
OST-Bench: Evaluating the Capabilities of MLLMs in
Online Spatio-temporal Scene Understanding

Jingli Lin1,2∗, Chenming Zhu1,3∗, Runsen Xu1,4, Xiaohan Mao1,2, Xihui Liu3

Tai Wang1†, Jiangmiao Pang1†

1Shanghai AI Laboratory, 2Shanghai Jiao Tong University,
3The University of Hong Kong, 4The Chinese University of Hong Kong

∗Equal contribution †Co-corresponding

https://rbler1234.github.io/OSTBench.github.io/

Figure 1: OST-Bench is designed from the perspective of an embodied agent dynamically exploring
static indoor environments, with a focus on online and spatio-temporal understanding. Compared to
the conventional offline setting (top right), which answers questions based on a fixed-length video
of the scene, the bottom section illustrates our online setting: for the same question, the agent’s
answers evolve as it explores the scene, changing from blue (t1) to red (t2) to green (t3), reflecting its
continuously updated understanding.

Abstract
Recent advances in multimodal large language models (MLLMs) have shown
remarkable capabilities in integrating vision and language for complex reasoning.
While most existing benchmarks evaluate models under offline settings with a fixed
set of pre-recorded inputs, we introduce OST-Bench, a benchmark designed to
evaluate Online Spatio-Temporal understanding from the perspective of an agent
actively exploring a scene. The “Online” aspect emphasizes the need to process and
reason over incrementally acquired observations, while the “Spatio-Temporal” com-
ponent requires integrating current visual inputs with historical memory to support
dynamic spatial reasoning. OST-Bench better reflects the challenges of real-world
embodied perception. Built on an efficient data collection pipeline, OST-Bench
consists of 1.4k scenes and 10k question-answer pairs collected from ScanNet,
Matterport3D, and ARKitScenes. We evaluate several leading MLLMs on OST-
Bench and observe that they fall short on tasks requiring complex spatio-temporal
reasoning. Under the online setting, their accuracy declines as the exploration
horizon extends and the memory grows. Through further experimental analysis,
we identify common error patterns across models and find that both complex clue-
based spatial reasoning demands and long-term memory retrieval requirements
significantly drop model performance along two separate axes, highlighting the
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core challenges that must be addressed to improve online embodied reasoning.
To foster further research and development in the field, our codes, dataset, and
benchmark are available at https://github.com/InternRobotics/OST-Bench.

1 Introduction
In the real world, humans continuously perceive and update their understanding of the environment
through sequential visual observations. At every moment, we are aware of our spatial state and how
it evolves with respect to surrounding objects and scenes. We expect embodied agents to possess
similar online scene understanding capabilities. For instance(Fig. 1), in an embodied navigation
task[6, 52, 12, 28, 44], an agent should be able to incrementally construct a representation of its
surroundings ("I have seen a brown pillow on the bed in the bedroom."), track its current status ("I
am now in the living room next to the bedroom, facing south."), and reason about dynamic spatial
relationships ("The brown pillow is now on my rear left."). Such awareness enables the agent to
instantly respond to commands ( "Go and get the brown pillow.") and take correct actions.

Recent advances in multimodal large language models (MLLMs)[9, 18, 30, 39, 29, 49, 26] have
shown remarkable capabilities in integrating vision and language for complex reasoning. However,
most existing benchmarks [15, 31, 32, 8, 24, 5], evaluate models under offline settings, where
reasoning is performed over a fixed set of pre-recorded inputs, such as reconstructed 3D scenes or
images and videos, this does not capture the online nature of embodied tasks.

To address this gap, we introduce OST-Bench, a benchmark designed to evaluate Online Spatio-
Temporal understanding from the perspective of an agent actively exploring a scene. The term
Online emphasizes the agent’s need to perceive, remember, and reason over incrementally received
observations, rather than complete, pre-recorded scene data. The term Spatio-Temporal highlights
the need to integrate current visual observation with historical memory to support dynamic spatial
reasoning. To more accurately simulates real-world embodied perception, OST-Bench defines tasks
from these perspectives: the agent, its surrounding environment, and their relationship, contains
three main categories(Fig.2): (1) Agent State: the agent’s understanding of its own state, (2) Agent
Visible Info: the agent’s dynamic interpretation of visible scene information, and (3)Agent-object
Spatial Relationship: the agent’s dynamic understanding of spatial relationships with objects, all
posed in an online, temporally grounded fashion. OST-Bench comprises 1.4k real-world scenes
sourced from the test and validation splits of ScanNet[20], Matterport3D[14], and ARKitScenes[11],
accompanied by 10k QA pairs covering a diverse range of subtypes. Our benchmark provides a
rigorous testbed for assessing the online spatio-temporal reasoning ability of MLLMs in realistic,
embodied settings.

We evaluate leading MLLMs on OST-Bench and find its online spatio-temporal nature poses sig-
nificant challenges for the models, even the most advanced models lag behind human performance
by over 30%. Models perform poorly on tasks requiring complex spatio-temporal reasoning, with
accuracy declining as exploration steps increase and memory grows under the online setting. Based
on an in-depth experimental analysis, we observe a phenomenon which we term Spatio-temporal
Reasoning Shortcut-when reasoning over long-term memory, models tend to avoid retrieving key
information, instead taking shortcuts and relying on shallow, unsupported inferences; further, we
design four tasks with different levels of difficulty to better delineate the models’ capability limits,
along both the spatial dimension (from single- to multi-step spatial reasoning) and the temporal
dimension (from keyframe- to sequence-baesd context), and observe a clear performance drop on
both dimensions. This reveals that both complex clue-based spatial reasoning and long-term memory
retrieval are two distinct weaknesses that hinder the model’s performance on OST-Bench, highlighting
the core challenges that must be addressed to advance online embodied reasoning. Moreover, our
fine-tuning analysis shows that data-driven training alone yields only limited improvement, suggesting
that further progress will likely require advances in model architecture and training methodology
rather than sheer data scaling.

2 Related Work

Spatial Reasoning Benchmarks. Early scene understanding benchmarks[8, 32, 24, 31, 50, 54]
introduced diverse task taxonomies to comprehensively evaluate various aspects of visual scene inter-
pretation, with spatial understanding consistently recognized as the most fundamental component.
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Dataset Input
Modality Settings Spatio-Temporal

Awareness

Output Format

Text Num.

ScanQA [8] Video/PC. Offline ✗ ✓ ✗
SQA3D [32] Video/PC. Offline ✗ ✓ ✗
SceneVerse [24] Video/PC. Offline ✗ ✓ ✗
MMScan [31] Video/PC. Offline ✗ ✓ ✗
SpatialRGPT-Bench [19] Image Offline ✗ ✓ ✓
CV-Bench [38] Image Offline ✗ ✓ ✓
VSI [46] Video Offline ✗ ✓ ✓

OST-Bench Video Online ✓ ✓ ✓

Table 1: Comparison with other spatial reasoning datasets. "PC." abbrev for "Point cloud".
"Text" and "Num." represent whether the output is a string or a numerical value. Compared to other
benchmarks, ours is clearly distinguished by its focus on the online setting and the requirement for
spatio-temporal awareness in models.

Benchmarks such as ScanQA[8], SQA3D[32], SceneVerse[24], and MMScan[31] emphasized seman-
tic understanding and incorporated object locations and spatial relations, they largely treated spatial
relationships as semantic attributes, focusing primarily on complex spatial semantics rather than
explicitly targeting spatial reasoning. With the rapid advancement of Multimodal Large Language
Models (MLLMs), recent benchmarks have begun to place greater emphasis on spatial reasoning eval-
uation, SpatialR-GPT[19] and CV-Bench[38] require models to reason about 3D information, such as
depth and distance from a single image, VSI[46] proposed a finer-grained categorization of spatial
reasoning tasks, systematically evaluating models’ ability to infer 3D scene layouts from 2D video in-
puts, covering both relative and absolute spatial relationships. Existing spatial reasoning benchmarks
predominantly operate in an offline setting, focusing on static scenes and requiring models to perform
reasoning over a fixed set of images or videos of predefined length. In contrast, our OST-Bench
adopts an online setting, emphasizing dynamic scene understanding from an agent-centric perspective,
and offers an alternative perspective for evaluating spatial reasoning capabilities. It includes a wider
range of complex question types to assess more diverse and fine-grained spatio-temporal reasoning
abilities.

