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Inexact and Stochastic Generalized Conditional Gradient with
Augmented Lagrangian and Proximal Step

Antonio Silveti-Falls* Cesare Molinari* Jalal Fadili*

Abstract. In this paper we propose and analyze inexact and stochastic versions of the CGALP algorithm developed in
[16], which we denote ICGALP, that allows for errors in the computation of several important quantities. In particular
this allows one to compute some gradients, proximal terms, and/or linear minimization oracles in an inexact fashion
that facilitates the practical application of the algorithm to computationally intensive settings, e.g. in high (or possibly
infinite) dimensional Hilbert spaces commonly found in machine learning problems. The algorithm is able to solve
composite minimization problems involving the sum of three convex proper lower-semicontinuous functions subject to
an affine constraint of the form Ax = b for some bounded linear operator A. Only one of the functions in the objective
is assumed to be differentiable, the other two are assumed to have an accessible prox operator and a linear minimization
oracle. As main results, we show convergence of the Lagrangian to an optimum and asymptotic feasibility of the affine
constraint as well as weak convergence of the dual variable to a solution of the dual problem, all in an almost sure sense.
Almost sure convergence rates, both pointwise and ergodic, are given for the Lagrangian values and the feasibility gap.
Numerical experiments verifying the predicted rates of convergence are shown as well.
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1 Introduction

1.1 Problem Statement

We consider the following composite minimization problem,

min {f (@) +9(Tz)+h(z): Az = b}, ()
T&ip
and its associated dual problem,
min (f +goT +h)" (—A") + (u,b) , @)
uEH

where we have denoted by * both the Legendre-Fenchel conjugate and the adjoint operator, to be understood
from context. We consider H,,, H4, and H,, to be arbitrary real Hilbert spaces, possibly infinite-dimensional,

*Normandie Université, ENSICAEN, UNICAEN, CNRS, GREYC, France. E-mail:  tonys.falls@gmail.com, ce-
cio.molinari @ gmail.com, Jalal.Fadili@ensicaen.fr.


http://arxiv.org/abs/2005.05158v1

whose indices correspond to a primal, dual, and auxilliary space, respectively; A : H, — Hgand T : H,, —
‘H,, to be bounded linear operators with b € ran(A); functions f, g, and h to all be convex, closed, and proper
real-valued functions. Additionally, we will assume that the function f satisfies a certain differentiability
condition generalizing Lipschitz-smoothness, Holder-smoothness, etc (see Definition 2.6), that the function
g has a proximal mapping which is accessible, and that the function A admits an accessible linearly-perturbed
minimization oracle with C' = dom (k) a weakly compact subset of Hy.

In fact, the problem under consideration here is exactly the same as that of [16], however, in this work,
we consider an inexact extension of the algorithm presented and analyzed in [16] to solve (%). The exten-
sion amounts to allowing either deterministic or stochastic errors in the computation of several quantities,
including the gradient or prox terms, e.g. V f, proxg,, and the linear minimization oracle itself.

1.2 Contribution and prior work

The primary contribution of this work is to analyze inexact and stochastic variants of the CGALP algorithm
presented in [16] to address (??). We coin this algorithm Inexact Conditional Gradient with Augemented
Lagrangian and Proximal-step ICGALP ). Although there has been a great deal of work on developing and
analyzing Frank-Wolfe or conditional gradient style algorithms in both the stochastic and deterministic case,
e.g. [6,7,14,4,3,17, 10, 5], or [9], little to no work has been done to analyze the generalized version of these
algorithms for nonsmooth problems or problems involving an affine constraint, as we consider here. To the
best of our knowledge, the only such work is [8], where the authors consider a stochastic conditional gradient
algorithm applied to a composite problem allowing nonsmooth terms. The nonsmooth term is possibly an
affine constraint but it is addressed through smoothing rather than through an augmented Lagrangian with a
dual variable, in contrast to our work.

We show asymptotic feasibility of the primal iterates for the affine constraint, convergence of the La-
grangian values at each iteration to an optimum value, weak convergence of the sequence of dual iterates to a
solution of the dual problem, and provide worst-case rates of convergence for the feasibility gap and the La-
granian values. The rates of convergence are given both subsequentially in the pointwise sense and globally,
i.e. for the entire sequence of iterates, in the ergodic sense where the Cesdro means are taken with respect to
the primal step size. In the case where (%) admits a unique solution, we furthermore have that the sequence
of primal iterates converges weakly to the solution. These results are shown to hold almost surely and are
established for a family of parameters satisfying abstract open loop conditions, i.e. sequences of parameters
which do not depend on the iterates themselves. We exemplify the framework on problem instances involv-
ing a smooth risk minimization where the gradient is computed inexactly either with stochastic noise or a
deterministic error. In the stochastic case, we show that our conditions outlined in Section 3 for convergence
are satisfied via increasing batch size or variance reduction. In the deterministc setting for minimizing an
empirical risk, a sweeping approach is described.

1.3 Organization

The remainder of the paper is divided into four sections. In Section 2 the necessary notation and prior results
are recalled, consisting primarily of convex analysis, real analysis, and elementary probability. In Section 3
the assumptions on the problem structure and the parameters are noted, the ICGALP algorithm itself is pre-
sented. In Section 4, the main results, e.g. feasibility, Lagrangian convergence, and rates, are established.
The analysis and results extend those of [16] to the inexact and stochastic setting. In Section 5 and Section 6,
we consider different problem instances where inexact deterministic or stochastic computations are involved.



Numerical results are reported in Section7 to support our theoretical findings. Finally, in Section 8, we
summarize the work and provide some closing remarks.

2 Notation and Preliminaries

Many of the following notations for probabilistic concepts are adopted from [2]. We denote by (€2, F,P) a
probability space with set of events (2, o-algebra F, and probability measure IP. When discussing random
variables we will assume that any Hilbert space H is endowed with the Borel o-algebra, 5 (). We denote a
filtration by § = (Fy,) reny 1-€. asequence of sub-o-algebras which satisfies ¥, C Fj. 1 for all £ € N. Given
a set of random variables {ay, . .., a, }, we denote by o (ay, . . . , a,,) the o-algebra generated by aq, . .. , ay.
An expression (P) is said to hold (P-a.s.) if P({w € ©: (P) holds}) = 1. Throughout the paper, both
equalities and inequalities involving random quantities should be understood as holding P-almost surely,
whether or not it is explicitly written.

Definition 2.1. Given a filtration §, we denote by ¢ (F) the set of sequences of [0, +o00[-valued random
variables (ax) kEN such that, for each k € N, a;, is F; measurable. Then, we also define the following set,

2 (3) e {(ak)keN €l (F): Zak < +oo (P-as.) }
keN

Lemma 2.2. Given a filtration § and the sequences of random variables (ry,),cy € {1 (S), (ar)pen €
(4 (F), and (2k) ey € L () satisfying,

E[rgsr | Fr] = < —ak + 2z (P-a.s.)
then (ay,) ey € C4 (3) and (1) ey converges (P-a.s.) to a random variable with value in [0, +o00.
Proof. See [15, Theorem 1]. O
Lemma 2.3. Given a filtration § and a sequence of random variables (wy),cn € £+ (§) and a sequence of

real numbers (Vi) ey € L+ such that (yewy) ey € £ () and (i) gen € 0 then,
(i) there exists a subsequence (wkj)j N such that

=

wg, < F,;jl (P-a.s.)

k;
where Ty, = Yn- In particular, limkinf wr =0 (P-a.s.) .
n=1
(ii) Furthermore, if there exists a constant & > 0 such that wy, — E [wi11 | Fi] < aye (P-a.s.) for every

k € N, then

lillfn w =0 (P-a.s.) .

Proof. The main result is directly from [1, Lemma 2.2] and the rates follow from [18] trivially extended to
the stochastic setting. ]



We denote by I'y (H) the set of proper, convex, and lower semi-continuous functions f : H — RU{+o0}.

We also consider the domain of a function f to be dom (f) £ {x € H : f (z) < +oc} and the Legendre-
Fenchel conjugate of f to be the function f* : H — R U {400} such that, Vy € H,

£ () = sup {(y,2) — f (2)}.

zeH
The proximal mapping (or proximal operator) associated to the function f with parameter [ is given by,
prossy (0) Z argmin { £ () + 5l — P}
yeEH 2/8

The following elementary result from convex analysis regarding proximal mappings will be used in the proof
of optimality.

Proposition 2.4. Let f € I'o (H) and denote x* = prox; (x). Then, for all y € H,
2 2
2(f (@) = £ @) + o = yl]” = llz = yl® + =+ = 2| < 0.
Proof. The result is classical and the proof is readily available, e.g. in [12, Chapter 6.2.1]. O

The subdifferential of a function f is the set-valued operator Of : H — 27 such that, for every = € H,
Of @) E{ueH: f(y) > f(2)+{uy—2) VyeH} @D

We denote dom (9f) £ {2z € H : 8f (x) # 0} as the domain of the subdifferential. For z € dom (df),

the minimal norm selection of f () is denoted by [0f (z)]° = argmin ||y||. The Moreau envelope of the
yedf(z)
function f with parameter 3 is given by,

7@ e {rw+ o lle -l |

The following proposition recalls some key properties of the Moreau envelope which we will utilize in the
analysis of the algorithm.

