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ABSTRACT

Dataset Distillation (DD) compresses large-scale datasets into smaller synthesized
datasets, enabling efficient model training while preserving high test performance.
However, existing DD methods primarily focus on accuracy and largely neglect
adversarial robustness, potentially exposing models to security risks in critical ap-
plications. Evaluating robustness is therefore essential but remains challenging due
to complex interactions among distillation methods, model architectures, and attack
strategies. Moreover, current benchmarks provide only partial coverage and lack a
unified perspective in the DD domain. To address this gap, we introduce BEARD,
an open and unified benchmark for systematically evaluating the adversarial robust-
ness of models trained on distilled datasets from representative DD methods such
as DM, IDM, and BACON. BEARD supports diverse adversarial attacks, including
FGSM, PGD, and C&W, and widely used datasets such as CIFAR-10/100 and Tiny-
ImageNet. Using an adversarial game framework, we define three key metrics: Ro-
bustness Ratio (RR), Attack Efficiency Ratio (AE), and Comprehensive Robustness-
Efficiency Index (CREI). We conduct systematic evaluations and analyses across
unified benchmarks, varying images-per-class (IPC) settings and adversarial train-
ing strategies, showing that dataset distillation consistently enhances adversarial
robustness, with adversarial training providing further improvements. The leader-
board is available at https://beard-leaderboard.github.io/, along
with a library of model and dataset pools to support reproducible research. Code is
accessible at https://anonymous.4open.science/r/BEARD-6B8A/.

1 INTRODUCTION

Deep Neural Networks (DNNs) (LeCun et al., 2015) have revolutionized various domains by leverag-
ing large-scale datasets to learn sophisticated representations for specific tasks (Krizhevsky et al.,
2012; Vaswani et al., 2017). However, training on massive datasets involves substantial computational
overhead and large storage requirements, which pose practical challenges, especially in resource-
constrained environments (Yu et al., 2023; Lei & Tao, 2023). These challenges motivate methods that
improve training efficiency and reduce memory usage while preserving model performance.

Dataset Distillation (DD) (Wang et al., 2018; Zhao et al., 2020) offers a promising approach to
mitigating the computational and storage challenges of training on large datasets by compressing
them into smaller, synthetic subsets, thereby improving training efficiency and reducing memory
usage. This approach is particularly valuable in resource-constrained scenarios where training on
full datasets is impractical (Li et al., 2020; Yang et al., 2023). Considerable progress in DD has been
driven by a range of algorithmic innovations, which can be broadly categorized into Meta-Model
Matching (e.g., DD (Wang et al., 2018), KIP (Nguyen et al., 2020; 2021)), Gradient Matching (e.g.,
DC (Zhao et al., 2020), TESLA (Cui et al., 2023), FTD (Du et al., 2023)), and Distribution Matching
(e.g., DM (Zhao & Bilen, 2023), CAFE (Wang et al., 2022), BACON (Zhou et al., 2024a)).

Despite the efficiency and memory advantages of dataset distillation, models trained on distilled
datasets remain highly vulnerable to adversarial attacks, which are small, deliberately crafted,
and human-imperceptible perturbations capable of misleading classifiers (Szegedy et al., 2014;
Goodfellow et al., 2015a; Madry et al., 2018a; Zhou et al., 2022), as illustrated in Figure 1. These
vulnerabilities threaten the reliability of security-critical applications such as face recognition (Wei
et al., 2022a;b), object detection (Zhou et al., 2024b; Hu et al., 2021), and autonomous driving (Wang

1

https://beard-leaderboard.github.io/
https://anonymous.4open.science/r/BEARD-6B8A/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Distilled 
Dataset

Source 
Dataset

Distillation Stage

Source 
Dataset 

(Test Set)

Source 
Dataset 

(Test Set)

Evaluation Stage

Neural Network

Distilled 
Dataset

Training Stage

Neural Network

Malicious Output

Neural Network
Attack

Normal Output
DC DSA DM

Figure 1: Evaluation of adversarial robustness for dataset distillation. The process has three stages:
(1) Distillation Stage: DD methods such as DC (Zhao et al., 2020), DSA (Zhao & Bilen, 2021),
and DM (Zhao & Bilen, 2023) are used to generate distilled datasets; (2) Training Stage: models
are trained on these datasets; (3) Evaluation Stage: targeted and untargeted attacks (e.g., FGSM
(Goodfellow et al., 2015b), PGD (Madry et al., 2018b), C&W (Carlini & Wagner, 2017)) are applied
to test sets of standard datasets (CIFAR-10/100, TinyImageNet (Krizhevsky, 2009; Deng et al., 2009)).
Performance under clean and adversarial conditions is measured using dedicated robustness metrics.

et al., 2021; Yuan et al., 2023), demonstrating that gains in training efficiency do not guarantee
adversarial robustness. This highlights the need for principled frameworks and evaluation protocols to
systematically assess and enhance the adversarial robustness of models trained on distilled datasets.

Research Gap. Although recent studies (Xue et al., 2025; Ma et al., 2025; Chen et al., 2023) have
begun exploring ways to improve the adversarial robustness of DD, they do not provide a systematic
framework for evaluating the robustness of models trained on distilled datasets. Assessing robustness
remains challenging due to the complex interactions among distillation methods, model architectures,
and attack strategies. Existing benchmarks offer only partial solutions. Specifically, DD-RobustBench
(Wu et al., 2024) evaluates each IPC setting independently without providing a unified perspective,
whereas RobustBench (Croce et al., 2021) primarily focuses on conventional models rather than DD.
Collectively, these limitations underscore the need for a principled framework and specialized metrics
explicitly tailored for DD, enabling comprehensive and unified assessment of adversarial robustness.

To address this gap, we introduce BEARD, an open and unified benchmark designed to systematically
evaluate the adversarial robustness of models trained using DD methods. We conduct extensive
evaluations using various representative DD techniques, including DC (Zhao et al., 2020), DSA (Zhao
& Bilen, 2021), DM (Zhao & Bilen, 2023), MTT (Cazenavette et al., 2022), IDM (Zhao et al., 2023),
and BACON (Zhou et al., 2024a), across a range of datasets, such as TinyImageNet (Deng et al.,
2009) and CIFAR-10/100 (Krizhevsky, 2009). To assess robustness, we incorporate a broad spectrum
of attack methods, including FGSM (Goodfellow et al., 2015b), PGD (Madry et al., 2018b), C&W
(Carlini & Wagner, 2017), DeepFool (Moosavi-Dezfooli et al., 2016), and AutoAttack (Croce & Hein,
2020). Using the adversarial game framework, which provides a unified perspective for evaluating
the adversarial robustness of DD methods across diverse IPC settings and attack strategies, we further
introduce three key evaluation metrics: Robustness Ratio (RR), Attack Efficiency Ratio (AE), and
Comprehensive Robustness-Efficiency Index (CREI). Additionally, we develop a straightforward
evaluation protocol with a Dataset Pool and a Model Pool. Through large-scale experiments, we
evaluate the adversarial robustness of models trained using DD under targeted and untargeted attacks
with BEARD. Analysis of the results demonstrates that dataset distillation improves robustness across
unified benchmarks and diverse IPC settings, with adversarial training providing additional gains.

Our contributions are summarized as follows:

• We present BEARD, a unified benchmark for evaluating the adversarial robustness of models
trained on distilled datasets, built upon an adversarial game framework to systematically
assess dataset distillation methods under diverse attack scenarios.

• We introduce novel robustness metrics and a leaderboard that ranks existing dataset distilla-
tion methods based on their performance against various adversarial attacks.
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• We release open-source code with detailed documentation, along with extensible Model and
Dataset Pools to support reproducible and standardized robustness evaluations.

• We perform an extensive comparative analysis of benchmark results, providing practical
insights and recommendations for improving adversarial robustness in dataset distillation.

