formalize this notion below:

Definition 2.2 (Loss Estimator). A loss estimator is a function f : X x Ax L — R. For any context
x € X, action a € A, and loss function { € L, the output f(x,a,l) estimates the expected loss

E[t(a,y) | z].

Although the definition of f does not require an explicit association with a predictor, in our approach
the learned loss estimator is implicitly derived from an underlying predictor p. Specifically, when
such a predictor is maintained, the loss estimator takes the form f,(z, a,?) = (r¢(a), p(z)), where
r¢(a) is the coefficient vector associated with the loss function ¢, as defined previously.

2.3 DECISION RULES AND DECISION CALIBRATION

In an ideal setting, if a decision maker with loss function ¢ has access to the full distribution D,
they can compute and play the optimal action: a* = arg min,ec 4 Ep[¢(a, y)]. However, in practice,
decision makers do not have access to the full distribution. Instead, they rely on the loss estimator
f to make decisions. Given a context x, the decision maker queries the estimated loss f(x, a, £) for
each action a € A and selects an action accordingly.

We formalize the decision maker’s behavior via a decision rule, which is a function k& : X x A —
[0, 1], representing the probability of selecting action a given context z. A common strategy is to
select the action that minimizes the estimated expected loss:
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Definition 2.3 (Optimal Decision Rule). For a given loss function ¢ and loss estimator f, the optimal
decision rule is defined as:

1 ifa=argmingey f(x,ad,¥),
0 otherwise.

kge(z,a) = {

We also consider a smoothed version of the optimal decision rule, commonly referred to as the
quantal response model in economics and decision theory. The quantal response model has been
extensively studied in the literature (see e.g., (McFadden et al., 1976; McKelvey & Palfrey, 1995)).

Definition 2.4 (Smooth Optimal Decision Rule). For a loss function ¢, loss estimator f, and inverse-
temperature parameter [3 > 0, the smoothed optimal decision rule is defined as:

. o—B1(@,a,0)
kf7€($7 (l) = Za/ e—Bf(w,ab)

For convenience, we sometimes use k() to denote the probability distribution over actions induced
by a decision rule k. We now restate the definition of decision calibration, originally introduced by
Zhao et al. (2021), with our notion of the loss estimator:

Definition 2.5 (Decision Calibration). Let L be a class of loss functions and IC be a class of decision
rules. A loss estimator f is said to be (L, C)-decision calibrated if for every { € L and every
decision rule k € IC,

E(m,y)NDank(z) [E(aa y)] = E(m,y)NDank(z) [f(mv a, 6)] (1

We define the decision calibration error as:

deCCEL,)C(f) ‘= Sup ‘E(z,y)NDEaNk(w) [Z(aa y)] - E(w,y)NDank(w) [f(xa a, 6)” .
el kel

We say that a loss estimator is (L, IC, €)-decision calibrated if decCE, xc(f) < €.

To interpret equation 1, the left-hand side represents the true expected loss incurred when the agent
follows the decision rule k, while the right-hand side represents the estimated expected loss based
solely on the loss estimator f. The agent can compute this estimate without access to the true
outcome y. Intuitively, decision calibration ensures that the estimator f is accurate across all relevant
loss functions and decision rules.

We use K := {k¢|¢ € L} to denote the class of decision rules induced by any loss function ¢ € £
under the best response decision rule. Similarly, we use KCr,, := {k¢|¢ € L} to denote the class of
decision rules induced by any loss function ¢ € £ under the smooth best response decision rule.

We now discuss how the uniform approximation can help to achieve decision calibration. Let L4
denote the class of loss functions for which the feature mapping ¢ : J — H gives (dim(H), A, §)-

uniform approximations and let £, = {/ : {(a,y) = re(a) - ¢(y)} denote the associated class of
linear functions. Then given any predictor p : X — H, we can define the loss estimator f, as

fp($7(l, l) = <Tf(a)7p(x)>?-[

for any context x € X, action a € A and loss function £ € L. The following lemma shows that if
the loss estimator f, is € /2-decision calibrated for class L, it is e-decision calibrated for class L.

Lemma 2.1. Let Ly denote the class of loss functions for which the feature mapping ¢ : Y — H
gives (dim(H), A, §)-uniform approximations and let ﬁ¢ = {é : g(a, y) =71e(a) - ¢(y)} denote the
associated class of linear functions. For any predictor p : X — H, any class of decision rule K
and € > 0, if the loss estimator f, is (L, K, €/2)-decision calibrated, then f, is (L4, K, €)-decision
calibrated.

This lemma implies that, to obtain an e-decision calibrated predictor for the function class Ly, it
suffices to construct an ¢/2-decision calibrated predictor for its uniform approximation class.
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3 LOWER BOUND UNDER DETERMINISTIC OPTIMAL DECISION RULE

In this section, we investigate whether a dimension-free algorithm for decision calibration is possible
under the optimal decision rule. We establish a statistical lower bound on the sample complexity
of testing approximate decision calibration. In particular, we show that any algorithm requires at
least (v/d) samples to determine whether a predictor is decision calibrated. To the best of our
knowledge, this provides the first lower bound result for decision calibration.

Note that we choose not to prove a lower bound for computing a decision-calibrated predictor di-
rectly because trivial solutions—such as a constant predictor always outputting the mean outcome
E[Y]—can satisfy both decision and full calibration.

To prove our lower bound, we consider a simple setting where the number of actions |A| =
2, the feature mapping is ¢(y) = y, the class of loss functions is linear Ly = {¢ |
Va,3re(a), ||re(a)lly < 1,4(a,y) = (re(a),y)} with their corresponding optimal decision rules
Kz Our result shows that distinguishing whether a predictor p (and its induced loss estimator
) is (Lrin, Kz, 0)-decision calibrated versus not (Lyn, Kz, 1y, €)-decision calibrated requires
sample complexity that depends polynomially on the dimension of ). Since the proof involves con-
structing multiple distributions, we will slightly abuse notation and add another argument for D in
the definition of decision calibration error, that is
deCCEﬁ,K (fa D) = Ssup E(m,y)NDEaNk(m) M(Cla y)] - E(I,y)~DEa~k(z) [f(xv a, Z)] | .
teL, kek

For simplicity, we consider the special case where X = ) and the predictor p is the identity function,
i.e., p(z) = x, and so input data take the form (p(x1),y1), (p(22),y2),- .., (P(Xn), Yn). Now we
are ready to present the lower bound result:

Theorem 3.1. Let ¢ € (0,1/3), Y = {y € RY|yll, < 1}, and f, be the loss esti-
mator induced by some predictor p: X — Y. Let A be any algorithm that takes samples
(p(z1),y1), (p(x2),y2), - - -, (p(Tn), yn) drawn i.i.d. from a distribution D. Suppose that A is guar-
anteed to output "accept” with probability at least 2/3 whenever decCEg, . x1.x (f, D) = 0 and
guaranteed to output "reject” with probability at least 2/3 whenever decCELpiN, KLin(fp, D) >

e. Then the sample size n > Q(v/d).

The proof of Theorem 3.1 follows an indistinguishability argument akin to that of Gopalan et al.
(2024a): given a predictor p, we construct two nearly identical distributions, D; and D, such that
only D; satisfies decision calibration. We show that distinguishing which of the two distributions
generated the data requires at least 2(y/m) samples. However, our setting departs significantly
from Gopalan et al. (2024a), who study lower bounds for full calibration, which is stronger than
decision calibration. As a result, our construction of D; and D differs substantially and leverages
the geometry of best response regions. When the action set .4 consists of two actions, these regions
correspond to half-spaces of the form 1[(r,p(z)) > 0]. The core idea behind constructing D is
to introduce a subtle bias in the outcomes—specifically, a deviation (y — p(z))-that is statistically
difficult to distinguish from zero-mean label noise. Simultaneously, using a “shattering argument”
from VC theory, we show the existence of a loss function ¢ such that the associated half-space
captures a biased region. Consequently, the predictor p fails to satisfy decision calibration under
Ds. We leave the formal proof of Theorem 3.1 in Appendix 1.

This lower bound result also exhibit a barrier result for a dimension-free algorithm for achieving
decision calibration under the deterministic optimal decision rule. All existing decision calibration
algorithms with provable guarantees proceed by iteratively post-processing an initial predictor py.
A key component of these algorithms is the auditing step, which, in each iteration, identifies loss
functions that witness large decision calibration error whenever the predictor is not calibrated, and
returns nothing when the predictor is already calibrated (Zhao et al., 2021; Gopalan et al., 2022b;
2024a). Note that any auditing algorithm will necessarily require (+/d) sample complexity based
on Theorem 3.1.