Proposition 2.5 (Moreau envelope properties). Given a function f € T'y (H), the following holds:

(i) The Moreau envelope, fP, is convex, real-valued, and continuous.

(ii) Lax-Hopf formula: the Moreau envelope is the viscosity solution to the following Hamilton Jacobi

equation:
2
o) = f () e

(iii) The gradient of the Moreau envelope, ¥V 5, is %-Lipschitz continuous and is given by the expression
T — proxgy ()

Vo f? (x) = 5

(iv) Vx € dom(9f), |

V2 @) A |10f @) as 80

4



(v) Yo € H, fP(x) / f(x)as B\, 0. In addition, given two positive real numbers 3 < B, for all x € H
we have

0<% (2) - fP(2) <

0< fa)—fP(2) <

Given a closed, convex set C, we write de & sup lx — y|| to denote the diameter of C. We denote the
x,yeC
Bregman divergence of a differentiable, function F' by,

Dp (z,y) £ F (z) — F (y) — (VF (), — y) .

Definition 2.6 ((F, {)-smoothness). Let F': H — R U {+o0} and ¢ :]0,1] — R,. The pair (f,C), where
f:H—>RU{+oo}and C C dom (f), is said to be (F, ¢)-smooth if there exists an open set Cy such that
C C Cp C int (dom (F')) and,
(i) F and f are differentiable on Cy;
(i) F — f is convex on Cy;
(iii) it holds

of Dp (z,2)
K £ sup /2 < 4o
(F60) x,s€C;v€]0,1] C (’Y) (23)
z=z+v(s—x)

Remark 2.7. An important consequence of Definition 2.6(i) and Definition 2.6(ii) in (F, {)-smoothness is
the following. Let (f,C) be (F, () smooth. Then, for any x,y € C, we have,

fy) < fla)+(Vf(x),y—x) + Dr(y,z).

Moreover, by Definition 2.6(iii), if y = x 4+ - (s — ) for some s € C and y €]0, 1], we have,

Dr (y,z) < Kree$ () - (2.4)

Definition 2.8 (w-smoothness). Consider a function w : R, — R, such that w (0) = 0 and £ (s) <

fol w (st) dt is nondecreasing. A differentiable function g : H — R is said to be w-smooth if, for every
T,y € H,

Vg (x) = Vg (@)l <w(llz—yl)

Remark 2.9. A classical consequence of w-smoothness is the following. If g : H — R is w-smooth, for
every x,y € H we have

f@) < f@)+(Vf(x),y—x) +&(ly—zl) ly — = .

Remark 2.10. Note that being w-smooth is a stronger condition than being (F, {)-smooth since every w-

smooth function f is also (F, {)-smooth with F' = f, ( (t) = dct§ (dct) and K (g ¢ c) < 1. Additionally, the

assumptions on £ being nondecreasing can be replaced by the sufficient condition that lim+ w(t)=w(0)=
t—0

0.



3 Algorithm and Assumptions

For each k£ € N, we denote by A, and \; random variables from (2, F,P) to #, and R respectively. In
this context, Ay will represent the error in the gradient or proximal terms and Aj, will represent the error in
the linear minimization oracle itself.

Algorithm 1: Inexact Conditional Gradient with Augmented Lagrangian and Proximal-step (IC-
GALP)

Input: 2o € C = dom (h); o € ran(A); () pere (Br)pere Ok) pen > (Pk) ke € £+
k=20

repeat

yr, = proxg, ; (Twy)

2z =V f(ak) + T (Tay — y) /Be + A + prA* (Az — b) + Ag
sk € Argmingeq {h(s) + (2, 8) }
Spe{seMy:h(s)+ (zk,s) < h(sk)+ (zk,sK) + A}

Tpt1 = T — Yk (T — k)
k1 = p + Ok (Azpy1 — b)
k< k+1

until convergence;
Output: z ;.

To improve readability, we list some notation for the functionals we will employ throughout the analysis
of the algorithm,

@ (2) 2 [ (@) + 9 (Ta) + h(2);
L) 2 @)+ g (Tw) +h (@) + (u, Av — b);

L) £ F (@) + 9% (T2) + h(2) + (o, Az — 1) + 2 | Az — b D
Ex (w.0) 2 F () + g™ (T) + (. Aw = b) + 5% || Aw — b]]*.

We can recognize L (z, 1) as the classical Lagrangian, Ly, (z, 1) as the augmented Lagrangian with smoothed
g, and & (z, p) as the smooth part of £y, (z, ). With this notation in mind, we can see zj as V& (T, i)
and Ay, as the error in the computation of V& (, pr)-

We define the filtration & = (8k)pery Where 8, 9o (o, 110, S0, - - -, Sk ) is the o-algebra generated by
the random variables x, (10, S0, - - - , Sk. Furthermore, due to the error terms being contained in the direction

finding step, we have that x4 and pj1 are completely determined by 8;. Another noteworthy consequence
of the error terms being contained in the direction finding step is that the primal iterates (), < remain in
C, as in the classical Frank-Wolfe algorithm, while the dual iterates (i), remain in ran (A).

3.1 Assumptions

3.1.1 Assumptions on the functions

We impose the following assumptions on the problem we consider; for some results, only a subset of them
will be necessary:



(A.1) f,goT,and hbelong to I'g (H,)

(A.2) The pair (f,C) is (F,¢)-smooth (see Definition 2.6), where we recall C = dom (h)
(A.3) C is weakly compact (and thus contained in a ball of radius R > 0)

(A4) TC C dom(0g) and sup H[@g (Ta:)]OH =M < o0
xeC
(A.5) h is Lipschitz continuous relative to its domain C with constant L;, > 0, i.e., ¥(z, 2) € C2, |h(x) —
h(z)| < Ll — z]|.

(A.6) There exists a saddle-point (z*, u*) € H, x Hg4 for the Lagrangian £
(A.7) ran(A) is closed
(A.8) One of the following holds:

(@) A= (b) Nint (dom (g o T)) Nint (C) # (), where A~! (b) is the pre-image of b under A

(b) H,, and H 4 are finite-dimensional and

A=Y () Nri(dom (go T)) Nri(C) # 0
and 3.2)
ran (A*) N par (dom (g o T) N C)* = {0} .

3.1.2 Assumptions on the parameters and error terms

We impose the following assumptions on the parameters and error terms and, as with the assumptions above,
for some results only a subset will be necessary:

(P.1) (k)pen CJO, 1] and the sequences (¢ (Vk))pen - (Vi/ﬁk)kel\r and (758%) gy belong to €1

(P2) (k) pen ¢ 0

(P.3) (Br)pen € £+ is nonincreasing and converges to 0

(P.4) (pr)pen € L4 is nondecreasing with 0 < p < pp <p < +00

(P.5) For some positive constants M and M, M < (vi/Vks1) < M

(P.6) (01),cy satisfies 0, = 1= for some ¢ > 0 such that M % <0

[

2
(P.7) (k) pen and (pr)pen Satisty pri1 — pk — Yer1Pk41 + %’Yk - 77" < Yg41 for cin (P.6)
P8) (Y41 E [[[As1ll | 8k]) e € €4 (6) and (ve1E [A341 | 8k]) oy € € (6).

Remark 3.1. We will also denote the gradient of &, with errors as
Vol (2, 1) Z V& (2, 1) + Mg

It is possible to further decompose the error term \j, for instance, into )\£ — T*)\Z/ B where )\£ is the
error in computing V f (1) and A} is the error in evaluating proxg, , (T'zx). In this case, the condition

Vet 1 E [ Xes1l| | Sk]) ey € €4 (S) in (P.8) s sufficiently satisfied by demanding that (’kaE [H)\£HH ] SkD €

keN
£ () and (F2E |[M, ] 18]),_ €4 (®).

Br+1

4 Main Results

4.1 Preparatory Results

Lemma 4.1. Suppose (A.1), (A.2) and (P.1) hold. For each k € N, define the quantity

ef T 2
. I, 14|12 py.. (4.1)
Bk



Then, for each k € N, we have the following inequality,
Ek (Thtr, ) < Eg (@, i) + (Vi (Ths k) s Thsr — Th) + D (Tt Th)
L
+ 5l — o
Proof. See [16, Lemma4.5] O

Lemma 4.2. Suppose (A.1) and (A.2) hold. Then, for each k € N and for every x € H,,

Ex (@, 118) = Ex (wps 1) + (Vali (2 ) » @ = ) + B5l| Al — )|
Proof. See [16, Lemma4.6]. ]

Lemma 4.3. Assume that (A.3) and (P.4) hold. Let (1), be the sequence of primal iterates generated by
Algorithm 1 and & = (8},);,cyy as before. Then, for each k € N, we have the following estimate,

B || Az = b|* = PEE [ Aziss — b | Sk ] < pide AN (IA] R+ 6] 3 (P-as) -

Proof. For each k € N, by convexity of the function 25 || A - —b||* and the assumption (P.4) that (py,) kEN
is nondecreasing, we have,

5 Ay —bl* = P | Ay — b]* < P52 || Ay, — ] = P | Ay — b
< (V (B A= (@) on = w01 )
= pr+1 (Azp — b, A (2 — Tpq1)) -
Recall that, for each k € N, 2311 = x — V% (v — 5x) and take the expectation to find,
B 1Az — b — B [P | Aziess — b | Sioa] < P (A — b, A (= 50)) | Sxa]
< pyede || Al (1Al B+ [[ol) ,

where we have used the Cauchy-Schwartz inequality and the boundedness of C, assumed in (A.3), in the last
inequality. O

Remark 4.4. The above result still holds if we replace both p;, and pj1 by the constant 2 and shift the index
by 1,i.e., foreach k € N,

|Azg iy — bl —E [HA:EHz —0|* | 8k | < 2de || Al (Al R+ [1BID) v41 (B-as.)
Lemma 4.5. Suppose that (A.1)-(A.6) hold. Let (x1);,cy be the sequence of primal iterates generated by
Algorithm | and p* a solution, which exists by (A.6), of the dual problem. Then, for each k € N, we have

the following estimate,

L(wp, p) = E[L (kg1 1) | Sk—1] < de (M| T|| + D + Ly, + [|w*[| |A]]) (P-a.s.) .