2 RELATED WORK

Dataset Distillation. Dataset distillation aims to synthesize compact datasets that preserve the
essential information of large-scale datasets. Wang et al. (2018) pioneered a bi-level optimization
approach, modeling network parameters based on synthetic data, though it incurs high computational
costs. To address this, Zhao et al. (2020) proposed Dataset Condensation (DC), a gradient matching
method aligning gradients from original and synthetic datasets, while DSA (Zhao & Bilen, 2021)
enhances it with data augmentation to produce more informative synthetic images and improve
training performance. MTT (Cazenavette et al., 2022) mimics long-range training dynamics, while
distribution matching methods such as DM (Zhao & Bilen, 2023) and IDM (Zhao et al., 2023) leverage
distributional similarity metrics. BACON (Zhou et al., 2024a) employs a Bayesian framework to
improve efficiency. Additional directions include multi-size distillation (He et al., 2024), trajectory-
based lossless distillation (Guo et al., 2024), and SRe2L (Yin et al., 2024), RDED (Sun et al.,
2024). DC-Bench (Cui et al., 2022) provides an initial benchmark for DD performance evaluation.
Despite these advances, existing methods primarily emphasize training efficiency and accuracy, and a
systematic evaluation of adversarial robustness remains largely unexplored.

Adversarial Dataset Distillation. Adversarial Robust Distillation (ARD) (Goldblum et al., 2020)
demonstrated that robustness can be transferred from teacher to student within the framework of
knowledge distillation. Building on the notion of robust features (Ilyas et al., 2019), Wu et al. (2022)
proposed constructing robust datasets, such that classifiers trained on these datasets exhibit inherent
adversarial robustness. Subsequent studies have investigated adversarial robustness specifically in the
context of dataset distillation, with Ma et al. (2025) examining the efficiency and reliability of DD
tasks using TrustDD, Chen et al. (2023) analyzing associated security risks, and Xue et al. (2025)
exploring approaches to embed adversarial robustness in distilled datasets to enhance robustness
without compromising accuracy. Nevertheless, these investigations typically focus on specific attack
types or experimental settings and do not provide a unified framework for systematically comparing
adversarial robustness across diverse distilled datasets, IPC settings, and attack scenarios.

Adversarial Robustness Benchmarks. Existing benchmarks provide limited insights into the
adversarial robustness of dataset distillation, due to the challenges of systematically evaluating
interactions among distillation methods, model architectures, and attack strategies. Wu et al. (2024)
proposed DD-RobustBench as an initial framework, evaluating multiple IPC settings independently
(e.g., IPC-1, IPC-10, IPC-50). While it offers useful initial analysis, it lacks a unified perspective
across IPCs and does not explicitly account for attack efficiency, which is particularly relevant
in resource-constrained environments such as edge computing. In terms of attack strategies, it
primarily considers white-box untargeted attacks, leaving black-box and targeted attacks less explored.
Moreover, the benchmark does not provide a leaderboard for straightforward comparison across
methods. Prior to DD-RobustBench, Croce et al. (2021) proposed RobustBench, which focuses
on conventional models and provides comprehensive attack evaluations with standardized metrics,
but it does not specifically address the unique challenges of dataset distillation, such as multi-IPC
evaluation or efficiency considerations with condensed datasets.

Building on these considerations, BEARD was developed as an open and unified benchmark specifi-
cally designed to systematically evaluate the adversarial robustness of dataset distillation methods
across multiple datasets. Inspired by Dai et al. (2023), an adversarial game framework is employed to
unify the evaluation process and three key metrics are introduced: Robustness Ratio (RR), Attack Ef-
ficiency Ratio (AE), and Comprehensive Robustness-Efficiency Index (CREI). These metrics provide
a unified perspective for assessing models trained on distilled datasets across different IPC settings,
capturing both attack effectiveness and attack efficiency. The overall evaluation is summarized by
the CREI, with individual metrics such as RR for attack effectiveness and AE for attack efficiency.
Multiple leaderboards are also constructed to offer an intuitive display of adversarial robustness. A
detailed comparison between BEARD and existing benchmarks is provided in Appendix B.5.
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3 ADVERSARIAL ROBUSTNESS FOR DATASET DISTILLATION AGAINST
MULTIPLE ATTACKS

3.1 PRELIMINARY

Motivation. Adversarial robustness in dataset distillation has received limited systematic evaluation.
Prior studies (Wang et al., 2018; Zhao et al., 2020) focused on model accuracy, offering only a limited
view of robustness. Subsequent work (Wu et al., 2024) considered robustness evaluation but lacked a
unified perspective across IPC settings and largely overlooked attack efficiency. Another study (Croce
et al., 2021) proposed comprehensive robustness benchmarks but did not specifically address the
unique challenges of dataset distillation. Moreover, robustness evaluation is further complicated by the
interactions among distillation methods, model architectures, and diverse attack strategies. To address
these challenges, we introduce a unified adversarial game framework that explicitly considers both
attack effectiveness and efficiency, enabling a comprehensive assessment of how distilled datasets
perform under various adversarial conditions. This framework provides a principled foundation
for designing specialized metrics and leaderboards that systematically compare the robustness of
different dataset distillation methods across multiple datasets and IPC settings.

Notations. Consider a large dataset T = {(xi, yi)}Ni=1, where xi ∈ X ⊆ Rd denotes input samples
and yi ∈ Y = {1, . . . , C} denotes corresponding labels. DD aims to generate a synthetic dataset
S = {(x̃j , ỹj)}Mj=1 ⊆ X × Y , with M ≪ N , such that a model m ∈ M, m : X → Y , trained on S
performs comparably to one trained on T . The defender function D encompasses DD methods with
diverse IPC settings, outputting S. The attacker function set A generates adversarial examples with
perturbation budget ϵ ∈ P , where P = {ϵ | ϵ ≥ 0} defines allowable perturbation sizes.

3.2 A UNIFIED ADVERSARIAL GAME FRAMEWORK FOR EVALUATING ADVERSARIAL
ROBUSTNESS IN DATASET DISTILLATION

Definition 3.1 (Attacker Function). Let L : Y × Y → R be a loss function (e.g., cross-entropy).
An attacker function a ∈ A maps an input-label pair (x, y) ∈ X × Y and a model m ∈ M to an
adversarial example x̂ = a(x, y,m) that maximizes the loss under an Lp-bounded perturbation:

a(x, y,m) = arg max
x̂∈X

∥x̂−x∥p≤ϵ

L(m(x̂), y). (1)

Assuming X is bounded and L is continuous, the constraint set {x̂ ∈ X : ∥x̂ − x∥p ≤ ϵ} is
compact, ensuring the maximizer exists. In practice, a(x, y,m) is approximated by standard attacks
(Goodfellow et al., 2015b; Madry et al., 2018b).
Definition 3.2 (Defender Function). Let L : Y × Y → R be a loss function. A defender function
d ∈ D aims to synthesize a distilled dataset S to minimize the worst-case adversarial risk across a set
of attack functions A. This leads to a bi-level optimization problem:

d(A) = argmin
S⊆X×Y

max
a∈A

E(x,y)∼T L(m(a(x, y,m)), y),

where m = argmin
m∈M

E(x̃,ỹ)∼SL(m(x̃), ỹ).
(2)

The inner optimization trains a defended model m on the synthetic dataset S, while the outer
optimization aims to enhance robustness against worst-case attacks.

