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Abstract001

As a fundamental task in machine learning, text002
classification plays a crucial role in many ar-003
eas. With the rapid scaling of Large Language004
Models (LLMs), particularly through reinforce-005
ment learning (RL), there is a growing need006
for more capable discriminators. Consequently,007
advances in classification are becoming increas-008
ingly vital for enhancing the overall capabilities009
of LLMs. Traditional discriminative methods010
map text to labels but overlook LLMs’ intrin-011
sic generative strengths. Generative classifi-012
cation addresses this by prompting the model013
to directly output labels. However, existing014
studies still rely on simple SFT alone, seldom015
probing the interplay between training and in-016
ference prompts, and no work has systemati-017
cally leveraged RL for generative text classi-018
fiers and unified SFT, RL, and inference-time019
prompting in one framework. We bridge this020
gap with GenCLS++, a framework that jointly021
optimizes SFT and RL while systematically ex-022
ploring five high-level strategy dimensions—in-023
context learning variants, category definitions,024
explicit uncertainty labels, semantically irrele-025
vant numeric labels, and perplexity-based de-026
coding—during both training and inference.027
After an SFT “policy warm-up,” we apply RL028
with a rule-based reward, yielding sizable ex-029
tra gains. Across seven datasets, GenCLS++030
achieves an average accuracy improvement031
of 3.46% relative to the naive SFT baseline;032
on public datasets, this improvement rises033
to 4.00%. Notably, unlike reasoning-intensive034
tasks that benefit from explicit thinking pro-035
cesses, we find that classification tasks perform036
better without such reasoning steps. These in-037
sights into the role of explicit reasoning provide038
valuable guidance for future LLM applications.039

1 Introduction040

With the rapid advancement of Large Language041

Models (LLMs) (Anthropic, 2024; Google, 2024;042

OpenAI, 2024), remarkable progress has been043

achieved in enhancing their generative capabilities, 044

particularly in the domain of reasoning. Through- 045

out this development, well-designed discrimina- 046

tors play a crucial role, whether in aligning model 047

outputs with human preferences (Schulman et al., 048

2017; Ziegler et al., 2019; Ouyang et al., 2022) or 049

scaling model capabilities through effective reward 050

signals (Guo et al., 2025; Yu et al., 2025; Seed, 051

2025). The emergence of DeepSeek-R1 (Guo et al., 052

2025) highlights the effectiveness of rule-based re- 053

wards in domains such as mathematics and code. 054

However, in broader scenarios where golden an- 055

swers are not readily available, learned discrimi- 056

nators remain indispensable for providing reliable 057

reward signals (Seed, 2025; Liu et al., 2025). 058

Building on this insight, we explore methods to 059

enhance the performance of discriminator models 060

by focusing on the closely related task of classifica- 061

tion. Traditional discriminative approaches (Ruan 062

et al., 2024; Muennighoff et al., 2022; Cobbe et al., 063

2021; Yu et al., 2023) typically involve using a 064

randomly initialized value head with a pre-trained 065

language model to map text to labels, relying on the 066

representation token to predict class probabilities. 067

Although this method is widely adopted, it intro- 068

duces an inherent mismatch between the randomly 069

initialized value head and the carefully optimized 070

language model, potentially leading to suboptimal 071

performance (Zhang et al., 2024; Ye et al., 2024). 072

This discrepancy may hinder the model from fully 073

exploiting the generative capabilities already em- 074

bedded within LLMs. 075

Recent advancements in prompt-based learning 076

offer an alternative by guiding LLMs to perform 077

classification through language generation (Parikh 078

et al., 2023; Rouzegar and Makrehchi, 2024). This 079

generative approach naturally aligns with the intrin- 080

sic training paradigm of LLMs, effectively leverag- 081

ing their native language understanding and genera- 082

tion capabilities. Compared to traditional methods, 083

this approach offers several advantages: 084

1



• Benefits from LLM Improvement: Generative085

methods enable classification tasks to benefit086

from ongoing advancements in LLM capabili-087

ties, naturally scaling classification accuracy088

with improved underlying LLM performance.089

• Greater Flexibility: Generative methods allow090

the addition of classes without extensive train-091

ing or altering model architecture. Traditional092

methods require adjusting dimensions and re-093

training when new labels are introduced.094

Despite its intuitive appeal, most methods adopt095

a simple, and identical prompt strategy for both096

training and inference. The systematic exploration097

of diverse prompt strategies for both stages remains098

limited, with the effects of using different prompts099

during these stages not yet thoroughly investigated100

or quantified. To address this gap, we propose101

GenCLS++, a prompt-based generative classifica-102

tion framework that systematically explores five103

high-level strategy dimensions: In-Context Learn-104

ing (ICL) variants (semantic retrieval vs. fixed105

exemplars, and varying shot counts), category def-106

initions, explicit uncertainty labels, semantically107

irrelevant labels, and perplexity-based decoding,108

during both supervised fine-tuning and inference.109

Furthermore, inspired by recent advances, we inte-110

grate reinforcement learning (RL) into GenCLS++,111

resulting in additional performance gains and un-112

derscoring the potential of unifying supervised and113

reinforcement learning paradigms. We empirically114

evaluate GenCLS++ across seven diverse datasets,115

comprising both publicly available and internal116

data. Our findings reveal that GenCLS++ signifi-117

cantly enhances classification accuracy, achieving118

an average accuracy improvement of 3.46% relative119

to the commonly used naive SFT baseline. This120

improvement rises to 4.00% on public datasets.121

Interestingly, our results challenge assumptions122

derived from related reasoning-intensive tasks.123

While explicit reasoning steps have shown signifi-124

cant performance improvements in such tasks, we125

find that classification tasks often achieve optimal126

results without explicit reasoning prompts, consis-127

tent with some studies (Li et al., 2025). These find-128

ings offer new insights into the role and necessity129

of explicit reasoning in classification contexts.130

Our contributions can be summarized as follows:131

• We conduct a comprehensive analysis of a132

wide range of prompt strategies for classifica-133

tion tasks. Our findings reveal that specific134

combinations can significantly outperform the 135

naive SFT approach, highlighting their effec- 136

tiveness in enhancing model performance. 137

• We integrate RL to further boost performance. 138

Our experiments indicate that supervised fine- 139

tuning for warm-up initialization delivers a 140

significant relative improvement in accuracy, 141

with an average gain of 18.18% compared to 142

training directly from the base model. 143

• Motivated by recent investigations into 144

reasoning-based inference and the observation 145

that RL tends to produce shorter responses, we 146

find that models achieve better performance 147

on classification tasks by directly predicting 148

answers without explicit reasoning steps. 149

2 Related Work 150

LLMs for Classification Compared to the tra- 151

ditional discriminative approach of employing a 152

value head to map text to labels, recent studies 153

have explored a generative strategy in which LLMs 154

perform classification through prompt engineering 155

(Qin et al., 2023; Sun et al., 2023; Peskine et al., 156

2023; Milios et al., 2023), augmenting the prompt 157

with few-shot examples and category definitions. 158

However, few studies have taken the next step of 159

fine-tuning LLMs to generate class labels (Parikh 160

et al., 2023), and several reports indicate that the 161

generative approach underperforms on certain clas- 162

sification benchmarks (Ruan et al., 2024). Our 163

study advances prior work by systematically ex- 164

amining various combinations of training-time and 165

inference-time strategies. With this framework we 166

achieve consistently higher accuracy across these 167

datasets, providing strong evidence of the genera- 168

tive paradigm’s potential for classification tasks. 169

RL for LLM Training Reinforcement learning 170

(RL) now plays a pivotal role in training LLMs. 171

It is used not only to align outputs with human 172

preferences through Reinforcement Learning from 173

Human Feedback (RLHF) (Ziegler et al., 2019; 174

Ouyang et al., 2022), but also to enhance models’ 175

reasoning abilities, as recently demonstrated by 176

DeepSeek-R1 (Guo et al., 2025). These applica- 177

tions underscore RL’s potential to drive further ad- 178

vancements in LLMs. In this paper, we investigate 179

how RL can improve performance on classification 180

tasks and present several noteworthy empirical find- 181

ings. Given that PPO (Schulman et al., 2017) incurs 182

substantial computational overhead and rule-based 183
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rewards have shown to be effective, we conduct184

most of our experiments using the more efficient185

Reinforce++ algorithm (Hu, 2025), along with care-186

fully designed rule-based reward functions.187

3 Method188

Traditional LLM-based classifiers do not fully uti-189

lize the text generation capabilities of pretrained190

LLMs. To address this issue, we propose train-191

ing generative classifiers using standard next token192

prediction. Specifically, instead of obtaining each193

category’s probability through a representative to-194

ken, the language model predicts categories using195

its own probability distribution over tokens. This196

approach preserves the model’s generative abili-197

ties, since classification is merely another token198

prediction, while also offering several advantages199

that naturally arise from LLMs, such as a unified200

paradigm for pretraining and classification, and201

the ability to scale inference time compute. The202

overview of our method is shown in Figure 1.203

3.1 Exploring Different Strategy204

Combinations in SFT and Inference205

Let x denote the input to be classified. A gen-206

erative classifier πθ predicts the gold label ygold207

using tokens. This is achieved by maximizing208

log πθ
(
ygold|(p,x)