Proof. We recall the proof from [16, Lemma4.7] with a slight modification to account for the inexactness of
the algorithm. Define uy, = [9g(T2)]° and recall that, by (A.4) and the fact that for all k € N, z;, € C, we

def

have ||ug|| < M. By (A.1), the function ® () = f (z) + g (T'z) + h (x) is convex. Then, for each k € N, ,

L (g, 1) = L(Tpy1, 17) = O(2g) — P(h11) + (15, A(2) — Tpy1))
< (up, Tk — p41)) + (VI (2h), T — Tpt)
+ Lpllzk — wpall + eI Al lze — 2l

where we used the subdifferential inequality (2.1) on g and f, the Lj-Lipschitz continuity of h relative to
C (see (A.5)), and the Cauchy-Schwartz inequality on the inner product. Since, for each k € N, z311 =
xk + Vi (S — Tk ), we obtain, for each k € N,

L (wg, p*) = L (11, 1") < ’Yk(@k, T(xp — k) +(Vf(xk), ok — Sk) + Li||lzr — Skl

+ I I 1A ok — Sl

Now take the expectation with respect to the filtration 8;_1, such that z; is completely determined, to get,
foreach k € N,

L(wp, p1") = BIL (g1, 17) | Spma] < e (E [(uk, T2k — k) | Sk—1] + E[(V [ (@), 2 — 5k) | Sp—1]
+ LiE [[|og = Skl | Sp—a] + [l* [ I A E{[|zx — Skl | Sk—l])
< ykde (M||T|| + D+ Ly + [l 1A[]) ,

where we have used the Cauchy-Schwartz inequality, the boundedness of the set C by (A.3), the boundedness
of uy, by M by (A.4), and denoted by D the constant D = sup,c ||V f(z)|| < +oo. Note that D exists and
is bounded since f is differentiable on an open set Cy containing C by (A.2) and Definition 2.6. O

4.2 Asymptotic feasibility

Lemma 4.6 (Feasibility estimate). Suppose that (A.1) - (A.4) and (A.6) all hold. Consider the sequence of
iterates (xk)keN generated by Algorithm 1 with parameters satisfying (P.1) and (P.3)-(P.6). For each k € N,
define the two quantities, A and Ag in the following way,

AL E Ly (s, ) — Lo () AL E L= Ly, ()

where we have denoted Ly () = ming Ly, (, ux) and L = L (x*, p*). Furthermore, for each k € N,
denote the sum A}, & AZ + Ag. We then have, for each k € N,

M., - _ L
E[Aks1 [ Fu] = Ak < =Yh41 (f | AZg g1 — b)* + 6 || A (wp41 — $k+1)”2> + Y1 ];Hd%

—p
+ Kipeor men) + 22PN 4 (o = i) (141 B+ [0])

+ 1 B Mot | Fr) + deven1 B[ Mgl | Fil -

Proof. The proof here is adapted from the analogous result found in [16, Theorem4.1]. As before, the
quantity Ai > 0 and can be seen as a primal gap at iteration k while A% may be negative but is uniformly



bounded from below by our assumptions (see [16, Theorem 4.1]). We denote a minimizer of Ly, (z, i) by

Zr € Argmin Ly, (x, i), which exists and belongs to C by (A.1)-(A.3). We have, for each k € N,
xEHp

Aps1 — Dp = Lipr (Thyo, k1) — Lo (Thp, 1) + Ok [|[Azgrr — b))
+ 2 [Lk (Zk, po) — L1 (Tiot1s toos1)] -

Recall that Z; € Argmin Ly (x, ), that gﬁk < gﬁk+1 due to (P.3) and Proposition 2.5(v), and that p, <
TEHp

pr+1 by (P.4). Then, for each k£ € N,
L (Zk, pir) — Lrop1 (a1, pkr1) < Li (Trt1s k) — Lir1 (Trt1, fkt1)
. 1 .
= [Qﬁk - 95’““} (TZpy1) + 3 lok — prs1] || AZ g1 — bl

+ (pk — pig1, Apy1 — b)
< =0 (Azppy — b, ATy — D),

where we have used the fact that pux1 = pur + 0 (Azgiq — b) coming from Algorithm 1. So we get, for
eachk € N,

Apg1 — Ap < Ly (Tpgos ter1) — Li (Tra1, prg1) + O [|Azpgr — b”2
— 29k <A$k+1 — b, Af]ﬁ.l — b> .

Note that, for each k € N,

k1 — Pk
L (g1, 1) = Lig1 (T, fhg1) — [96’““ - 95’“} (Twgs1) — <%> | Azgy1 —b]”.
Then, for each k € N,

Aps1 — Dp < Ligpr (Thso, ihr1) — Lot (Thgts 1) + 975 (Tzpg) — g7 (Tapsn)

(2L s = U+ 0 A — P = 201 (At — b A — ).

We denote by T1 e Lir1 (Tgso, kt1) — Lkt1 (Tro1, prs1) and the remaining part of the right-hand side
by T2. For the moment, we focus our attention on T1. Recall that Ly, (z, ) = E (z, pi) + h (z) and apply
Lemma4.1 between points xx 0 and x4 1, to get, for each k € N,

T1 < h(zg42) — h(Trg1) + (Valri1 (Thi1, Hrs1) > Tho2 — Trrr)

Lyt

5 |Tkso — Tri1])® + Dr (Thyo, Thi1) -

+

By (A.1) we have that h is convex and thus, since xj_o is a convex combination of 1 and Sj.1, we get,

10



foreach k € N,

T1 < Vg1 (b (Bkg1) — b (Tpg1) + (Varr1 (Thg1, frs1) Skl — Tht1))

Ly
2

= Vk+1 <h (Skt1) — h (zg+1) + <V/\x<€k+1 (Tht1, HEk+1) » Skt1 — $k+1>

+ |2kt2 — 21 ||> + Dr (T2, Tri1)

+ <Vm5k+1 (g1, thr1) — VaErpt (Trat, Brr1) s Skl — $k+1> )

Ly i1
2

= Yk+1 <h (Ske1) — b (2hq1) + <V/w\gk+1 (Tha 1, Mht1) 5 Skl — $k+1>

_|_

|2kt2 — 21 ||> + Dp (T2, Trr1)

Lyqq

5 |zkt2 — 21 ||> + Dr (Tpr2, Tht)

— (Nk+1, Skt1 — $k+1>> +

Applying the definition of §j, as the approximate minimizer of the linear minimization oracle gives, for each
keN,

T1 < v41 <h (sk+1) — h (zp41) + <V/;€k+l (Tt 1, Hht1) > Skl — wk+1> + Aig1

Litq
L wpt2 — 2eg1l® + Dr (Tht2, Thtr) -

— (Nkt1, Skt1 — xk+1>> +

Now we can apply the definition of si; as the minimizer of the linear minimization oracle and Lemma 4.2
to get, foreach k € N,

T1 < vk11 <h (Tr+1) — h (Tet1) + <Vm5k+1 (Tht1s Hkr1) > Tha1 — $k+1> + Aot

Ly
2

= Vk+1 <h (@rt1) = h (@p1) + (Va1 (Tht1, 1) s Toa1 — Tur1) + Al

lZkto — Tosrl|* + Dp (Thp2, Tht1)

— (Nkt1, Skt1 — $k+1>> +

Lyqq
2

< Vg1 <h (Tr41) = h (Trg1) + Eppr (@rars 1) — Ept1 (Tpgs forg1) —

— st Bns = Bt} ) + 25 sz — wiea |’ + D (w2, 01)

PEk+1
= A

~ 2
) Li+1 — $k+1)”

Ly,
g o — ap || + D (g2, Tp11)

+ N1 — (Mot 15 Skt1 — i) ) +

~ k+1 ~
= Yr+1 <Ek+1 (Tr1, 1) = Loyt (Thp1, per1) — pT+ A (@1 — Fer) |2 + N
Lyiq

2

A (241 — Frrn) 1>+ Yot ()\ZH + (Mkt1, Tht1 — Skt1) >

— O St = Fr1) ) + 2o oz — o + Dr (@0, wis)

< _ Jk+1Pk+1
- 2
i Ly i1

5 | Tgs2 — 517k+1H2 + Dr (42, Tpy1) 5

where we used that Zj 1 is a minimizer of £x1 (-, ptg+1) in the last inequality. Now combining T1 and T2
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and using the Pythagoras identity we have, for each k € N,

Apg1 — Ay < =04 || Az — b)* + (9k — ’Yk—l—l%) A (zpy1 — Zogr)|?