4 AUDITING OF DECISION CALIBRATION FOR FUNCTIONS IN RKHS

In Section 3, we showed that under the optimal decision rule, it is impossible to even determine
whether a predictor is decision calibrated. This provides strong evidence that it is unlikely that a
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non-trivial decision calibrated predictor can be learned with sample complexity independent of the
dimension m. We now present our first positive result. By instead focusing on the smooth optimal
decision rule, it becomes possible to design an algorithm with sample complexity independent of
m. In this section, we first address the auditing problem—that is, identifying a pair of loss functions
(¢, ¢") that violate decision calibration—and show that this can be achieved with sample complexity
independent of m.

We focus on the auditing problem for functions in RKHS, since RKHS is the most general feature
space considered in our paper. In detail, let 7 denote an RKHS associated with the kernel function
K : Y x Y — R. From now on, for simplicity we restrict attention to loss functions in H with
bounded norms, that is, we define Ly, = {¢ : Va,{(a,-) € H,||¢(a,")||;, < Ri}. From Lemma 2.1,
the result will naturally generalize to the loss function classes that cannot be exactly represented by
bounded norm functions in H but well approximated by them (while having an extra approximation
error in the error bound). For consistency of notation, we use 7¢(a) to denote £(a,-). Let¢ : Y — H
be the feature mapping induced by kernel K, i.e. ¢(y) = K (y, -) and assume that ||¢(y)[|,, < Ra.

To ensure the loss estimator is computationally realizable, we constrain all predictors p : X — H to
lie in the span of finitely many feature mappings,

p(a) = i) d(ys), )
i=1

where NN, is the number of samples for estimation and «; : X — R is a coefficient function for

any i € [N,]. For any predictor in the aforementioned form, we can define the loss estimator f, as
N,

fp(xv a, é) = <T[(a),p($)>9_[ = Zz’:pl ai(x)e(aa yl)

We focus on the smoothed decision rule & 1,,¢ defined in Definition 2.4. Let K £, denote the class of
such smoothed decision rules. We first show that decision calibration (Definition 2.5) for f,, has an
equivalent but more intuitive formulation.

Lemma 4.1. For a loss estimator f, derived from the predictor p, it is (L, ICLH , €)-decision cali-
brated if and only if

| Al

, ZSIEIIZ E(zy)~D Z (rea), ¢(y) — p(x))ky, o (2,0) | | < e 3)

a=1
An auditing algorithm is supposed to verify decision calibration with finite samples. In particular,
the auditing problem asks whether we can witness a violation of decision calibration by explicitly
presenting a pair of loss functions (¢, ¢') that exposes miscalibration according to Equation (3).
Definition 4.1 (Auditing). An e-auditing algorithm (or e-auditor) takes (p(x1),y1),...(p(Tn), Yn)
as input, when decCE(f,, D) > €, with probability 1 — §, it witnesses a pair of loss functions £, ¢,
such that
| Al R
E(zy)~D Z (re(a), ¢(y) — p(x)>kfp,f’(x> a) || > e€/2.

a=1

As the first step of developing a dimension-free auditing algorithm, we establish a uniform con-
vergence bound for the audited error of decision calibration. The upper bound is polynomial with
respect to |.A| and 1 /e, while being independent of the dimension of . We consider a function class
parameterized by a pair of losses (¢, ¢'), which collects all the possible calibration gap functions.
| Al ~
Gi={gew : 0.0 € Ly}, where goo(p(e),6(y) = 3 (re(a), 6(y) — pla)is, o (x,0). @)
a=1
We establish the uniform convergence property for G by showing that the covering number of G
remains bounded, even when H is infinite-dimensional. Formally, we state the following theorem.

Theorem 4.1. Let D = {(x1,y1), ..., (Xn, Yn)} be the dataset where (z;,y;) is drawn i.i.d. from D.
Given any predictor p : X — H, for the function class G defined in Equation (4), we have that

s (Bl (), 64)] = Erey-loce (), 60| < 0(01 log(@”j{ log(1/ ‘”),
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where Cy = |A|2 B2R3R3 and Cy = Ry R,

Proof sketch. By standard Rademacher argument, it suffices to prove class G has dimension-free
finite Rademacher complexity. Since each function in the class G is parameterized by a pair of loss
functions ¢,¢' € L4;, Dudley’s chaining technique implies that it is enough to upper bound the
covering number N (Ly x L34, L (P,), €) where P, is the uniform distribution over dataset D and

L (P,) is defined as

LGP (0,0, (%)) 1= || 23 (g0 pla), 6(00) — 90 0 (0la), 6(3:)))

i=1

In order to bound the covering number N(Ly x L, L§(P,),€), observe that for any £ € Ly
and any a € A, r¢(a) is in the Hilbert ball B(R,) with radius R; since ||r¢(a)||,, < R;. This
allows us to connect the covering number we want to bound to a known finite covering number
N(B(Ry1),dp,€) where P is an arbitrary distribution on the Hilbert ball and dp is defined as

d(re, (a),re,(a)) = vVEx~p [(re, (a) — re,(a), X)?],

where X is a random sample in the Hilbert ball drawn from distribution P. Intuitively, dp first
projects the differences 6 — 6’ along a random direction given by the prediction of a random example
p(X) and then measures the distances in this projected one-dimensional space. For the formal proof,
see Appendix K. [

As a corollary of Theorem 4.1, we can develop an ERM oracle that serves as an auditing algorithm.
The loss function of the ERM is defined as

[A|
LDeCCal(ev E/’ Z, y) = Ge (p(m), ¢(y)) = Z <T€(a)7 ¢(y) - p(x)>];fp,€' (l‘, a)'

a=1

Theorem 4.2 (ERM as Auditing Algorithm). Let D = {(z1,91), ..., (Tn, Yn)} be the dataset that
each data point is drawn i.i.d. from D, given any predictor p : X — H, the ERM algorithm that
outputs

JU 1 &

00 =" Loeeca (60, i, i

s argn?’%/xn. - DecCa1(7 >xz>yz)a
i=

when n > O(|A]? 8RS RSe~2), ERM algorithm is an e-auditor.

In fact, solving ERM is stronger than solving the auditing problem. Auditing does not require
identifying the pair of loss functions that maximizes the empirical decision calibration error; it
suffices to find a pair for which the empirical error is large enough to certify that the true expected
decision calibration error exceeds €/2 (Definition 4.1). To avoid potential misinterpretation, our
algorithm Algorithm 1 assumes only the existence of an auditing oracle, rather than requiring an
ERM oracle.

5 ALGORITHMS OF DECISION CALIBRATION FOR FUNCTIONS IN RKHS

In this section, we discuss algorithms of decision calibration for functions in RKHS. In Section 5.1,
we first present our algorithm DimFreeDeCal (Algorithm 1) to achieve (L3, K £+ €)-decision
calibration. The patching component of our algorithm is motivated by the weighted calibration
framework introduced by Gopalan et al. (2022b), based on the observation that decision calibration
can be viewed as a special case of weighted calibration. However, their algorithmic framework is not
directly applicable to our setting, as it patches the predictor in the finite-dimensional setting, whereas
our formulation requires handling a more general (potentially infinite-dimensional) prediction space.
We will discuss how to address challenges in the infinite-dimensional setting.

Zhao et al. (2021) also proposed an algorithm for achieving decision calibration under the smooth
optimal decision rule in the finite-dimensional setting, given the access to the full data distribution.
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However, their algorithm does not directly extend to the finite-sample or infinite-dimensional set-
tings. In Appendix M, we describe how to adapt their algorithm to achieve provable finite-sample
guarantees and extend it to the infinite-dimensional case. Notably, our proposed algorithm achieves

a sample complexity of O(1/€*), which improves upon the O(1/€%) sample complexity of the mod-
ified version of their algorithm.

5.1 DIMENSION-FREE DECISION CALIBRATION ALGORITHM

In this section, we propose our algorithm DimFreeDeCal (Algorithm 1). In Section 5.1.1, we
build the connection between decision calibration and weighted calibration. Building on this con-
nection, we address the novel challenges of patching in the infinite-dimensional setting and present
our algorithm in Section 5.1.2.

5.1.1 DECISION CALIBRATION AS WEIGHTED CALIBRATION

We restate the definition of weighted calibration introduced by Gopalan et al. (2022b) and extend it
to the RKHS setting.