)
, where p represents a particu-209

lar prompt strategy from the strategy pool P . To210

do so, we minimize the supervised fine-tuning loss211

on the dataset D, which contains input–class pairs:212

LSFT(θ,D) = −E(x,y)∼D

[ |y|∑
t=1

log πθ
(
yt | p,x,y<t

)]
.213

We aim to explore how different prompt strategies,214

applied during both training and inference, affect215

classification performance within a purely gener-216

ative paradigm. Below, we describe the types of217

prompt strategies in P that we employed; examples218

of each type are provided in Appendix A.219

Zero-shot The model receives only a general task220

description (e.g., “Classify the following text”),221

without labeled examples or detailed definitions.222

N-shot We include N labeled examples (ran-223

domly selected from the training set) in the prompt224 (
N ∈ {1, 3, 5}

)
, providing the model with exem-225

plar input–label pairs to guide classification.226

Fixed-3-shot The same three labeled examples227

appear in the prompt for every test case.228

Similar-3-shot We retrieve the three training ex- 229

amples most similar to the new input (based on 230

textual similarity) and include them in the prompt 231

to provide more contextually relevant guidance. 232

Definition We prepend concise text definitions of 233

each category to the prompt, allowing the model to 234

reference these definitions when generating predic- 235

tions. These definitions are generated by prompting 236

a LLM to provide explanations for each class label. 237

For example, for an emotion classification task with 238

label "anger", the generated definition is: "anger: 239

contains strong negative feelings like anger, an- 240

noyance, indignation, involving injustice, conflict, 241

frustration, etc." These definitions are then incor- 242

porated into the prompt to provide clear semantic 243

meanings of the categories before classification. 244

For our implementation, we use “GPT-4o-2024-11- 245

20” as the LLM to generate these definitions. 246

Definition with 1-shot In addition to including 247

category definitions, we add a single labeled exam- 248

ple to the prompt for further guidance. 249

Numerical (semantically irrelevant labels) We 250

assign each category a numerical label and prompt 251

the model to output the corresponding number. 252

This approach is non-semantic, relying purely on 253

arbitrary number assignments rather than meaning- 254

ful category descriptions. 255

Uncertainty We introduce an “Uncertain” cat- 256

egory for any example misclassified by our two 257

top zero-shot models. Each example is relabeled as 258

"Uncertain" if both models disagree with its ground 259

truth; otherwise it keeps its original label. To avoid 260

overloading the training data, we cap the uncer- 261

tain cases at 10% of the corpus. If more than 10% 262

qualify, we retain only those with the lowest aver- 263

age prediction confidence. This yields a modified 264

dataset containing up to 10% ambiguous examples 265

alongside the correctly labeled ones. We then fine- 266

tune the base model on this set using a training 267

prompt that includes the "Uncertain" option. At 268

inference, the classifier is restricted to the original 269

label set and will never output "Uncertain". 270

Perplexity For each candidate class yi, we ap- 271

pend it to the input and compute its perplexity 272

PPL(yi) as follows: 273

PPL(yi) = exp
{
− 1

|yi|

|yi|∑
t=1

log πθ
(
yt|Pbase(x),y<t

)}
274
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Figure 1: An overview of the GenCLS++ framework. It explores diverse combinations of training and inference
strategies for classification tasks and incorporates RL to further enhance performance. We conduct comprehensive
experiments on seven datasets, encompassing different languages, varying numbers of categories and data types.

where Pbase(x) is a base prompt. We then select the
class with the lowest perplexity as our prediction:

ŷ = arg min
yi∈C

PPL(yi)

This strategy is employed only at inference time.275

We apply various strategies to train the model276

and subsequently evaluate each resulting model277

with different prompt strategies (e.g., trained with278

definitions, evaluated in a zero-shot setting), as il-279

lustrated in Figure 1. In contrast to traditional few-280

shot learning, which uses the same prompt type281

for both training and inference, our approach en-282

ables a more fine-grained analysis of how different283

strategies affect performance at each stage.284

3.2 Reinforcement Learning285

Building on the success of DeepSeek-R1 (Guo286

et al., 2025), which shows that reinforcement learn-287

ing (RL) can markedly enhance the reasoning abil-288

ity of language models, we explore RL for gener-289

ative classification. Specifically, we fine-tune our290

model with a rule-based reward function to gauge291

the effectiveness of RL in this setting.292

3.2.1 Policy Warm-up293

During the warm-up phase, we equip the policy294

model with foundational classification capabilities295

by performing supervised fine-tuning on the dataset296

D. We find that this phase has a significant impact297

on the subsequent performance of RL. Furthermore, 298

we investigate how different start models affect the 299

final performance. Detailed results and discussions 300

are presented in Sections 5.1 and 5.2. 301

3.2.2 RL with Reasoning 302

System Prompt We first follow Guo et al. 303

(2025)’s paradigm, encouraging models to engage 304

in a reasoning (thinking) process before producing 305

the final answer. The prompt is defined as follows: 306

"Please output your answer in the format: <rea- 307

son> reasoning process here </reason> <answer> 308

answer here </answer>." 309

Reward Function Similarly, we design a two-
part rule-based reward function: format reward and
accuracy reward. The format reward verifies that
the response follows the required structured format,
ensuring that every part appears in the correct order
and is enclosed in the appropriate tags:

Rformat =

{
1, if the format is correct,
0, otherwise.

The accuracy reward measures whether the
model’s prediction matches the gold label ygold:

Raccuracy =

{
1, if y = ygold,

0, otherwise.

The final reward function R is a combination of the 310

two rewards: R = Rformat +Raccuracy 311
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3.2.3 RL without Reasoning312

Unlike reasoning-driven tasks such as mathemat-313

ics and code generation, we observed that dur-314

ing the RL process in classification tasks, the re-315

sponse length fluctuates and may even decrease316

rapidly. Comparative experiments further revealed317

that the inclusion of rationale does not seem to con-318

tribute to performance improvement, as discussed319

in Section 5.2. This phenomenon has also been ob-320

served in other tasks, such as commonsense ques-321

tion answering (Jiang et al., 2025; Sprague et al.,322

2024; Sui et al., 2025) and vision classification (Li323

et al., 2025). These findings suggest that chain-of-324

thought (CoT) reasoning may not be essential for325

all tasks. Motivated by these insights, we investi-326

gate RL in classification tasks without reasoning.327

System Prompt Unlike most current RL-based328

scaling methods, which encourage models to re-329

peatedly reason and verify, the prompt in our330

method directs the model to output the result di-331

rectly, e.g., "Please output your answer."332

Reward Function Since we no longer need to
distinguish between reasoning and the answer, we
eliminate the need for conventional format rewards.
Instead, we solely use an accuracy reward, which
checks whether the model’s output matches the
ground truth exactly. It is defined as follows:

Raccuracy =

{
1, if y = ygold,

0, otherwise.

We adopt Reinforce++ (Hu, 2025) as our reinforce-333

ment learning algorithm. In Section 5.3, we com-334

pare it with several widely used baselines, such335

as GRPO (Shao et al., 2024), and find that Rein-336

force++ consistently delivers higher accuracy while337

requiring less training time, demonstrating advan-338

tages in both performance and efficiency.339

4 Experiments340

4.1 Experimental Setup341

Datasets We conducted comprehensive exper-342

iments on seven datasets, including four public343

benchmarks (EC, EIC, IFLYTEK, and TNEWS)344

and three proprietary datasets (Query Intent, Search345

Correlation, and Query Taxonomy). EC focuses346

on sentiment detection, whereas EIC classifies the347

type of edits between sentence pairs, a task on348

which generative classifiers have previously per-349

formed poorly (Ruan et al., 2024). IFLYTEK as-350

signs app descriptions to as many as 120 cate- 351

gories, and TNEWS categorizes news headlines 352

by topic; both are widely used multi-class bench- 353

marks. Our proprietary datasets further extend the 354

evaluation: Query Intent (QI) predicts user intent 355

at both coarse and fine granularities across roughly 356

30 labels, Search Correlation (SC) evaluates the 357

relevance between a query and a text passage, and 358

Query Taxonomy (QT) performs multi-label se- 359

mantic tagging, since a single query may map to 360

multiple categories. More detailed descriptions of 361

all datasets are provided in Appendix B. 362

Metrics The performance of our models is eval- 363

uated using accuracy (Acc.) and macro-F1. Ac- 364

curacy measures the ratio of correct predictions to 365

total predictions, while macro-F1 is the average 366

of per-class F1-scores, assigning equal weight to 367

each class. For each inference strategy, we report 368

five metrics: fmt-suc ratio (percentage of format- 369

matched outputs), fmt-suc accuracy and fmt-suc 370

macro-F1 (computed only on format-matched out- 371

puts), and overall accuracy and overall macro-F1 372

(calculated over all predictions). The overall accu- 373

racy and overall macro-F1 serve as the primary 374

indicators of task performance. When fmt-suc ratio 375

is less than 100%, format-success metrics are high- 376

lighted only if their corresponding overall metrics 377

also achieve best performance. 378

Parameter Setting We used Qwen-2.5-7B- 379

Instruct (Yang et al., 2024) in our experiments. 380

This open-source model achieves non-trivial per- 381

formance on the classification task while still leav- 382

ing room for improvement, making it an ideal 383

testbed for our study. We constructed the train- 384

ing dataset using the prompt strategy described in 385

Section 3.1 and tested each trained model across all 386

these prompt types, yielding approximately 10×10 387

total combinations. For RL, we used Reinforce++ 388

and its training framework OpenRLHF (Hu, 2025). 389

Baselines Since our approach employs genera- 390

tive classification, we adopt the traditional discrim- 391

inative method using value head on public datasets 392

as a robust baseline. Specifically, we utilize the 393

results reported by (Ruan et al., 2024) for the EC 394

and EIC datasets, and by (Xu et al., 2020) for the 395

IFLYTEK and TNEWS datasets. Additionally, to 396

illustrate that combining different prompt strategies 397

during training and inference can yield superior per- 398

formance, we introduce an additional commonaly 399

used naive SFT baseline, using a zero-shot prompt 400
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Table 1: Experimental Results (Accuracy & macro-F1 Score, %). Gray indicates that the training strategy is not
aligned with the best inference strategy. Bold indicates the best result, and underline indicates the second best. *
reported by Ruan et al. (2024); †reported by Xu et al. (2020).