Lyt
+ 2 akrs — wptl® + Dr (ans,airn) + |97 = g% | (Tois)
Pk+1 — Pk ~ ~
+ % | Azgg1 = BI” + et <AZ+1 A+ (Nt 15 Trg1 — Skr1) )
Now take the expectation with respect to F, = S = o (xq, po, So, - - - , Sk ), Which completely determines

Tk+1, k41, and ppy1. We are also going to perform the following estimations.
e Under (P.5) and (P.6), we have that, for each k € N, 0, = ;. /c with M~,1 < 7 and so that

—0, < — .
e Again by (P.6), we have, for each k € N, 6}, = ;. /c for some ¢ > 0 such that

M
>0, —-L_ s5<0,
c 2
where M is the constant such that, for each k € N, y;, < M7k+1 (see (P.5)). Then, using again (P.5)

and the above inequality, for each k& € N,

kil M pe M p
O, — ’7k+1pT+ < (7 - pT+> Ve+1 < <? - §> Vel = —0Vk+1- 4.2)

e By Algorithm 1, foreach k € N, x40 — T +1 = Yi+1 (Sk+1 — Tk1)- Since Si41 and x4 are both
in C and C is bounded due to (A.3), for each k € N,

Lii1 o

Liy1 o
7k+1dc-

Lyt
||kt — 2 | ?k} == R E [\|Sk+1 — w1 | |3"k] <

2
e Recall that, by (A.2), f is (F, )-smooth and invoke Remark 2.7, to get
E [Dr (zkt2, Tet1) | F] < Kpeo)C (1) -
e By Proposition 2.5(v) and assumption (A.4),

Br — 5k+1
2

E Hgﬁk+1 _ gﬁk] (Tzr11) | 3"4 < [H[ag (T$k+1)]OH2 | -rfk} < Bk —2ﬂk+1 M2,

e We also have, using Jensen’s inequality and (A.3), for each k£ € N,

<w> E [HAJEk-i-l —b)? | EFIJ < (Pr+1 — Pk) <HA||2R2 + HbH2> ’

In total, for each k € N,

E[Apir | i) — A < —Epin [|[AZks1 — b)) — 0t [|A (Tpp1 — )|

Ly,
+ 2+1 Ver14e + Kpe.0)C (rs1)
Bk — B
+ P (o — i) (1412 B2 + 10

+ 1 (B g | F] + B [, Bt = S | ] )

12



Using Cauchy-Schwarz together with the fact that ;1 and S, are in C, which is bounded by (A.3), we
also have, for each k € N,

Ve 1B {415 Tra 1 — Skr1) | Tr] < Vg deE [ Mg |l | Fi], (4.3)

which gives, for each k € N,

M Ly
E[Apr [ Fi] = Ak < =77k [Apr — bII* = 57k11 1A (@rr1 — Frp) 12 + 724 +1dc
Br — Br+1 4.4
Ko () + F M2 1 (o — o) (JJAIP B2+ o) Y
+ W1 E [Nt | Tn) + o1 deE [ Mesall | Fal
and we conclude by trivial manipulations. U

Theorem 4.7 (Feasibility). Suppose that (A.1)-(A.4) and (A.6) all hold. For a sequence (xy,) reN generated
by Algorithm I using parameters satisfying (P.1) - (P.6) and (P.8) we have,
(i) Asymptotic feasbility: klim |Azg —b|| =0 (P-a.s.)
—00

(ii) Pointwise rate:

inf || Az; — 0| :O<L> (P-a.s.) and

0<i<k VI
o (4.5)
3 a subsequence (a;kj)j o Such that || Az, — b|| < \/T—k] (P-a.s.) .
where Ty = S8 ;.
(iii) Ergodic rate: let Ty, = Zf:(] vii /T Then
450 8] =0 (1) (Pas) @6)
T — bl = — -a.s.) . .
VI
Proof. Our goal is to first apply Lemma 2.2 and then apply Lemma2.3. By Lemma4.6, we have, for each
keN,
M 8 Ly

E[Aps1 | Fu] = Ak < =Yk <f [ Ak 11— b|I* + 6 || A (zp 11 — :Ek+1)||2> + 1 +1dc
Br — Br+1 4.7

+ Krco) () + F M2 + (o = o) (JAIP B + b))

+ Vi1 B [Afpy | Fa] + deyir B ([ Mg |l | Fal -
Because of (P.1) and (P.4), and in view of the definition of Ly in (4.1), we have the following,

L [eals
< 2+ 7k+1dc> = (2 <5 + ||AH Pk+1 713+1d(2: Gﬁi.
keN k+1

keN
For the telescopic terms from the right hand side of (4.7) we have

<ﬁk - 5k+1 M2

c ¢} and - AlI* R? + ||b]|? e/l
PEN?) et and ((pr - o) (IR 4 10F)), o
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where R is the constant arising from (A.3). Under (P.1) we also have that

(K(reo)C (1)) ey € £

Finally, due to (P.8), we also have

(Vo1 E (N1 1 F%])pen € 64 (B) 5 (demmmrB [ Mgl | Fal)pey € 24 (3) -

Using the notation of Lemma 2.2, we set, for each k € N,
_ _ M. 2 N 2
e e [AZg11 — 0| + 6 | A (Zra1 — Trg1)|” ), and

2
+ 1 B Nt | F) + deve1 B [Nl | Fal -

Ly B — Br+1 Pk+1 — Pk
2 = %’Y/%Hd% + Koy (he) + ——— M2 + % |Azyi1 — 0|

We have shown above that , for each £ € N,
E[ret1 | Ti)] —re < —ap + 2,

where (2k)cn € €4 (F), and ry is bounded from below. We then deduce using Lemma 2.2 that ()¢ is
convergent (P-a.s.) and

(wlAz—o?) €A @, (wlA@-a)?) e @). (48)

keN keN

Consequently,

(v Az = bI?) _ € 24 (3), (49)

since by the Cauchy-Schwarz inequality,
oo oo
> ellAze = bl < 2" (14 (o = 301 + 143, — b]]*) < +oo.
k=1 k=1

To finish proving (i) we simply apply Lemma4.3 (with the remark which follows) and the conditions of
Lemma 2.3 are satisfied. Then, (ii) and (iii) follow directly from the results of [16, Theorem 4.1]. O

4.3 Optimality

The following lemmas regard the boundedness of the sequence of dual iterates (i), and the uniform
boundedness of the Lagrangian. They were shown in the deterministic setting in [16] and trivially extend to
the stochastic case in light of Theorem 4.7.

Lemma 4.8. Suppose that (A.1)-(A.3), (A.6)-(A.8), and (P.1)-(P.6) all hold. Then the sequence of dual
iterates (jix,),cr generated by Algorithm 1 is bounded.

Proof. See [16, Lemma4.9]. O
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Lemma 4.9. Under (A.1)-(A.8) and (P.1)-(P.6), the composite function f 4+ g oT + h is uniformly bounded
on C and we have

M= sup|f (@) + g (T2) + h (@)| +sup [lu]l (14| R +9) < +oo, (4.10)
TE S

where R is the radius from (A.3).
Proof. The proof follows directly from [16, Lemma4.10] with the addition of Theorem 4.7. O

We now begin with the main energy estimate needed to show the convergence of the Lagrangian values
to optimality.

Lemma 4.10 (Optimality estimate). Recall the constants ¢, Ly, M, D, and Ly, from (P.6), Lemma4.1,
(A.4), Lemma4.3, and (A.5), respectively. Define, for each k € N,
ef C
i S (1= %) Lo (s ie) + 5 1ok — 11

and
et L
2

Then, under (A.1)-(A.8) and (P.1)-(P.7), for the sequences (xy,), oy and () cy generated by Algorithm 1,
using the filtration § = (F},),cy with Ty, = 8j,_1, the following inequality holds, for each k € N,

Ck dg +de (M||T|| + D + Ly, + [|*| |All) -

E[risr | Fal = 1% < = (£ (@ 1®) — £ (2%, 0%) + 2 Azy, — b)?) + 22E [ Awgsr — b))% | 5
2
2 2

M ~ M
+ (Br — Br+1) - T (Ve — Y1) M + ’Yk/BkT + Kreo)C () +72Cr

+ deiE [ Aell | Tl + wE [N | Fi] (P-as.)
4.11)

Proof. Applying Lemma4.2 to the points x* and x we have, for each k € N,
Ex (@ 1x) > Ex (@r ) + (Vb (@r, i) s & = ) + 5 A — )]
= & (vp, ) + <V/;€k (@k, i) , &~ — $k>
= &k (T, pk) + <V/m\5k (Ths pire) s 7 — $k> + h(@") = h(z") + (A, 21 — %)

Pk 2
+ 5 1A =),

A —a*) + 5 A@ — 2

By the definition of s; as a minimizer and the definition of 5, we further have, for each k € N,

Ex (@ k) = E (s ) + (Vali (@r ie) s 55— )+ (1) = b (2) + Qs = 2)
+ B A - )

- (4.12)

> Ek (Ths k) + <Vx5k (Tk, k) » Sk — l’k> +h (k) — Ay — h(z%) + (Mg, 2 — 27)

Pk *
+ 5 AE — ).