Definition 3.3 (Attack Success Rate (ASR)). Let (x, y) ∈ (X ,Y) ∼ T be an input-label pair, a ∈ A
an adversarial attack, and m ∈ M a defended model. The attack success rate is the probability that
the model correctly classifies the original input but misclassifies the adversarially perturbed input:

ASR(m; a) = E(x,y)∼T 1{m(a(x, y,m)) ̸= y ∧m(x) = y}, (3)

where 1{·} is the indicator function, which is 1 if the model misclassifies the perturbed input and 0
otherwise. The ASR quantifies vulnerability, with higher values indicating greater susceptibility.
Definition 3.4 (Attack Success Time (AST)). Let (x, y) ∈ (X ,Y) ∼ T be an input-label pair, a ∈ A
an adversarial attack, and m ∈ M a defended model trained via dataset distillation. Let t denote
the GPU time taken by a to generate a perturbed input a(x, y,m) such that m(a(x, y,m)) ̸= y. The
attack success time is defined as the expected time required to successfully fool the model:

AST (m; a) = E(x,y)∼T [t | m(a(x, y,m)) ̸= y] . (4)

4
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Figure 2: Illustration of BEARD. A distilled dataset pool is first generated from source datasets using
various dataset distillation methods, including DC (Zhao et al., 2020), DSA (Zhao & Bilen, 2021), DM
(Zhao & Bilen, 2023), IDM (Zhao et al., 2023), and BACON (Zhou et al., 2024a). Neural networks
are then trained on these distilled datasets to form a model pool of pretrained models. The adversarial
robustness of these models is subsequently evaluated using a variety of attack methods, such as
FGSM (Goodfellow et al., 2015b), PGD (Madry et al., 2018b), C&W (Carlini & Wagner, 2017),
DeepFool (Moosavi-Dezfooli et al., 2016), and AutoAttack (Croce & Hein, 2020). Leaderboards are
created to provide an intuitive comparison of robustness across different methods and datasets.

Definition 3.5 (Adversarial Game Framework). Given conceptual thresholds γ and β, which define
the conditions for evaluating attack success rate and attack success time, respectively, and a set A of
perturbation functions that may occur during test-time, the performance of the model is evaluated
based on its ASR and AST under these perturbations. The model is considered robust if:

Em∈MEa∈AASR(m; a)

max
m∗∈M,a∗∈A

ASR(m∗; a∗)
≤ γ and

Em∈MEa∈AAST (m; a)

max
m∗∈M,a∗∈A

AST (m∗; a∗)
≥ β. (5)

Here, γ and β are conceptual thresholds specifying conditions for the defender’s victory, requiring a
low ASR and a high AST, respectively. They are not assigned specific values in practice but serve to
formalize the adversarial game dynamics and define robustness criteria.

Remark 3.6. In the adversarial game framework, the defender wins if two conditions are met: (1)
the attack success rate ASR(m; a) is minimized below the threshold γ, and (2) the attack success
time AST (m; a) is maximized above the threshold β. If either condition fails, the attacker wins. A
win for the defender indicates effective robustness against adversarial perturbations, while a win for
the attacker reveals vulnerabilities that need addressing. This game is defined over a set of models
m ∈ M, each trained on distinct distilled datasets (x̃, ỹ) ∈ (X̃ , Ỹ) ⊆ S, and subjected to various
attacks a ∈ A. When a specific model m or attack a is chosen, the multi-adversary game simplifies
to a single-adversary game focused on their interaction.

5
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3.3 METRIC FOR EVALUATING ADVERSARIAL ROBUSTNESS

Building on the Definition 3.5 and Remark 3.6, we propose metrics that aggregate accuracy across
both single and multiple attacks, as well as models trained on different IPC distilled datasets. This
section introduces two key criteria for evaluating adversarial robustness: (1) attack effectiveness and
(2) attack efficiency, with their respective metrics.
Definition 3.7 (Robustness Ratio (RR)). Given a neural network model m ∈ M with defensive
distillation d ∈ D and an adversarial attack function a ∈ A, the robustness ratio is defined as:

RR(m; a) = 100×

1− Em∈MEa∈AASR(m; a)

max
m∈M,a∈A

ASR(m; a)

 . (6)

Remark 3.8. The purpose of using “1−” in the formula is to emphasize model robustness rather than
attack success. A higher attack success rate indicates a more effective attack but a less robust model.
Therefore, by subtracting the normalized attack success rate from 1, the formula inversely represents
robustness. This way, when ASR is high, the robustness ratio will be low, and when ASR is low,
the model is considered more robust. The formula also normalizes the ASR by dividing it by the
maximum possible ASR to provide a standardized measure of robustness.
Definition 3.9 (Attack Efficiency Ratio (AE)). Given a neural network model m ∈ M with defensive
distillation d ∈ D and an adversarial attack function a ∈ A, the attack efficiency ratio is defined as:

AE(m; a) = 100×

Em∈MEa∈AAST (m; a)

max
m∈M,a∈A

AST (m; a)

 . (7)

Definition 3.10 (Comprehensive Robustness-Efficiency Index (CREI)). Given the robustness ratio
RR and the attack efficiency ratio AE, with an adjustable coefficient α, the comprehensive robustness-
efficiency index combines them into a unified metric:

CREI = α× RR + (1− α)× AE, (8)

where α controls the trade-off between robustness and efficiency. In our experiments, we set α = 0.5.
Remark 3.11. The adversarial game framework can shift between multi-adversary and single-
adversary scenarios, where “single-adversary” refers to a model facing one attack strategy, while
“multi-adversary” involves multiple attack strategies. In this context, the metrics adjust: Robustness
Ratio (RR) and Attack Efficiency (AE) become Single-Adversary Robustness Ratio (RRS) and
Single-Adversary Attack Efficiency Ratio (AES) for single-adversary situations, and Multi-Adversary
Robustness Ratio (RRM) and Multi-Adversary Attack Efficiency Ratio (AEM) for multi-adversary
contexts. The defender aims to minimize the attack success rate, which aligns with maximizing RR,
while optimizing AE corresponds to maximizing attack success time. Conversely, the attacker seeks
to maximize AE and minimize RR. Analyzing these metrics enables a clearer assessment of dataset
distillation, capturing both the robustness of models and the efficiency of attacks.

4 ADVERSARIAL ROBUSTNESS BENCHMARK FOR DATASET DISTILLATION

4.1 OVERVIEW OF BEARD

BEARD consists of two main stages: the Training Stage and the Evaluation Stage, as illustrated
in Figure 2. In the training stage (Section 4.1.1), models are trained on datasets from the dataset
pool. The evaluation stage (Section 4.1.2) involves applying adversarial perturbations to test images
from an attack library to assess model robustness. The benchmark comprises three key components:
Dataset Pool, Model Pool, and Evaluation Metrics. More details are provided in Appendix A.

4.1.1 TRAINING STAGE

In the training stage, we focus on CIFAR-10 (Krizhevsky, 2009), CIFAR-100 (Krizhevsky, 2009),
and TinyImageNet (Deng et al., 2009) due to their widespread use and diverse performance in dataset
distillation. Simpler datasets such as MNIST (LeCun et al., 1998) and Fashion-MNIST (Xiao et al.,
2017) are initially excluded, but will be considered later to explore data efficiency. We evaluate

6
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Figure 3: Performance of various dataset distillation methods under targeted and untargeted adver-
sarial attacks on CIFAR-10, CIFAR-100, and TinyImageNet. The first row depicts targeted attacks
with unified IPC settings, while the second row shows performance under untargeted attacks. Metrics
used include Multi-Adversary Robustness Ratio (RRM), Multi-Adversary Attack Efficiency Ratio
(AEM), and Comprehensive Robustness-Efficiency Index (CREI).

six prominent dataset distillation methods: DC (Zhao et al., 2020), DSA (Zhao & Bilen, 2021),
DM (Zhao & Bilen, 2023), MTT (Cazenavette et al., 2022), IDM (Zhao et al., 2023), and BACON
(Zhou et al., 2024a), which represent different approaches, including gradient matching (Zhao et al.,
2020; Zhao & Bilen, 2021), distribution matching (Zhao & Bilen, 2023; Zhao et al., 2023; Zhou
et al., 2024a), and trajectory matching (Cazenavette et al., 2022). Synthetic datasets are generated
using IPC-1, IPC-10, and IPC-50 settings, ensuring consistency with DC-bench (Cui et al., 2022) for
hyperparameters. These datasets, primarily sourced from existing open-source distilled datasets, are
produced by the six dataset distillation methods across various IPC settings and form the Dataset
Pool. This pool is critical for evaluating the performance of different dataset distillation methods and
ensures a comprehensive comparison across various distillation approaches.