Definition 5.1 (Weighted Calibration Gopalan et al. (2022b)). Let W : ‘H — H be a family of
weight functions. We define the VV-calibration error as

CEw(p) = sup. [Ep [(w(p(x)), p(x) — &(y))5l-
We say that the loss estimator f, is (W, €)-calibrated if CEyy (p) < e.
The weighted calibration algorithm follows an iterative template: at round ¢,

1. Use an auditing algorithm to check whether p; is (W, €)-weighted calibrated. If it is, ter-
minate the algorithm.

2. If not, identify the weight function w; € VV that incurs the largest JV-calibration error.
3. Update the predictor p;11(z) = pi(x) + 1 - wi(pe(z)), where 7 is the step-size hyperpa-
rameter.

Next we will show the connection between decision calibration and weighted calibration. By
Lemma 4.1, the decision calibration error of a loss estimator f,, can be written as

deCCELH,IQH (fp) == s stliplC ‘E(z,y)NDEaN;;(I) [l(a,y)] — Ewy)~DEqia) [f(z,a,0)]
€Ly, kER Ly
[ 14| N
= sup (B yop | D (re(a), $(y) — p(2))ks, o (2, )
0Ly pt

|A|
= sup |E@y)~p <ZW a)ky, v (z,a), d(y) p(x)>

Ll eLy

Therefore, decision calibration is a special instance of Wyec-calibration for Waee = {we e -
weo (p(x)) = S0, re(a)ky, o (,a), Y0, 0 € Loy},

5.1.2 PATCHING IN THE INFINITE-DIMENSIONAL SETTING

The first challenge in the infinite-dimensional setting is that we need to restrict the predictor in the
form of Eq. (2) so that we can use the reproducing property to construct a loss estimator f,,. There-
fore, in each round ¢, once we find /¢, ¢} that violates the decision calibration, we cannot directly
follow the original weighted calibration algorithm template to update the predictor by patching wy, ¢,
unless 1y, (a) can be explicitly expressed by the linear combination of ¢(y).

Howeyver, note that

[A| |A|
E <Z re,(a)ke, (2, a), ¢(y) — Pt($)> Z <7‘et (a), E[(¢(y) — pr(x)) ke (x, a)]>

a=1
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| Al

< X Ra[[Bl(6() - p()ke 0],

Equality holds when r¢; (a) = RiE[(6(y) — pi()) ke, (2, a)l/|[E[(¢(y) — pe(2)) ke, (2, a)][[,- On
the one hand, once we identify a pair of (¢;, £}), replacing ¢; with £; will make the violation worse.
On the other hand, 7¢:(a) can be expressed by the linear combination of ¢(y) (we will use the
empirical expectation to approximate the true expectation). Therefore, in each round ¢, we can use
¢} to update the predictor p;.

Algorithm 1 DimFreeDeCal
Input: The RKHS kernel K, current predictor pg : X — H, tolerance € and step ¢ = 0.
1 while sup, s E[(S"A, ro(a)ke (2,a), 6(y) — pi(2))] > e do

2 Find ¢, ¢, such that E[(Y12 o, (a)ke, (2, a), ¢y) — pi())] > 3¢ /4.
3:  Define the adjustments

dra = nRAE[(8(y) — pr () e, (z, @)/ [ E(0(9) — po(@))k (. )]

4: Setpryr:x e pi(x) + Z!ﬁl dm;;gé (z,a).
5:  Setpiy1:® = TRy (Pe+1()).  //TB(R,) Projects onto Hilbert ball B(Ry).
6: end while

Intuitively, the algorithm proceeds as follows. In lines 2-3, we invoke the auditing oracle: if the loss
estimator fj,, is not (L4, K,, , €)-decision calibrated, we can identify a pair (¢;, £;) that the empir-
ical decision calibration error exceeds 3¢/4. In line 4, as previously discussed, we substitute (¢}, £})
for (44, £}) to define the patching term so that the updated predictor can remain to be explicitly ex-
pressed as a linear combination of ¢(y). Lines 5-6 then carry out the patching step. Notably, we can-
not perform computations directly with p,(x), as it may reside in an infinite-dimensional space. To
address this, we introduce the technique of implicit patching. The key idea is to perform patching im-

plicitly by maintaining a linear representation of the form p;(z) = Zf\]:tl ai(2)p(yz;). That is, we
keep track of the functions ay; : X — R and the corresponding outcomes y;; for all ¢ and i € [IV].
Given this representation, we can efficiently compute the value of the loss estimator f, (x,a, £)

for any loss function £ € Ly as follows f,, (x,a,€) = (re(a),p(x)), = vazfl agi(2)l(a, yii)-

Formally, we have the following proposition.

Proposition 5.1. For Algorithm 1, if the input predictor satisfies po(x) = vazol aoi(2)p(yo:), the

Sor any t, we have pi(z) = Zivztl i () d(yes).

Given Proposition 5.1, we can perform patching implicitly by keeping track of the coefficients in-

stead of directly computing p;.

Now we are ready to present the main result of this section.

Theorem 5.1. Given any initial predictor py and tolerance €, Algorithm 1 terminates in T =
2 p2 ~ 3 P8 P8

O(Rtfﬂ) iterations. Given O(M‘E#) samples, with probability 1 — 9, Algorithm 1 outputs

2
Ipr(z) — o(y)l3] <

a predictor pr such that fp, is (LH,I@LH,G)—decision calibrated and E|
2
Elllpo(z) — ¢(y)ll3]-

This theorem establishes that Algorithm 1 produces a decision-calibrated predictor that preserves
the performance of the initial predictor, requiring only finitely many samples that do not depend on
the dimension m.

To conclude, this paper investigates when model predictions can be made decision-calibrated for
nonlinear downstream losses, especially when naive embeddings y — ¢(y) € R™ make m large
or infinite. We first show a limitation: under deterministic best responses, even verifying decision
calibration can require sample complexity polynomial in m. We then introduce a smooth variant and
an accompanying algorithm that achieves decision calibration with poly(|.A|, 1/¢) samples indepen-
dent of m, without degrading the base predictor in terms of /5 losses, and covers broad nonlinear
losses via bounded-norm functions in separable RKHS.
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A ETHICS STATEMENT

This work is entirely theoretical and does not involve human subjects, sensitive personal data, or
potentially harmful applications. As such, we do not foresee any direct ethical concerns.

B REPRODUCIBILITY STATEMENT

We have provided complete formal definitions, theorems, and proofs in the main text and appendix
to ensure the reproducibility of our results. All assumptions are explicitly stated, and key lemmas
and lower bound constructions are detailed. Since our contributions are theoretical, no datasets
are involved, and all algorithmic procedures are described in a way that can be unambiguously
implemented by others.

C USE OF LARGE LANGUAGE MODELS

We used LLMs solely as a writing assistant to polish the presentation and improve readability.

D USEFUL LEMMAS

Lemma D.1 (Property of Traces and Frobenius norms). For any matrix A € R"™*", the Frobenius
norm is defined as

Al =

We have
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1. Tr(AAT) = Tr(AT A) = || A%

2. When A, B are square matrices, Tr(AB) < \/Tr(AAT) - Te(BBT) = || Al x| Bl p-

3. Frobenius norm has submultiplicative property, that is, for any matrix A, B,
[ABlp < [|All I B
Theorem D.1 (Hoeffding’s Inequality for Hilbert Spaces). Let H be a separable Hilbert space. Let

e

X1, -+, XN be independent random elements of H with common mean p such that | X;|| < B
almost surely for any i € [N]. Let in := % Zivzl X, denote the sample mean. Then for any
d € (0,1) with probability at least 1 — 6,
. 21n(2/4
lin — pll < 2B T)

We will introduce some useful results for proving the uniform convergence guarantee.
Definition D.1 (Covering Numbers). Let (V, d) be a metric space and © C V. We say {v;}}X., C V

is an e-covering of © if © C Ufil B(v;, €) where B(v,€) := {u € V : d(u,v) < €} is the closed
ball of radius € centered at v. The covering number is defined as

N(0,d, ) := min{n : Je-covering of © of size n}

Definition D.2 (Rademacher Complexity). Let S = {z1, ..., 2} C Z be a sample of points, and a
Sfunction class F of real-valued functions over Z. The Rademacher complexity of F with respect to
S is defined as follows:

1 n
Rs(F)=—-FE;s_ m | sup oif(z
(F) = Bonf-141) L@; (1)
Theorem D.2. Assume that z1, ..., zy, are i.i.d. drawn from D, then with probability at least 1 — 9,
we have

sup [1 > =) - EZN’D[f(Z)]‘| < 2Espm [Rs(F)] + log(2/0)
1

fer | iz 2n
We consider a Hilbert ball By = {z € R*>|>", 27 < 1} Now we introduce the result that upper
bounds the covering number of Hilbert balls under some metric induced by a probability distribution
P. Note that under the common metric ¢2(IR°°), the covering number of the Hilbert balls is infinite.