15



From Lemma 4.1 applied to the points =y, and x; and by definition of x4 Sk + Vi (8 — k) in
Algorithm 1, we also have, for each k£ € N,

Ly,
Er (Trs1, ) < Ek (Trs i) + (Vb (Tgs i) 5 To1 — k) + D (Tpg1, T1) + > [Ea—

. Ly .
= & (@h, i) + (Vb (T, i) 5 Sk — k) + Dp (Tpg1, 25) + 7137 18 — @|?
= & (wr, ) + (Vi (xk, i), Sk — @) + Vi (Mks T — Sk) + Dp (Tp41, Tk)
Ly
+ 7137 15k — =kl

We combine the latter with (4.12), to get, for each k € N,

- Ly .
Ek (@ra1, ) < Ek (T, ) + % (M, @° = 5%) + Dp (Tp1, 21) + 7137 18 — @]

(4.13)
+ Yk <5k (@™, ) + h(x") = E (wk, ) — h(Sk) — % |Az), —b]|* + AZ) :
By convexity of i from (A.1) and the definition of x1, we have, for each k£ € N,
Li (Trt15 i) — Li (Tks ) = E (Tret1, ) — E (T i) + h (T41) — h (k) 4.14)

< & (w15 ) — Ek (T, i) + i (b (Sk) — h ()
Combining (4.13) and (4.14), we obtain, for each k € N,
Lo (@1, k) = L (Ths i) < Vi (Ek (27, i) + h(2™) = Ex (@, ) — b (@) + D (@1, 20) +
R~ el (et~ 50) — 2 Ay — b+ 3])
=Yk (Lk (2% ) — Li (ks i) + Dp (Tht1, 2) + 713% 155 — k)

9 (O 2* = 5) = 2 [l 4wy — B> + A7)
(4.15)

def

Recalling the definition of px 11 = pux + A (21 — b) in Algorithm 1, we have, for each k € N,

L Tty 1) — Lo (Trg1s ) = (g1 — ps A1) = O | Azgr — 0|
We combine the above and (4.15) to get, for each k£ € N,

Lk (Tps1s 1) — L (g ) < O [|Azgr — b))* + i (Lr (2%, k) — Lk (2, px)) + D (g1, 1)

Ly~ -~ s
R 13— el + e (2 = 5) = B 1Az — b + 37
(4.16)

Notice that the update of the dual variable i can be interpreted as a prox operator in the following way,

. 1
fg+1 = argmin {—ﬁk (g1, 1) + 20, o — Mk”z} .
nEH k
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Then, using Lemma 2.4, we get, for each k € N,

9 9
0> 0k (Lk (g1, 1°) — Lk (Tt r41)) + (HMH I = M — 25N A e — Mk\|2>

= O (Lr (Tpg1, %) — L (Thg1, 1)) +

l\DI»—\NJl»—\

(lesr = w17 = N = 11> + 6 | Awga = 01
“4.17)

Recall that, by (P.6), 8 = ~/c. Multiply (4.17) by ¢ and sum with (4.16), to obtain, for each k € N,

(1 = eOk) Lr (Tht1s 1) — (1 — k) L (g, i) + § (HMH — )P = Ik — M*H2>

< <9k - —) | Azpyr — bl|® + v (Lk (2%, ) — Lk (2, 1)) — B (L (Ths1, 1) — Lo (Ths i)
— 280 || Az, — bI* + Dp (zrg1, ) + 725 15k — 2l + e (A, 2% — 8k) + A7) -

The previous inequality can be re-written, by trivial manipulations, as, for each k& € N,

C
(1 = Ok1) Lrs1 (Trs1s 1) — (1 — ) L (@, pr) + 3 (Huk+1 — )P =l — M*|’2>

9
< (1= o) Lo (@rsts ) — (L= cB) Lo (@ ) + (ek - —) Az — b

v (L (2% ) — L (xk,m) — B (L (zirr, 1) = Lo (s 1x)) — ZTE [ Ay — b

+ Dp (@41, ) + ’Yk “ 118k = 2ell” + v (ks 7 = Bk) + A7)
= c(0k = 0c1) (F+ R+ <uk+l, A=) (1) + (1= cin) g% = (1= cfy) ™) (Tapya)

1
+3 ((1 = cOps1) prg1 — (1 — cBy) pr + 205 — c03) || Azggr — bI* + v (Lo (2, px) — Lo (xn, f11.))

— bk (Li (g1, 1) — Ly (g, i) —
+ 9k (Mg, 2" —Sk) + ML)

kEVk L
POL || Ay = bl + D (o, an) + 72 - 5 — 2

(4.18)

By (P.5), (P.6) and the assumption that M > 1, we have 0,1 < M6, < 6. In view of (P.3), we also
have Bi+1 < Bk. In particular, gﬁk < gﬁkH < g pointwise. By Proposition 2.5(iv) and assumption (A.4),
we are able to, for each k € N, estimate the quantity

(1= ehan) 971 = (1= ) g™ ) (T

= (96’““ — 95"> (Twpqr) +c <9k95k — 9k+196k+1) (Txpq1)

(Br — Br+1) H(ag(Tka))oH +c <9k95k - 9k+1gﬁk) (Try1)

IA

A

(B = Ben) QT )Y|| + ¢ (06 — Gha) o T,
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Then, for each k € N,
Ok = Okt1) (f + b+ (pis1, A=) (@p41) + <(1 — 1) g — (1 - Cek)96k> (Tzp41)
1 2
< (O, — Opy1) £ (That, pag1) + 3 (Br — Br+1) “(ag(T$k+l))0“ :
(4.19)

Recall the definition of 7 in (4.10). Coming back to (4.18) and using (4.19), we obtain, for each k € N,

1 2 2 .
Tl =Tk S 5 ((1 — Ve+1) Prt1 — (1 — ) pre + P —> | Azpyr — bl|* + e (Li (2%, ) — L (€1, 1%))

- B
pk% | Azy — b|* + %Hl “(39(Tﬂck+1))0“ + (v — Yor1) £ (Trg1, prg1)

Ly —~
+ Dp (Tg11, 21) + %37]6 15 — @ll” 4+ % (A, 2% = 5i) + A7) -
(4.20)

Recall that, by feasibility of 2* for the affine constraint, £ (z*, u) = £ («*, u*) and thus, for each k € N,

Li @ ) = L (@ri1, 1) = L@ %) = £ @y, 1) + (9% = 9) () + (9= 9%) (T
Pk
=5 1Ak = |12
=L (Z'*, N*) - L (‘Tlm ,LL*) +L (xka N*) - L (‘Tk-i-h ,LL*)
(9% = 9) (@a*) + (9= 9™ ) (Tasr) = B [ Awiss — |
/@ 2
< L@ 1) = £ (1) + £ i) = £ (@ i) + 5 || 99(Tisn))°|
— 2% | Azisr — b,
where in the inequality we have used the fact that g% < g pointwise and that, by Proposition 2.5(v), for each
keN,
2
(9 g ) (Txpt1) < — H (9g( ka+1))0H :
Substituting the above into (4.20) we have, for each k: eN,

1 2
Tl = Th S 5 ((1 — Vit1) Pt1 — Pk + S ?> [ —
+ Yk (£ (.Z'*, ,LL*) - £ (xka M )) + Yk (£ (‘Tka N*) - £ (xk-l-h :u*))

— 2
= P | Ay — b+ P g ) OH + (e = Y1) £ (@1, irpr) 42D

2
Ly .
+ %— H (09(Tz111)) H + DF (Tgt1, Tk) +7k— 5% — k]
+ 9k (A, % = 5k) + AL).
Now we take the expectation with respect to F, = S;_1 = o (xq, to, S0, - - - , Sk—1), Which will completely

determine x; and iy, and we are perform the following estimations.
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From (P.7), we have, for each k € N,

2 ’y,%
(1 = Vet1) Prg1 — Pr + e < Vst

By assumption (A.4), for each k € N,

e ||@oron)| 5] < a2

By Lemma4.9, for each k£ € N,

E[£ (@1, 1) | Fi] < M.

Recall that, by (A.2), f is (F, ¢)-smooth and invoke Remark 2.7, to get, for each k € N,

E [Dp (g+1,2x) | T < Kreo)C () -

Since, for each k € N, 5}, and xj, are both in C, we have

E(|[sk — xx]l | Fr] < de.
We have, for each k € N,
E [ | 5] = 1 € S50E [ Azias = b | Fe| + 3 (£ @1 = £ (e )

90 (£ (i 1)~ ELC (1) | F) — 208 | Ay — P 1 2=t g2

- L x o~ s
+ (VK — Yet1) M + ’Yk%Mz + KreoC () + ’Y/%?kd% + VE [( Ak, 2 —5k) + AL | Fi] -

We can bound the inner product involving the error terms using the Cauchy-Schwartz inequality and the
boundedness of C. Applying Lemma4.5 and regrouping terms with 7]3 we get, for each k € N,

E (e | Tl =i < BB [l Aziss = 0 | ] + 0 (£ % 1%) = £ () = 22 || A — 0]
2 2

M ~ M

+ (B — Br+1) - T (Ve — Yo41) M + ’VkﬁkT + Kreo)C () +72Cr
+ e [de ([[Akl]) + A% | F] -

We conclude by trivial manipulations. U

We now proceed to prove the main theorem regarding optimality.