4.1.2 EVALUATION STAGE

In the evaluation stage, the Model Pool repository is utilized to streamline the assessment of
robust models trained on distilled datasets. By integrating metrics derived from the adversarial
game framework, including RR, AE, and CREI, this evaluation can more effectively measure the
models’ robustness against adversarial attacks within the competitive dynamics of the game setting.
The repository facilitates the analysis of model performance and broader trends by consolidating
checkpoints from various sources. However, challenges arise in unifying these models due to differing
architectures and normalization techniques. After generating distilled datasets from the dataset pool,
multiple models are trained from scratch using various distillation methods, IPC settings, and the
Adam optimizer for 1,000 epochs. The models with the highest validation accuracy are selected and
added to the model pool. Adversarial robustness is assessed using a diverse attack library compatible
with torchattacks (Kim, 2020), including methods like FGSM (Goodfellow et al., 2015b), PGD
(Madry et al., 2018b), C&W (Carlini & Wagner, 2017), DeepFool (Moosavi-Dezfooli et al., 2016),
and AutoAttack (Croce & Hein, 2020). Both targeted and untargeted attacks are conducted with a
uniform perturbation budget of |ϵ| = 8

255 for most methods, with exceptions for DeepFool and C&W.

4.2 LEADERBOARDS

We provide 12 leaderboards for CIFAR-10 (Krizhevsky, 2009), CIFAR-100 (Krizhevsky, 2009), and
TinyImageNet (Deng et al., 2009), covering IPC-1, IPC-10, and IPC-50 settings. These leaderboards
rank methods based on robustness and efficiency metrics, including RR, AE, and CREI. The leader-
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Figure 4: CREI trends under targeted and untargeted attacks across three datasets: CIFAR-10, CIFAR-
100, and TinyImageNet. The x-axis represents the number of IPC, while the y-axis displays CREI
values. Six DD methods (DC, DSA, MTT, DM, IDM, BACON) are compared to full-size datasets at
IPC-1, IPC-10, and IPC-50, highlighting their robustness and efficiency across various attacks.

board evaluates six DD methods: DC (Zhao et al., 2020), DSA (Zhao & Bilen, 2021), DM (Zhao &
Bilen, 2023), MTT (Cazenavette et al., 2022), IDM (Zhao et al., 2023), and BACON (Zhou et al.,
2024a). In terms of adversarial attacks, the leaderboards integrate various methods such as FGSM
(Goodfellow et al., 2015b), PGD (Madry et al., 2018b), C&W (Carlini & Wagner, 2017), DeepFool
(Moosavi-Dezfooli et al., 2016), and AutoAttack (Croce & Hein, 2020), all compatible with torchat-
tacks (Kim, 2020). Evaluating adversarial robustness is challenging due to the diversity of settings
and attack types, with no unified framework available. As illustrated in Figure 2, our leaderboards fill
this gap by offering a unified evaluation of adversarial robustness in dataset distillation.

5 ANALYSIS

5.1 ROBUSTNESS EVALUATION USING PROPOSED METRICS

The results in Figure 3 show that models trained on synthetic datasets generated by DD methods
achieve higher Multi-Adversary Robustness Ratio (RRM) under both targeted and untargeted attacks,
indicating improved adversarial robustness. Under targeted attacks, DSA, DM, and BACON show
the strongest robustness, with RRM increasing as dataset size grows, while under untargeted attacks,
RRM generally decreases, though DSA, DM, BACON, and DC maintain competitive performance,
as illustrated in Figure 3. Models trained on full-size datasets show higher Multi-Adversary Attack
Efficiency Ratio (AEM), meaning attacks require more effort and time, reflecting robustness from the
efficiency perspective. The Comprehensive Robustness-Efficiency Index (CREI), which combines
RRM and AEM, provides a unified measure of both adversarial robustness and attack efficiency,
highlighting that DD methods, particularly DSA, DM, and BACON, achieve a more balanced
performance. We further examine the trade-off between robustness and clean accuracy, which arises
from mechanisms similar to adversarial training. Additional details are in Appendices B.1 and B.6.

5.2 ROBUSTNESS EVALUATION WITH DIVERSE IPCS

We find two key observations from Figure 4: (1) increasing IPC decreases adversarial robustness,
as reflected by lower CREI values; and (2) increasing dataset scale enhances adversarial robustness,
a trend observed for both full-size and DD-trained models. Notably, DD methods such as BACON
generally achieve higher CREI than full-size models across most settings, indicating that dataset
distillation can further improve adversarial robustness even with fewer training images. These trends
hold consistently across CIFAR-10, CIFAR-100, and TinyImageNet, demonstrating the robustness
and generalizability of DD methods. Collectively, these findings highlight the complex relationship
among IPC, dataset size, and adversarial robustness, affirming the effectiveness of specific DD
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Figure 5: Illustration of CREI trends on CIFAR-10
under targeted attacks with (w/) or without (w/o) Ad-
versarial Training (AT). The x-axis shows DD meth-
ods (Full-size, DC, DSA, MTT, DM, IDM, BACON)
under unified IPC, while the y-axis displays CREI
values measuring adversarial robustness. CREI im-
provement indicates the difference between models
with and without AT.

Table 1: Robustness evaluation of dataset
distillation methods with and without ad-
versarial training on CIFAR-100 under tar-
geted attacks (%).

Method RR AE CREI

DM 9.38 30.02 19.7
DM+AT 33.98 30.3 32.14
IDM 11.6 22.13 16.86
IDM+AT 97.69 28.03 62.86
BACON 8.99 30.73 19.86
BACON+AT 87.6 30.29 58.94

methods in enhancing model robustness under various scenarios. Further details on robustness under
multiple attacks with varying IPCs are provided in Appendix B.2, while single-attack robustness
under different perturbation budgets is discussed in Appendix B.4.

5.3 ROBUSTNESS EVALUATION WITH ADVERSARIAL TRAINING

Figure 5 demonstrates that Adversarial Training (AT) significantly enhances model robustness against
both targeted and untargeted attacks within a unified IPC in a multi-adversary context. For targeted
attacks, models utilizing AT (orange bars) achieve higher CREI values compared to those without AT
(purple bars), particularly for methods such as DSA and BACON (Figure 5 (a)). In contrast, models
trained on full-size datasets exhibit lower CREI values, indicating reduced robustness, consistent with
the trend of diminishing robustness as IPC increases. Without AT, all methods experience a significant
decline in robustness, although DSA and DM perform relatively well. For untargeted attacks, the
full-size dataset shows the most substantial improvement with AT, while all methods decline in
performance without it (Figure 5 (b)). Notably, models trained on full-size datasets benefit more from
AT than those trained on distilled datasets, suggesting that as dataset scale increases, the effectiveness
of AT also increases, as illustrated by the red curve. These findings highlight the importance of
selecting appropriate dataset scales to optimize the benefits of adversarial training. These findings
are further validated on the larger CIFAR-100 dataset (Table 1), where DM+AT, IDM+AT, and
BACON+AT achieve CREI values of 32.14%, 62.86%, and 58.94%, consistently surpassing their
non-AT counterparts. The results indicate that combining DD methods with AT consistently enhances
robustness across attack types and dataset scales. Additional details are provided in Appendix B.3.