However, under the metric d,(6,6’) = \/ Ex~p|(8 — 6, X)|?, the covering number is finite even
in the infinite dimensional Hilbert space.

Theorem D.3 (Covering Number of Hilbert Balls MacKay (2003)). P is a distribution on B,

consider the metric dp(0,0') = \/EXNP| (0 — 0", X)|*. There exists a universal constant c, such
that for any P, € > 0, we have

IOgN(BQadP7€) <

SURN

Let P, be the empirical distribution, which is the uniform distribution over 21, ..., z,,. For a function
class F, we define the metric LI (P,)(f, f') = /2 37 (f(2:) — f'(2:))?. Note that if you plug
in P = P, for the metric dp in Theorem D.3, then the metric d » becomes a special case of L3 (P,,)

for f(z) = (0, 2).

Now we indroduce the Dudley’s Theorem which bounds the Rademacher complexity of a function
class by its covering number.

Theorem D.4 (Localized Dudley’s Theorem). Let S = {z1, ..., 2,} C Z be a sample of points, and
a function class F of real-valued functions over Z. For any o > 0, we have

oo F
Rs(F) §4oz—|—12/ \/logN(f’i“‘ (Pn)€) 4. 5)

12
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E RELATED WORK

Calibration and Decision Making The work most closely related to ours is Zhao et al. (2021),
which introduced the concept of decision calibration in the batch setting, where data points are
drawn from an underlying distribution. Zhao et al. (2021) primarily examined decision calibration
in the context of multi-class classification, where the outcome space ) is finite and the loss functions
are linear. Our paper also considers the batch setting, but we significantly extend their framework
to a broader and more general scenario, allowing the outcome space ) to be any compact convex
set and accommodating non-linear loss functions. There is a longstanding line of work on cali-
bration and decision-making in the adversarial setting, where data are presented adversarially in a
sequential manner. The seminal work of Foster & Vohra (1999) showed that a decision maker who
best responds to calibrated forecasts obtains diminishing internal regret. Similarly to decision cali-
bration, there is a line of work in the adversarial setting that tries to achieve some weaker variants
of calibration while keeping agents incentivized to treat the predictions as correct (Kleinberg et al.
(2023); Fishelson et al. (2025); Luo et al. (2025)). Kleinberg et al. (2023) proposed a notion called
U-calibration, which is sufficient for agents to achieve sublinear external regret, bypassing the lower
bound of achieving calibration (Qiao & Valiant (2021)). A subsequent work by Luo et al. (2024)
gave the optimal bound of multiclass U-calibration. Noarov et al. (2023) studied how to make se-
quential predictions for decision-making in the high-dimensional setting, but also relied on the loss
functions to be linear. Following the same algorithmic approach as Noarov et al. (2023), Roth & Shi
(2024) showed how to produce predictions for agents to best respond and achieve low swap regret.
But their regret bound has dependence on the size of the action |.A|. Hu & Wu (2024) showed that in
the binary setting, the dependence on |.A| can be removed while keeping the O(+/T) regret. There
is also work on calibration and decision making in games, such as Camara et al. (2020); Haghta-
lab et al. (2023); Collina et al. (2024). However, most of these works focus either on linear loss
functions or on one-dimensional outcome spaces, whereas our work addresses the more general and
challenging setting of nonlinear loss functions over d-dimensional outcomes.

Omniprediction In addition to decision calibration, there is another line of work studying pre-
diction and downstream decision making called omniprediction, which was introduced by Gopalan
et al. (2021). A subsequent Gopalan et al. (2022a) built the connection between omniprediction and
outcome indistinguishability (OI), which was introduced by Dwork et al. (2021) in the binary set-
ting and was extended to the continuous one-dimensional setting by Dwork et al. (2022). In detail,
they showed that omniprediction can be achieved by hypothesis Ol and decision OI. Decision Ol is
a weaker notion than decision calibration. While decision OI requires that predictions be indistin-
guishable from the true outcomes with respect to the loss £ incurred under the optimal decision rule
defined by / itself, decision calibration demands this indistinguishability hold for the loss ¢ incurred
under the optimal decision rules defined by any loss function ¢'.

Garg et al. (2024) first studied omniprediction in the adversarial setting. Recently, several papers
on omniprediction have leveraged decision OI to achieve omniprediction efficiently in both batch
and adversarial settings. Okoroafor et al. (2025) studied near-optimal omniprediction in the ad-
versarial binary setting. Gopalan et al. (2024b) studied how to efficiently achieve omniprediction
for nonlinear losses in the one-dimensional batch setting. They proposed the notion called suffi-
cient statistics, which can be viewed as finite-dimensional feature mapping and inspired our study
on more general feature mapping. Dwork et al. (2024) studied omniprediction in evolving graphs.
A very recent work Lu et al. (2025) extended Gopalan et al. (2024b) to the high-dimensional ad-
versarial setting by using a different generalization of the decision Ol, first given by Noarov et al.
(2023) and used by Roth & Shi (2024). It is worth noting that their work is not directly comparable
to ours, even though they also consider d-dimensional nonlinear losses, for the following reasons.
First, similar to Gopalan et al. (2024b), their framework to handle nonlinear loss functions assumes
a finite-dimensional feature mapping, whereas we also address the more general case of infinite-
dimensional feature mappings. Second, their focus lies in the adversarial setting, where they employ
an online-to-batch conversion to construct a randomized predictor from scratch that satisfies batch
omniprediction. In contrast, our goal is to take an arbitrary predictor as input and output a determin-
istic predictor that satisfies decision calibration—a related but fundamentally different notion from
omniprediction. Uniform approximation via finite-dimensional feature mappings has been studied
in prior work, such as Gopalan et al. (2024b) and Lu et al. (2025), in the contexts of omnipredic-
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tion and online decision swap regret. Our formulation generalizes this idea to infinite-dimensional
feature spaces.

Calibration and Reproducing Kernel Hilbert Spaces (RKHS) RKHS has also been introduced
in the context of weighted calibration (Gopalan et al., 2022b). Blasiok et al. (2023) and Gopalan et al.
(2024a) consider weight functions that are bounded-norm functions in an RKHS. However, the role
of RKHS in our work is fundamentally different. While these prior works use RKHS for the weight
functions, we use it to represent the loss functions. Specifically, their approach involves computing
the inner product between the weight function and the difference p(x) — y, which preserves the
original outcome space. As a result, achieving weighted calibration with bounded-norm weights in
an RKHS does not translate to decision calibration for non-linear losses.

F LINEAR FUNCTIONS IN RKHS

Example F.1 (Continuous Piecewise Linear Functions). Consider the case Y = [0,1]. Define a
Sfamily of functions to be G = { gk, ky.c : V¢ € [0,1], k1] < R, |k2| < R} where

()_ k:ly 0§y<0
T eW) =\ gy + (ky —ko)e c<y<1.

This defines a class of piecewise linear functions with an unknown turning point c. Piecewise linear
Sfunctions of this form have been extensively studied in the economics literature. The function gy, k., ¢
can be interpreted as a utility function (or the negative of a loss function), where y denotes the
consumption level of a particular good. It captures a common economic scenario in which marginal
utility decreases once consumption exceeds a threshold c.

Next we show that functions in G are linear in a infinite-dimensional feature space. Let H be the
RKHS with kernel

K(y1,y2) = min{y1, y2}.
Let ¢(y) := K(y, -) be the feature mapping associated with K. We have

Gy kze = (k20(1) + (k1 — k2)@(c), (y)) -
In addition, we have ||k2¢(1) + (k1 — k2)o(c)|l,;, < R.
Example F.2 (Cobb-Douglas Functions). Consider the case Y = {y € R? : ||y|2 < 1}. Define a
family of functions to be G = {g, : Ya € [0,1]¢ s.t. Zie[d] a; = 1} where

Go(y) = eXicla v,

This defines the class of Cobb-Douglas functions in exponential form. Cobb-Douglas functions
are widely used in economics. One can interpret g, as a utility function (or the negative of a
loss function), where y; represents the consumption level of the i-th good and a; is the normalized
preference (see Varian & Varian (1992)) for the i-th good for any i € [d).

Next, we show that functions in G are linear in an infinite-dimensional feature space. Let H be the
RKHS with kernel

K(y1,y2) = exp({y1, y2))-
Let ¢(y) := K(y, -) be the feature mapping associated with K. We have
9o = (#(a), &(y))y.-

In addition, we have ||¢(a)||,, < V/e.