Theorem 4.11 (Optimality). Suppose that (A.1)-(A.8) and (P.1)-(P.8) hold, with M > 1. Let () ,,c be the
sequence of primal iterates generated by Algorithm 1 and (z*, 1*) a saddle-point pair for the Lagrangian.
Then, in addition to the results of Theorem 4.7, the following holds

(i) Convergence of the Lagrangian:

Jim £ (2, p7) = L (", p7) (P-as.) (4.22)
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(ii) Every weak cluster point T of (xy,);,cy is a solution of the primal problem (%), and (ji,)},cy converges
weakly to [i a solution of the dual problem (%), i.e., (%, ) is a saddle point of L (P-a.s.) .
(iii) Pointwise rate:

. * * ok i
Vk‘GN,O;@ikﬁ(xiﬂu )—L(x*, 1) =0 <Fk> (P-a.s.) and

(4.23)
1
3 a subsequence (x’fj)jeN 5.t Vj € N, L (w41, 1) — L (2%, p*) < T (P-as.) .
k;
(iv) Ergodic rate: for each k € N, let Ty, o Zf:(] Yixi+1/T k. Then, for each k € N,
1
L (T, ) — L (2", 1) =0 <F_> (P-a.s.) . (4.24)
k

(v) If the problem (%) admits a unique solution x*, then the primal-dual pair sequence (xy, i),y CON-
verges weakly (P-a.s.) to a saddle point (x*, i*). Moreover, if ® is uniformly convex on C with modulus
of convexity ¢ : R — [0, 00], then (xy,),,cpy converges strongly (P-a.s.) to x* at the ergodic rate, for
each k € N,

b (2, - 2*]) = O <Fik> (P-as.)

Proof. As in the proof of Theorem 4.7, our goal is to first apply Lemma 2.2 and then apply Lemma2.3. By
Lemma4.10 we have, using the same notation, for each k € N,

E [ | Tl =i € =y (£ @) = £ @) + B An = b)) + 2E || Awes —b]* | 5
2 2

M - M
+ (Br — Br41) - T (Y — Y1) M + VkﬁkT + Kpee)C () +72Cr

+ deE [ Aell | Fe] + B (AL | Fil -
Let, foreach k € N, a;, = %, <£ (wp, *) — L (z*, %) + B¢ || Az, — sz) and denote what remains on the
rh.s. by zj. Then, to apply Lemma 2.2, we must show (2 )y € €4 (§). The first term, v, 1 E [HAa;kﬂ — 0|1 | 3xl,

is in £1 (§) by 4.7. The terms (B — By+1) MT2 and (yx — Yrr1) M are bounded and telescopic, hence in

ﬁ_. The terms ’YkﬁkMTz and K¢ 0)C () are in Kﬁr by (P.1). Recalling the definition of C}, we have, for
each k € N,

L *
80k =t (Gt + de (M) + D+ Ly + i 1141))

_ (M) 7 (M e (MIT] + D+ L + ] 14]) ) 2

2 B 2
T 27 4| AP p *
. <#> % (AP o e+ Do+ 141D ) 2

which is in Kﬁ_ by (P.1) and (P.3). The remaining terms,

deveE [[[ Akl | Tr] +wE AL | Til,
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coming from the inexactness of the algorithm, are in ¢} (¥) by (P.8). Thus, the r.h.s. belongs to ¢} () and
so by Lemma 2.2 we have,

ar = (£ (o, 1) = £ (@ 1%) + B [ Aw = b]]*) € £ (§) (Pas.) -

The first claim (i) follows by applying Lemma 2.3, the conditions of which are satisfied directly from Lemma 4.3
and Lemma4.5. The following three claims, (ii), (iii), and (iv), all follow from [16, Theorem 4.2]. The final
claim, (v), follows from [16, Corollary 19]. O

S Stochastic Examples

We examine the problem of risk minimization using two different ways to inexactly calculate the gradient
with stochastic noise to demonstrate that the assumptions on the error can be satisfied in order to apply
ICGALP.

Consider the following,

min, [ (2) | EE[L (2.n)] @)

Az=b

where L (-,n) is differentiable for every 7, and 7 is a random variable.
We will impose the following assumptions, or a subset of them depending on the context:
(E.1) Itholds V, f (z) = E[V,L (z,n)] (P-ae.)
(E.2) For all n, the function L (-, n) is w-smooth (see Definition 2.8) with w nondecreasing
(E.3) The function f is w-smooth with w nondecreasing
(E.4) The function f is Holder smooth with constant C'; and exponent 7.
Notice that (E.4) = (E. 3). For the sake of clarity, we analyze only the case where, for each k € N,
g = /\f with /\£ =V f » — Vf(zr)and V f 1 is our inexact computation of V f (x1), to be defined in the
followmg subsections.

Remark 5.1. With the above choice for \g, the terms in V& (z, p) coming from the augmented La-
grangian are computed exactly, however our analysis extends to the case where V, (%" ||Axy — b\|2> =

prA* (Azxy, — b) is computed inexactly as well, as this function is always Lipschitz-continuous. We demon-

strate this alternative choice in Section 7 by sampling the components py A* (Axy, — b)(i) in the numerical
experiments.

5.1 Risk minimization with increasing batch size

Consider (?#1) and define, for each k£ € N,

def Zv L ;L'k”?’h

where n (k) is the number of samples to be taken at iteration k. We assume that each #; is i.i.d., according
to some fixed distribution, and that n is a function of k, i.e., the number of samples taken to estimate the
expectation is dependent on the iteration number itself.
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Lemma 5.2. Under assumptions (E.1) and (E.2), denote
C =2 (w(de) +E IV (2, m)]* | 8] )

where x* is a solution to (%)) and, for each k € N, 8 = o (z0, o, S0, - - - , Si) as before. Then, for each

k € N, the following holds,
r 1 C
f
B {5l 18] <o

Proof. By Jensen’s inequality, for each k € N,

s 2 Fo? e ] _ 2
E [H)‘k—l—lu | Sk} <E [ ‘)‘k+1H | 8x| =E [va (Th41) — ka+1H ’ Sk} .
Then, since ﬂk 41 is an unbiased estimator for V f (x1), we have, for each k € N,
_— 2 — _ 2
E [va (Th41) — ka+1H | Sk} =E [HE [ka+1} - ka+1H | Sk:|

= Var [VAka \ Sk}
) n(k+1)
= Var m ; VL ($k+1777i) ’ Sk

1
= mvar [VL (xk+17 77) ‘ Sk] )

where the last equality follows from the independence and identical distribution of 7;. Applying the definition
of conditional variance yields, for each k& € N,

TV VL @) 184 = s (B [IVE @i ) 8] — IBIVE (@iss.) | 841°)
1
< B IV @l 8]

We again use Jensen’s inequality, then w-smoothness, and finally the fact that w is nondecreasing together
with the fact that x; 1 and z* are both in C to find, for each k € N,

mE IVL (11,0 | Sk] < ﬁ (E :”VL (@x11,m) = VL (@, )| | Sk}
+E [IVL @) | 8] )
2 [ * *
< ot (ol — o) 18] +E[IVL @ )7 | 8])
2 *
< sy (s e e )
B C
Cn(k+1)

2
The above shows that, foreach k € N, E [H)\£+1H | Sk} < n(kc+1) and so E [H)\£+1H | Sk] < ,/ﬁ as

desired.
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Proposition 5.3. Under (E.1) and (E.2), assume that the number of samples n (k) at iteration k is lower

2
bounded by <%) , Le. for some o > 0, n (k) > « <C( )) . Then, the summability of the error in (P.8)
is satisfied; namely,

wiE [[ M 18] € 2 (8).

Proof. By Lemma 5.2 we have, for each k € N,

Vi+1E [H)‘£+1H ’ Sk} < Ve+14 ﬁ < \/gﬁ (Vrt1) -

The summability of ¢ (k1) is given by (P.1) and thus ;1 E [H)\gﬂ H | Sk] c (&) O

2
Remark 5.4. The lower bound n (k) > « ( C?’b) is sufficient but not necessary; one can alternatively

2
choose n (k) to be lower bounded by « (5 ") or o <i> and, due to (P.1), the result will still hold.

5.2 Risk minimization with variance reduction

We reconsider (%) as before but now with a different V f. We define a stochastic-averaged gradient, which
will serve as a form of variance reduction, such that the number of samples at each iteration need not increase
as in the previous subsection. For each k € N, let v, € [0, 1] and define

Vi S (= w) Ve + VoL (2, m) (5.1

with @_1 = 0 and with each #; i.i.d.. We call ﬂ i the stochastic average of sampled gradients with weight
V. In this way, we are able to take a single gradient sample (or a larger fixed batch size) at each iteration, in
contrast to the previous subsection.

