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ABSTRACT

Time-series modeling is broadly adopted to capture underlying patterns and trends
present in historical data, allowing for prediction of future values. However, one
crucial aspect in such modeling is often overlooked: in highly dynamic environ-
ments, data distributions can shift drastically within a second or less. Under this
circumstance, traditional predictive models, even online learning methods struggle
to adapt to the ultra-fast and complex distribution shift present in highly dynamic
scenarios. To address this, we propose InstaTrain, a novel learning paradigm that
enables frequent model updates with microsecond-level intervals for real-world
prediction tasks, allowing it to keep pace with rapidly evolving data distributions.
In this work, (1) We transform the slow and expensive model training process
into an ultra-fast natural annealing process that can be carried out on a dynami-
cal system. (2) Leveraging a recently proposed electronic dynamical system, we
augment the system with a parameter update module, extending its capabilities to
encompass both rapid training and inference. Experimental results across highly
dynamic datasets demonstrate that our method delivers on average, a significant
~4,000x training speedup, ~ 10° x reduction in training energy costs, and a re-
markable lower test MAE over SOTA methods running on GPUs without / with
the online learning mechanism.

1 INTRODUCTION

Time-series prediction lies at the heart of artificial intelligence, powering applications ranging from
weather forecast (Karevan & Suykens| [2020; [Hewage et al.| |2020) to product and content recom-
mendation (Kang & McAuley, 2018} [Zhang et al., 2021). Current neural network methods have
achieved remarkable success by learning the joint distribution between inputs and predictions (Lim
& Zohren, 2021} [Patton, 2013). However, these methods often implicitly assume that the learned
joint distribution remains stable over a considerably long period, an assumption that can easily be
violated when the underlying distribution undergoes severe shifts, consequently causing significant
failures in pre-trained models. In response to this challenge, the community has pivoted towards
more adaptive learning strategies, such as online learning and continual learning approaches (Hoi
et al., 2021} |Chen et al.| 2021} He & Sick, 2021; [Prabowo et al.| [2023). These methodologies are
designed to incrementally adjust model parameters, thereby maintaining alignment with current data
trends. Despite their advancements, they struggle to adapt to the circumstances in which data dis-
tribution evolves rapidly due to their insufficient adaptation speed. This underscores the pressing
need for even more agile and responsive learning mechanisms that can swiftly adapt to shifts in data
distribution and ensure model effectiveness.

In the post-Moore’s Law era, the limitations of speed improvements in digital processors (such as
CPUs and GPUs) have become more pronounced, attracting growing attention in novel comput-
ing substrates that harness natural power, a promising yet largely untapped area of research. As a
promising candidate, a recently emerged electronic dynamical system (Afoakwa et al.|[2021;/Sharma
et al., 2022)) stands out, demonstrating the capability to support ultra-fast computing due to its re-
markable low power consumption and exceptionally fast computational speed. Rooted in statistical
physics, the behavior of the system is governed by its Hamiltonian (energy function), similar to nat-
ural dynamical systems where particles naturally move toward lower energy states. In the electronic
dynamical system, lower energy states are rapidly reached through natural annealing — the auto-
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matic movement of electrons among capacitors seeking equilibrium at “speed of electrons”, with
minimal power consumption in milliwatt-scale.

However, despite this system having been utilized to accelerate graph learning inference in previ-
ous work (Wu et al.| 2024), the model training process still relies on traditional digital processors,
where the training speed falls short of keeping pace with rapidly evolving data distributions in real-
world applications. Consequently, a more advanced learning paradigm is critically needed to fully
exploit the potential of the dynamical system that taps into nature’s computing power. Since the
system specializes in performing natural annealing, we can address the stringent agility demands for
ultra-rapid model learning if we can transform the sluggish offline-training process into the natural
annealing process. This idea is inspired by the Forward-Forward Algorithm proposed by |Hinton
(2022), which advocates for conducting both training and inference on the same hardware, similar
to the way brains function. This unified approach, known as “mortal computation”, is expected to
offer significantly lower costs compared to traditional neural networks running on digital hardware.

In response to this opportunity, we propose Insta-
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Figure 1: Overview of InstaTrain framework.

The core contributions of this paper can be summarized as follows:

* We propose InstaTrain, a novel learning paradigm that directly responds to the demands for
agility and responsiveness in applications with fast evolving distributions.

* We transform the training of a nature-based processor into an iterative natural annealing process
within the dynamical system, which enables ultra-fast model training and updating.

* We augment the original nature-based processor, extending its capabilities from fast inference
to encompass both rapid training and inference.

» Experimental results across three highly dynamic datasets show that the proposed method with
~1W power delivers a significant ~3,000x inference speedup, ~4,000x training speedup, ~
10°x energy cost reduction in training, and a remarkable lower test MAE over SOTA methods
running on GPUs without /with dynamic model updating.