G NO REGRET GUARANTEES OF DECISION CALIBRATION

Now we show why decision calibration is useful, as it gives no regret guarantees for downstream
decision makers. We consider the no-type-regret guarantee that is also discussed in Zhao et al.
(2021). Informally, no type-regret guarantee ensures that a decision maker with loss function £ € L,
who plays the best response policy under their own loss, will incur an expected loss no greater than
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what they would incur by playing the best response strategy for any other loss function £’ € £.! We
derive the no-type-regret guarantee results for decision makers under both the optimal decision rule
and the smooth optimal decision rule.

Proposition G.1 (No Type Regret under Optimal Decision Rule). If the loss estimator f, is
(L, K., €)-decision calibrated, then any decision maker under optimal decision rule has no regret
reporting their true loss function, that is

Vf, U e £7 E(z,y)NDankg(x) V((L y)] < E(z,y)ND]EaNkL;/ (z) V(a’v y)] + 2e.

Proof. By definition, when the loss estimator f,, is (£, K, €)-decision calibrated, we have

E(z,y)~DEamiy () [€(a,y)]
SE(2,y)~DBami (@) [f (2,0, €)] + €
<E(z,y)~DEank, (2)[f(x,a,0)] + €
<E(z,)~DEBank, ) [£(a, y)] + 2,

where the first and third inequalities follow from the definition of decision calibration, and the
second inequality follows from the optimality of k. O

Zhao et al. (2021) proved a similar guarantee for multiclass setting and linear loss function class.
We generalize the result to the general loss estimator setting.

Now we move on to a similar guarantee for decision makers with the smooth optimal decision rule.

For this result the error will have another term % which is related to the hyperparameter 3

of inverse-temperature. This is because the smooth best response rule ky might not strictly lead to
a better expected loss than k), therefore we will need to first relate the loss that the decision maker

incurs by playing k; to the loss they incurs by playing the strict optimal decision rule k,, which adds
another approximation error term. To prove the result, we will need to use a lemma proposed by
Roth & Shi (2024), where they studied swap regret (a different notion of regret) in the adversarial
online setting. Roth & Shi (2024) states the lemma in the setting of a utility function u, and we
restate it in the form of the loss function ¢.

Lemma G.1 (Roth & Shi (2024)). For any loss estimator f, context x and loss function {, we have
that
log(|A]) +1
]Ear\d];;[(;lj) [f(xv a, E)] S ]ankrg(w) [f(xv a, E)] + T
Proposition G.2 (No Type Regret under Smooth Optimal Decision Rule). If the loss estimator f,

is (L, Ke, €)-decision calibrated, then any decision maker under smooth optimal decision rule has
no regret reporting their true loss function, that is

log(|A]) +1

vga gl S L:a E(J;,y)NDEaNEK(x) [g(av y)] < ]E(;E,y)NDIEaNE[,(x) [Z(a, y)] +2e + B
Proof.

E(Isy)N’D]anl;[(m)[g(av y)]
S]E(way)ND]EaNE[(z) [f(xv a, E)] +e€

log(|A]) +1
S]E(m,y)ND]Eang(z)[f(x, a,l)] + € + %
log(|A]) +1
S]E(z,y)ND]EaNk[,,(m) [f(z,a,0)] + €+ (BD
log(|A]) +1
<E(y)~DEonty, (@) f(@,0, 0] + e+ %

"From the perspective of mechanism design, no-type-regret implies that decision makers have no incentives
to misreport their loss function to the loss estimator.
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log(JA|) +1

/8 b
where the first and last inequalities follows from the definition of decision calibration, the second
inequality follows from Lemma G.1, the third inequality follows from the optimality of ky, and the

fourth inequality follows from the expected loss of playing the optimal decision rule will lead to loss
no greater than that when playing the smooth optimal decision rule. O

SE(I’?J)N’D]EGNE?@/ (T) [€(a7 y)] + 26 +

H PROOFS IN SECTION 2

Lemma 2.1. Let L denote the class of loss functions for which the feature mapping ¢ : Y — H
gives (dim(H), A, §)-uniform approximations and let Lo=1{0:a,y)=ra)- ¢(y)} denote the
associated class of linear functions. For any predictor p : X — H, any class of decision rule K
and € > 0, if the loss estimator fy, is (ﬁ¢, KC, €/2)-decision calibrated, then f, is (Ly, KC, €)-decision
calibrated.

Proof. We have for any £ € L4 and any k € K,

|E(m,y)~DEa~k(aﬂ) W‘ly y)] - E(m,y)NDank(m) [fp(x7 a, E)] ’
= E(fc,y)wDEaNk(m) [f(a, y) - g(av y)] + E(m,y)NDank(m) [‘g(aa y) - fp(mv a, ﬁ)} ‘

< ‘E(E y)N'D]Eaka(aZ) [Z(aa y) - é(av y)]‘ + ‘]E(w,y)ND]EaNk(I) [é(av y) - fp(l', a, 6)]’

<g3+3-
where the last inequality holds because s gives (dim(#), A, €/2)-uniform approximations to £, and
fois (L4, K, €/2)-decision calibrated. O

I PROOF OF THE LOWER BOUND IN SECTION 3

As our first step in the proof for Theorem 3.1, we derive an equivalent definition of decision calibra-
tion error for binary actions.

Lemma L1. For linear loss function class and | A| = 2, when loss estimator f, is induced by some
predictor p, we have

decCELyx ke (fps P) = sup [[E(y — p(2)) - 1({r; p(x)) > 0) [l +[[E(y — p(x)) - 1({r; p(2)) <

reRrd

Proof. From the definition of decCE. x(f, D), we have

decCEg, 1y K (fpv D)

= sup ‘E(m,y)NDEa~k(m) [€(a7 y)] - E(z,y)NDank(z) [fp(mv a, 6)] |
teLlrin, k€K ey 1y

= sup |E(2,4)~DEami(@) [(re(a), )] = E(z )~ DBami(a) [(re(a), p(z))]]
leLrin, k€K Ly

= sup |E(I,y)~DEa~k(E) [<r€(a)7 Yy — p(ﬂ?)” |
leLrIN, ke}cﬁLIN

= Ssup ‘E(z,y)ND[l“rw(al) - T’g/(ag),p(l‘» > 0) <’I‘g(0,2), Y- p(l‘)>
0,0 e LN

+ 1({rer(a1) — re(a2), p(x)) < 0)[(re(ar), y — p(x))]]

= sup  [Ey~p[1({rp(z)) > 0)(re(az),y — p(x))
reRe ¢ eLiin

+1({r;p(x)) < 0)[(re(ar),y — p(x))]|

= sup [E(y — p(z)) - 1({r; p(x)) > 0)[ly + [E(y — p(x)) - 1((r, p(z)) < 0)]l5.
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The first 3 equations is from definition and simple algebra, the fourth equation holds from the defi-
nition of optiml decision rule, and the last line holds by Cauchy—Schwarz inequality. O

Now we give the proof idea for Theorem 3.1. At a high level, our lower bound follows a template
similar to that used in the lower bound for high-dimensional full calibration presented in Gopalan
et al. (2024a), which investigates the sample complexity required to verify full calibration. To prove
Theorem 3.1, we start with a set V' = {vy,v9,--+ ,vq} C Y where v; = %ei is half of the unit
vector with the i-th coordinate being 1/2 and all other coordinates take value 0. V' can be shattered
by the function class H = {h : h(v) = sign(r,v),r € R?}. Formally, a set S C X is said to be
shattered by H if for every function f : S — {—1,1} there exists a hypothesis h € H such that
Vo € S, h(z) = f(z).

Lemma L2 (Shattering). V' can be shattered by the function class H = {h|h(v) =
sign((r, ), [|r(l, < 1}.

Proof. Letr = (r), ... .r(@) ¢ {— L }d We have sign((r, e;)) = sign(r(¥). Therefore,

h(v) can arbitarily takes value in {—17 1} at each point v; € V, which means V' can be shattered by
O

Next we use V' to construct candidate distributions with large decision calibration error.

Lemma L3. Foranyo = (o), ...,0(®) ¢ {f— —}d Let h, be the function that for any i € [d]

it holds that h,(v;) = v; +€-sign(o;)e. Conszder a dzsmbutton D, and predictor p, such that p(x)
is distributed uniformly over V andy = hy(p(z)), then it holds that decCEr, k., . (fp, Ds) > €.