Video Benchmarks for Temporal Understanding. Video benchmarks for temporal understanding
require models to reason over both temporal and visual dimensions. Early efforts in video temporal
understanding primarily focused on semantic comprehension from a third-person perspective[45,
47, 22, 43], mostly without considering 3D spatial perception. More recent benchmarks, driven by
embodied task settings, have introduced characteristics such as: (1) egocentric perspective[23, 33, 13],
where tasks are presented from a first-person viewpoint, (2) online inference[48, 16, 27, 16], requiring
online processing of continuously streaming video input, and (3) spatial understanding[33, 27, 13],
which evaluates models’ awareness of spatial elements. However, spatial tasks in these benchmarks
are often limited to 2D relationships or short-term motion cues, reflecting more of a content-level
understanding rather than deeper spatial reasoning, lacking complex 3D spatial reasoning that requires
integrating multi-view 2D observations into a coherent 3D representation. In contrast, OST-Bench is
an egocentric, online temporal video benchmark that uniquely emphasizes 3D spatial reasoning, a
core ability for real-world embodied tasks such as navigation and exploration.

3 OST-Bench
In this section, we present our comprehensive methodology for establishing OST-Bench, which
comprises three core components: task formulation, the data collection and processing pipeline, and
benchmark sample generation.

3.1 Task Formulation
Before introducing OST-Bench, we clarify the assumptions underlying our formulation of scene
understanding. (1) While existing real-world datasets predominantly feature static scenes, we
specifically focus on static environments in our current benchmark design, meaning the positions
and states of objects remain unchanged during exploration; the agent is the only dynamic element.
(2) There is no defined absolute coordinate system in the scene, so all spatial references are defined
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relative to an anchor such as an object, viewpoint, or the agent itself. As a result, the position of any
object or agent cannot be defined in isolation. All spatial measurements fall into four categories:
relative distance, absolute distance, relative direction, and absolute direction.

A static scene consists of a set of immobile objects, and understanding such a scene involves reasoning
about individual entities and their relationships[31], such as the object attribute(intrinsic properties
of individual objects, including category, color, material, shape, size, and function), the attribute /
spatial relationship between objects, and the spatial relationship between objects and a given
viewpoint (provided either textually or via a virtual camera input). When a dynamic agent is
introduced, it introduces new relational dynamics and opens up additional avenues for investigation.
These can be categorized into three main categories that form the core focus of our benchmark
evaluation: (1) Agent state: The position and orientation of the agent, which continuously change as
the agent explores. (2) Agent visible info: The perceptual information available from the agent’s
point of view at a given moment includes the existence of visible objects, their count, diversity, and
the timing of their appearance. The information visible to the agent is continuously updated as the
agent explores the scene. (3) Agent-object spatial relationship: 3D spatial relations between the
agent and objects, described by relative or absolute distance/direction, constantly change as the agent
explores.

3.2 Meta-dataset Collection and Processing
Base Dataset Acquisition. The three real scene datasets, ScanNet[20], ARKitScenes[11] and
Matterport3D[14], contain rich scene information along with RGB-D videos/images and their corre-
sponding camera information, totaling 7.6k scenes. Building on this foundation, EmbodiedScan[41]
provided a large number of high-quality 9-DOF bounding box annotations for the objects in these
scenes. MMScan[31] further enriched these scenes with a large number of highly quality, manually
annotated object- and region-level semantic annotations. We selected a total of 1.4k scenes from the
validation/test splits of these three datasets and constructed our dataset based on the annotations from
EmbodiedScan and MMScan.

Exploration Route Generation. To construct an agent-centric exploration dataset, we require first-
person videos of environments accompanied by camera parameters. While ScanNet and ARKitScenes
provide such first-person videos along with camera pose data suitable for modeling agent trajectories,
Matterport3D offers only multi-view images without continuous exploration paths. To address this
limitation, we generate synthetic exploration trajectories within Matterport3D by constructing a graph
of camera viewpoints and applying the minimum-spanning tree algorithm[36]. This ensures coherent
movement and obstacle-free transitions between connected nodes. To maintain observation continuity,
we enforce an image-overlap threshold between adjacent viewpoints. This approach enables us to
simulate first-person exploration videos for Matterport3D scenes, complete with associated camera
parameters.

Visible Information Processing. OST-Bench requires fine-grained visibility annotations at the frame
level, which we define in two forms: attribute visibility and spatial visibility. Attribute visibility
refers to the ability to determine the existence of an object based on a single frame. Even if an object
is partially visible in a frame, as long as its visible portion is sufficiently large, you can infer attributes
such as the object’s type or color. Spatial visibility is used to generate questions in the OST-Bench
that are related to the object’s 3D spatial information. Therefore, for spatially visible objects, in
addition to being attribute visible, we require that their center position, size, shape, and other spatial
information can be inferred from observation. In practice, the attribute and spatial visibility of an
object are determined by thresholding the projected area of its point cloud and the visibility of the
vertices of its 9-DoF bounding box. Additional implementation details are provided in Appendix A.2.

3.3 Benchmark Samples Generation
Rule-based Generation. OST-Bench is designed in a multi-round dialogue format. In each round, the
model receives a sequence of newly observed, temporally ordered frames, which are appended to all
previously seen frames to simulate a streaming video input. At the end of the round, a new question is
posed based on the accumulated observations. As the dialogue progresses, the input sequence grows
incrementally, requiring the model to perform reasoning over an expanding spatio-temporal context.
All questions are framed from an online perspective, grounded in the agent’s current situation.

Our questions span three major categories: Agent State, Agent Visible Info, and Agent–Object Spatial
Relationships. As illustrated in Fig.2, each main category contains multiple subtypes. Across all
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Figure 2: OST-Bench categorizes questions into three main categories. Each main category includes
several subtypes; in total, the benchmark comprises 15 fine-grained question subtypes.
categories, the questions fall into four general formats: Judgment, Counting, Temporal Localization,
and Estimation. Judgment questions evaluate the model’s qualitative understanding of facts—whether
something is true or not, or whether something has occurred; Counting questions assess the model’s
ability to quantitatively enumerate information; Temporal Localization questions test the model’s
ability to locate events along the time axis. (We use the round index as a discrete timestamp in
OST-Bench); Estimation questions evaluate the model’s ability to approximate measurable quantities,
such as physical distances or angular differences.

Based on the processed meta-datasets, we define dedicated rule-based generation templates to
construct corresponding data samples for each subtype within the three main categories. Detailed
generation procedures for each fine-grained subtype, including rule definitions and templates used,
are provided in Appendix A.3. Several representative samples of these subtypes are illustrated
in Fig.2. Our benchmark comprises approximately 1.4k test and validation scenes selected from
ScanNet, Matterport3D, and ARKitScenes. For each scene, we generate a single agent exploration
trajectory. Along each trajectory, multiple dialogue rounds are defined, each containing a single
question, resulting in a total of 10k questions across the dataset.

Data Quality. Ensuring high-quality benchmark data is crucial. Based on the high-quality manual
annotations from Embodiedscan and MMScan, we design and iteratively refine tailored rule-based
generation strategies for each subtask to ensure semantic validity, robustness, and clarity, avoiding
common corner cases and ambiguities. To assess dataset quality, we employ a rigorous validation
protocol in which questions are randomly sampled for manual review. Samples lacking sufficient
information or containing incorrect answers are marked as invalid. Human evaluation results confirm
that the dataset meets our strict quality standards, with an error rate below 5%, thereby ensuring a
reliable and high-quality benchmark.