6 CONCLUSION

A standardized benchmark is crucial for advancing the evaluation of adversarial robustness in dataset
distillation methods. However, existing benchmarks provide only partial coverage and lack a unified
perspective for systematically evaluating adversarial robustness across different dataset distillation
settings. To address this gap, we propose BEARD, an open and unified benchmark designed to assess
adversarial robustness in dataset distillation. This benchmark includes a dataset pool, a model pool,
and novel metrics (RR, AE, and CREI). It also provides a leaderboard that ranks models based on their
performance across three standard datasets under six adversarial attacks. Currently, the leaderboard
includes 18 models trained on distilled datasets from six dataset distillation methods with three IPC
settings. Evaluation with BEARD shows that dataset distillation methods vary in inherent adversarial
robustness, while adversarial training consistently improves CREI. The benchmark highlights the
strengths and weaknesses of different dataset distillation methods, supporting the development of
more robust, secure, and efficient techniques. BEARD is an open, community-driven platform that is
continuously updated for evaluating and comparing the adversarial robustness of distilled datasets.
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ETHICS STATEMENT

This work does not involve human subjects, animals, or personally identifiable information. All
datasets used are publicly available and ethically released. The study focuses on developing a
benchmark for evaluating the adversarial robustness of dataset distillation methods. Potential societal
risks are minimal, and measures were taken to ensure fair evaluation and prevent misuse. Specifically,
the benchmark does not provide training scripts that could be directly used for malicious purposes,
and all evaluation protocols are designed to avoid favoring specific methods. All authors have
complied with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

All results reported in this work are fully reproducible. The code, benchmark data, and scripts are
publicly available at https://anonymous.4open.science/r/BEARD-6B8A/, and the
BEARD leaderboard can be accessed at https://beard-leaderboard.github.io. De-
tailed descriptions of the experimental setup, hyperparameters, and attack implementations are
provided in Appendix A, followed by the definitions and theoretical derivations of the evaluation
metrics (RR, AE, and CREI) in Section 3 of the main text, enabling the use of the benchmark for
evaluating the adversarial robustness of DD methods. Dependencies and environment specifications
(e.g., framework versions) are included in the repository to allow full verification of all claims.
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APPENDIX

This appendix provides supplementary materials supporting the BEARD benchmark for evaluating
the adversarial robustness of dataset distillation methods. The content is organized as follows:

• Appendix A presents an overview of BEARD, including the experimental setup, implementa-
tion details, and configuration settings.

• Appendix B provides detailed robustness analyses, covering unified benchmarks, IPC
variations, the effect of adversarial training, robustness curves, comparisons with existing
benchmarks, and the trade-off between adversarial robustness and model performance.

• Appendix C discusses the limitations of BEARD, outlines future directions, and highlights
the practical applications and potential impact of the benchmark.

• Appendix D presents the statement on the use of large language models, clarifying their role
in manuscript preparation.

A OVERVIEW OF BEARD

A.1 EXPERIMENTAL SETUP

A.1.1 DATASETS AND DISTILLATION METHODS

Dataset. In our experiments, we use three standard image classification datasets: CIFAR-10
(Krizhevsky, 2009), CIFAR-100 (Krizhevsky, 2009), and TinyImageNet (Deng et al., 2009). Each
dataset has been selected for its relevance and complexity in the context of dataset distillation and
adversarial robustness evaluation.

• CIFAR-10 (Krizhevsky, 2009) contains 60,000 32 × 32 color images in 10 classes, with
50,000 images for training and 10,000 for testing. The images are preprocessed to normalize
pixel values to the range [0, 1].

• CIFAR-100 (Krizhevsky, 2009) Similar to CIFAR-10 but with 100 classes, this dataset
contains 60,000 images, divided into 50,000 training and 10,000 testing images. Each image
is resized to 32 × 32 pixels and normalized.

• TinyImageNet (Deng et al., 2009) A subset of the large-scale ImageNet dataset, Tiny-
ImageNet contains 200 classes with 100,000 training images and 10,000 images each for
validation and testing. Images are resized to 64 × 64 pixels and normalized.

Dataset Distillation Methods. Our benchmark evaluates six representative dataset distillation
methods: DC (Zhao et al., 2020), DSA (Zhao & Bilen, 2021), DM (Zhao & Bilen, 2023), MTT
(Cazenavette et al., 2022), IDM (Zhao et al., 2023), and BACON (Zhou et al., 2024a). These methods
encompass a range of distillation techniques commonly employed in recent research, including
gradient matching (Zhao et al., 2020; Zhao & Bilen, 2021), distribution matching (Zhao & Bilen,
2023; Zhao et al., 2023; Zhou et al., 2024a), and trajectory matching (Cazenavette et al., 2022).

• DC (Zhao et al., 2020) formulates dataset distillation as a bi-level optimization problem,
focusing on matching the gradients of deep neural networks trained on the original dataset
T and the synthetic dataset S.

• DSA (Zhao & Bilen, 2021) improves distillation by incorporating data augmentation, en-
abling the generation of more informative synthetic images, which enhances the performance
of models trained with these augmentations.

• DM (Zhao & Bilen, 2023) offers a straightforward yet impactful method for generating
condensed images by aligning the feature distributions of synthetic images S with those of
the original training set T across multiple sampled embedding spaces.

• MTT (Cazenavette et al., 2022) introduces trajectory matching as a distillation technique,
condensing large datasets into smaller ones by aligning the training trajectories of models
trained on both the synthetic S and original T datasets.
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• IDM (Zhao et al., 2023) proposes a novel dataset condensation approach based on distribu-
tion matching, which proves to be both efficient and promising for DD tasks.

• BACON (Zhou et al., 2024a) applies a Bayesian framework to dataset distillation, framing
it as a risk minimization problem. By using priors to estimate posterior probabilities, it
enhances both performance and efficiency.

Training Details. Neural networks are trained from scratch on each distilled dataset, following a
standardized training process across all experiments to ensure fair comparisons:

• Optimizer: The Adam optimizer is used with default settings, including a learning rate of
1e-4 and beta values of 0.9 and 0.999, ensuring stable and efficient optimization.

• Epochs: Models are trained for 1,000 epochs to ensure sufficient convergence and allow for
the full learning potential of each distilled dataset.

• Batch Size: A batch size of 128 is employed to balance computational efficiency with model
performance, optimizing resource usage without sacrificing accuracy.

• Model Selection: After training, the model with the highest validation accuracy on the
original test set is selected and incorporated into the model pool for subsequent adversarial
evaluations.

Adversarial Attack Methods. All attacks are implemented using the torchattacks library (Kim,
2020), which includes a comprehensive set of current adversarial attack methods. To ensure fair
comparisons, we apply consistent parameters across different models. Our attack library encompasses
a range of methods, including FGSM (Goodfellow et al., 2015b), PGD (Madry et al., 2018b),
C&W (Carlini & Wagner, 2017), DeepFool (Moosavi-Dezfooli et al., 2016), AutoAttack (Croce
& Hein, 2020), and others. In the evaluation stage, adversarial perturbations are applied to assess
the robustness of distilled datasets generated by various distillation methods. Both targeted and
non-targeted attacks are performed to evaluate adversarial robustness. To ensure consistency, all
trained models are subjected to identical parameters, with a perturbation budget set to |ϵ| = 8

255 for
all methods except DeepFool and C&W.

• FGSM (Goodfellow et al., 2015b): This attack generates adversarial examples by perturbing
the input in the direction of the gradient of the loss function. In our experiments, the
perturbation budget is set to ϵ = 8

255 .
• PGD (Madry et al., 2018b): A more powerful extension of FGSM, PGD applies iterative

steps to generate adversarial examples. The perturbation budget ϵ is set to 8
255 , with the

number of steps step nums set to 10 and step size step size set to 2
255 .

• C&W (Carlini & Wagner, 2017): This attack focuses on optimizing adversarial examples
to minimize perturbation while ensuring misclassification, providing a robust evaluation of
model robustness. In our setup, the box-constraint parameter is set to 1, and the number of
steps is set to 100.

• DeepFool (Moosavi-Dezfooli et al., 2016): DeepFool estimates the minimal perturbation re-
quired to induce misclassification, offering insights into the model’s sensitivity to adversarial
perturbations. We use steps set to 50 and overshot set to 0.02.