(a) Part 1: Results on Public Datasets

EC EIC IFLYTEK TNEWS

Training Method Acc. macro-F1 Acc. macro-F1 Acc. macro-F1 Acc. macro-F1

Base model 68.75 33.94 55.02 49.85 57.41 25.93 58.13 22.92
Discriminative method 94.10* 89.60* 84.40* 82.20* 62.98† - 59.46† -
Naive SFT 93.70 90.17 82.74 81.73 61.18 45.42 60.83 59.39

Zero-shot 93.75 90.31 84.04 82.93 62.83 46.69 62.12 59.16
1-shot 93.15 89.45 83.82 82.90 63.33 47.15 61.98 60.49
3-shot 93.45 89.13 85.03 83.75 62.91 48.51 62.06 60.53
5-shot 94.15 89.83 84.13 83.39 62.52 44.93 62.54 58.41
Fixed-3-shot 93.80 89.92 83.17 82.49 63.52 45.26 62.25 58.94
Similar-3-shot 93.90 89.44 82.18 79.35 62.83 47.69 63.30 61.31
Definition 93.30 88.31 83.26 82.30 63.64 44.41 61.37 59.26
Definition with 1-shot 93.80 89.70 84.34 82.79 63.37 47.47 62.20 60.65
Numerical 93.65 89.93 83.17 81.89 62.29 46.29 61.24 57.09
Uncertainty 93.55 90.01 85.08 83.74 63.76 47.85 61.97 58.15

GenCLS++ (RL) 94.50 90.57 85.86 84.72 64.91 49.27 64.04 62.35
(b) Part 2: Results on Proprietary Datasets

Query Intent Search Correlation Query Taxonomy

Training Method Acc. macro-F1 Acc. macro-F1 Acc. macro-F1

Base model 74.91 18.59 41.91 34.24 26.51 14.70
Naive SFT 92.28 86.33 67.43 58.64 51.43 43.10

Zero-shot 92.30 86.27 65.27 54.44 53.25 43.13
1-shot 92.48 87.34 67.37 59.10 53.09 44.02
3-shot 92.44 86.55 67.53 59.23 53.38 43.84
5-shot 92.52 86.95 66.73 56.42 53.95 44.52
Fixed-3-shot 92.36 86.17 64.76 50.08 54.03 43.60
Similar-3-shot 92.22 86.40 67.63 60.01 52.99 44.11
Definition 92.23 85.91 68.60 62.25 - -
Definition with 1-shot 92.41 78.02 67.40 58.51 - -
Numerical 92.52 86.34 64.40 47.89 51.26 42.87
Uncertainty 92.36 86.51 65.57 53.18 50.21 38.35

GenCLS++ (RL) 92.62 86.86 68.94 65.08 54.31 46.18

strategy for both stages (i.e. training and evaluating401

the model exclusively with the zero-shot prompt).402

4.2 Main Results403

We adopt a generative paradigm based on a LLM.404

The base model is fine-tuned with various prompt405

strategies and evaluated under each strategy at in-406

ference time. Since a dataset can yield nearly one407

hundred training–inference combinations, Table 1408

reports only the best result for each training strat-409

egy to enable comprehensive analysis. The full410

combination results are provided in Appendix C.411

As shown in Table 1, GenCLS++ surpasses every412

discriminative baseline on the public datasets, un-413

derscoring the strength of generative approaches to414

classification. Moreover, for most training prompts,415

switching to an alternative inference prompt416

yields additional gains in both accuracy and 417

macro-F1. Figure 4 visualizes these improvements, 418

demonstrating that—regardless of the strategy 419

employed during training—experimenting with 420

a different inference strategy typically leads to 421

superior performance. Moreover, applying RL 422

to a model that has already undergone SFT yields 423

additional gains. Although the naive SFT baselines 424

for EC and Query Intent are already strong, ex- 425

ceeding 90% accuracy, GenCLS++ still achieves 426

an average relative accuracy improvement of 3.46% 427

on all seven datasets and 4.00% on the four pub- 428

lic datasets. Notably, GenCLS++ delivers a 6.10% 429

relative accuracy improvement on the IFLYTEK 430

dataset, underscoring its effectiveness. 431

Further analysis reveals a consistent pattern: 432

adding labeled examples to the training prompt 433
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Table 2: Experimental Results (Accuracy & macro-F1 Score, %). Bold indicates the best result.

EC EIC IFLYTEK TNEWS

Training Method Acc. macro-F1 Acc. macro-F1 Acc. macro-F1 Acc. macro-F1

Base model 68.75 33.94 55.02 49.85 57.41 25.93 58.13 22.92
+ RL 76.90 69.52 62.28 47.87 59.79 29.88 61.92 59.56
+ warm up 94.15 89.83 85.08 83.74 63.76 47.85 63.30 61.31

+ RL 94.50 90.57 85.86 84.72 64.91 49.27 64.04 62.35

Table 3: Experimental Results on the EIC dataset (Accuracy & macro-F1 Score, %). Blue indicates the best
inference strategy for current training method. Bold indicates the best result.

Class→Reason Reason→Class Think→Reason→Class

Training Method Acc. macro-F1 Acc. macro-F1 Acc. macro-F1

Base model 17.95 13.86 30.54 5.69 29.46 7.27
+ RL 53.33 42.46 62.28 47.87 46.58 19.60

SFT (Class→Reason) 76.73 76.12 57.05 51.46 57.40 52.34
SFT (Think→Reason→Class) 37.98 36.15 53.81 47.14 57.35 50.45

SFT (Reason→Class) 64.62 64.67 71.37 66.26 70.11 45.60
+ RL 77.12 76.00 79.50 78.06 78.63 76.00

SFT (No-CoT) 76.60 75.64 69.81 62.03 74.57 33.76
+ RL 85.86 84.72 85.64 84.52 84.60 83.26
+ SFT (Reason→Class) 63.62 52.13 76.08 73.63 - -

+ RL 0.43 0.43 84.04 82.67 33.48 31.90

(few-shot learning) consistently outperforms train-434

ing without examples, and this advantage holds435

in both zero-shot and few-shot evaluations. Addi-436

tionally, randomly sampled examples yield higher437

scores than a fixed set of examples. Although the438

optimal inference prompt is not always identical to439

the training prompt, two clear tendencies emerge:440

1) If the training prompt includes few-shot exam-441

ples, the highest scores are achieved when the in-442

ference prompt also provides examples. 2) If the443

training prompt omits examples, a zero-shot infer-444

ence prompt is usually the stronger choice.445

These findings underscore that prompt design446

should be considered jointly for training and infer-447

ence, rather than in isolation. Furthermore, using448

reinforcement learning to further enhance the per-449

formance of generative models on classification450

tasks is a promising approach, which we will ana-451

lyze in more detail in Section 5.452

5 Analysis453

5.1 Effectiveness of the Policy Warm-up454

To equip the policy model with fundamental classi-455

fication capabilities, we first apply fine-tuning on456

the training data, which we refer to as the "warm-457

up" phase. We then conduct an ablation study us-458

ing Qwen-2.5-7B-Instruct on several public bench-459

marks to evaluate the impact of this phase. As 460

reported in Table 2, incorporating a warm-up phase 461

provides a significant performance boost in sub- 462

sequent RL training, with an average relative ac- 463

curacy improvement of 18.18% over initializing 464

RL directly from the base model. This indicates 465

that allowing the policy model to acquire essential 466

classification skills through supervised fine-tuning 467

(SFT) before RL effectively raises the ceiling for 468

achievable performance, demonstrating the impor- 469

tance of pre-training in enhancing RL outcomes. 470

5.2 Does the reasoning help classification? 471

In this subsection, we present further discus- 472

sions on the reasoning process in fine-tuning for 473

classification. We explored the following set- 474

tings: <Class→Reason>, <Reason→Class>, and 475

<Think→Reason→Class>, which define the order 476

in which the model outputs its responses. For exam- 477

ple, in the <Reason→Class> setting, the model first 478

explains its reasoning and then predicts the classi- 479

fication result. Here, “Think” represents a longer, 480

more elaborate thought, while “Reason” represents 481

a more concise explanation. 482

We chose the EIC dataset for our research be- 483

cause identifying the categories of editing intent 484

requires comparing the changes before and af- 485

ter sentences, which requires the model to use 486
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Figure 2: Comparison of Different Models: Response
Length vs. Reward over Steps