Proof. Consider r = o, we use | = Zle 1(0;) > 0 to denote the number of positive coordinates
in 0. We have

decCELy iy ks, (fp: D) = sup, IE(y — p()) - 1({r, p(x)) > 0)]l,

+[E(y — p(2)) - 1((r, p(2)) < O)l,
Z[E[(y — p(x))]1((o,v) > 0)[ly + [E[(y = p(x))]1({o,v) < O)];

d

d
= é 2 1(o; > 0)esign(o;)e 2 cllz_: o; < 0)esign(o;)er 2
e (d—1)e
AR
=e.
(6)
O

We now construct two nearly indistinguishable distributions over n data points of prediction-
outcome pairs (p(z),y), denoted by D1, Dy € A((Y x Y)™). The first distribution D; is such
that the predictor p is perfectly decision calibrated, while the second distribution D is a mixture
over distributions where p incurs a decision calibration error of €. The goal is to show that telling

which of D; and D5 generates the observations requires a number of samples Q(\/ﬁ)

Let A be an algorithm that receives n samples (p(x1),v1), (p(72),%2), ..., (p(7n),yn) € Y? and
outputs either “accept” or “reject.” Define the joint distribution D; € A((Y x Y)™) as follows:
each p(x;) is drawn independently and uniformly from a finite set V, and each corresponding y; is
independently drawn as y; = p(x;) & cej, where the sign is chosen uniformly at random. Let p;
denote the probability that algorithm A accepts p on samples follow D;.

Next, define the joint dlstrlbutlon Dy € A((Y x Y)™) as follows: first, uniformly sample a pertur-
bation vector o € {— \f f}d, and then sample each p(z;) independently and uniformly from V.

For each 4, set y; = h,(p(x;)), where h,, is a fixed perturbation function defined by o.

Intuitively, these two distributions are nearly identical. As long as all predictions p(z1), ..., p(zy)
are distinct, the behavior of D; and D5 is almost indistinguishable. The key difference arises when

17
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two data points share the same prediction value v = p(x;) = p(z;): in Dy, the outcomes y; and y;
may differ due to independent noise, while in D5, they are always the same because the mapping h,,
is fixed once o is sampled.

We now formalize this intuition in the following statement.

Lemma L4. Let py be the probability that A accepts when the data ((p(z1),y1), -, (P(Tn), Yn)) ~
D1, and Let ps be the probability that A accepts when the data ((p(x1),y1), ..., (D(Zn), Yn)) ~ Da.
Here, the randomness comes from both the inherent randomness in A and the data. Then, it holds
that |py — p2| < O(n?/d).

Proof. Without loss of generality we assume that n < |V| = d. For proving the lemma, we intro-
duce another joint distribution over the n data points, where we first draw p(z1),...p(zy,) uniformly
without replacement from V, and then for any ¢, we independently draw y; = p(x;) & ee; with both
probabilities 1/2. We use ps to denote the probability of A accept if the data points follow this joint
distribution Ds.

Also, when we draw all p(z;) independently uniformly with replacement, we use F to denote the
event that p(x1),...,p(,,) turn out to be distinct. We have

Pr[E] = (1 - 1/|V])...(1 — (n — 1)/|V]) > 1 — O(n?/d). (7)

For both joint distributions, conditioned on the event F, the probability that A will accept is exactly
ps. Then, we have
Pr[E] - ps < p1 < Pr[E] - ps + (1 — Pr[E]).
We also have
Pr[E] - ps < pa < Pr[E] - ps + (1 — Pr[E]).
Therefore, we have
[p1 = p2| <1 Pr[E] < O(n?/d). ®)

Now we are able to prove Theorem 3.1.

Proof of Theorem 3.1. Consider the case of D, it can be viewed the data points are drawn inde-
pendently from a distribution D, where p(z;) is drawn uniformly from V, and y = p(z) + ee;
with probability both % Therefore D; is a joint distrbution such that the data points are drawn
from a distribution such that p is calibrated (and therefore decision calibrated). Therefore, we have

Consider the case of Ds, it can be viewed as a mixture of distributions indexed by o, where for each
distribution, the data points are drawn independently from a distribution D,,, where p(x) is drawn
uniformly from V, and y = h,(p(x)). The distribution is a mixture where o is drawn uniformly.
Therefore,

1
P2 =55 Z Pr[A accepts D, ]. )
oe{—1,+1}4
As aresult, from Lemma 1.3, we have

1
P2 < 5 1B =1/3
oce{—1,+1}4

By Lemma 1.4, we know n > Q(+/d). O

J PROOFS IN SECTION 4

Lemma 4.1. For a loss estimator f, derived from the predictor p, it is (L, K L4+ €)-decision cali-
brated if and only if
|Al

sup E(r,y)wD Z <’r€ (a)7 ¢(y) - p(x)>i%fp7£/ (.’L’, a’) <e (3)

001 E€Lyy ot

18
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Proof. By reproducing property, for any ¢, ¢’ € L4;, we have

E(%Z/)NDanfcfpll (z) [€(a7 y)} - ]E(w,y)ND]EaN]}fp’e, (z) [fp(SC, a, f)] ’

[14] |A]
= ]E(:c,y)N’D Z E(“a y)];fp,f’ ($7 a) - E(I,y)ND[Z fp(ma a, Eﬁff;uf’ (337 a)]
:|A\ _
= ]E(:c,y)w'D Z(f(aa y) - fp(ma a, E))k/’fp,f’ (mv a)
:|A\ ~
= [E@yy~p | D ((re(a), 6(y)) — (re(a), p(x)))ky, o (,a)
:|A\ ~
= ]E(z,y)N'D Z <’f'((a)7 ¢(y) - p($)>kfp’g/ (‘T7 a)

O

Theorem 4.2 (ERM as Auditing Algorithm). Let D = {(z1,y1), ..., (Tn, Yn)} be the dataset that
each data point is drawn i.i.d. from D, given any predictor p : X — H, the ERM algorithm that
outputs

U 1 &

0,0 + — L 0,0z, y;

s argI?’%,anl DecCa1(7 >$z>yz)a
i=

when n > O(|A]? 8RS RSe=2), ERM algorithm is an e-auditor.

p . . A/ APB*RS RS
roof. This follows directly from Theorem 4.1, because when n > O(*=—-=-2), we have
Al 5
sup B yop | Y (re(a), (y) — p(a))ky, o (x,a)
0Ly —
Al i
—E(zy)~D Z (re(a), ¢(y) — p(@)ky, 0 (z,a) || < €/2.
a=1
From the definition of Lpeccal, we know that
1 n |A|
, -
E Z LDccCal(& 14 y L, yz) - E(ac,y)ND Z <T2(a)7 ¢(y) - p(x»kfp,é’ (l‘, a) :
i=1 a=1

Here, we can remove the absolute value since £ is defined as the ball Ly = {{ : Va, £(a,-) €
H, ||¢(a, )|l < Ri}, which is symmetric by construction.

By triangle inequality, when decCE( f;,, D) > €, we have

[A|

Egyn | D (ri(a), (y) — @)k s(w,a) || = /2.

a=1

O

K UNIFORM CONVERGENCE FOR AUDITING DECISION CALIBRATION WITH
SMOOTHED OPTIMAL DECISION RULE

Now we introduce the finite sample analysis for decision calibration under smooth optimal decision
rule.
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Theorem K.1. Let D = (x1,y1), ..., (Tn,Yn) be the dataset that each data point is drawn i.i.d.
from D, with probability at least 1 — § we have that

|Al
S E(z,y)~D ;(re(a),aﬁ(y) = p())ky, 0 (z, a)
A i
~Egyyen |3 (re(a). 6(y) — p(a)ky, o (. ) ‘ {10
a=1

<o [ VAI23° B R log(Ry Ryn) + log(1/9)
< NG .

Note that this bound is independent of d, therefore holds for infinite dimension space.

To prove the theorem, recall that we define the function class G, where each element is a function
parameterized by the loss function £ and ¢'. The function takes a data point as input and output the
loss they the agent receives when they respond based on ¢’ and their true loss to be £. In detail, we
have

4]
gL (p(x), 6(y)) : = Y (re(a), d(y) — p(@))ky, o (x, a)
1Al e—B(,p())
= Z (re(a), ¢(y) — p(x)) AT 8, p(@)
a=1 Ea’:l € a’’?