4 Experiments

4.1 Benchmark Models & Evaluation Metrics

We evaluate the performance of multiple multi-modal large language models (MLLMs), including
both proprietary models (Claude-3.5-Sonnet[7], GPT-4o[34], GPT-4.1[35], Gemini-2.0-Flash[37],
and its thinking variant) and open-source models (InternVL-2.5[17], QwenVL-2.5[10], LLaVA-
Onevision[25], and LLaVA-Video[51] of different scales). Each model is tested in a zero-shot setting
and conducts inference in a multi-turn dialogue format. (In addition to these general-purpose VLMs,
we also include several models specifically designed with explicit spatial grounding or memory
mechanisms to varying degrees, their results are reported in Appendix C.1.) To establish performance
boundaries, we include two baselines: a human baseline and a chance-level baseline. For the
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Agent State Agent Visible Info Agent-object Spatial Relationship
Position Orientation Existence Quantity Diversity Order Direction DistanceMethods

JUD. EST. JUD. EST. JUD. TEMP. CNT. JUD. JUD. JUD. TEMP. EST. JUD. TEMP. EST.
Proprietary
Claude-3.5-Sonnet 65.1 36.2 50.6 30.3 85.8 67.0 57.9 57.1 60.0 39.2 18.3 21.9 43.8 54.9 19.0
Gemimi-2.0-Flash 59.7 27.3 56.7 36.5 89.6 70.8 59.4 78.7 55.6 42.0 17.8 21.5 45.5 48.9 27.1
Gemimi-2.0-Flash(Thinking) 57.4 36.3 61.1 33.4 88.1 74.8 61.9 63.6 73.1 50.9 51.7 23.3 51.1 56.8 22.7
GPT-4o 55.6 20.5 45.6 33.6 90.6 75.6 59.8 78.2 59.6 46.1 19.5 21.4 43.1 50.6 20.4
GPT-4.1 64.2 30.7 60.8 33.2 90.8 78.0 60.6 82.1 70.8 51.5 23.4 28.6 44.9 53.6 23.9
Open-source
InternVL-2.5-8B 51.7 26.1 49.4 40.4 86.3 51.3 56.4 60.7 38.4 37.2 33.8 22.8 43.0 42.9 27.9
InternVL-2.5-38B 56.7 31.8 54.6 38.4 91.7 74.7 61.1 79.8 62.1 42.1 20.6 27.7 42.7 42.5 28.1
InternVL-2.5-78B 60.8 34.4 49.9 40.7 90.7 74.4 65.9 77.9 61.2 43.4 22.4 17.8 46.7 44.4 22.9
QwenVL-2.5-7B 49.8 19.3 51.8 40.8 78.6 37.3 62.1 56.3 28.5 41.0 28.9 12.2 44.9 43.6 18.6
QwenVL-2.5-32B 51.0 31.1 53.5 39.4 85.3 64.8 59.2 73.4 41.8 39.5 24.9 25.7 43.6 39.1 20.3
QwenVL-2.5-72B 57.0 27.6 52.2 37.1 86.1 64.5 61.5 75.7 34.5 41.4 21.1 8.2 44.5 39.3 18.7
LLaVA-Video-7B 50.4 25.4 46.1 12.1 90.4 32.3 63.1 66.5 39.3 35.4 27.3 16.2 41.3 41.8 10.8
LLaVA-Video-72B 51.0 18.0 49.2 41.6 88.0 38.8 51.0 70.9 53.7 35.5 27.7 30.9 43.8 46.2 26.3
LLaVA-Onevision-7B 53.8 11.6 51.2 7.7 90.0 34.8 66.9 51.1 33.4 35.7 27.0 38.1 43.5 35.6 21.9
LLaVA-Onevision-72B 53.8 13.9 51.6 36.2 89.0 41.8 45.8 74.8 56.6 37.8 28.9 27.3 48.2 47.0 28.2
Baseline
Human-Level 93.2 58.9 92.8 54.4 95.7 94.7 91.3 94.4 90.9 90.5 93.3 54.3 93.4 94.5 60.1
Chance-Level 50.0 37.8 50.0 39.3 50.0 29.1 25.0 33.0 25.0 36.0 33.2 47.6 36.0 31.2 30.3

Table 2: Full evaluation results of OST-Bench. This table reports the performance of each
model across all fine-grained question subtypes, "JUD."/ "CNT." / "TEMP." / "EST." abbrev for
"judgement","counting","temporal-localization", and "estimation".

Methods Avg A. State A. Info AO. JUD. TEMP. CNT. EST.
Proprietary
Claude-3.5-Sonnet 47.8 45.6 65.6 32.9 57.4 46.7 57.9 26.9
Gemimi-2.0-Flash 49.5 45.1 70.8 33.8 61.1 45.8 59.4 28.1
Gemimi-2.0-Flash(Thinking) 54.2 47.1 72.3 42.8 63.6 61.1 61.9 28.9
GPT-4o 48.7 38.8 72.8 33.5 59.8 48.6 59.8 24.0
GPT-4.1 53.4 47.2 76.5 37.7 66.4 51.7 60.6 29.1
Open-source
InternVL-2.5-8B 44.6 41.9 58.6 34.6 52.4 42.7 56.4 29.3
InternVL-2.5-38B 50.8 45.4 73.9 34.0 61.4 45.9 61.1 31.5
InternVL-2.5-78B 51.1 46.5 74.0 32.9 61.5 47.1 65.9 29.0
QwenVL-2.5-7B 41.2 40.4 52.6 31.5 50.1 36.6 62.1 22.7
QwenVL-2.5-32B 46.9 43.8 64.9 32.2 55.4 42.9 59.2 29.1
QwenVL-2.5-72B 45.6 43.5 64.5 28.9 55.9 41.6 61.5 22.9
LLaVA-Video-7B 39.3 33.5 58.3 28.8 52.8 33.8 63.1 16.1
LLaVA-Video-72B 43.2 40.0 60.5 35.1 56.0 37.6 51.0 29.2
LLaVA-Onevision-7B 40.4 31.1 55.2 33.6 51.2 32.5 66.9 19.8
LLaVA-Onevision-72B 43.4 38.9 61.6 36.2 58.8 39.2 45.8 26.4
Baseline
Human Level 83.5 74.8 93.4 81.0 93.0 94.2 91.3 56.9
Chance Level 36.9 44.3 32.4 35.7 40.0 31.2 25.0 38.8

Table 3: Model performance across main categories and question formats. "A." abbrev for
"Agent" and "AO." abbrev for "Agent-Object Spatial Relationship". The open-source and proprietary
models with the highest and second-highest overall average scores are highlighted with bright green
and light green marks.

human baseline, we ensure that participants have no prior exposure to the test scenes. The chance-
level method adopts a random selection approach, randomly picks one answer from all possible
choices for Judgement/Counting/Temporal-Localization questions, and for Estimation questions, it
always outputs the mean value calculated from all potential numeric. As for the evaluation metrics,
Judgement questions are considered correct if the model selects the same option as the ground truth.
For Counting and Temporal Localization questions, the model’s output—whether a number or a turn
index—must exactly match the ground truth to be deemed correct. For Estimation questions, we
adopt the Mean Relative Accuracy (MRA) metric from VSI[46] to score the similarity between the
model’s floating-point output and the ground truth.

4.2 Main Results
We report the performance of various models on our benchmark. Tab. 2 presents the performance of
each model in all different subtype. Tab.3 summarizes the models’ overall performance, including
their overall average scores, average scores for each of the three main categories, and performance
across different question formats. Additional model results and further analysis are provided in
Appendix C.1.
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Substantial Gap between MLLMs’ and Human’s Performance. Model accuracy lags significantly
behind human performance, with consistent gaps across all question types as shown in Tab.2. Accord-
ing to Tab.3, even the most advanced models lag behind human performance by nearly 30% in the
overall average score. This performance gap remains substantial across three main task categories and
all question formats. These findings suggest that current MLLMs fall short on OST-Bench, illustrating
how our benchmark presents a novel challenge, demanding stronger online spatio-temporal perception
and reasoning capabilities. This observation motivates us to investigate further the reasons for the
subpar performance of the models on this benchmark.

Weak Spatio-Temporal Reasoning in MLLMs. As shown in Tab. 2 and 3, a striking contrast can be
observed across the three main task categories. Although most models achieve average scores close
to 70% in the Agent Visible Info category, with performance in each subtype significantly above
chance level, their scores in the Agent State and Agent-Object Spatial Relationship categories remain
near chance level across all subtypes. This suggests that current models are capable of dynamically
perceiving scene information with temporal awareness, but lack the ability to perform complex
spatio-temporal reasoning.