• AutoAttack (Croce & Hein, 2020): A strong ensemble of multiple attacks, AutoAttack
provides a comprehensive evaluation of model robustness. In our experiments, we set the
perturbation budget ϵ to 8

255 .

We generate synthetic images under IPC-1, IPC-10, and IPC-50 settings from three datasets: CIFAR-
10, CIFAR-100, and TinyImageNet. To assess the effectiveness of our approach, we train models on
these synthetic images and evaluate their performance on the original test sets. All methods utilize
the default data augmentation strategies provided by the original authors to ensure consistency in
distillation performance evaluation. For a fair comparison in generalization, we use the synthetic
datasets released by the authors.

After training, we apply a range of adversarial attacks to the models trained on the synthetic datasets
and report the mean accuracy across 5 runs, with models randomly initialized and trained for 1,000
epochs. The evaluation metrics employed in our experiments are designed to provide a comprehensive
assessment of adversarial robustness. These metrics include:
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• Single-Adversary Robustness Ratio (RRS): Measures how effectively the models resist
adversarial attacks under a single adversary.

• Multi-Adversary Robustness Ratio (RRM): Assesses the model’s robustness against
attacks from multiple adversaries.

• Single-Adversary Attack Efficiency Ratio (AES): Quantifies the efficiency of single
adversarial attacks in terms of the time required to succeed.

• Multi-Adversary Attack Efficiency Ratio (AEM): Evaluates the efficiency of attacks
involving multiple adversaries.

• Comprehensive Robustness-Efficiency Index (CREI): Integrates both robustness and
attack efficiency into a unified metric, offering a balanced evaluation of model performance
under adversarial conditions.

A.2 EXPERIMENTAL SETTINGS

Networks Architectures. In our experiments, we employed the ConvNet architecture (Sagun et al.,
2017) for dataset distillation, following methodologies from prior studies, including DC-bench (Cui
et al., 2022) and BACON (Zhou et al., 2024a). The ConvNet consists of three identical convolutional
blocks followed by a final linear classifier. Each block features a convolutional layer with 128 kernels
of size 3 × 3, instance normalization, ReLU activation, and average pooling with a stride of 2 and
a pooling size of 3 × 3. This architecture configuration is consistent with the settings outlined in
DC-bench and BACON, ensuring adherence to established practices in dataset distillation.

Evaluation Protocol. We generate synthetic images under IPC-1, IPC-10, and IPC-50 settings
from three datasets: CIFAR-10, CIFAR-100, and TinyImageNet. To assess the effectiveness of our
approach, we train models on these synthetic images and evaluate their performance on the original
test sets. All methods utilize the default data augmentation strategies provided by the original authors
to maintain consistency in distillation performance evaluation. For fair comparisons in generalization,
we employ the synthetic datasets released by the authors.

Following model training, we apply adversarial attacks to evaluate the robustness of the models
trained on the various synthetic datasets. We report the mean accuracy across 5 runs, with models
randomly initialized and trained for 1,000 epochs. The performance is measured using the condensed
set as the primary evaluation metric.

A.3 IMPLEMENTATION DETAILS

The BEARD benchmark builds upon the software foundation established by BACON (Zhou et al.,
2024a). For generating synthetic images in the dataset pool, we use the Stochastic Gradient Descent
(SGD) optimizer with a learning rate of 0.2 and a momentum of 0.5, applied to synthetic datasets
with IPC-1, IPC-10, and IPC-50 settings. In the subsequent model training phase, we employ the
same SGD optimizer, but adjust the learning rate to 0.01, momentum to 0.9, and apply a weight
decay of 0.0005. The batch size is set to 256. All experiments, including both the generation of
synthetic datasets and the training of models, are conducted using NVIDIA RTX 2080 Ti GPU
clusters. Additionally, we provide a configuration JSON file to facilitate the setup and management
of experimental parameters.

B ANALYSIS

B.1 ROBUSTNESS EVALUATION USING RR, AE, AND CREI METRICS

The Table 2 compares the performance of various dataset distillation methods using three key
metrics: Multi-Adversary Robustness Ratio (RRM), Multi-Adversary Attack Efficiency Ratio (AEM),
and Comprehensive Robustness-Efficiency Index (CREI). The evaluation covers both targeted and
untargeted adversarial attacks across three datasets: CIFAR-10, CIFAR-100, and TinyImageNet. The
best results are highlighted in bold, while the second-best results are underlined.

Targeted Attacks. Dataset distillation methods demonstrate substantial improvements in robustness
compared to full-size models. For example, in CIFAR-10, DM achieves a RRM of 46.01%, a

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of dataset distillation methods under various adversarial attacks.
Metrics include Multi-Adversary Robustness Ratio (RRM), Multi-Adversary Attack Efficiency Ratio
(AEM), and Comprehensive Robustness-Efficiency Index (CREI). The Targ. Att. and Untarg. Att.
denote the Targeted Attack and Untargeted Attack, respectively. The best results are highlighted in
bold, while the second-best results are underlined.

Evaluation Dataset Distillation (%)

Metric Attack Type Dataset Full-size DC DSA MTT DM IDM BACON

RRM

Targ. Att.
CIFAR-10 20.42 30.79 45.22 36.00 46.01 32.35 36.83
CIFAR-100 6.77 33.11 43.97 36.06 39.32 30.79 31.81

TinyImageNet 22.99 52.62 49.87 40.05 49.57 / 47.57

Untarg. Att.
CIFAR-10 20.42 30.79 45.22 36.00 46.01 32.35 36.83
CIFAR-100 6.77 33.11 43.97 36.06 39.32 30.79 31.81

TinyImageNet 22.99 52.62 49.87 40.05 49.57 / 47.57

AEM

Targ. Att.
CIFAR-10 29.39 27.91 27.64 28.52 26.01 23.15 29.27
CIFAR-100 29.59 27.50 26.05 26.25 23.31 19.89 27.76

TinyImageNet 29.83 28.80 28.97 29.26 29.55 / 29.96

Untarg. Att.
CIFAR-10 21.91 21.53 18.97 19.21 22.13 23.89 21.53
CIFAR-100 17.29 16.06 12.26 13.23 12.83 14.44 13.34

TinyImageNet 17.31 14.04 12.77 14.71 13.08 / 12.09

CREI

Targ. Att.
CIFAR-10 24.91 29.35 36.43 32.26 36.01 27.75 33.05
CIFAR-100 18.18 30.31 35.01 31.16 31.32 27.16 29.78

TinyImageNet 26.41 40.71 39.42 34.66 39.56 / 38.76

Untarg. Att.
CIFAR-10 25.12 26.70 27.75 26.26 28.32 28.46 27.20
CIFAR-100 18.60 22.40 20.40 19.65 19.78 20.36 19.30

TinyImageNet 15.15 20.46 15.67 16.13 15.51 / 15.24

significant increase from the 20.42% of the full-size model. Similarly, DSA achieves a RRM of
45.22%. These enhancements are evident across CIFAR-100 and TinyImageNet, where DM and DSA
continue to outperform full-size models. For instance, in CIFAR-100, DM has a RRM of 39.32%,
compared to 6.77% for the full-size model. On TinyImageNet, DM achieves a RRM of 49.57%,
compared to 22.99% for the full-size model. Despite these improvements in robustness, distillation
methods like DC and DSA show a slight reduction in AEM values. For example, in CIFAR-10,
DC has an AEM of 27.91% and DSA has 27.64%, compared to 29.39% for the full-size model.
This indicates a trade-off between robustness and efficiency. The CREI scores further illustrate this
balance: DM and DSA achieve high CREI values, with DM reaching 36.01% in CIFAR-10 and DSA
36.43%, showcasing their effective trade-off between robustness and efficiency.