Now we can show that, the difference between g, 1/ (p(x), ¢(y)) and gz g2/ (p(z), #(y)) is small
when /! ~ (' and (2 ~ (%',

. . —Bz;
Lemma K.1. Consider the vector softmax function softmax(z); °

= ST 5 for each coordinate
i=1¢
i € [|A|] and z € R, then we have

|[softmax(z) — softmax(2’)||, < V282 — 2|,

Proof. Then by mean value theorem, we know that

1
softmax(z) — softmax(z’) = / Vsoftmax (2’ + (z — 2")t)(z — 2')dt.
=0

By taking the ¢; norm, we have
1
[|softmax(z) — softmax(z’)||; < / |Vsoftmax(z" + (z — 2')t)(z — 2')| , dt.
=0

Let Zt = P4 —+ (Z — Z/)t and Pt = softmax(zt). We have A = Vsoftmax(zt) — _B(dlag(pt) _
p¢p? ). Then we have

AT |14
1Az =21 =D Y ai(z — 2))
i=1 |j=1
4l [14]
<D oD ahlle =2y
i=1 \ j=1
4]
= B i —p)2+p2 Y _p2llz— Il
i=1 i
4]

<Y B/ =p)2+1)z -2,
=1
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|A]|

<> VAl — ',
i=1

= \@ﬂllz - Z/HQ'

O
Lemma K.2. Let g(z,w) = YA Wwi for any z,w € RMAL If |lw| < 4R1 R, we
j=1 € K
have |g(z,w) — g(2',w')| < 4V2R1 Ro|z — 2/, + lw — /||

Proof.

|g(z,w) - g(z’, w/)|
E— 4]

:;gﬂg%i;gm

| A [ Al

e—B2i

! / /
:ZA_iZA wi+ZA wi_ZA AL —pz Vi
HZ" Pz 11Z‘|eﬁz i:12‘j—|eﬁz’ i:1zl‘
|A| — Bz |A| Bz |A| Bz |A| —B2
e e PF e PF e P
<% w3 |+ 3 - X i
= A ¢ Al _ i Al 3., A i
i— 1§:"6 Pz i 123" Pes = e Sy e
(11)
We first bound the first term. We have
A A A
) w;| = w; — W-
2 ZlA\ o pzy - Z\Al P I e EIA\ e—Bz - ! (12)
<o =l < flw—wll,
Next, we are going to bound the second term. We have
A .A ’ .A 7
ﬁz: e—Bi et E{: efﬁz. el ﬁ{f o~ Bz e— B2 u/
Al i A ki Al Al — i
= Z‘ | BZJ P El ‘ 3 = El ‘16 Bzj Eljz‘le Bz (13)
|-A‘ —Bzv —BZ’-
k2 6 k2
<4R1R2
From Lemma K.1, we have
wh — —wi| <4V2BR1Ra|z — 2| (14)
A Wi A 2°
le‘|eﬁz] llzl‘ '7
Therefore, we know
l9(z,w) — g(2',w')| < 4V2BR1 Ry |z — 2|l + [[w — ',
L]

Lemma K.3. There exists a constant C, such that for any x, vy, we have

|90 0 (p(), 6(y)) — gez e (p(), D)) |

|A] |Al

a=1 a=1
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Proof. Because the norm of p(z) and ¢(y) is bounded by Rz, and the norm of loss vector r¢(a) is
bounded by R;, by Lemma K.2, we know

|gp’pf(a:,y) - 942,42'(]3(%)7 ¢(y))|

| Al | Al (15)
<AV2BR1R2\| D (rpv(a) = (@), p(@))? + 4| D {re(a) —re(a), ¢(y) — plx)2.

a=1 a=1

Therefore, we have

| 2

|9£1,zl’(P($)7 o(y)) — 9@2,42/(20(33)’ o(y))

| A| lA|
< | 4VEBR By | S (0) — (@), b2 4 4| s (@) = res(), 000) — (a2
a=1 a=1
[Al |A]|
< 643%RIR3 Z ro(a) —rp(a), p(x))? + 2 Z<TE1 (a) — rp(a), o(y) — p(x))?.
! (16)
We can set C' = max{643?RZR3,2} and thus the lemma is proved. O

Lemma K.4. Consider G = {go¢|Va € A, £(a,-) € H,||{(a,-)|l;, < Ri}, then we have

|«4|354R?Rg>

2

log N(G, LY (Py), ) < o(

€

Proof. By Lemma K.3, we know

Z |ger 10 (p(1), S(w1) — gz g (p(:), D(:)) |
n [A| [ Al

<CY | D trar(a) = rer(a +Zm — rea(a), $yi) — plai))?
=1 a=1

The high level idea is to construct covers for 2|.4| Hilbert balls, then we can bound the right-hand
side. Then, the Cartisan product of these covers would be a € cover for the function class G.

By Theorem D.3, Let L, be the smallest 5-fr-cover of ©,, () := {re(a)lre(a) € H, [[re(a)lly, <
Ry}, we have log | L,| < O(%). Therefore, L := [],c 4 La X [[,c.4 La would become a
e-cover of L3, x L3 under the metric LY (P,). We have

APBC?R2R3
log|L| =2 Z log |L,| = O(||6212>
acA

As we know C' = max{643? RZR3, 2}, we know

3 24 6 P6
€

Now we prove Theorem K.1.
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Proof. Recalling g1 (p(x), 6(y)) = Si, (re(a), 6(y) — p(2))ky, o (x, a), we know
|Al
g (p(@), 6@))] = | (re(a), (y) — p(a))ky, o (2, )

a=1
Al

< Z kg,.e(z,a)|(re(a), o(y) — p(x))] (17)
4l )

< Z kfmg/ (z,a)2R 1 Ry
a=1

= 2R R,.

Therefore, when € > 2R, Ry, we have log N (G, Lg (P,),€) = log(1) = 0 From Theorem D.4, we
know that

00 g 2R1Ro g
Rs(G) < da + 12/ \/1°gN(g’£2 Fn):©) e — 4o 1 12/ \/log NG, L3 (Pu)y€) 4,

n

Plugging in log N(G, L (P,),€) = O(Wsiﬁ), we have

|A|%62R515R§ /2R1R2 1
< WAZE 22 -
Rs(g)_4a+0< Tn i ede

2152 p3 p3
=4a+0 <|A|LB\FR1RQ> (log2R1 Ry — log ).
n

(18)

3 2 p3p3 2 253 p3
Without loss of generality we set a = IAI2 8 BBy If ‘A|2%R1R2 > 2R Ry, we have Rg(G) <

Jn

3 3
do < O(AEZHIG ) 1 AR < R, Ry,

5 32R3R3 3 52 p3p3 3 42 p3 3
Rs(0) < O(W) . O(W) (o8 271 s log (O(wm>)

Vvn Vn Vn
0 < |A|% 2R3 R3 log(Rlen)> |

NG
Then by Theorem D.2, we know with at least probability 1 — 6/2

smwlZE@@&¢wDEmmeM@¢@M]

<2Egpn[Rs(G)] + %

<o [ A2 5° B R} log(Ry Ryn) +log(1/9)
< N .

Similarly we can bound the Rademacher Complexity of function class —G := {—ge ¢ | {,¢' € Ly},
and have with probability 1 — §/2

sup
9eg

E (2. y)~plo(p(x), 6(y))] - % > a(p(), d’(%))}
=1

<o [ A2 5° B R} log(Ry Ryn) +log(1/9)
< N .
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Putting them together, we have

sup [1 > 9(p(@:), 6(9:)) = Ee yy~plg(p(2), zb(y))]] '
i=1

geg | Z

<o [ VAI25° B R log(Ry Ryn) + log(1/9)
- NG

with probability 1 — 4. O

L PROOFS OF SECTION 5

Theorem 5.1. Given any initial predictor py and tolerance €, Algorithm 1 terminates in T =

R2R2\ . . . 5/ | AP R$RS
O(=32) iterations. Given O(*=—-2)
a predictor pr such that fy, is (L, Ke,,,€)-decision calibrated and E[||pr(z) — ¢(y)||3_[} <

E[llpo(z) — o) 12} -

samples, with probability 1 — §, Algorithm 1 outputs

Proof. If the algorithm does not terminate at round ¢,we have

| Al
supE [<Z re(a)ke (z,a), d(y) — p(x)>] > €.

LY a=1

By uniform convergence property we can find 4, £} such that

Al
g [<Z re,(a)kg (z,a), $ly) — p(x)>] > 3¢/4.

a=1

ﬁet re; (a) = RiE[(¢(y) — p(a))ke, (2, @)l/IIE[(¢(y) — p(x))ke (2, )], by Cauchy inequality we

[Al | A
>~ (re; (@) El(6(y) = p(@)ke, (@,0)] ) > sz (a)ke, (2,0), 6() —p<x>>] > 3¢/4.

a=1 a=1

Again by uniform convergence,

[Al
E [<ZW: (ke (2, a), 6(y) —p(x)>] > €/2.