Performance Drop During Exploration. As illustrated in Fig. 3, we observe a significant decline in
model accuracy as the agent continues to explore with an increasing number of sequential observations
in the online setting. This is expected: for each question, the agent must reason based on both the
current observation and its historical memory. As the number of exploration turns grows, the amount
of relevant past information the agent needs to retain also increases, naturally raising the difficulty of
both perception and reasoning. We further analyze how performance evolves for two representative
models, InternVL-2.5-38B and GPT-4.1, across the three main question categories. For Agent Visible
Info questions, accuracy declines gradually and consistently over turns. In contrast, for Agent-Object
Spatial Relationship and Agent State questions, performance drops sharply within the first few steps
(typically within 2 to 4 turns) to near chance level, and remains low in subsequent turns.

Comparison of Different Models. When comparing the performance of different models in Tab. 2
and 3, we find that proprietary models demonstrate significantly stronger performance compared
to open-source ones. For different variants of the same open-source model, scaling from smaller
configurations (7B/8B) to larger ones (>32B) consistently leads to notable performance gains,
particularly on the questions under the Agent visible info category; Enabling the "thinking" mode
in Gemini-2.0-Flash results in substantial improvements over the original version, especially on
the questions with Temporal Localization format and the those under the Agent-Object Spatial
Relationship category. This suggests that the thinking mode effectively enhances both spatial and
temporal awareness.

Figure 3: Model performance over exploration time. The right side shows a general decline
in answer accuracy for all models; the left side illustrates the accuracy trends across three main
categories for InternVL-2.5-38B and GPT-4.1.
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Figure 4: Distribution of three error types across
the three task categories in OST-Bench.

Figure 5: An example of Spatio-temporal
Reasoning Shortcut, the green text indicates
correct reasoning by the model, while the
red text highlights wrong reasoning.

4.3 Experiment Analysis

4.3.1 Insights from Model Explanations

To gain deeper insight into the weaknesses of models on OST-Bench, we prompt them to output not
only their final answers but also their reasons. We manually examine the model outputs and identify
the sources of errors. Since the model’s inference process involves three key stages: understanding
and following prompts, extracting information from observations, and performing spatio-temporal
reasoning. Based on the stage at which the failure occurs, we categorize errors into three types: (1)
Prompt Analysis Error, arising from the model’s failure to correctly interpret the task setup or follow
the given instructions; (2) Perception Error, where the model fails to accurately extract information
from the visual observations by overlooking or misidentifying objects; (3) Reasoning Error, caused
by incorrect spatio-temporal reasoning based on the information perceived. These three error types
exhibit a clear progressive relationship. We select several representative open-source/proprietary
models (GPT-4o, Gemini-2.0-Flash-Thinking, InternVL-2.5-78B) and examine 30 error cases for
each major category per model, totaling 270 manual in-depth inspections.

Error Distribution Statistics on OST-Bench. The statistical results in Fig.4 show that Prompt
Analysis Errors are relatively rare across all three major task categories, indicating that models
generally understand the novel tasks and instructions introduced by OST-Bench. Perception Errors
are the dominant failure mode for the Agent Visible Info category. In contrast, for tasks requiring
more complex spatio-temporal reasoning, such as Agent–Object Spatial Relationships and Agent
State, Reasoning Errors constitute a substantial portion of the failures. Based on the number of errors
per task category and their distribution across the three error types, we estimate that Reasoning Errors
account for over 60% of all errors, making them the primary bottleneck limiting current MLLM
performance on OST-Bench.

Spatio-temporal Reasoning Shortcut of MLLMs. OST-Bench requires models to reason online
over space and time, leveraging past observations to build spatial connections between the current
state and prior states or previously seen objects. Within our in-depth error analysis, the model’s
Reasoning Error reflects a lack of this ability and reveals a common phenomenon as follows: The
model tends to take shortcuts in reasoning, performing shallow and unsupported inference based on
minimal information, and is reluctant to retrieve and utilize key information from long-term memory
that could aid in answering the question. We name this phenomenon as Spatio-temporal Reasoning
Shortcut. As shown in Fig. 5 example, the model correctly identifies that a television appeared in
earlier frames and recognizes its own positional change over time. However, it makes an unfounded
inference that the TV must now be behind it based solely on the fact that the TV is currently not
visible, without using available spatial anchors such as the locations of a table or chair that could help
establish a grounded reference frame. Additional examples of such shortcut behaviors are provided
in Appendix C.2 to further illustrate their prevalence.

4.3.2 Cross-View Analysis
While most models struggle with complex spatio-temporal reasoning over sequentially growing
memory, we introduce a targeted subset of OST-Bench to better delineate the capability boundaries of
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Figure 6: Single- vs. multi-step spatial con-
nection settings. Target objects and spatial
clues are highlighted.

Figure 7: Model performance across four task
settings: keyframe- vs. sequence-based con-
text, and single- vs. multi-step spatial connec-
tion.

models. Questions of this subset focus on the spatial relationship between the agent and two objects
that appear in different frames (e.g., "Which object is more to your left?"). It requires the model to
construct cross-view spatial connections to answer correctly. It evaluates performance across two
dimensions:

(1) Single- vs. Multi-step Spatial Connection. In the single-step setting, the spatial connection
between two target objects can be directly inferred by analyzing the pair of the two frames that
contain them. In contrast, the multi-step setting demands higher-level reasoning capabilities, where
single-step pairwise frame analysis proves insufficient. This scenario requires the model to integrate
spatial cues across multiple keyframes (typically more than two), iteratively establishing pairwise
relationships between frames to enable chained reasoning through intermediate steps. As illustrated
in Fig. 6, in the single-step case, the spatial connection between the computer and the white bin can
be directly inferred through the shared objects (chair and table) in the single pair of images. While in
the multi-step case, establishing the spatial connection between the bathtub and the gray trash bin
necessitates an anchor image to bridge intermediate objects (trash bin → toilet → potted plant →
bathtub), forming a multi-step spatial reasoning chain.

(2) Keyframe- vs. Sequence-based Context. In the keyframe-based setting, all keyframes that
contain target objects or spatial cues sufficient to solve the problem are directly provided as input. In
contrast, the sequence-based setting embeds these keyframes within a longer memory sequence that
includes many irrelevant frames. The model must identify and leverage the relevant ones, thereby
testing its capacity for long-term memory retrieval and reasoning.

This subset provides an opportunity to examine the model’s performance across different levels of
difficulty. We construct this dataset using a hybrid approach of rule-based generation and manual
filtering. We curate 200 questions and evaluate three advanced MLLMs: Gemini-2.0-Flash (Thinking),
GPT-4o, and Claude-3.5-Sonnet. For each question, models are required to provide both the answer
and its reason. Only when both the final answer and the reason are correct is the response counted as
correct. Based on our evaluation, as the results shown in Fig.7, we report the following key findings:
(1) As tasks change from single to multi-step spatial connecting setting, which requires more complex
reasoning, all models experience a substantial drop in accuracy; (2) Long-memory challenges further
degrade performance. When models are required to locate relevant frames from sequence-based
input rather than keyframe provided directly, accuracy drops significantly. In the most challenging
tasks, which need to establish multi-step spatial connection in sequence-based context, all models fall
to around 10% accuracy. The results show that the model’s performance drops significantly when
faced with either complex clue-based spatial reasoning requirements or long-term memory retrieval
demands. OST-Bench exemplifies this dual challenge, as it requires models to retrieve information
from a long, temporally extended memory while simultaneously constructing spatial relationships
by integrating cues from multiple images to perform multi-step reasoning. These two factors jointly
contribute to the poor performance observed on OST-Bench, highlighting the need to advance both
capabilities in future model development.
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4.3.3 Fine-tuning Analysis

To dig deeper into the upper bound of current models’ capabilities and to better understand how
much of the performance gap can be recovered through training with in-domain data, we conducted
fine-tuning experiments on several representative models. Following a procedure similar to that used
for constructing the benchmark samples, we generated training data from 7k training scenes across
ScanNet, Matterport3D, and ARKitScenes, yielding a total of 50k annotated samples. All models
were fine-tuned for a single epoch, and the results are summarized in Tab. 4. Overall, all evaluated
models achieved performance gains exceeding 10% after fine-tuning. However, a closer analysis
reveals several important insights:

Method Setting Overall JUD. EST. CNT. Temp-Loc. A State A Info AO
Zero-Shot 41.2 50.1 22.7 62.1 36.6 40.4 52.6 31.5QwenVL2.5-7B Fine-Tuned 54.0 59.0 41.2 74.6 50.2 48.3 69.8 43.5
Zero-Shot 44.6 52.4 29.3 56.4 49.2 41.9 58.6 34.6InternVL2.5-8B Fine-Tuned 57.4 64.1 38.5 74.9 57.5 44.0 79.3 46.3
Zero-Shot 50.8 61.4 31.5 61.1 45.9 45.4 73.9 34.0InternVL2.5-38B Fine-Tuned 60.2 68.4 44.1 73.1 56.1 50.8 81.7 47.5

Table 4: Performance comparison of models under zero-shot and fine-tuned settings. "A." abbrev
for "Agent" and "AO." abbrev for "Agent-Object Spatial Relationship".