Untargeted Attacks. The robustness improvements with distillation methods are less pronounced
compared to targeted attacks. For instance, in CIFAR-10, while DM and DSA still offer high RRM
(45.22% and 46.01%, respectively), the gap between these methods and full-size models is narrower.
The AEM values for distillation methods are generally lower, indicating that these methods require
less time and computational resources for adversarial attacks compared to full-size models. For
example, the AEM for DC in CIFAR-10 under untargeted attacks is 21.53%, compared to 21.91% for
the full-size model. Similarly, DSA shows an AEM of 18.97% in CIFAR-10, which is lower than the
21.91% for the full-size model. The CREI scores reflect this trend, with methods like DM and DSA
achieving reasonable CREI values, such as 27.75% for DM in CIFAR-10, demonstrating a balanced
performance between robustness and efficiency despite the slight trade-off in robustness.

B.2 ROBUSTNESS EVALUATION WITH DIVERSE IPCS

The robustness evaluation, conducted across targeted and untargeted attacks, reveals two key observa-
tions: (1) increasing the number of IPC decreases adversarial robustness, as evidenced by lower CREI
values across various methods and datasets; and (2) increasing the dataset scale enhances adversarial
robustness when using dataset distillation methods, particularly when comparing distilled datasets to
full-size datasets.
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Table 3: Comparison of adversarial robustness using CREI for different dataset distillation methods
under targeted attacks across various datasets and IPC settings. The best results are highlighted in
bold, while the second-best results are underlined.

Dataset IPC Dataset Distillation (%)
DC DSA MTT DM IDM BACON

CIFAR-10

Full-size 24.91

1 27.19 26.11 25.67 24.87 21.92 24.62
10 25.73 23.31 22.21 20.90 20.41 20.83
50 22.36 21.75 19.82 19.70 17.11 19.10

CIFAR-100

Full-size 18.18

1 28.23 29.74 27.65 28.30 24.44 28.71
10 26.23 23.58 23.23 23.97 18.47 20.38
50 19.40 20.64 21.51 19.70 16.86 19.86

TinyImageNet

Full-size 26.41

1 29.94 29.08 29.33 30.44 / 30.50
10 30.46 30.28 29.93 29.30 / 28.18
50 29.10 28.89 / 28.72 / /

Table 4: Comparison of adversarial robustness using CREI for different dataset distillation methods
under untargeted attacks across various datasets and IPC settings. The best results are highlighted in
bold, while the second-best results are underlined.

Dataset IPC Dataset Distillation (%)
DC DSA MTT DM IDM BACON

CIFAR-10

Full-size 25.12

1 41.11 36.59 26.25 42.21 30.18 25.79
10 24.85 23.90 23.40 26.73 25.60 27.09
50 22.50 27.00 25.06 26.61 29.59 28.48

CIFAR-100

Full-size 18.60

1 23.87 20.81 17.91 24.32 20.85 19.76
10 16.44 20.83 19.97 20.28 21.43 20.78
50 19.46 20.67 20.54 20.10 21.34 20.11

TinyImageNet

Full-size 15.15

1 22.86 18.41 20.98 22.20 / 17.88
10 17.33 15.50 15.90 15.59 / 16.18
50 14.96 15.50 / 15.30 / /

Targeted Attacks. In the context of targeted attacks, increasing IPC values typically leads to
reduced adversarial robustness, as seen from the declining CREI scores. For instance, on CIFAR-10,
methods like DC and DSA perform best at IPC = 1, showing strong robustness, but their performance
decreases with larger IPC values. Similarly, for CIFAR-100, BACON outperforms other methods
at IPC = 1, though its robustness diminishes at higher IPC levels. Importantly, as the dataset
scale increases, the advantage of dataset distillation methods over Full-size datasets becomes more
pronounced. For example, in TinyImageNet at IPC = 1, DC and DSA maintain high CREI scores,
surpassing the Full-size model, emphasizing that dataset distillation methods can achieve better
robustness with smaller dataset sizes under targeted attacks. The detailed results are presented in
Table 3. The best results are highlighted in bold, while the second-best results are underlined.

Untargeted Attacks. Under untargeted attacks, the trend of decreasing robustness with increasing
IPC is also observed, but the effects are less severe compared to targeted attacks. For CIFAR-10, DC
and DM perform strongly at IPC = 1, with DC achieving the highest CREI score. Notably, as the
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Table 5: Comparison of adversarial robustness using CREI for different dataset distillation methods
with and without adversarial training under targeted and untargeted attacks. The best results are
highlighted in bold

Attack Adversarial Dataset Distillation (%)
Type Training Full-size DC DSA MTT DM IDM BACON

Targeted w/ AT 50.54 52.30 55.56 50.96 57.21 54.67 56.18
w/o AT 24.91 29.35 36.43 32.26 36.01 27.75 33.05

Untargeted w/ AT 41.33 37.39 37.59 33.13 37.34 39.05 37.25
w/o AT 25.12 26.70 27.75 26.26 28.32 28.46 27.20

Table 6: Robustness evaluation of dataset distillation methods, with and without adversarial training,
on CIFAR-100 with IPC-50 under targeted and untargeted attacks (%).

Method Targeted Untargeted

RR AE CREI RR AE CREI

DM 9.38 30.02 19.7 22.44 17.75 20.1
DM+AT 33.98 30.3 32.14 30.7 30.31 30.5
IDM 11.6 22.13 16.86 24.68 17.98 21.33
IDM+AT 97.69 28.03 62.86 34.29 23.39 28.84
BACON 8.99 30.73 19.86 22.82 17.4 20.11
BACON+AT 87.6 30.29 58.94 34.17 22.32 28.25

dataset size increases (e.g., TinyImageNet), the gap in robustness between distillation methods and
Full-size datasets becomes more evident. For instance, DC consistently outperforms the Full-size
model in TinyImageNet at IPC = 1, while showing comparable or better robustness even at higher
IPC values. This reinforces the observation that dataset distillation methods not only excel with fewer
images per class but also offer greater robustness in larger datasets, especially when facing untargeted
attacks. Detailed results are provided in Table 4. The best results are highlighted in bold, while the
second-best results are underlined.

B.3 ROBUSTNESS EVALUATION WITH ADVERSARIAL TRAINING

Targeted Attacks. Adversarial training substantially improves robustness under targeted attacks.
On CIFAR-10 (Table 5), dataset distillation methods such as BACON and DM achieve high CREI
values of 56.18% and 57.21%, respectively, compared to 50.54% for the full-size dataset, highlighting
the effectiveness of dataset distillation in enhancing adversarial robustness. Even without AT, dataset
distillation methods maintain moderate robustness, with DM and BACON outperforming other
methods, indicating inherent adversarial robustness. These observations are further confirmed on the
larger CIFAR-100 dataset under the IPC-50 setting (Table 6), where dataset distillation methods with
AT, including DM+AT, IDM+AT, and BACON+AT, achieve CREI values of 32.14%, 62.86%, and
58.94%, consistently outperforming their non-AT counterparts.

Untargeted Attacks. Adversarial training also improves robustness under untargeted attacks,
though the absolute gains in CREI are smaller than those observed for targeted attacks. On CIFAR-10
(Table 5), the Full-size dataset achieves a CREI of 41.33%, slightly higher than other methods, while
dataset distillation methods such as BACON and DM attain CREI values of 37.25% and 37.34%,
respectively. Without AT, all methods exhibit reduced robustness, with DSA and DM maintaining
relatively higher CREI values of 27.75% and 28.32%, indicating that dataset distillation provides
some inherent adversarial robustness even without AT. These observations are further confirmed on
the larger CIFAR-100 dataset with IPC-50 (Table 6), where dataset distillation methods combined
with AT, including DM+AT, IDM+AT, and BACON+AT, achieve CREI values of 30.5%, 28.84%, and
28.25%, consistently outperforming their non-AT counterparts. Overall, these results demonstrate that
dataset distillation methods, particularly when combined with adversarial training, offer consistent
improvements in robustness across both attack types and dataset scales.
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Figure 6: Robustness curves of DD methods on CIFAR-10 under targeted and untargeted PGD attacks
(IPC-{1,10,50}), with the x-axis representing perturbation budget ϵ and the y-axis representing
classification accuracy.