reasoning ability more than other classification487

tasks. We used DeepSeek-R1 (Guo et al., 2025)488

to generate reasoning for the training set in the489

<Think→Reason→Class> format and then manu-490

ally converted these outputs into the three settings491

mentioned above. For each question, we sampled492

three times; the reasoning process was considered493

valid only if all three outputs were correct. We then494

performed supervised fine-tuning (SFT) of the base495

model on these three datasets, and the results are496

shown in Table 3. Interestingly, contrary to intu-497

ition, having the model provide its classification498

result first led to higher accuracy compared to the499

other two approaches.500

To delve deeper into the reasoning process for501

classification, we ran RL from several starting502

checkpoints: the base model, a SFT model without503

reasoning (No-CoT SFT), an SFT model with rea-504

soning (CoT SFT), and a two-stage model obtained505

by further fine-tuning the No-CoT SFT model on506

CoT data. The results indicate the following: 1)507

Regardless of the starting model, RL consistently508

enhances classification performance. 2) Before509

applying CoT data for SFT, conducting an initial510

SFT stage using No-CoT data leads to better per-511

formance improvements following RL. 3) Interest-512

ingly, the best performance is attained by directly513

applying RL to the No-CoT SFT model and al-514

lowing the model to predict the answer without515

performing reasoning beforehand.516

We subsequently examined how the model’s out-517

put length and behavior evolved during RL training.518

As shown in Figure 2, the length of the generated519

“reason” gradually decreased, indicating that the520

model pruned away unnecessary reasoning steps.521

These results suggest that the model progressively522

learns to simplify its reasoning and that extensive523

deliberation is not always beneficial for producing524

correct answers. In classification tasks in particu-525

lar, the RL signal appears to teach the model that 526

directly producing the answer is sufficient. 527
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Figure 3: Comparison of model performance across
different RL algorithms.

5.3 Different RL Algorithms 528

We further explored the impact of different RL algo- 529

rithms on model performance by analyzing GRPO 530

(Shao et al., 2024), Reinforce++-baseline (Hu, 531

2025), and Reinforce++ (Hu, 2025), with DPO 532

(Rafailov et al., 2023) included as an off-policy 533

comparator. As shown in Table 3, all on-policy 534

methods outperform DPO. Notably, Reinforce++ 535

yields the largest gains and, unlike GRPO, requires 536

no batch sampling of candidate responses during 537

training—making it the most efficient choice. 538

6 Conclusion 539

In this paper, we investigate the use of LLMs as 540

generative classifiers. By systematically exploring 541

a variety of prompt strategies during both train- 542

ing and inference, coupled with the integration of 543

RL, we enhance the intrinsic generative capabili- 544

ties of LLMs for classification tasks. GenCLS++ 545

achieves an average relative accuracy improvement 546

of +3.46% across seven benchmark datasets com- 547

pared to the naive SFT baseline. Notably, our ex- 548

periments show that while explicit reasoning steps 549

enhance performance on complex tasks, they do not 550

yield significant benefits in classification settings. 551

In future work, we aim to evaluate whether these 552

findings generalize to models of varying scales and 553

to explore novel techniques that can further push 554

the performance limits of generative classifiers. 555

Limitations 556

While GenCLS++ is effective for classification 557

tasks, its potential applications as a verifier or re- 558

ward model were not explored in this work. Further- 559

more, because we employed Qwen-2.5-7B-Instruct, 560

8



we have not tested whether our findings general-561

ize to models of different scales or to other ar-562

chitectures, such as LLaMA. We leave these in-563

vestigations, along with the exploration of novel564

techniques to further advance the performance of565

generative classifiers, for future work.566
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A Prompt Example 727

To illustrate, we use the EC dataset to showcase the 728

prompt strategies outlined in Section 3.1. 729

Zero-shot & Few-shot We adopt the 3-shot set- 730

ting as a representative example for both the zero- 731

shot and few-shot series. 732

You are a professional sentiment classification
expert. There is now a piece of text that requires
your sentiment classification.
Optional categories: [sadness, joy, love, anger,
fear, surprise]
Format requirement: Please output in the format
Category: xxx (where xxx is the correspond-
ing category label).

Example 1:
Text: i feel now i am not giving all of me to
christ and i want to be devoted
Category: love
Example 2:
Text: i find myself feeling shocked hearing that
word spoken out loud in my own lounge room
Category: surprise
Example 3:
Text: i feel pathetic and that i shouldn’t make
myself feel this way
Category: sadness

Current case:
Text: i feel like a low life mooching off every-
one
Please output the category for the text according
to the format requirement.

733
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Definition We prepend concise text definitions734

of each target category to the prompt and further735

explore an alternative strategy by adding an extra736

example.737

You are a professional sentiment classification
expert. There is now a piece of text that requires
your sentiment classification.
Optional categories: [sadness, joy, love, anger,
fear, surprise]
Format requirement: Please output in the format
Category: xxx (where xxx is the correspond-
ing category label).

Sentiment category definitions:
sadness: expresses loss, sorrow, frustration,
etc., involving farewells, failures, regrets, etc.
joy: conveys happiness, cheerfulness, satisfac-
tion, etc., including celebrations, success, and
pleasure from good things.
love: reflects romantic love, familial love,
friendship, etc., involving care, admiration, at-
tachment, etc.
anger: contains strong negative feelings like
anger, annoyance, indignation, involving injus-
tice, conflict, frustration, etc.
fear: shows fear, worry, anxiety, etc., involving
danger, uncertainty, psychological pressure, etc.
surprise: expresses the unexpected, astonish-
ment, amazement, etc., including sudden events
or information beyond expectations.

Example 1:
Text: i walk in the door to my house i feel happy
Category: joy

Current case:
Text: i was feeling like a beluga whale and quite
grouchy
Please output the category for the text according
to the format requirement.

738

Numerical For this type, we assign a numerical739

label to each category and instruct the model to740

output the corresponding number.741

You are a professional sentiment classification
expert. There is now a piece of text that requires
your sentiment classification.
Optional categories: sadness: 0, joy: 1, love: 2,
anger: 3, fear: 4, surprise: 5
Format requirement: Please output in the format
Category: xxx (where xxx is the correspond-
ing numeric label).

Current case:
Text: i reply i do my best to reply to questions
but feel free to contact me via twitter isobelmeg
xx
Please output the category for the text according
to the format requirement.

742

Uncertainty We introduce a new class, “Uncer- 743

tain,” and employ a fine-tuned model to label train- 744

ing examples that cannot be classified with high 745

confidence. This prompt strategy is used exclu- 746

sively during dataset construction; during infer- 747

ence, the model is restricted to predicting only the 748

original classes. 749

You are a professional sentiment classification
expert. There is now a piece of text that requires
your sentiment classification.
Optional categories: [sadness, joy, love, anger,
fear, surprise]
Format requirement: Please output in the for-
mat Category: xxx (where xxx is the corre-
sponding category label; if unsure, please reply
"Category: uncertain").

Current case:
Text: i forgive myself that i have accepted and
allowed myself to forget that i decide and thus i
was decided to feel groggy this morning
Please output the category for the text according
to the format requirement.

750

B Data Statistics 751

The detailed statistics for all datasets are shown in 752

Table 4 and 5 753

C SFT Results 754

C.1 Performance Gains from Prompt 755

Strategy Switching 756

We visualize the improvement brought by using the 757

best-performing inference prompt strategy com- 758

pared to reusing the same strategy as in training in 759

11



Figure 4. As shown, our approach consistently im-760

proves both accuracy and macro-F1 across nearly761

all tasks and training prompt strategies.762

C.2 Effect of Retrieval Relevance in Few-Shot763

Inference764

We further compared the impact of two different765

inference strategies on model performance. As766

shown in Figure 5, using similar few-shot exam-767

ples does not always lead to better results across768

all tasks. We found that when the retrieval strat-769

egy is related to the category, as is the case with770

the TNEWS dataset, the retrieved examples can771

enhance performance. However, for tasks involv-772

ing relationships between multiple texts, where the773

retrieval strategy is unrelated to classification, in-774

cluding seemingly similar examples may actually775

degrade performance.776

C.3 Perplexity-Based Strategy Evaluation777

Recent methods (Hao et al., 2023; Ren et al.,778

2023) adopt perplexity as a confidence score for779

LLMs—for example, using the probability of780

the “A” token to gauge answer confidence in781

multiple-choice questions. Similarly, we compared782

this perplexity-based strategy with a fixed 3-shot783

prompt. As shown in Figure 6, relying on per-784

plexity markedly degrades model performance on785

most tasks, which is consistent with prior findings786

(Huang et al., 2023; Hong et al., 2023; He et al.,787

2024). In other words, perplexity alone is not a788

sufficiently reliable confidence measure.789

C.4 Performance Across Training–Inference790

Combinations791

The performance of different training and inference792

combinations for each dataset is presented in the793

tables below.794
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Table 4: Average token length statistics across different tasks and prompt types. Both prompt tokens and response
tokens represent average values per example.