• Among the three major task categories, the largest improvements emerged in Agent Visible
Info tasks — particularly for models with smaller parameter sizes. In contrast, the other
two task categories, despite showing some gains, remained at or below 50% accuracy.
This indicates that even with in-domain adaptation, models still struggle with tasks that
demand complex spatio-temporal reasoning. Simple supervised fine-tuning on OST-Bench
is therefore insufficient to resolve its core challenges.

• All four question formats benefited from fine-tuning, yet deeper inspection of predictions
reveals more nuanced observations. Although fine-tuning improves the scores of Estimation
(EST) and Judgement (JUD) tasks, closer inspection reveals that these gains do not reflect
genuine reasoning improvements: models frequently output nearly identical values or
default to the same option across samples, indicating reliance on dataset-specific shortcuts or
memorization rather than true understanding. Moreover, their instruction-following ability
degrades post-finetuning, with many responses failing to provide both the final answer and
the required reasoning.

While fine-tuning significantly improves raw performance, a considerable gap remains compared
to human-level accuracy. This highlights two key points: (1) data-only supervised fine-tuning is
insufficient to solve the challenges posed by OST-Bench — improvements may also be required on
the model architecture or training methodology side; and (2) the benchmark itself is both challenging
and robust. Despite being constructed using templates, OST-Bench resists shortcut learning and
cannot be easily exploited through superficial patterns in the training distribution.

5 Limitations and Conclusion
In this work, we propose OST-Bench, a novel benchmark for evaluating the online spatio-temporal
reasoning capabilities of MLLMs. By emphasizing both online processing and spatio-temporal
understanding, OST-Bench more accurately reflects the complexities of real-world perception and
reasoning. Our extensive evaluation of leading MLLMs shows that OST-Bench poses significant chal-
lenges for models, particularly in tasks requiring complex spatio-temporal reasoning and maintaining
answer accuracy as input accumulates over time in an online setting. We hope the public release of
OST-Bench will serve as a catalyst for future research in online embodied understanding. We assume
that the environment remains static. However, in real-world scenarios, object states and positions
often change due to interactions with humans or agents. Additionally, our benchmark focuses solely
on the agent’s online perception and reasoning abilities, capturing only one aspect of real-world
embodied tasks. Other crucial capabilities, such as interactive behaviors and active manipulation,
are not considered in our current setting. These limitations highlight promising directions for future
research and benchmark development.
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Justification: Our work does not contain any theoretical results; all conclusions are based on
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the Sec.4, we clearly disclose all the information needed to reproduce the
main experimental results.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should
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5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes, our paper provides open access to the data and code in the abstract.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
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6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: As our benchmark is intended solely for evaluation purposes, it includes only
a test split. We clearly describe the evaluation settings for each model in Sec.3 and 4, with
additional evaluation details provided in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See in the Sec. 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, we provide details about the computer resources required for the open-
source models used in the experiments in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research fully adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Both potential positive and negative societal impacts are discussed in the
appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve the release of data or models that pose a high risk
of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide detailed attributions of all external assets used in our work in the
appendix, including their licenses and terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, our dataset introduces new assets that are well documented, with the
documentation provided alongside the assets through the dataset link we provide.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve such experiments and therefore does not include
related content.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve such experiments and therefore does not include
related content.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used only for writing, editing, or formatting purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Benchmark Details

This section provides additional details on the construction of our benchmark, including the algorithm
used for route generation, the method for determining object visibility, the rules for benchmark
sample generation, and summary statistics of the generated data.

A.1 Exploration Route Generation

While ScanNet and ARKitScenes offer egocentric video sequences with associated per-frame camera
parameters, Matterport3D provides, for each scene, n camera positions distributed throughout the
environment. From each position, k images are captured at different viewing angles, as illustrated in
Fig. 8. We aim to leverage this information to construct a simulated trajectory of an agent exploring
the scene from a first-person perspective. As mentioned in the main paper, the trajectory must
satisfy two key requirements: (a) Path continuity, the movement between adjacent frames should be
smooth, avoiding abrupt spatial jumps over short time intervals. (b) Observation continuity, adjacent
frames in the video must have a certain degree of visual overlap, which is crucial for providing the
cross-frame visual continuity necessary for constructing a coherent 3D understanding of the scene.
The videos provided by ScanNet and ARKitScenes naturally satisfy both of these requirements.

The video we aim to generate is a sequence of tuples {(ni, ki, ci)}, where ni denotes the camera
position index among the n predefined locations, ki indicates the viewing angle index among the
k available viewing angles at that position, and ci is the corresponding captured image. Based on
the two aforementioned requirements(Fig.8), (a) We first construct a minimum spanning tree(MST)
T (N,E) over all camera positions using Prim’s algorithm, where edge weights are defined by the
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Figure 8: Illustration of the route generation process. The radial arrows represent multiple different
viewing angles at a position, and the red edges denote connections generated by the MST algorithm.
The right part shows the captured images for each viewing angle of two adjacent nodes. The agent
can only move along the edges of the tree, and adjacent frames are required to have a certain amount
of overlap.

Euclidean distances between positions. We constrain the agent’s movement to either transitions
between neighboring positions connected by edges in the MST (Eni,nj ∈ E), or changes in viewing
angles at the same position. This design ensures path continuity throughout the simulated trajectory.
(b) We enforce that adjacent images in the sequence must have sufficient visual overlap. That is, for
any i ≥ 0, the overlap between images ci, ci+1 must satisfy Overlap(ci, ci+1) > threshold. This
constraint preserves observation continuity across frames. Based on these two rules, we perform a
random walk over the nodes to generate the sequence. Starting from a randomly selected initial state
with a random tuple (n0, k0, c0), at each step, we randomly select a valid and previously unseen tuple
representing the next state and append it to the sequence. This process continues until no valid tuples
remain or the sequence reaches a predefined length.

It is important to note that the generated videos ensure continuity in terms of paths and observations,
but do not guarantee temporal continuity (i.e., they only provide discrete frame ordering without
information on the time intervals between frames). However, since our benchmark setting uses rounds
as discrete timestamps, such temporal information is not required, and the provided data is sufficient
for our purposes.

A.2 Visible Information Processing

Attribute Visibility. For the attribute visibility of objects, to reduce computational complexity, we
first apply a necessary condition: if an object is visible, then at least one of its 3D points must
be projectable onto the 2D image plane within the image boundaries and without occlusion. This
condition allows for the rapid elimination of most invisible objects in each image. For objects
satisfying this condition, we project the surface points of their bounding boxes onto the image’s 2D
plane. We first compute the projected area A2 without considering occlusion or image boundaries.
Then, we calculate the visible area A1 by accounting for occlusions and restricting projections to
within the image bounds. An object is deemed visible if either (1) the ratio of visible to total projected
area, A1/A2, exceeds a predefined threshold, or (2) the absolute visible area A1 is sufficiently large.

Spatial Visibility. For the spatial visibility of objects, building on attribute visibility, we further check
whether at least five vertices of the object’s 9-DoF bounding box are visible in the frames observed
so far. If this condition is met, we assume the object’s center position, size (length, width, height),
and related spatial information are all available, thus satisfying the criteria for spatial visibility.
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A.3 Rule-based Generation

Our OST-Bench comprises three major categories: Agent State, Agent Visible Info, and Agent-object
Spatial Relationship. Within these categories, we define a total of 15 question subtypes. Data samples
are generated through a rule-based approach, guided by a set of principles outlined below.