B.4 ROBUSTNESS EVALUATION WITH ROBUSTNESS CURVE

Figure 6 presents the robustness curves of different dataset distillation methods on CIFAR-10 under
targeted and untargeted PGD attacks, evaluated with IPC values of 1, 10, and 50. Overall, as the
perturbation budget increases, the accuracy of all methods declines, with untargeted attacks causing
more severe degradation than targeted attacks.

Among the methods, BACON consistently demonstrates the strongest robustness, especially at higher
IPC settings. In contrast, DC and DSA exhibit the weakest robustness across all scenarios, while
IDM, DM, and MTT offer some resistance but still experience notable performance drops. These
findings highlight the importance of enhancing data quality and employing more robust distillation
strategies, such as BACON, to improve adversarial robustness. Furthermore, the greater impact of
untargeted attacks suggests they should be prioritized in robustness evaluations.

B.5 DISCUSSION THE DIFFERENCES BETWEEN BEARD AND OTHER BENCHMARKS

BEARD introduces key innovations compared to benchmarks like DD-RobustBench Wu et al. (2024)
and RobustBench Croce et al. (2021). While DD-RobustBench evaluates dataset distillation methods
under different IPC settings, BEARD provides a more holistic assessment by aggregating results
across multiple IPC values using unified metrics such as RRM (Table 7). Additionally, BEARD
evaluates both targeted and untargeted attacks, whereas DD-RobustBench primarily focuses on attack
effectiveness under untargeted settings.

Unlike RobustBench, which assesses conventional models, BEARD is specifically designed for
resource-constrained DD methods, ensuring a fair and meaningful robustness evaluation. Moving
forward, we plan to enhance BEARD by incorporating more DD methods, larger datasets, and
more sophisticated attack strategies, with potential integration into RobustBench. As an open-
source framework, BEARD seamlessly integrates with various DD methods and datasets, featuring a
leaderboard to foster further research and development in the field.
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Table 7: Comparison of dataset distillation methods on CIFAR-10 under targeted attacks using IPC-1,
IPC-10, and IPC-50. Results are evaluated with DD-RobustBench and BEARD. All values indicate
accuracy (%) except those corresponding to the RRM metric.

Dataset IPC Attack DD-RobustBench BEARD

DC DSA MTT DM IDM DC DSA MTT DM IDM

CIFAR-10

RRM across IPCs ⇒ 16.55 16.10 11.72 15.07 5.50

1

RRM ⇒ 12.44 7.46 11.59 7.24 3.17
None(Clean) 29.73 29.27 45.74 26.75 46.14 28.11 28.23 43.44 25.34 46.01

FGSM 22.12 19.78 26.21 20.08 22.86 22.49 20.83 24.55 19.95 27.06
PGD 19.78 16.82 19.79 18.2 21.55 21.32 19.75 20.22 18.98 23.57
C&W 18.41 16.63 16.83 18.01 21.26 19.32 15.85 16.4 16.31 16.73

Autoattck 18.19 16.47 16.41 17.91 20.82 17.91 16.5 17.38 16.07 20.06

10

RRM ⇒ 9.29 7.86 10.51 7.09 2.87
None(Clean) 46.07 52.93 60.98 49.81 58.84 45.31 51.06 63.76 48.45 58.47

FGSM 24.4 28.12 30.99 22.96 25.54 25.48 28.21 35.34 26.38 32.31
PGD 18.27 20.01 21.95 14.74 23.34 20.83 21.98 25.96 20.98 26.34
C&W 16.5 19.83 19 14.95 23.17 15.88 13.21 15.71 11.05 14.49

Autoattck 16 19.11 17.95 14.18 22.63 17.75 12.82 23.13 18.29 23.61

50

RRM ⇒ 8.06 7.33 8.55 8.21 2.87
None(Clean) 55.08 61.14 70.45 63.12 67.82 54.31 60.48 69.99 62.06 67.07

FGSM 24.54 24.33 32.32 30.61 25.82 24.79 33.42 34.62 33.97 36.84
PGD 14.82 14.81 19.19 19.36 22.47 16.38 21.32 21.29 23.53 28.42
C&W 14.23 13.84 18.87 19.47 22.74 8.37 6.78 7.08 8.36 9.5

Autoattck 13.38 12.95 17.41 18.23 21.92 13.33 19.19 18.95 21.14 26.23

B.6 TRADE-OFF BETWEEN ADVERSARIAL ROBUSTNESS AND MODEL PERFORMANCE

In our analysis, we also investigate the trade-off between adversarial robustness and model perfor-
mance. It is important to note that while DD methods enhance adversarial robustness, they may also
lead to a reduction in model performance on clean data. Specifically, dataset distillation techniques
involve extracting key features from the original dataset, which can introduce non-robust features
associated with certain classes. This process can be seen as a form of adversarial training, as it
exposes the model to these non-robust features. As discussed by Ilyas et al. Ilyas et al. (2019),
distilling a dataset essentially incorporates both robust and non-robust features from the original data,
thereby improving adversarial robustness but also potentially diminishing performance on clean data.
This explains the observed trade-off where DD methods achieve higher robustness at the cost of some
loss in model performance. In our experiments, this balance between robustness and performance is
evident. Models trained on distilled datasets demonstrate improved robustness to adversarial attacks,
but also experience a slight degradation in accuracy on clean, non-adversarial inputs. As shown in
Table 2, the distilled datasets generated by DD methods exhibit greater robustness to adversarial
attacks compared to models trained on the original datasets. However, this improved robustness
comes at the cost of reduced performance on clean, unperturbed data.

C LIMITATIONS, FUTURE DIRECTIONS, AND POTENTIAL IMPACT

C.1 LIMITATIONS AND FUTURE PLANS

BEARD evaluates six representative DD methods and six adversarial attack strategies, but is currently
limited by community availability in two main aspects. First, larger-scale distilled datasets (e.g.,
ImageNet) are not included, since our benchmark relies on open-source implementations to ensure
fairness and reproducibility, and existing releases only support small- to medium-scale datasets
such as CIFAR-10, CIFAR-100, and TinyImageNet. Privately reproducing large-scale results would
require prohibitive computational resources and could introduce implementation bias. Second, the
benchmark is confined to image classification, as publicly available distillation methods for other
modalities (e.g., text, graphs, audio) are still immature or unavailable, making cross-domain evaluation
presently infeasible. As the community develops more scalable and multimodal distillation methods,
BEARD will be extended to incorporate larger datasets and more advanced adversarial attacks, thereby
enabling a deeper and more systematic characterization of adversarial robustness across diverse
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domains. These choices ensure that BEARD reflects the most reproducible and comparable setting
currently possible, which we view as essential for a fair benchmark.

C.2 PRACTICAL APPLICATIONS AND POTENTIAL IMPACT

The BEARD benchmark provides a standardized framework for evaluating the adversarial robustness
of dataset distillation methods, supporting both research and practical deployment. It helps identify
method-specific strengths and weaknesses, facilitating the development of more resilient techniques.
Given rising concerns over data security and privacy, BEARD also offers insights into the robustness
of distilled datasets in adversarial settings.

D STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used as a general-purpose assistive tool during the preparation
of this paper. Specifically, LLMs were employed to help with language polishing, grammar correction,
and minor rephrasing of sentences. All scientific content, experimental results, and interpretations
were independently developed and verified by the authors. The authors take full responsibility for the
accuracy and integrity of the content, including any text generated or edited with the assistance of
LLMs. LLMs have not contributed to research ideation, experimental design, or analysis, and are not
listed as authors.
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