Lemma 5.5. Under (E.1) and (E.3), denote, for each k € N,
oF LB (VoL (o) — VS (20| 8] (52)

and assume that 3o > 0 such that sup, a,% = 02 < o0. Then, for each k € N, the following inequality holds,

B [ 18] < (1= ) o] st 4 22

Proof. The proof of this theorem is inspired by a similar construction found in [11, Lemma2]. By definition
of /\£+1 and Vf, |, we have, for all k € N,

H)‘k“H = HVAka -Vf (wk+1)H2 = H(l — k1) Vo + U1 VoL (241, Tog1) — VI ($k+1)H2-

We add and subtract (1 — vg41) V f (z1) to get,
Ml = [0 = e M+ vt (Vs sn) = 95 Gonen) + (0 = 1) (V1 ) = 9 G|
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Applying the pythagoreas identity then gives,

2 2
M| = Q= w2 |+ 2Rt 192 @t mi1) =V @)
+ (1= vp)* IV S (zk) — V. (2540 |
+ 2 <(1 — Vk11) (A£ +Vf(xy) = Vf ($k+1)) Vg1 (VoL (Tpi1, k1) — Vf ($k+1))>

+2((1 = vis) AL (1= vien) (VF (@) = V£ (@r01)))

Using Young’s inequality on the last inner product, we find,
FoP 2|/ 2 2
H/\k+1H < (1= vkgr) HMH + Vi1 VoL (Tpt1:Me+1) — VI (@p11) ||

+ (1= k)’ |V f (2r) = VF (2401
+2 <(1 — Vkt1) ()\f +Vf(xy)—Vf ($k+1)) Vi1 (VoL (Xpq1,k41) — VS ($k+1))>

+ Vk2+1 H/\£H2 + H (1= v4s1)* (VS (zx) = VS ($k+l))“2'

Vi1

Notice that 1 — 1 < 1 and thus (1 — Vk+1)2 <1 — vy forall k£ € N. This leads to

M < (0= Y ML+ R 190 aas i) = V7 )+ 19 (@) = VF (o)l
+2((1=visr) (M + 9 @) = VF @r41) ) v (VoL @1, 1) = VF (@051)))
2(1

n %M I(Vf (zx) = Vf (zpr0))1?

< <1 - V’”l) H/\fH + Vi1 IV L (w41, k1) — VI (wrs1) 1 + <Vk2+

)19 @) = V£ P
+2((1 = viers) (A + V(@) = VF @re1) ) vt (VoL (@, mess) = Vi (@010)) ) -

Recall that, by (E.3), f is w-smooth with w is nondecreasing. Furthermore, using the fact that 5,1 =
xr — Yk (g — Sk), we find

1% 2
MLl < (=2 M+ e 190 s ) = 5 )2 + @ (s — T )2
Vk+1
+2((1 =) (M + VI (@8) = VF (@111)) o1 (T (@r11,m001) = VS (451)))
v 2
< (1= 2) M+ 2 190 Gonr i) = VF (o) 12+ ( kﬂ) w (dew)?
+2((1= i) (M + VI (@8) = VF (@111)) 1 (T (@r11,m001) = VS (451)))
We take the expectation on both sides, recalling the definition of oy, (see (5.2)), o, and that
E VoL (zg,nx) | Sk—1] = Vf (z1),
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to find,

2 v 2
[ 151 < (- 5 ot (2 ) st

O

In the following proposition, we analyze a particular case of parameter choices under the assumption (E.4)
of Holder smoothness of f,i.e. 3Cy, 7 > 0 such that w : t — Cjt7.

Proposition 5.6. Under (E.1) and (E.4), for each k € N, let Wk be defined as in (5.1) with weight v, = ;'
for some o €]0, T[. If the following conditions on the sequence (Yy,);cy hold,

<fy]1+min{2,7'—a}> c 61, (5.3)
keN
and, for k sufficiently large,
Vk
—<1+4o0 5.4
e (%) 54

then the summability condition in (P.8) is satisfied; namely,

Vi1 E [HA£+1H | Sk} el (e).

Proof. Since (E.4) =—> (E.3), the assumptions (E.1) and (E.3) are satisfied and Lemma 5.5 gives, for all
keN,

2 Ten 2 2CTdE i
e ot 15 = (1= 52 ) DA v+ =225
+1

By (P.5) we have, for all £ € N, 7, < M~y.1. It follows that, for each k& € N,
f 2 "Y,?_,’_l f 2 2 2« 2T 27—«
B[ A 18] = (1= 252 ) M+ o2 + 2807 char e,

Consolidating higher order terms gives, for each k € N,

MMHH lsk] < (1 - %) ML+ (o7 + 207 ogar) ypminteeer=et,

Since @ < 7 < 1by 5.3, it holds that & < min {1, 27 — a}, and the first condition of Lemma 9.1 is satisfied.
Additionally, by (5.4), we have that the second condition, (9.2), of Lemma 9.1 is satisfied as well and we can
apply Lemma 9.1 with

1

c=3 s=a d= (02 + 2M2TCJ2cd%T) , and t = min {2¢, 27 — a},

to find, for k sufficiently large,

[HA’““H | Sk] < 20l g (a2l
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and, by extension, for £ sufficiently large,
~ minq &,7— ming & 7—«
o[l 194 £ VA o (),
Then, for k sufficiently large,

V11 [H)‘£+1H \ Sk] < Ve <V 2@%?2{57 t o (fymf{TT O‘}>>
< Vadq Ty o( e a}>

Under the assumptions 5.3 we have 7k+mm{ 37} € ¢! and thus the summability condition of (P.8) is
satisfied. O
Example 5.7. The condition (5.3) in Proposition 5.6 can be satisfied, for example, by taking v = W
In this case, the condition (5.3) reduces to picking b such that the following holds,
. ([«

(1-10) (1 +m1n{§,7' —a}) > 1.

Rearranging, we find that this is equivalent to,
o -1
b<1—(1+min{§,7—a}> : (5.5)

The condition (5.4) in Proposition 5.6 can be satisfied under this choice of v, as well. We have,

1— 1-b
Vi k+2 1 1—5 .
— = — 14— ~l+——=1+40
Vha1 <k+1> ( k1 k1 (i)
for any 0 < € < 1, for k sufficiently large.

Recall that the predicted convergence rates for the ergodic iterates 7y given by Theorem 4.7 and Theo-
rem4.11 under this choice of step size are,

1Az — b = O (\/LF_]) (P-as.) and L (Zp ") — £ (2% 1) = O (%) (P-as.) |

k

k
where I'y, = > v = > W Thus, choosing b to be as large as possible is desired. For a given value
i=0 i=0
of 7 corresponding to the Holder exponent of the gradient, the best choice for « is %7‘. If the problem is
Lipschitz-smooth, then 7 = 1 and we get o = %
Notice that the choice of « does not directly affect the predicted rates of convergence, which now depend
only on the constant b. However, the choice of « dictates the possible choices for b which satisfy the assump-

tions and thus, indirectly, the rates of convergence as well. In the Lipschitz-smooth case, choosing o = %
leads one to pick b < 1 — (4/3)_1 = %
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6 Sweeping

We now consider an example in which the errors in the computation of V f are deterministic; a finite sum
minimization problem,

min — Z fi(x (%)

xECCH n

where n > 1 is fixed. We assume that:
(F.1) f; is w-smooth (see Definition 2.8) for 1 < ¢ < n with w nondecreasing
(F.2) (Vk)pen @ nonincreasing sequence.

As in the previous section, Section 5, we examine only the case where, for each £ € N, A\, = )\£ =

Vf(xg) — ﬂk, with ﬂk to be defined below, although our analysis is straightforward to adapt to the
more general case where one computes pr A* (Az, — b) inexactly as well, at the expense of brevity (see Re-
mark 5.1). We will sweep, or cycle, through the functions f;, taking the gradient of a single one at each itera-

tion and recursively averaging with the past gradients. For notation, fixed n, we take mod (k) e (kK mod n)
with the convention that mod (n) £ n. We define the inexact gradient in the following way,

Vi “:“%Zw,- (z;) (Vk <n)
and

Vi EV o+~ (meod (k) = V frmodr) (@r—n))  (Vk>n+1).