(1) Multi-round Dialogue Format. OST-Bench adopts a multi-round dialogue setup. In each round,
4–5 new frames from the video are selected sequentially in chronological order as new observations
and appended to the historical observation sequence. Each question is asked at the timestamp of the
last frame in the current round. All information after this timestamp is considered unavailable, and
we ensure that the question is answerable based solely on the observations up to that timestamp.

(2) Sample Pool Construction and Selection. For each question subtype, we exhaustively generate
all possible data samples to form a candidate pool. We ensure that no identical question-answer pair
appears across different dialogue rounds (although the same question might occur, the answers must
differ). In each round, we first randomly select a question subtype and then randomly select a data
sample from its corresponding candidate pool as the question for that round.

(3) Object Reference. Object references in questions are divided into two types. The first is category-
level reference, where a category word is used to refer to all instances of that category (e.g., “How
many books are there in the room?”). The second is instance-level reference, where a specific
grounded description is used to uniquely identify a single object.(e.g., “Where is the yellow-covered
book labeled with the word ’atomic’?”). These descriptions are sourced from MMScan’s object-level
annotations. To eliminate ambiguity, we ensure that this referred object is the only instance of its
category within historical observations.

(4) Memory-based Reasoning Requirement. To rigorously test a model’s ability to reason over
long-term memory and avoid overly simple questions, we ensure that no question can be answered
using only the newly added observations in the current round. Each question requires integrating
information from both the current and previous dialogue rounds. For example, we ensure that at least
one relevant object is absent from the observations in the current round, thereby requiring the model
to recall it from prior rounds.

(5) Ensuring Clarity and Avoiding Ambiguity. To ensure the validity and clarity of the questions and
to avoid controversial or ambiguous cases, we impose specific thresholds during sample generation
so that the answers are unambiguous and clearly inferable. For example, when a question involves
comparing two distances, we require the difference between the distances to exceed a predefined
threshold to ensure a significant contrast. Similarly, for questions such as determining whether an
object is on the left or right, we require the object to be clearly positioned on one side. Objects
located near the decision boundary (e.g., close to the center) are excluded to prevent ambiguity in
interpretation.

Fig.9 presents the predefined templates used for generating questions across different subtypes. The
specific generation strategies for each subtype are detailed below:

Agent State. This category encompasses tasks that require the agent to judge or estimate its own
spatial state, including its position and orientation. Since there is no globally defined coordinate
system in OST-Bench, all measurements are made relative to a specific historical time point.

• Position (Judgement): In this type, the task is to determine whether the agent has moved
to the left or right (forward or backward), relative to its position and orientation at the end
of a previous round T1. The question is formulated as a binary choice, with the correct
answer being either left or right(forward or backward). Let P1 and O1 denote the position
and orientation at the end of round T1, and P2 denote the current position. We compute the
parallel and perpendicular components of the vector P2 −P1 with respect to O1. A question
is generated only if the absolute value of either component exceeds a predefined threshold
(1 meter). The correct answer is determined by the sign of the respective component: a
positive value indicates forward or right, while a negative value indicates backward or left.

• Position (Estimation): In this subtype, the task is to estimate how far the agent has moved
from its position at the end of a previous round T1. The ground-truth answer is defined as
the Euclidean distance between the agent’s current position and its position at T1.
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Figure 9: Rule-based generation templates for all subtypes in OST-Bench. Placeholders to be filled
with specific content are marked in red, and question focal points are highlighted in blue. "JUD."/
"CNT." / "TEMP." / "EST." are abbreviations for "judgement","counting","temporal-localization",
and "estimation"; "Q" and "O" denote "Question" and "Options"

• Orientation (Judgement): This binary-choice question asks whether the agent has rotated
clockwise or counterclockwise by an angle(less than 180 degrees) relative to its orientation
at the end of round T1. We compute the angle between the current orientation vector and the
one at the end of T1. To exclude ambiguous borderline cases, questions are generated only
if the angle lies within the intervals [θ, 180− θ] or [180+ θ, 360− θ], where θ is a threshold
used to exclude borderline cases. Angles within the first interval indicate clockwise rotation,
while those within the second indicate counterclockwise rotation.

• Orientation (Estimation): In this question type, the task is to estimate how many degrees the
agent has rotated, clockwise or counterclockwise, relative to its orientation at the end of a
previous round T1. The answer is given as the angle between the current orientation and the
orientation at the end of round T1.

Agent Visible Info. All objects involved in this category of questions must satisfy the attribute
visibility constraint, meaning that their existence must be identifiable from past observations. This
category evaluates the model’s understanding of agent visible information, including subtasks such
as object existence, quantity, diversity, and the order of appearances.

• Existence (Judgement): This type asks whether a certain category was visible in any of the
previous observations. The answer is binary: yes or no. To balance positive and negative
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samples, we generate questions for object categories that do not appear in prior observations
with a 50% probability.

• Existence (Temporal Localization): This type includes two forms of queries: (1) Identifying
the earliest/latest round in which a specific object was visible; (2) Identifying the round
in which two specific objects were simultaneously visible. For both forms of queries, we
ensure the answer is unique—i.e., there is exactly one round that satisfies the condition.

• Quantity (Counting): This task requires counting how many objects of a specified category
were visible in past observations. To avoid trivial cases, we exclude questions where the
correct answer is one. Additionally, to balance the distribution, negative samples—where
the target category does not appear at all—are introduced to constitute 25% of the total
samples.

• Diversity (Judgement): This question type asks which object is newly observed in the current
round. The agent must choose one object from three candidates, all of which are visible in
the current observation. Among them, only one has not appeared in any previous round,
while the other two have been seen before.

• Order (Judgement): This question type involves determining the appearance order of three
different object categories. The agent must select the correct sequence from four given
permutations. We ensure that the first appearance round of each object category is distinct
to avoid ambiguity in ordering.

Agent-Object Spatial Relationship. This category focuses on constructing spatial metric relation-
ships between the agent and a specific object O at a specific time T . The distance between the agent
and object O at time T is defined as the shortest distance from the camera coordinate to any point
in the object’s point cloud. The angle of object O relative to the agent at time T is computed as the
angle between the camera’s horizontal orientation vector and the vector pointing from the camera
to the center of object O. All objects involved in this category must satisfy the spatial visibility
constraint, which means that their center coordinates, dimensions (length, width, height), and other
spatial properties must be reliably obtainable from previous observations.

• Distance (Judgement): This question type includes three forms of queries: (1) determining
which of the three objects is currently farthest from or closest to the agent; (2) judging
whether the current distance between the agent and a specific object is greater or smaller
than the distance at the end of a previous round; (3) judging whether the current distances
between the agent and two specific objects are greater or smaller than those at the end of a
previous round, with four possible answer choices. For the first form, at least one object
must be invisible in the current round, and the distance to the correct answer object must
differ significantly (i.e., by more than a predefined threshold) from the distances to the other
two objects. For the second and third forms, the change in distance between the two time
points must also exceed the threshold to ensure a meaningful distinction.

• Distance (Temporal Localization): This task asks the agent to identify the round in which it
was closest to or farthest from a specific object. The distance in the correct round must be
significantly smaller (for closest) or larger (for farthest) than in all other rounds.

• Distance (Estimation): This query requires estimating the current distance between the agent
and a specific object, which is invisible in the current round and thus requires recalling
information from previous rounds.

• Direction (Judgement): This question type includes three forms of queries: (1) judging
whether a specific object is currently on the agent’s left or right side; (2) judging whether a
specific object currently lies in the left-front, left-back, right-front, or right-back quadrant
relative to the agent; (3) identifying which two out of three objects are currently on the same
side of the agent. For the first two forms, we enforce angular thresholds by excluding objects
whose relative angles fall within 10 degrees of the decision boundaries between sides or
quadrants, thereby avoiding ambiguity. For the third form, at least two of the three objects
are invisible in the current round, forcing the model to rely on memory.

• Direction (Temporal Localization): This query asks the agent to identify the round in which
both objects A and B were located on the same side (left or right) relative to the agent. We
ensure that in each round, both objects are clearly on either the left or right side (at least 10
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degrees away from the decision boundary), and that there is exactly one round satisfying
this condition.