Dataset Zero-shot 1-shot 3-shot 5-shot Definition

Prompt Response Prompt Response Prompt Response Prompt Response Prompt Response
tokens tokens tokens tokens tokens tokens tokens tokens tokens tokens

Query Intent 282.4 6.0 305.9 6.0 344.8 6.0 383.8 6.0 719.4 6.0
Query Taxonomy 1225.4 7.7 1250.5 7.7 1292.6 7.7 1334.8 7.7 - -
Search Correlation 458.6 5.2 843.0 5.2 1605.9 5.2 2367.5 5.2 1261.6 5.2
EIC 141.6 4.1 222.1 4.1 375.9 4.1 523.6 4.1 287.6 4.1
EC 86.0 3.5 121.4 3.5 184.4 3.5 246.9 3.5 229.0 3.5
TNEWS 119.8 4.7 152.3 4.7 209.3 4.7 266.4 4.7 631.8 4.7
IFLYTEK 786.9 3.6 984.3 3.6 1370.2 3.6 1761.1 3.6 3481.9 3.6

Dataset Numerical Similar-3-shot Fixed-3-shot Uncertainty 1-shot w/ Def

Prompt Response Prompt Response Prompt Response Prompt Response Prompt Response
tokens tokens tokens tokens tokens tokens tokens tokens tokens tokens

Query Intent 446.4 3.7 344.2 6.0 342.4 6.0 291.4 6.0 741.9 6.0
Query Taxonomy 2746.4 6.9 1292.0 7.7 1294.4 7.7 1225.4 6.6 - -
Search Correlation 475.6 4.0 1921.0 5.2 1740.6 5.2 473.1 5.1 1653.0 5.2
EIC 155.6 3.0 400.6 4.1 596.5 4.1 145.6 4.1 368.1 4.1
EC 103.0 3.0 163.4 3.5 186.0 3.5 95.0 3.4 264.4 3.5
TNEWS 193.8 5.0 210.7 4.7 194.8 4.7 128.8 4.5 665.3 4.7
IFLYTEK 1272.9 4.0 1476.9 3.6 1215.9 3.6 795.9 3.5 3682.3 3.6

Table 5: Dataset Statistics

Dataset Train samples Test samples Class count Classification type
Query Intent 100,000 10,000 33 Single-label
Query Taxonomy 200,000 10,000 326 Multi-label
Search Correlation 311,446 2,997 5 Single-label
EIC 7,478 2,312 5 Single-label
EC 16,000 2,000 6 Single-label
TNEWS 53,360 10,000 15 Single-label
IFLYTEK 12,133 2,599 119 Single-label
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Figure 4: Visualization of the improvement achieved by changing the inference prompt strategy. Left: improvement
in accuracy. Right: improvement in macro-F1. The x-axis represents the dataset, and the y-axis represents the
different training strategies. Improvements are highlighted in red, while decreases are shown in blue.
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Figure 5: Visualization of the improvement achieved by changing the inference prompt strategy from fixed-3-shot to
similar-3-shot. Left: improvement in accuracy. Right: improvement in macro-F1. The x-axis represents the dataset,
and the y-axis represents the different training strategies. Improvements are highlighted in red, while decreases are
shown in blue.
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Figure 6: Visualization of the improvement achieved by changing the inference prompt strategy from fixed-3-shot
to perplexity. Left: improvement in accuracy. Right: improvement in macro-F1. The x-axis represents the dataset,
and the y-axis represents the different training strategies. Improvements are highlighted in red, while decreases are
shown in blue.
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Table 6: Experimental results on the EIC dataset (Accuracy & macro-F1 Score, %). Blue highlights the best
inference strategy for each training method, while bold denotes the overall best performance across all settings.

Method
1-shot 3-shot fix_3_shot

fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall
ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1

Zero-shot 100 83.43 82.40 83.43 82.40 100 83.39 82.67 83.39 82.67 100 82.74 82.22 82.74 82.22
1-shot 100 83.56 82.86 83.56 82.86 100 83.82 82.90 83.82 82.90 100 82.74 81.95 82.74 81.95

3-shot 100 84.08 82.88 84.08 82.88 100 84.60 83.28 84.60 83.28 100 85.03 83.75 85.03 83.75

5-shot 100 83.82 82.91 83.82 82.91 100 84.13 83.39 84.13 83.39 100 83.39 82.61 83.39 82.61
Definition 100 83.09 82.15 83.09 82.15 100 83.09 82.11 83.09 82.11 100 82.27 81.25 82.27 81.25
Numerical 100 38.41 4.83 38.41 4.83 100 48.18 6.61 48.18 6.61 100 50.56 7.69 50.56 7.69
Similar-3-shot 100 81.19 78.28 81.19 78.28 100 81.88 79.26 81.88 79.26 100 82.18 79.35 82.18 79.35
Fixed-3-shot 100 81.75 80.64 81.75 80.64 100 82.01 81.02 82.01 81.02 100 81.40 80.47 81.40 80.47
Uncertainty 100 83.48 81.13 83.48 81.13 100 84.39 82.65 84.39 82.65 100 84.26 82.13 84.26 82.13
1-shot w/ Def 100 84.34 82.79 84.34 82.79 100 83.95 82.44 83.95 82.44 100 83.65 82.11 83.65 82.11

Method
5_shot category_definition numerical

fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall
ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1

Zero-shot 100 84.04 82.93 84.04 82.93 100 82.22 81.44 82.22 81.44 0 – – – –
1-shot 100 83.61 82.85 83.61 82.85 100 83.09 81.99 83.09 81.99 0 – – – –
3-shot 100 84.95 84.01 84.95 84.01 100 81.79 20.30 81.79 20.30 0 – – – –
5-shot 100 84.04 83.32 84.04 83.32 100 83.87 82.55 83.87 82.55 2.51 82.76 31.31 2.08 0.79
Definition 100 83.09 82.19 83.09 82.19 100 83.26 82.30 83.26 82.30 26.38 82.13 34.14 21.67 9.01

Numerical 100 54.67 10.89 54.67 10.89 100 12.41 8.79 12.41 8.79 100 83.17 81.89 83.17 81.89
Similar-3-shot 100 81.75 78.96 81.75 78.96 100 80.19 77.20 80.19 77.20 19.20 76.80 48.53 14.75 9.32
Fixed-3-shot 100 82.53 81.73 82.53 81.73 100 81.92 81.00 81.92 81.00 1.04 79.17 29.46 0.82 0.31
Uncertainty 100 84.60 82.77 84.60 82.77 100 84.47 83.09 84.47 83.09 0 – – – –
1-shot w/ Def 100 84.17 82.47 84.17 82.47 100 84.04 83.16 84.04 83.16 0.26 83.33 45.45 0.22 0.12

Method
similar_3_shot zero_shot ppl

fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall
ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1

Zero-shot 100 83.09 82.00 83.09 82.00 100 82.74 81.73 82.74 81.73 100 63.58 40.28 63.58 40.28
1-shot 100 83.00 81.80 83.00 81.80 100 83.04 81.95 83.04 81.95 100 71.76 52.92 71.76 52.92
3-shot 100 84.04 82.52 84.04 82.52 100 83.09 80.90 83.09 80.90 100 70.85 48.13 70.85 48.13
5-shot 100 83.87 83.34 83.87 83.34 100 83.61 82.62 83.61 82.62 100 66.35 43.04 66.35 43.04
Definition 100 82.66 81.43 82.66 81.43 100 82.79 81.71 82.79 81.71 100 66.96 52.74 66.96 52.74
Numerical 100 57.18 8.77 57.18 8.77 100 10.68 4.02 10.68 4.02 100 75.30 70.38 75.30 70.38
Similar-3-shot 100 81.57 79.68 81.57 79.68 100 81.49 77.98 81.49 77.98 100 65.27 41.84 65.27 41.84

Fixed-3-shot 100 83.17 82.49 83.17 82.49 100 82.70 81.56 82.70 81.56 100 67.56 48.30 67.56 48.30

Uncertainty 100 83.87 81.84 83.87 81.84 100 85.08 83.74 85.08 83.74 100 72.97 62.39 72.97 62.39
1-shot w/ Def 100 83.61 81.45 83.61 81.45 100 83.78 82.84 83.78 82.84 100 70.59 51.07 70.59 51.07
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Table 7: Experimental results on the Query Intent dataset (Accuracy & macro-F1 Score, %). Blue highlights the
best inference strategy for each training method, while bold denotes the overall best performance across all settings.

Method
1-shot 3-shot fix_3_shot

fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall
ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1

Zero-shot 100 89.23 83.29 89.23 83.29 100 91.08 84.99 91.08 84.99 100 92.09 86.14 92.09 86.14
1-shot 100 92.48 87.34 92.48 87.34 100 92.47 87.20 92.47 87.20 100 92.38 86.97 92.38 86.97
3-shot 100 92.29 85.98 92.29 85.98 100 92.30 86.31 92.30 86.31 100 92.24 85.91 92.24 85.91
5-shot 100 92.41 86.78 92.41 86.78 100 92.52 86.95 92.52 86.95 100 92.45 87.03 92.45 87.03
Definition 100 91.51 84.62 91.51 84.62 100 91.90 85.26 91.90 85.26 100 92.19 85.62 92.19 85.62
Numerical 100 0 0 0 0 100 0 0 0 0 100 0 0 0 0
Similar-3-shot 100 91.33 84.56 91.33 84.56 100 91.43 85.03 91.43 85.03 100 91.47 85.19 91.47 85.19
Fixed-3-shot 100 92.09 85.58 92.09 85.58 100 92.19 85.65 92.19 85.65 100 92.36 86.17 92.36 86.17
Uncertainty 100 89.82 83.71 89.82 83.71 100 91.15 85.24 91.15 85.24 100 92.24 86.41 92.24 86.41
1-shot w/ Def 100 92.41 78.02 92.41 78.02 100 92.28 77.88 92.28 77.88 100 92.29 86.35 92.29 86.35

Method
5_shot category_definition numerical

fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall
ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1