For &k > n + 1 it can also be written in closed form as,

mod(k) n

— 1

Vie=— | D Vi @irkomoan) = D Vi @ik modn)
i=1

i=mod(k)+1

Lemma 6.1. Let C = 1 (n(n—1)+ (n—1) (2n —1)). Under (F.1) and (F.2), we then have, for all k >
2n — 1, the following,

HA£+1H < Ow (Yrg2-2nde) -
Proof. Using the definition of )\£ 41 fork > 2n —1 2> n+ 1, we have

H/\k“H = va (Tg41) — Wk—HH

1 mod(k+1)
== Z Vfi(xrs1) = Vi (Zitke1-mod(e+1))
+ Z Vi @e41) = Vi (Titht1—n—mod(k+1))

i=mod(k+1)+1
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Then, we apply the triangle inequality and w-smoothness of f; assumed in (F.1),

1 mod(k+1)
H)‘kHH < Z |V fi (@rs1) = Vi (Titkt1-mod(e+1)) |
i=1
+ > |V @) = Vi (ks 1—n—mod+ 1) |
i=mod(k+1)+1
mod(k+1)

1
< o Z w <ka+1 - xi+k+1—mod(k+1)”)
i=1

n

+ Z w <H$k+1 - $i+k+1—n—mod(k+1)H>
i=mod(k+1)+1

Now we add and subtract the iterates in between 11 and ;41 _mod(k+1) then use the definition zy1 =
Zk + Yk (Sk — xx) and the fact that, for all £ € N, 5, and xy, are in C,

mod(k+1) mod(k+1)—

H)\kHH < % Z Z (|ka+2_]- — Tkt1-411)

n mod(k+1)—i+n
+ > > w(lwree—; — zrpall)
i=mod(k+1)+1 j=1

mod(k+1) mod(k+1)—i

< L Z Z W (Vrt1—jde)

n
n mod(k—l—l)—i—l—n
+ > Y wmkjde)
i=mod(k+1)+1 j=1

Recall that, by (F.2), (k) ken 1S nonincreasing, by (F.1), w is a nondecreasing function, and, for each k£ € N,
mod (k) < n. Then,

1 mod(k+1)
H)‘£+1H < - Z (=i 4+ mod (k + 1)) @ (Vet14i-mod(k+1)dc)
=1
+ Z (_Z +n +mod (k + 1)) w (7k+1+i—n—mod(k+1)d0)
i=mod(k+1)+1

IN

1
- (mod (k + 1) (=1 4+ mod (k + 1)) @ (Y-+2-mod(k+1)dc)
+(n—mod(k+1))(—=1+n+mod(k+1))w (7k+2—n—mod(k+1)dc))

(n(n = 1w (r2-nde) + (n = 1) (2n — 1) w (Vet2-2ndc))

SI—=31r

(n(n—1)+ (n— 1) (20 — 1)) w (Yera—2nde)
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O

Proposition 6.2. Under (F.1) and (F.2), and assuming that (yyw (deVk))pen € ¢ L the summability condition
of (P.8) holds; namely,

Y+l HA£+1H e .
Proof. By Lemma6.1, we have, for all K > 2n — 1,
Vi1 HA£+1H < Cypg1w (deVir2—2n) < CYkto—onw (deVit+2—2n)

where we have used the fact that (7)o is @ nonincreasing sequence by (F.2). Since (vxw (deyi)) ey € £
the desired claim follows. O

7 Numerical Experiments

We apply the sweeping method and the variance reduction method to solve the following projection problem,

in — o — y|?
mm —||r—
jalhgr2n Y (7.1)

Az=0
where x and y are in R"™. Notice that this problem fits both the risk minimization and the sweeping problem
structures. By choosing f; (z) = % (z; — y;)* we can rewrite the problem to apply the sweeping method
of Section 6. Alternatively, we can let 1 be a random variable taking values in the set {1,...,n} and write
L(z,n) = 3 (zy — yn)2 to cast the problem as risk minimization as in Section 5. In both of these cases, it
is possible by our analysis to consider also sampling components of the components of the gradient term
Vo2 || Azg|? = ppA* Axy.

The assumptions (E.1) - (E.4) and (F.1) all hold as the function f is Lipschitz-smooth and the functions
L (-,n) are all Lipschitz-smooth for every 7 as well. The assumptions ((A.1)) to ((a)) all hold as f is Lipschitz-
smooth and has full domain.

For parameters, we take v, = 1/ (k + 1)1_b, pr=p=22"41,0, =y Ifwetake b < % then
all the assumptions (P.1) to (P.7) are satisfied, as well as (F.2). In particular, to satisfy (P.8) in the variance
reduction case, we will take b € {% —0.15, % - 0.01}. The weight v, in the variance reduction is chosen to
be v, = ;' with & = 2/3 since the problem is Lipschitz-smooth, i.e. the Holder exponent is 7 = 1. With
this choice, the condition (5.3) in Proposition 5.6 is satisfied as was discussed in Example 5.7.

Since the problem (7.1) is strongly convex, we show ||Z;, — 2*||* in addition to the feasibility gap, || AZ]||*
where Ty, is the ergodic variable, for each £ € N,

k

_ def

T = E Yi%it1/Tk-
i=0

We initialize y € R™ and A € R?2*" randomly. To find the solution z* to high precision, we use generalized
forward-backward before running the experiments. As a baseline, we run CGALP, the exact counterpart to
ICGALP, and display the results. We run the sweeping method on V f () for two different step size choices,
displayed in Figures 1 and 2. For the variance reduction, we examine both the case where VL (x, 1) is
sampled and the case including the gradient of the quadratic term is sampled (see Remark 5.1), for two
different step size and weight choices as well as different batch sizes (1,64, or 256), displayed in Figures 1
and 2.
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Optimality

CGALP

Sweep V,fi(xk)

VR single V,fi(xk)

VR small batch V,fi(xk)

VR big batch V,fi(xy)

VR small batch V,fi(xx) + pk(A* Ax,)?
VR big batch V,fi(x¢) + pi(A ™ Axy)?

O (i)

102 103 104 10°

Feasibility

CGALP

Sweep V,fi(xk)

VR single V,fi(xk)
VR 64 batch V,fi(xk)

——
-
-~
-
-
-
-
-
-~
~—_
-
-
-~
-
-~
~—
-
-
-

104 4 VR 256 batch V,fi(xk)
VR 64 batch V,fi(xk) + px(A*Ax)?
‘I“E VR 256 batch V,fi(xc) + pi(A " Ax)?
i 1
== O((k+1)o.24)
10—5 i

102 103 104 10°

Figure 1: Ergodic convergence profiles for ICGALP applied to the projection problem (7.1) with n = 1024.
1
The step size is, foreach k € N, v, = (k + 1)_(1_Z+0'01) and the weight for variance reduction is, for each

keN, v =~
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Optimality

CGALP

Sweep V,fi(xk)

VR single V,fi(xk)

VR small batch V,fi(xk)

VR big batch V,fi(xy)

VR small batch V,fi(xy) + pe(A " Ax;)?
VR big batch V,fi(x,) + ok(A " Ax,)?
o(

2

|)?k—X*

w=o)

102 103 10° 10°

CGALP

Sweep V,fi(xk)

VR single V,fi(xk)

VR 64 batch V,fi(xk)

VR 256 batch V,fi(xk)

VR 64 batch V,fi(xk) + px(A " Ax)?
VR 256 batch Vfi(xx) + ok(A " Axi)?

|Ax,|?

O(zzm)

102 103 10* 10°

Figure 2: Ergodic convergence profiles for ICGALP applied to the projection problem (7.1) with n = 1024.
1
The step size is, foreach k € N, v, = (k + 1)_(1_Z+0'15) and the weight for variance reduction is, for each
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8 Conclusion

We introduced an inexact extension of the CGALP algorithm, given in [16], which allows for either stochastic
or deterministic errors in the computation of several important quantities. The main benefit of this extension

will be in the high-dimensional setting, where computing the terms V f, prox, or the linear minimization

oracle can be impractical. Several different methods were considered which demonstrated how the gradient
V f could be computed in such a way that the summability conditions of ICGALP would be satisfied. The
main drawbacks of using the inexact variant of the algorithm emerge from the restrictions on the parameters
one is free to choose. Indeed, here the choices of step sizes are more strict than in the CGALP setting. How-
ever, the predicted convergence rates for both the optimality and feasibility maintain the same dependence
on parameters as was observed for CGALP in an almost sure sense.

9 Appendix

Lemma 9.1. Consider a positive sequence (uy,), oy which satisfies, for each k € N,
g1 < (1= e9g) up + d, ©.1)

for some real numbers s and t satisfying 0 < s < min {1,t}. If, in addition, the sequence () Satisfies,
for each k € N,

Tk <140, 9.2)

Ve+1

then, for k sufficiently large, it holds,
ur < g t—s t—s
ST O ()

def

Proof. For each k € N, we denote v, = yz_tuk — ‘El such that uy, = 7]’;_8 (I/k + %) Then, by (9.1),

_ d _ d o w7 d
Vka1 = Ypprtht — — < Yppy (=) up +dyg) — = =" <—> (1= i) ug + dg) — —
c c Vk+1 c
By (9.2), we then have, for each k& € N,
s—t s\\t—s S t d
Vie1 <p (L0 () (1 — i) ug + dry.) — o
Substituting for u using the definition of v, we find, for each k£ € N,

S— S —S S d —s d
wir S5 (0 () (1= ) (m+ ) ol + k) - &

Now, we take a Taylor expansion for the term (1 + o (7)) ™ ~ (1 + 0 (72)) to get, for k sufficiently large,
< s—t 1 S 1 _ S é t—s d t _ il
vert <7 (Lo () ( (L =en) (v + = ) " ey | —
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We distribute the ’yl‘z_t and then expand parentheses,

i < (1o () (=) (m+ 2) ) - 2

S S d S S S d S d
=1 —cp)v+ (1 —c) - +dvyp +o () ((1 —cYy) <Vk + E) + d’Yk) Tz

S S d S S S S S d S S d
=1 —cp)v+ (1 =) - +dyp o) (I —cvi) vk +o(vi) (1 — i) - + 0 () dvy — -
=1 -y to()vk+o(Vg)-

Fix 0 < ¢ < c. Then, by definition of o (v}), ko € N such that, Vk > ko, 0 (v;) < (¢ — )7} Then,

(I—cyp+o(v) vk < (1 —&v;) v

From this we conclude, by [13, Ch.2, Lemma 3], that lim sup v < 0. Thus, by definition of v,
k

d ,_ _
uin € T o (1)
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