• Direction (Estimation): This query requires estimating the angle, clockwise or counterclock-
wise, of a specific object relative to the agent’s current orientation. The object is not visible
in the current round, requiring retrieval from prior observations.

Figure 10: Distribution of sample counts across
different subtypes in OST-Bench. Figure 11: Word cloud (top) and dialogue

length distribution (bottom) of OST-Bench.

A.4 Statistics

Based on the generation methods described above, OST-Bench totally consists of 1.4k trajectories(a
trajectory per scene) and 10k data samples. The distribution of sample counts across different
subtypes is shown in Fig. 10. We also present in Fig. 11 the word frequency distribution in OST-
Bench (visualized as a word cloud), as well as the distribution of dialogue lengths.

A.5 Benchmark Examples

In Fig. 16 and 17 we provide more examples from our benchmark, including a total of 12 data
samples from two scenes (exploration trajectories).

B Implementation Details

For the multi-round dialogue, we first provide a system prompt to inform the models of the task setup.
In each round, we sequentially input a set of images representing new video frames, along with a
prompt containing a question, as illustrated in Fig.12. For judgment questions, we include the options
in the prompt. For the other three qusetion formats (estimation, counting, and temporal-localization),
we prompt the model to output a specific numerical value and explicitly instruct it to answer the
question. This instruction is necessary, as we observed during experiments that models may otherwise
refuse to respond, claiming insufficient information.

For proprietary models, we interact with the OpenAI and Anthropic APIs, both of which support multi-
round dialogue with image inputs. In these APIs, models are invoked by explicitly specifying their
model names. For the OpenAI API, we use gpt-4o for GPT-4o, gpt-4.1 for GPT-4.1, gemini-2.0-flash
for Gemini-2.0-Flash, and gemini-2.0-flash-thinking-exp for its thinking variant. For the Anthropic
API, we use claude-3-5-sonnet-latest to access Claude-3.5-Sonnet. The system prompt is set to the
task description, and each round’s input includes newly added images and questions. For open-source
models (InternVL, QwenVL, LLaVA-Onevision, and LLaVA-Video), we manually construct the
multi-round context by concatenating the dialogue history, new images, and the current prompt as
the input at each round. To avoid out-of-memory errors, input images are resized accordingly. For
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Figure 12: Model input content, including the system prompt and inputs for each round. Text
placeholders to be filled are highlighted in red, while the green <image> token represent image
placeholders to be filled.

models with up to 8 billion parameters, inference is run on a single NVIDIA A100 GPU. For models
with 32 billion parameters or more, we perform multi-GPU inference using 8 NVIDIA A100 GPUs
via model and data parallelism. Additionally, we implement multithreaded processing to accelerate
the inference of open-source models.

C Experiment Analysis Details

C.1 Spatially-Grounded Model Evaluation

In addition to general-purpose VLMs, we further evaluate several representative models that incorpo-
rate spatial grounding and memory mechanisms to varying degrees, including Spatial-MLLM[42],
VLM-3R[21], and LLaVA-3D[53].

• Spatial-MLLM and VLM-3R follow a VGGT[40] + VLM architecture and take RGB image
sequences as input, where VGGT provides geometry-aware scene representations.

• LLaVA-3D leverages RGB-D image sequences to encode 3D spatial information into 2D
token embeddings.

All three models were trained on spatial reasoning datasets and achieved strong results on their
respective benchmarks. We evaluate their performance on OST-Bench and compare them to their
corresponding base models — Spatial-MLLM vs. QwenVL2.5-3B, and VLM-3R / LLaVA-3D vs.
LLaVA-Video-7B.(Tab 5) The key findings are summarized below:

• Only VLM-3R delivers consistent gains over its base model. Spatial-MLLM and LLaVA-
3D exhibit substantial performance drops, whereas VLM-3R shows steady improvements,
particularly in Agent State, Agent-Object Spatial Relationship, and Estimation tasks.

• Instruction-following ability degrades noticeably. Compared to their base models—which
reliably follow prompts and output both answers and reasoning—all three grounded models
struggle to adhere to the required response format. Spatial-MLLM is constrained to produc-
ing only floating-point values or multiple-choice options, while all three models frequently
omit reasoning or generate incoherent explanations.

• Limited generalization beyond training-aligned distributions. Despite excelling on
spatial reasoning datasets such as VSI and MMScan, Spatial-MLLM and LLaVA-3D fail to
generalize effectively to OST-Bench, which features more diverse and temporally grounded
prompts. VLM-3R demonstrates partial transferability, yet its gains remain modest.
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These observations suggest that while memory-enhanced spatial grounding can improve performance
on tasks aligned with model pretraining objectives, it often comes at the expense of generalization.
Such models may lose part of the base LLM’s robustness — underperforming on previously simple
tasks (e.g., Agent Visible Info or Counting questions in OST-Bench) and struggling with instruction-
following in out-of-distribution settings. They tend to excel only on in-domain tasks and transfer
poorly to broader benchmarks like OST-Bench, which involve more diverse and complex reasoning
demands.

Method Overall JUD. EST. CNT. TEMP. A. State A. Info AO.
(base) QwenVL2.5-3B 34.8 47.9 18.7 59.4 19.8 34.2 47.5 25.7
Spatial-MLLM 26.8 37.3 21.9 29.5 15.3 25.5 39.4 20.9
(base) LLaVA-Video-7B 39.3 52.8 16.1 63.1 33.8 33.5 58.3 28.8
VLM-3R 42.9 55.1 28.3 49.6 36.0 39.9 58.1 34.4
LLaVA-3D 30.1 46.1 5.9 13.5 36.3 29.7 38.4 26.3

Table 5: Performance comparison between specially designed models and their corresponding
base models. "A." abbrev for "Agent" and "AO." abbrev for "Agent-Object Spatial Relationship".

C.2 More Findings in Tables

Difficulty of Estimation Tasks. As shown in Table 2 in the main paper, models perform particularly
poorly on estimation tasks, achieving scores well below the chance-level baseline. Humans also
struggle with these questions, obtaining significantly lower scores compared to other task categories.
This is because estimation questions go beyond innate human perceptual abilities. Humans are better
at perceiving spatial relationships approximately than estimating spatial measurements precisely,
requiring not only spatial reasoning but also extensive empirical knowledge accumulated from
experience.

Detection Success vs. Counting Failure. As shown in Table 2 in the main paper, models achieve
notably high scores on object-existence questions, demonstrating a strong ability to identify whether
and when objects appear. However, their performance drops significantly for object-quantity tasks,
which require counting. Upon examining specific cases, we found that models frequently confuse
whether objects across frames are the same or distinct, mistaking two different objects as identical or
failing to track the same object across frames. This suggests that the task demands not just detection
capabilities but also cross-frame reasoning.

The Illusion of Better Distance Understanding. As shown in Table 2 in the main paper, models
appear to perform slightly better on Agent-object distance questions compared to Agent-object
direction, but this advantage is superficial. This is primarily due to the Spatio-temporal Reasoning
Shortcut phenomenon: models tend to assume that objects currently visible are closer, while those
out of view are farther away, without engaging in genuine spatial reasoning. Although this heuristic
can occasionally lead to correct answers, since such patterns do occur in a small portion of our
benchmark, it fails to generalize. As a result, models still perform poorly on Agent-object distance
questions overall.

C.3 Cases of Three Error Types

In Fig.13, we present examples of the three types of errors: Prompt Analysis Error, Perception Error,
and Reasoning Error. In the first example of Prompt Analysis Error, the prompt explicitly requires the
model to output a specific quantity. However, the model fails to interpret this requirement correctly
and responds with "no" instead of providing a numerical answer such as "0". In the second example,
the model misunderstands the meaning of the word "discover" in the prompt. It assumes that partially
seeing the keyboard in Round 1 does not count as a discovery and that only fully observing it in
Round 2 qualifies as such. This misinterpretation leads to an incorrect answer. In the two Perception
Error examples, the model fails to correctly identify a washbin located in the corner of the room
and only detects one of the two lamps in the bedroom, missing the other. In the Reasoning Error
examples, although the model correctly understands the prompt and accurately perceives the location
of the target objects, it makes an error in reasoning about their spatial relation with the agent, leading
to incorrect conclusions.
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Figure 13: Illustrative Examples of the Three Error Types: Prompt Analysis Error, Perception Error,
and Reasoning Error.
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C.4 Cases of Spatio-temporal Reasoning Shortcut

In the main paper, we have discussed the Spatio-temporal Reasoning Shortcut phenomenon exhibited
by the models. In Fig.14, we provide additional examples to further demonstrate the prevalence of
this behavior. For clarity, we display only the key video frames relevant to each question. Temporal
expressions in the questions and model responses are replaced with t1, t2, and t3, and marked
above the corresponding frames. All of these examples demonstrate the model’s tendency to rely on
shortcuts in spatio-temporal reasoning.