Zero-shot 100 91.43 85.35 91.43 85.35 100 92.30 86.27 92.30 86.27 0 – – – –
1-shot 100 92.43 87.12 92.43 87.12 100 92.39 87.05 92.39 87.05 0 – – – –
3-shot 100 92.44 86.55 92.44 86.55 100 92.26 86.06 92.26 86.06 0 – – – –
5-shot 100 92.44 86.91 92.44 86.91 100 92.41 86.81 92.41 86.81 0 – – – –
Definition 100 92.10 85.91 92.10 85.91 100 92.23 85.75 92.23 85.75 0 – – – –
Numerical 100 0 0 0 0 100 0 0 0 0 100 92.52 86.34 92.52 86.34
Similar-3-shot 100 91.58 85.34 91.58 85.34 100 91.60 85.36 91.60 85.36 0 – – – –
Fixed-3-shot 100 92.06 85.61 92.06 85.61 100 92.14 85.58 92.14 85.58 0 – – – –
Uncertainty 100 91.41 85.37 91.41 85.37 100 92.29 86.03 92.29 86.03 0.11 81.82 48.72 0.09 0.05
1-shot w/ Def 100 92.36 86.57 92.36 86.57 100 92.26 86.37 92.26 86.37 0 – – – –

Method
similar_3_shot zero_shot ppl

fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall
ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1

Zero-shot 100 91.05 84.99 91.05 84.99 100 92.28 86.33 92.28 86.33 100 92.05 86.14 92.05 86.14
1-shot 100 92.41 87.20 92.41 87.20 100 92.39 87.13 92.39 87.13 100 92.27 86.89 92.27 86.89
3-shot 100 92.24 86.53 92.24 86.53 96.73 92.10 86.28 89.09 83.46 100 92.01 86.00 92.01 86.00
5-shot 100 92.33 86.60 92.33 86.60 99.77 92.44 86.81 92.23 86.61 100 92.17 86.56 92.17 86.56
Definition 100 91.40 84.87 91.40 84.87 100 92.21 85.67 92.21 85.67 100 92.13 85.78 92.13 85.78
Numerical 100 0 0 0 0 100 0 0 0 0 100 56.21 26.25 56.21 26.25
Similar-3-shot 100 92.22 86.40 92.22 86.40 99.91 91.50 85.01 91.42 84.93 100 91.31 84.99 91.31 84.99
Fixed-3-shot 100 91.62 85.63 91.62 85.63 99.87 92.09 85.51 91.97 85.40 100 91.77 85.39 91.77 85.39
Uncertainty 100 91.06 85.05 91.06 85.05 100 92.36 86.51 92.36 86.51 100 92.27 86.10 92.27 86.10
1-shot w/ Def 100 92.01 86.22 92.01 86.22 100 92.09 67.53 92.09 67.53 100 91.92 70.37 91.92 70.37
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Table 8: Experimental results on the Search Correlation dataset (Accuracy & macro-F1 Score, %). Blue highlights
the best inference strategy for each training method, while bold denotes the overall best performance across all
settings.

Method
1-shot 3-shot fix_3_shot

fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall
ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1

Zero-shot 100 63.86 56.02 63.86 56.02 100 65.30 56.16 65.30 56.16 100 64.16 53.56 64.16 53.56
1-shot 100 67.37 59.10 67.37 59.10 100 66.43 58.19 66.43 58.19 100 66.37 57.33 66.37 57.33
3-shot 100 67.17 58.45 67.17 58.45 100 67.20 58.70 67.20 58.70 100 67.23 58.20 67.23 58.20
5-shot 100 66.43 55.75 66.43 55.75 100 66.43 56.06 66.43 56.06 100 66.27 55.51 66.27 55.51
Definition 100 67.17 59.77 67.17 59.77 100 66.73 59.16 66.73 59.16 100 67.10 59.15 67.10 59.15
Numerical 100 0 0 0 0 100 0 0 0 0 100 0 0 0 0
Similar-3-shot 100 64.66 57.27 64.66 57.27 100 64.80 57.57 64.80 57.57 100 65.27 58.01 65.27 58.01
Fixed-3-shot 100 64.36 50.86 64.36 50.86 100 64.06 51.47 64.06 51.47 100 64.26 51.02 64.26 51.02
Uncertainty 100 61.66 48.82 61.66 48.82 100 61.53 47.44 61.53 47.44 100 62.06 47.17 62.06 47.17
1-shot w/ Def 100 67.40 58.51 67.40 58.51 100 66.57 57.35 66.57 57.35 100 65.70 55.47 65.70 55.47

Method
5_shot category_definition numerical

fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall
ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1

Zero-shot 100 64.73 55.34 64.73 55.34 100 66.70 58.68 66.70 58.68 4.14 64.52 44.25 2.67 1.83
1-shot 100 66.23 47.94 66.23 47.94 100 66.57 58.19 66.57 58.19 3 3.33 1.29 0.10 0.04
3-shot 100 67.53 59.23 67.53 59.23 100 66.87 58.52 66.87 58.52 6.14 19.57 23.63 1.20 1.45
5-shot 100 66.73 56.42 66.73 56.42 100 66.47 56.54 66.47 56.54 49.58 56.86 45.83 28.19 22.73
Definition 100 66.17 58.35 66.17 58.35 100 68.60 62.25 68.60 62.25 0 – – – –
Numerical 100 0 0 0 0 100 0 0 0 0 100 64.40 47.89 64.40 47.89
Similar-3-shot 100 65.30 58.12 65.30 58.12 100 64.80 57.40 64.80 57.40 0.13 75.00 42.86 0.10 0.06
Fixed-3-shot 100 64.40 51.80 64.40 51.80 100 63.23 48.88 63.23 48.88 37.64 34.22 29.29 12.88 11.02
Uncertainty 100 61.76 47.77 61.76 47.77 100 62.73 48.62 62.73 48.62 0 – – – –
1-shot w/ Def 100 66.40 57.13 66.40 57.13 100 67.40 59.07 67.40 59.07 21.05 64.18 44.11 13.51 9.29

Method
similar_3_shot zero_shot ppl

fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall
ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1

Zero-shot 100 59.73 47.63 59.73 47.63 100 65.27 54.44 65.27 54.44 100 41.07 33.73 41.07 33.73
1-shot 100 65.23 53.24 65.23 53.24 100 66.40 57.71 66.40 57.71 100 31.26 23.15 31.26 23.15
3-shot 100 66.67 55.98 66.67 55.98 100 67.00 58.47 67.00 58.47 100 28.43 20.29 28.43 20.29
5-shot 100 65.63 52.74 65.63 52.74 100 65.80 54.10 65.80 54.10 100 25.26 16.78 25.26 16.78
Definition 100 65.47 54.38 65.47 54.38 100 68.20 60.99 68.20 60.99 100 29.70 21.78 29.70 21.78
Numerical 100 0 0 0 0 100 0 0 0 0 100 32.73 23.72 32.73 23.72
Similar-3-shot 100 67.63 60.01 67.63 60.01 100 65.97 57.31 65.97 57.31 100 25.19 17.31 25.19 17.31
Fixed-3-shot 100 64.76 50.08 64.76 50.08 100 63.50 48.29 63.50 48.29 100 34.70 24.71 34.70 24.71
Uncertainty 100 60.89 45.80 60.89 45.80 100 65.57 53.18 65.57 53.18 100 38.64 28.08 38.64 28.08
1-shot w/ Def 100 65.53 53.36 65.53 53.36 100 67.03 57.99 67.03 57.99 100 29.66 21.41 29.66 21.41
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Table 9: Experimental results on the Query Taxonomy dataset (Accuracy & macro-F1 Score, %). Blue highlights
the best inference strategy for each training method, while bold denotes the overall best performance across all
settings.

Method
1-shot 3-shot fix_3_shot

fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall
ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1

Zero-shot 100 51.53 42.6 51.53 42.6 100 51.47 42.92 51.47 42.92 100 51.68 42.99 51.68 42.99
1-shot 100 52.9 44.91 52.9 44.91 100 52.43 44.56 52.43 44.56 100 52.08 44.34 52.08 44.34
3-shot 100 51.25 43.56 51.25 43.56 100 52.1 44.07 52.1 44.07 100 51.61 43.72 51.61 43.72
5-shot 100 51.31 43.44 51.31 43.44 100 51.11 43.25 51.11 43.25 100 50.97 43.38 50.97 43.38
Numerical 100 0 0 0 0 100 0 0 0 0 100 0 0 0 0
Similar-3-shot 100 48.56 40.75 48.56 40.75 100 49.46 41.81 49.46 41.81 100 48.25 41.31 48.25 41.31
Fixed-3-shot 100 50.74 42.49 50.74 42.49 100 49.62 42.32 49.62 42.32 100 50.37 42.39 50.37 42.39
Uncertainty 100 48.13 37.42 48.13 37.42 100 49.16 38.13 49.16 38.13 100 48.77 37.67 48.77 37.67

Method
5_shot category_definition numerical

fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall
ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1

Zero-shot 100 51.3 42.77 51.3 42.77 – – – – – 100 0 0 0 0
1-shot 100 51.83 44.3 51.83 44.3 – – – – – 100 0 0 0 0
3-shot 100 51.54 43.44 51.54 43.44 – – – – – 56.13 0 0 0 0
5-shot 100 51.82 43.66 51.82 43.66 – – – – – 93.11 0 0 0 0
Numerical 100 0 0 0 0 – – – – – 100 51.26 42.87 51.26 42.87
Similar-3-shot 100 47.99 41.23 47.99 41.23 – – – – – 84.55 0 0 0 0
Fixed-3-shot 100 50.48 42.44 50.48 42.44 – – – – – 55.38 0 0 0 0
Uncertainty 100 47.66 37.52 47.66 37.52 – – – – – 100 0 0 0 0

Method
similar_3_shot zero_shot ppl

fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall
ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1

Zero-shot 100 53.25 43.13 53.25 43.13 100 51.43 43.1 51.43 43.1 – – – – –
1-shot 100 53.09 44.02 53.09 44.02 100 52.09 44.59 52.09 44.59 – – – – –
3-shot 100 53.38 43.84 53.38 43.84 13.38 56.65 51.14 7.58 6.84 – – – – –
5-shot 100 53.95 44.52 53.95 44.52 52.18 58.63 51.97 30.6 27.12 – – – – –
Numerical 100 0 0 0 0 100 0 0 0 0 – – – – –
Similar-3-shot 100 52.99 44.11 52.99 44.11 43.95 52.54 45.77 23.09 20.11 – – – – –
Fixed-3-shot 100 54.03 43.6 54.03 43.6 22.42 53.72 47.8 12.04 10.72 – – – – –
Uncertainty 100 50.21 38.35 50.21 38.35 100 48.74 38.1 48.74 38.1 – – – – –
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Table 10: Experimental results on the EC dataset (Accuracy & macro-F1 Score, %). Blue highlights the best
inference strategy for each training method, while bold denotes the overall best performance across all settings.