E[Ilpi(@) = 6@)li3] ~ E[Ipes (@) 6(0) 3]

2

4]
> E[lpe(x) = @3] — E | [pe(e) = 6(y) + Y duaie;(x,a)
a=1 Y
4] o, ~ ) ]
= - = E —pe(2)) ke (z,0)|E —pi(2)) ke (2,0
;||E[<¢(y)_p(m))ka(%a)]n [(¢(y) = pe(@)) ke, (2, @)[E[(D(y) — pe(2)) ke (2, a)]
Al ?
—-E Zdtake;(iﬁ,a)
a=1

H
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4] 2
>ne—E Z dml%g; (z,a)
a=1 u
> ne — 1 Ri.
Setting = 55>, we have
2 2 e
E[Ipi(@) - 63 — E[Ipesi@) - 6w)l3] = 7
1

2 p2
Therefore the algorithm will terminate in at most 16‘137%1?,2 iterations because E[||po(z) — ¢(y) ||§] <

(2R,)? = 4R2. O

Proposition 5.1. For Algorithm 1, if the input predictor satisfies po(x) = vazol i (2)d(yo;), the
Nt
for any t, we have py(x) = > ;"1 o () d(yss)-

Proof. For Algorithm 1, the update in round ¢ is pr+1 = 7R (R,)(pi(z) + 1 - wy, ¢ (pe(z))) where
wy, ¢, is the patching term. By induction, it suffices to prove that wy, ¢ (p¢()) can be explicitly

represented by the linear combination of ¢(y). Let S; = {(z},,y;,)}:-, be the set of samples used
for auditing. Then we have

4] Rllz/‘g/ (x,a) ~ ~
wy, o (pe(x)) = ~ L = -Eg, —pe(2)) ke (2,0
00, (Pe(T)) ; Ear [00) — 1) (@ )], s [((y) — pe(2)) ke, (7, a)]

By induction, we have p;(x) = Zf\il ay i (2)¢(ye,i). Then we can compute the smooth optimal
decision rule ky; as

e_ﬂfpt (w,a,lg)
Za’EA E*ﬁfpt (:L’:a’,fi)

e B Zi\’:tl ar—1,:i(x)0 (a,ye,i)

IN% (z,a) =

ZG’GA e p St ai(@)l(al yei)

Then the norm can be computed as

B, [(606) — ey o2

2
1 & -
== Z@y;i —pt(l";i))ké; (24, a)
[y "
1 - -
- F Z kﬁ; (xiza a)kéé (xija a)<¢y;L - pt(wéi))a d)ygj - pt(xéj))>,}_[
b i
1 - -
= nif Z ké; (:C;iaa)kég(x;jaa)' (K(yémyéj) - Z Oétq(i'?:si)K(ytq,y{j)
i,5€[n:] q€[Nt]

- Z atq(x;j)K(ytqugi)“‘ Z atq(x;i)atS(l‘;j)K(ytqayts))~
q€[Nt]

q,8€[N¢]

Note that the empirical expectation is a linear combination of ¢(y).

Es,[(6(y) — pi(2)) ke (2, )]
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1
:; Z yt1 — Pt ‘sz))kf (Itl7a’)
ne]

1 -
ni Z O(yi) — Z o ()P (Yes) kﬁ;(xéma)

JE[N]

ko, (2}, (2 e, (2},
Z b x“ yilfz)_ Z Z atj(xt) Et’(xt a) ¢(ytj).

n
[n¢ JEN: \i€[n] t

Bringing these components together, we know the linear representation of A; by

{o(y) 1 ULb(yei) } X, can be computed. For ease of notion, we let {y; 1. l}fvtf to be the union
of two set of samples mentloned above. By induction we know that the linear representation of

pe(z) +we, ¢, (pe(x)) can be computed. Let py () +we, ¢ (Pe(2)) = 251w, 1) Yigr,i () P(Ye41,0)-
The last thing to show is that after projection 7 (g,), the linear representation can still be computed.

‘We have
Ry

[Pe+1(@)l5
The it suffices to show that the norm is computable. We have

TB(Ry) (Pr41()) = “Pr1().

Ipe+1 (@), = (Pes1 (@), pesa (@)

= < Z O‘t+1 (2)0(Ye41,) Z 04t+1 (@) (Ye41 z)>

i€[Ngy1] ZE[Nt+1] H

= Z O‘£+1,i(x)a1l£+l,j(x)K(yt+1,ia Yig1,j)-
4,J€[Ney1]

M EXTENSION OF ZHAO ET AL. (2021)’S ALGORITHM

In this section we provide an extension to Zhao et al. (2021)’s algorithm on decision calibration
under smoothed optimal decision rule. Our extension also adopts a “patching”-style approach, with
the patching component derived from an optimization perspective, following the intuition in their
work. Consider that we find the pair of ¢;, ¢} in round ¢ that violates the decision calibration. If we
let the patching have the following form

per1 (@) = pelx) + Uk (2),
we can heuristically minimize

=3 > [t ) = pue ) o)l + AU, (19)

where the first term is trying to decrease the violation of decision calibration and the second term is
trying to restrict the norm of U so that U can be efficiently approximated with samples. By simple
calculation we have

|A|
2 2
U) = Z HGa - (DUT)GHF + )‘”UHF
a=1
2 2
= |G- DUT||. + AUl
The optimum of the objective is U* = GT(D + AI)~!. Note that the optimization objective of

Zhao et al. (2021) is just the first term of Eq. (19) without the second regularization term. Conse-
quently, the optimum becomes U* = G7 D~ so that the norm of U* can be unbounded because the
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Algorithm 2 Finite-Sample Infinite-Dimensional Adaptation of Zhao et al. (2021)

Input: The RKHS kernel K, current predictor pg : X — H and tolerance e.
1: t=0

2: while 3¢, ¢, such thatIE[(Za 17"@( Yy (z,a),¢(y) — p(z))] > edo

3. Compute D € RMI*IAl where D, = IE[ o (@, )iﬂ (z,a")].

4:  Define G € RE*m() where G, = E[(¢(y) — pi(2))ke, (z, a)].

5: Setpiy1:x = TRy (Pt(T) + GT(D + 1)k (). /7 B(R,) Projects onto Hilbert ball
B(Ry)

6: end while

(pseudo)inverse of D may not have a bounded norm. Therefore, their algorithm does not have finite
sample guarantee. Our regularized extension to their algorithm Algorithm 2 can fix this problem. In
Algorithm 2, we choose A = 1.

The following theorem says that Algorlthm 2 is also a valid algorithm for decision calibration, but
has sample complexity bounds O( ) worse than ours O( ).

Theorem M.1. Given any initial predictor py and tolerance €, Algorithm 2 ends in T =

O(IAIRIE; \Alil;c?Rf;)

=) iterations. Given O( samples, with probability 1 — §, Algorithm 2 out-

puts a predictor pr such that f,,. is (L3, K, , €)-decision calibrated and E[||pr(z) — ¢(y) ||3_L] <

El|lpo(z) — ¢(y)[l3,]-

Proof. First we have

HGHF = QRQ\/W'

| Al

O+n7| = JZW((DH)*) < VHI.

E|lpi(2) = 615, — E[lpr1(2) — oIl
2))GT(D + 1) ke, (2)] = Elkey ()" (D + 1) GGT(D + 1) kg, ()]
=2 Te(E[(¢(y) — pi(2)GT (D + 1)y (1)

(E[ D) = Te(Elke, ()" (D + )" GG (D + 1)~ kyy ()
=2 Tr(Efke; (2)(6(y) — pe(2))GT (D + 1)7']) = Tr(E[ky; (2) ke, ()" (D + 1)~TGGT (D + 1))
=2Tr(GGT D+ D)™ —=Te(DD+ 1) TGGT(D+ 1))
=2Tr(GGTD+ )Y —Te(D+ DD+ DTGGT D+ 1))+ Te(D+ 1) TGGT(D+ 1))
>2Te(GGT(D+1)™Y) = Te((D+ ) (D + 1)"TGGT (D + 1))
=2Tr(GGT(D+ 1)) —2Tx((G - G)GT(D+ 1))

~Te(D+ DD+ D) TGET D +1)"Y) —Te(D - D)(D +1)"TGGT(D + )7

=Te(GGT(D+ 1)) —2Tr(G - G)GT(D+ 1)) - Te((D - DY(D + I)"TGGT (D + 1)~
>1(6a" (0407 =26~ &7 @+~ - D e o+ 07
>Tr(GéT(15+I)_1)—4R2|A\HC¥—GHF—4R§\A|2H(D—f))HF
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Therefore, the algorithm terminates in O(|.A|R?R3/€?) rounds. By Theorem D.1, each round
requires O(1/€*) samples to estimate D and G, resulting in an overall sample complexity of
O(1/€5). O

Similarly to Proposition 5.1, we can apply the patching in Algorithm 2 implicitly.
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