In the first example, GPT-4o incorrectly infers that the blackboard has moved closer simply based on
its transition from being invisible to visible, ignoring spatial cues such as the chairs and the decorations
on the wall. In the second example, Gemini-2.0-Flash performs a seemingly correct inference using
only two frames (the current and target frames), concluding that the wall currently in front of the
agent is adjacent and perpendicular to the wall in t1, while disregarding intermediate frames that
contain crucial contradictory evidence. In the third example, InternVL-2.5-78B observes that the TV
was on the right side of the room in earlier frames and then directly assumes it remains there when it
becomes invisible. In the fourth and fifth examples, the models make incorrect judgments due to the
target object being invisible in the specific frames. In the sixth example, the model only focuses on
the frames where the stand appears and the current frame, while skipping over intermediate frames
that indicate the agent turned around, wrongly assuming that the current orientation is aligned with
the previous one.

C.5 Subset Construction Process for Cross-View Analysis

As mentioned in the main paper, when constructing the dataset for the Cross-View subset, we first
generate an initial batch of data using a rule-based method and then manually filter the data to obtain
the final set of 200 samples. Our rule-based construction method for generating the Cross-view subset
with different levels of difficulty is described as follows:

(a) Single-Step Spatial Connection. We first iterate over all possible object pairs (O1, O2) in the
scene. For each object pair, we traverse all possible frame pairs (F1, F2) within the video sequence.
A frame pair is selected if it satisfies the following conditions: (1) O1 is visible in F1 but not in F2;
(2) O2 is visible in F2 but not in F1; (3) F1 and F2 share at least one overlapping object. This setup
ensures that the spatial relationship between O1 and O2 can be inferred via single-step reasoning.
All tuples (O1, O2, F1, F2) satisfying these constraints are collected as initial data for the keyframe-
based context. To construct the sequence-based context, we embed F1 and F2 into a video sequence
V that includes frames not containing O1 or O2, resulting in tuples of the form (O1, O2, V ).

(b) Multi-Step Spatial Connection. Similarly, we iterate over all object pairs (O1, O2) and traverse
all frame triplets (F1, F2, F3) from the video sequence. A triplet is selected if it meets the following
conditions: (1) O1 is visible in F1 but not in F2 or F3; (2)O2 is visible in F2 but not in F1 or F3;(3)
F1 or F3 share at least one overlapping object;(4) F2 or F3 share at least one overlapping object;(5)
F1 and F2 have no overlapping objects. This configuration ensures that solving the problem requires
multi-step reasoning. All valid tuples (O1, O2, F1, F2, F3) satisfying these constraints are collected
as initial data for the keyframe-based context. Similarly, to construct the sequence-based context,
we embed F1, F2 and F3 into a video sequence V that includes frames not containing O1 or O2,
resulting in tuples of the form (O1, O2, V ).

D Inference Time of the Models
Although OST-Bench does not impose real-time constraints, we conducted a supplementary study on
models’ inference time, indirectly reflecting the delay in decision-making exhibited by the models in
real-world embodied tasks. Since the inference time of proprietary models is also affected by network
latency, we restrict our analysis to open-source models and report their inference time per question.

The Fig.15 illustrates how the model’s inference time per question changes as the duration of
exploration increases. The results reveal a clear trend: as exploration time increases and more
historical context accumulates, inference latency grows rapidly. When the number of dialogue
rounds becomes large (e.g., beyond 10), the inference time becomes prohibitively high, especially for
large-scale models, making real-time interaction impractical. This latency surge stems from the fact
that any frame in history may contain critical information, forcing the model to attend to a growing
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Figure 14: More examples of Spatio-temporal Reasoning Shortcuts. Green text marks correct
reasoning; red indicates errors. For clarity, only key video frames relevant to each question are shown,
with temporal references replaced by t1, t2, and t3.
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Figure 15: The trend of the model’s inference time per question as the duration of exploration
increases.

number of frames at every step. Thus, inference time scales approximately linearly with history
length.

To provide context, we also measured human inference time. While average latency isn’t directly
comparable due to individual variation, we find that for all human testers, response time remained
stable regardless of how long the exploration had lasted. This starkly contrasts with model behavior.
The underlying reason is that humans can actively abstract and compress information throughout
the exploration process, forming an internal knowledge base. Rather than treating each question as
a fresh input, humans recall previously formed abstractions, enabling efficient reasoning without
reprocessing all historical data.

This comparison highlights a critical need: for models to perform well in real-world embodied tasks,
they must learn to dynamically distill and retain knowledge during exploration. Instead of passively
accumulating history or answering questions in isolation, models should develop mechanisms to
summarize and store essential information in an efficient, retrievable form, paving the way for scalable
and real-time embodied reasoning.

E Social Impact

OST-Bench aims to advance the development of multimodal large language models (MLLMs) with
stronger online spatio-temporal reasoning capabilities, which are critical for real-world embodied
tasks such as assistive robotics, autonomous navigation, and human-robot interaction. By introducing
a more realistic and challenging benchmark, we hope to drive progress toward more reliable and
generalizable agents capable of perceiving and reasoning in real-world environments under online
settings. However, as the benchmark assumes a static environment and focuses only on perception
and reasoning, there is a risk of overestimating model readiness for real deployment. Caution is
needed to avoid misuse or overreliance on models without broader capabilities like interaction or
manipulation, which are essential for safe and responsible AI integration in the real world.

34



F License and Acess

F.1 License and Acess for Existing Assets

As mentioned in the main paper, our real-world scene data is sourced from ScanNet, Matterport3D,
and ARKitScenes. To access and use these three datasets, users should follow their original licenses
[4, 3, 1], and ask their official hosts for authorization. Additionally, our annotated data come from
EmbodiedScan and MMScan, access to these datasets requires submitting a request via a Google
Form [2] and following the license attached to the form.

We use ScanNet, Matterport3D, and ARKitScenes as the scene data and leverage the video infor-
mation provided in them. We adopt the bounding box annotations and textual annotations from
EmbodiedScan and MMScan as the base datasets for our benchmark. Throughout the usage of these
datasets, their licenses and terms of use are properly respected.

F.2 License and Acess for OST-Bench

The OST-Bench dataset is distributed under the Creative Commons Attribution 4.0 International
License (CC BY 4.0) and available for direct download at https://github.com/rbler1234/
OST-Bench or https://www.kaggle.com/datasets/jinglilin/ost-bench/data.

We release our benchmark under the CC-BY license and Terms of Use, and require that any use of the
dataset for model evaluation be properly disclosed. This license supplements but does not override
the original licenses of source materials; users must also comply with all relevant legal requirements
concerning data subjects. This statement clarifies the obligations and liabilities associated with
using this benchmark. While we strive to ensure the accuracy and legality of all samples, we do
not guarantee their absolute completeness or correctness. We assume no responsibility for any legal
or other issues that may arise from the use of OST-Bench, including but not limited to copyright
infringement, privacy violations, or the misuse of sensitive information. By accessing, downloading,
or using OST-Bench, you acknowledge that you accept this statement and agree to comply with the
full terms of the CC-BY license. If you do not agree with these terms or the CC-BY license, you are
not permitted to use this benchmark. OST-Bench will be hosted and maintained on GitHub and the
Kaggle platforms.
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Figure 16: Example 1 of OST-Bench data samples. Each row represents the newly added observa-
tions in each round, with images input from left to right within each round. The example shows the
question-answer pairs from the first six rounds.
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Figure 17: Example 2 of OST-Bench data samples. Each row represents the newly added observa-
tions in each round, with images input from left to right within each round. The example shows the
question-answer pairs from the first six rounds.
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