Method
1-shot 3-shot fix_3_shot

fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall
ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1

Zero-shot 100 83.30 78.97 83.30 78.97 100 92.60 88.73 92.60 88.73 100 91.95 88.53 91.95 88.53
1-shot 100 92.95 88.97 92.95 88.97 100 92.80 88.76 92.80 88.76 100 92.75 88.62 92.75 88.62
3-shot 100 93.40 89.10 93.40 89.10 100 93.25 88.71 93.25 88.71 100 93.20 88.46 93.20 88.46
5-shot 100 93.90 89.05 93.90 89.05 100 93.75 88.99 93.75 88.99 100 93.65 88.94 93.65 88.94
Definition 100 78.85 73.68 78.85 73.68 100 92.35 87.19 92.35 87.19 100 92.00 87.04 92.00 87.04
Numerical 100 38.80 1.67 38.80 1.67 100 56.55 2.58 56.55 2.58 100 43.05 1.71 43.05 1.71
Similar-3-shot 100 93.20 88.43 93.20 88.43 100 93.25 88.55 93.25 88.55 100 93.60 89.08 93.60 89.08
Fixed-3-shot 100 93.60 89.56 93.60 89.56 100 93.45 89.04 93.45 89.04 100 93.80 89.92 93.80 89.92
Uncertainty 100 77.25 73.31 77.25 73.31 100 91.45 88.06 91.45 88.06 100 92.50 89.07 92.50 89.07
1-shot w/ Def 100 93.60 89.43 93.60 89.43 100 93.80 89.70 93.80 89.70 100 93.35 89.65 93.35 89.65

Method
5_shot category_definition numerical

fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall
ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1

Zero-shot 100 93.50 89.92 93.50 89.92 100 93.75 90.31 93.75 90.31 0 – – – –
1-shot 100 92.85 88.62 92.85 88.62 63.60 94.50 90.98 60.10 57.86 0 – – – –
3-shot 100 93.20 88.63 93.20 88.63 19.55 94.88 95.94 18.55 18.76 0 – – – –
5-shot 100 94.15 89.83 94.15 89.83 99.85 93.84 89.48 93.70 89.34 0 – – – –
Definition 100 92.85 88.05 92.85 88.05 100 93.15 88.04 93.15 88.04 0 – – – –
Numerical 100 63.50 3.12 63.50 3.12 100 62.45 5.70 62.45 5.70 100 93.65 89.93 93.65 89.93
Similar-3-shot 100 93.55 88.71 93.55 88.71 3.05 78.69 89.79 2.40 2.74 6.25 87.20 73.43 5.45 4.59
Fixed-3-shot 100 93.35 89.06 93.35 89.06 85.25 93.61 89.11 79.80 75.97 0 – – – –
Uncertainty 100 92.75 89.27 92.75 89.27 87.30 92.50 89.50 80.75 78.14 0 – – – –
1-shot w/ Def 100 93.35 88.88 93.35 88.88 100 93.80 89.95 93.80 89.95 0 – – – –

Method
similar_3_shot zero_shot ppl

fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall
ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1

Zero-shot 100 92.35 88.73 92.35 88.73 100 93.70 90.17 93.70 90.17 100 93.65 89.96 93.65 89.96
1-shot 100 93.00 88.93 93.00 88.93 100 93.15 89.45 93.15 89.45 100 91.05 87.30 91.05 87.30
3-shot 100 93.05 88.27 93.05 88.27 99.95 93.50 89.17 93.45 89.13 100 93.20 89.39 93.20 89.39
5-shot 100 93.60 89.17 93.60 89.17 100 93.70 89.06 93.70 89.06 100 93.55 89.19 93.55 89.19
Definition 100 92.10 87.12 92.10 87.12 100 93.30 88.31 93.30 88.31 100 92.90 88.30 92.90 88.30
Numerical 100 63.20 2.65 63.20 2.65 100 55.35 2.88 55.35 2.88 100 92.45 88.74 92.45 88.74
Similar-3-shot 100 93.90 89.44 93.90 89.44 39.65 94.70 92.81 37.55 36.80 100 91.95 87.81 91.95 87.81
Fixed-3-shot 100 93.25 89.33 93.25 89.33 100 93.20 89.14 93.20 89.14 100 92.90 88.92 92.90 88.92
Uncertainty 100 91.90 88.37 91.90 88.37 100 93.55 90.01 93.55 90.01 100 93.05 89.49 93.05 89.49
1-shot w/ Def 100 93.00 88.09 93.00 88.09 100 93.80 89.81 93.80 89.81 100 92.50 88.93 92.50 88.93

19



Table 11: Experimental results on the IFLYTEK dataset (Accuracy & macro-F1 Score, %). Blue highlights the
best inference strategy for each training method, while bold denotes the overall best performance across all settings.

Method
1-shot 3-shot fix_3_shot

fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall
ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1

Zero-shot 100 60.95 44.95 60.95 44.95 100 60.95 45.33 60.95 45.33 100 61.06 45.32 61.06 45.32
1-shot 100 63.22 46.75 63.22 46.75 100 63.33 47.15 63.33 47.15 100 63.22 47.15 63.22 47.15
3-shot 100 62.91 48.51 62.91 48.51 100 62.33 47.33 62.33 47.33 100 62.91 47.22 62.91 47.22
5-shot 100 61.91 44.60 61.91 44.60 100 61.75 44.05 61.75 44.05 100 61.75 43.26 61.75 43.26
Definition 100 63.41 44.86 63.41 44.86 100 63.64 44.41 63.64 44.41 100 63.26 44.49 63.26 44.49
Numerical 100 53.67 22.11 53.67 22.11 100 54.83 24.27 54.83 24.27 100 54.41 22.55 54.41 22.55
Similar-3-shot 100 62.10 46.43 62.10 46.43 100 62.68 47.19 62.68 47.19 100 62.83 47.69 62.83 47.69
Fixed-3-shot 100 63.49 45.88 63.49 45.88 100 63.37 45.22 63.37 45.22 100 63.52 45.26 63.52 45.26
Uncertainty 100 63.33 46.91 63.33 46.91 100 63.26 46.73 63.26 46.73 100 63.06 46.45 63.06 46.45
1-shot w/ Def 100 63.06 46.47 63.06 46.47 100 63.06 46.62 63.06 46.62 100 63.37 47.47 63.37 47.47

Method
5_shot category_definition numerical

fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall
ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1

Zero-shot 100 61.02 45.27 61.02 45.27 100 61.56 46.93 61.56 46.93 0 – – – –
1-shot 100 63.18 46.45 63.18 46.45 99.65 63.17 47.91 62.95 47.75 0.15 75.00 42.86 0.12 0.07
3-shot 100 62.41 47.34 62.41 47.34 98.46 63.03 48.74 62.06 47.99 2.12 41.82 15.85 0.88 0.34
5-shot 100 61.99 44.01 61.99 44.01 100 62.52 44.93 62.52 44.93 0.15 50.00 22.22 0.08 0.03
Definition 100 63.45 44.35 63.45 44.35 100 62.83 44.90 62.83 44.90 0 – – – –
Numerical 100 53.79 22.34 53.79 22.34 100 50.29 27.23 50.29 27.23 100 62.29 46.29 62.29 46.29
Similar-3-shot 100 62.64 47.29 62.64 47.29 100 62.37 47.72 62.37 47.72 0.27 42.86 12.00 0.12 0.03
Fixed-3-shot 100 63.29 45.08 63.29 45.08 100 63.10 46.43 63.10 46.43 0.08 0.00 0.00 0.00 0.00
Uncertainty 100 63.45 46.42 63.45 46.42 100 63.76 47.85 63.76 47.85 0 – – – –
1-shot w/ Def 100 63.26 46.46 63.26 46.46 100 62.52 46.36 62.52 46.36 0 – – – –

Method
similar_3_shot zero_shot ppl

fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall
ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1

Zero-shot 100 62.83 46.69 62.83 46.69 100 61.18 45.42 61.18 45.42 100 38.21 31.67 38.21 31.67
1-shot 100 62.06 45.15 62.06 45.15 99.35 63.44 46.39 63.02 46.09 100 39.28 30.76 39.28 30.76
3-shot 100 62.29 46.16 62.29 46.16 97.81 62.90 47.41 61.52 46.37 100 42.17 33.51 42.17 33.51
5-shot 100 61.83 43.97 61.83 43.97 100 61.87 43.96 61.87 43.96 100 41.98 31.24 41.98 31.24
Definition 100 62.60 43.88 62.60 43.88 100 63.45 45.41 63.45 45.41 100 28.43 23.69 28.43 23.69
Numerical 100 58.64 29.57 58.64 29.57 100 50.98 20.52 50.98 20.52 100 46.44 38.71 46.44 38.71
Similar-3-shot 100 62.45 46.37 62.45 46.37 100 62.49 47.45 62.49 47.45 100 38.51 29.83 38.51 29.83
Fixed-3-shot 100 63.14 44.78 63.14 44.78 100 62.72 43.99 62.72 43.99 100 40.40 30.23 40.40 30.23
Uncertainty 100 63.45 47.15 63.45 47.15 100 63.64 46.61 63.64 46.61 100 46.25 35.77 46.25 35.77
1-shot w/ Def 100 62.75 46.72 62.75 46.72 100 63.18 46.73 63.18 46.73 100 19.51 15.56 19.51 15.56
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Table 12: Experimental results on the TNEWS dataset (Accuracy & macro-F1 Score, %). Blue highlights the best
inference strategy for each training method, while bold denotes the overall best performance across all settings.

Method
1-shot 3-shot fix_3_shot

fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall
ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1

Zero-shot 100 61.31 58.96 61.31 58.96 100 61.31 58.70 61.31 58.70 100 61.33 58.75 61.33 58.75
1-shot 100 61.23 59.98 61.23 59.98 100 61.45 60.08 61.45 60.08 100 61.41 60.15 61.41 60.15
3-shot 100 61.07 59.56 61.07 59.56 100 61.21 60.09 61.21 60.09 100 61.30 60.25 61.30 60.25
5-shot 100 61.73 57.66 61.73 57.66 100 61.48 57.40 61.48 57.40 100 61.48 57.72 61.48 57.72
Definition 100 60.48 59.00 60.48 59.00 100 60.84 59.56 60.84 59.56 100 60.56 59.27 60.56 59.27
Numerical 100 54.12 2.65 54.12 2.65 100 55.07 3.89 55.07 3.89 100 55.86 5.05 55.86 5.05
Similar-3-shot 100 60.60 59.02 60.60 59.02 100 60.59 59.07 60.59 59.07 100 60.47 59.20 60.47 59.20
Fixed-3-shot 100 61.11 57.92 61.11 57.92 100 61.07 58.45 61.07 58.45 100 60.91 58.66 60.91 58.66
Uncertainty 100 60.54 56.71 60.54 56.71 100 60.77 56.86 60.77 56.86 100 60.84 56.97 60.84 56.97
1-shot w/ Def 100 61.09 59.92 61.09 59.92 100 61.32 60.09 61.32 60.09 100 61.31 60.02 61.31 60.02

Method
5_shot category_definition numerical

fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall
ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1

Zero-shot 100 61.52 59.12 61.52 59.12 100 61.52 58.98 61.52 58.98 0 – – – –
1-shot 100 61.35 60.08 61.35 60.08 100 61.29 59.92 61.29 59.92 0 – – – –
3-shot 100 61.39 60.22 61.39 60.22 100 61.16 59.98 61.16 59.98 0 – – – –
5-shot 100 61.82 58.02 61.82 58.02 100 61.76 57.61 61.76 57.61 0 – – – –
Definition 100 60.89 59.73 60.89 59.73 100 60.63 59.38 60.63 59.38 0 – – – –
Numerical 100 55.10 4.64 55.10 4.64 100 31.56 0.43 31.56 0.43 100 61.24 57.09 61.24 57.09
Similar-3-shot 100 60.59 59.17 60.59 59.17 100 60.67 58.89 60.67 58.89 0 – – – –
Fixed-3-shot 100 61.01 58.40 61.01 58.40 100 60.80 57.19 60.80 57.19 0 – – – –
Uncertainty 100 60.80 56.96 60.80 56.96 100 60.73 56.85 60.73 56.85 0 – – – –
1-shot w/ Def 100 61.35 60.19 61.35 60.19 100 61.22 59.85 61.22 59.85 0 – – – –

Method
similar_3_shot zero_shot ppl

fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall fmt-suc fmt-suc fmt-suc overall overall
ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1 ratio acc macro-f1 acc macro-f1

Zero-shot 100 63.30 61.31 63.30 61.31 100 60.83 59.39 60.83 59.39 100 45.68 35.99 45.68 35.99
1-shot 100 61.98 60.49 61.98 60.49 100 61.10 59.75 61.10 59.75 100 49.46 41.59 49.46 41.59
3-shot 100 62.06 60.53 62.06 60.53 100 61.15 60.07 61.15 60.07 100 43.84 36.87 43.84 36.87
5-shot 100 62.54 58.41 62.54 58.41 100 61.94 57.85 61.94 57.85 100 47.88 39.06 47.88 39.06
Definition 100 61.37 59.26 61.37 59.26 100 60.63 59.66 60.63 59.66 100 46.21 38.56 46.21 38.56
Numerical 100 59.64 12.99 59.64 12.99 100 39.16 0.54 39.16 0.54 100 53.68 50.42 53.68 50.42
Similar-3-shot 100 63.30 61.31 63.30 61.31 100 60.83 59.39 60.83 59.39 100 45.68 35.99 45.68 35.99
Fixed-3-shot 100 62.25 58.94 62.25 58.94 100 60.96 58.37 60.96 58.37 100 49.46 40.44 49.46 40.44
Uncertainty 100 61.97 58.15 61.97 58.15 100 61.12 57.32 61.12 57.32 100 49.35 41.01 49.35 41.01
1-shot w/ Def 100 62.20 60.65 62.20 60.65 100 61.30 59.90 61.30 59.90 100 49.89 41.75 49.89 41.75
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D Packing Results795

A common optimization technique in the pre-796

training stage of LLMs is packing, where multiple797

training samples are concatenated into a single se-798

quence to improve computational efficiency. When799

applied to SFT for classification tasks, packing in-800

troduces two effects: (i) it increases the effective801

batch size and context length, and (ii) it allows sam-802

ples within a packed sequence to attend to preced-803

ing samples—referred to as contaminated attention.804

We hypothesize that this second effect may mimic805

the behavior of ICL training.806

To test this hypothesis, we conducted experi-807

ments on seven datasets under three conditions: (i)808

no packing, (ii) packing, and (iii) packing with809

attention mask to prevent cross-sample contamina-810

tion.811

From the results in Table 13, on QI, SC,812

EC, IT datasets, we observe that neat packing813

yields higher zero-shot accuracy, while stan-814

dard packing achieves better few-shot perfor-815

mance—providing empirical support for our hy-816

pothesis that cross-sample attention mimics in-817

context learning. Moreover, the no-packing setting818

yields the best performance on five of the seven819

datasets, specifically the QI, SC, EC, EIC, and TN.820
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Table 13: Performance of packing strategies across all datasets. Accuracy and macro-F1 (%) are reported for 1-shot,
3-shot, 5-shot, and zero-shot settings. Cells shaded in green denote cases where standard packing outperforms neat
packing, whereas yellow shading indicates the opposite. Bold numbers mark the best results in each column.

Dataset Method 1-shot 3-shot 5-shot zero-shot

Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1

QI
No Packing 89.23 83.29 91.08 84.99 91.43 85.35 92.28 86.33

Packing 90.93 83.69 91.30 84.65 91.29 84.85 91.20 84.28
Neat Packing 91.00 79.38 91.29 80.01 91.15 83.99 91.58 84.94

SC
No Packing 63.86 56.02 65.30 56.16 64.73 55.34 67.43 58.64

Packing 64.90 51.97 64.76 51.37 65.10 51.96 65.07 51.47
Neat Packing 61.93 51.20 62.16 49.36 61.63 48.12 65.27 54.44

QT
No Packing 51.53 42.60 51.47 42.92 51.30 42.77 51.43 43.10

Packing 46.99 41.50 47.94 42.21 49.38 43.38 50.10 41.79
Neat Packing 51.19 42.24 51.82 42.71 50.24 42.49 51.32 42.76

EC
No Packing 83.30 78.97 92.60 88.73 93.50 89.92 93.70 90.17

Packing 91.55 87.94 91.20 86.80 91.60 87.03 91.95 87.05
Neat Packing 76.75 70.92 89.55 84.73 90.85 85.91 92.85 88.70

EIC
No Packing 83.43 82.40 83.39 82.67 84.04 82.93 82.74 81.73

Packing 81.66 79.20 81.96 79.62 82.74 81.05 81.62 74.95
Neat Packing 82.61 80.80 83.52 82.66 83.22 82.09 83.39 82.77

IT
No Packing 61.31 44.95 60.95 45.33 61.02 45.27 61.18 45.42

Packing 63.41 47.14 63.83 48.15 64.06 47.56 63.95 48.41
Neat Packing 63.49 47.50 62.75 46.91 63.18 47.24 63.99 48.99

TN
No Packing 61.31 58.96 61.31 58.70 61.52 59.12 61.71 59.51

Packing 60.74 56.62 60.70 56.46 60.58 56.36 60.62 56.66
Neat Packing 60.86 58.33 60.65 57.41 60.84 57.42 61.40 58.58
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