2 BACKGROUND

Dynamical System Model. A dynamical system is a mathematical model that describes how com-
ponents (spins) interact and influence each other’s states over time, driving the system’s evolution
toward equilibrium. These systems feature an energy landscape defined by a Hamiltonian func-
tion. Dynamical systems have been utilized to accelerate graph learning inference (Wu et al.l|2024),
with a real-valued Hamiltonian function H(s) = — Egéj Jijoio; + Ziv h;o?, where o; € R.
s = {01,09,...,0n} denotes the spins in the dynamical system governed by the Hamiltonian, J;;
represents the relationship between spin ¢; and spin o, and h; refers to the self-reaction strength,
and is forced positive.
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This Hamiltonian function is derived from the classic binary Ising Hamiltonian (Cipral |1987) rooted
in ferromagnetism physics, but extends its formulation to overcome the limitations of binary vari-
ables (aka spins) restricted to values of +1 or —1. Specifically, the binary limitation of the Ising
model refers to the failure of naively extending its binary nodes to real values. The Hamiltonian of
binary Ising model is Hy(o) = — Zf\; ;Jijoio; — va h;o;. If o are real-valued, they evolve to
+00 to pursue the lowest energy state, which is —oco. Even if boundaries are applied to o, o are only
intercepted along their way to infinity, resulting in polarized nodes and essentially a binary model.
In contrast, in the real-valued Hamiltonian function (i.e., H), the quadratic term acts as an energy
regulator, which prevents the energy from going down to —oo, allowing spins to be localized at cer-
tain values. This extension grants variables the ability to take on real values, thus making it feasible
to perform more precise modeling of real-valued systems in real life. In this work, the Hamiltonian
supporting real-valued variables H is employed.

Dynamical System Embodiment. The dynamical system is physically embodied as an electronic
system (Afoakwa et al., [2021), using electronic components to realize the spontaneous energy de-
crease (i.e., dH/dt < 0). According to Lyapunov stability analysis, the spin dynamics can be
designed as do; /dt x —0H /Doy

do; 1 &
dtl = G(Z(Jij + Jji)oj — 2hio), (1)
JFi
guaranteeing the system evolves towards the lowest energy state:
OH do; 1,0H. 5
=— 2
Zamdt anm <0 @

where the positive constant C' is capacitance. Additionally, variables ¢ are modeled as voltages on
capacitors, with .JJ and h as conductance of resistors. The spin dynamics indicate that the value of a
variable o; is influenced by input electric currents (J;; + Jj;)o; and local current 2h;0;. Through
charging or discharging the capacitors at “speed of electrons”, the variable value changes.

Offline Hamiltonian Training. To train the parameters J and h in 7, prior research (Wu et al.,
2024) employed a conditional likelihood method on traditional digital processors. This approach
focuses on one spin ¢; at a time, treating other spins o as conditions. An estimated spin value is:

0 = 2h Z JZ]+JJ’L) (3)
J#i
After estimating each spin’s value, their differences from ground truths are evaluated using metrics
such as MAE and MSE. By using these metrics as loss functions, the model parameters are optimized
to align the ground truth with the system’s lowest energy state. Consequently, during inference, the
inherent process of spontaneous energy decrease drives the system toward the lowest energy state,
producing the desired solution with the highest probability.

3 METHODOLOGY: INSTATRAIN

In this section, we present InstaTrain, a novel learning paradigm that leverages the natural annealing
process of a dynamical system to enable ultra-fast model training, capturing rapidly evolving data
distribution for prediction tasks. We first introduce our Iterative Natural Annealing based Training
(INAT) algorithm, including how to formulate the prediction problem using the dynamical system
and the detailed training process of the Hamiltonian parameters through iterative natural annealing.
Furthermore, we redesign the original the electronic dynamical system, integrating update modules
to enable the self-training feature.

3.1 ITERATIVE NATURAL ANNEALING BASED TRAINING (INAT)

3.1.1 FORMULATING PREDICTION VIA NATURAL ANNEALING

Our task of time-series prediction is to learn a function f, that maps the historical variable states s
of a system to its future states s' ™, i.e., s't! = fy(s'). The goal is to optimize parameters 6 such
that fp accurately captures the system’s evolution over time.
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To achieve the goal, we model the described prediction problem using the Hamiltonian of a dy-
namical system, with s’ and s**! representing the spin configurations of the dynamical system in
consecutive time steps. Without loss of generality, we clamp the first N/2 spin values to the input
state (01, ...,0n/2) = s?, and aim to get the values of the remaining N/2 spins (ONj2415 o). IE
the model’s parameters J and h perfectly capture the dependencies between inputs and predictions,
the ground truth configuration s* = (sf,s'™!) corresponds to the lowest energy of the dynami-
cal system. Consequently, by clamping the input spins to s’ and allowing the remaining spins to
evolve according to the Hamiltonian 7, the natural annealing process will drive the system to chase
equilibrium, resulting in the remaining spins moving towards the desired solution s***.

We can further interpret this annealing process using the Boltzmann distribution, which defines a
mapping from energy to probability. Specifically, the lowest energy spin configuration corresponds
to the maximum probability state through the following:

1 .

psr = e, “)
where Z is the partition function defined as f e Mdo, =
functioning as a normalizing constant. Therefore, the sys- g 2
tem’s evolution towards the lowest energy state is equiva- 'Eé B0 itial State
lent to finding the desired prediction s'*! with the highest T 2
probability under the Hamiltonian 7. To elucidate more /
clearly, we visualize the whole process in Fig. |Zl Clamp- Annealing

ing the input s! confines the entire energy landscape to a
subspace compatible with the given input data. The re-
maining unclamped spins then undergo natural annealing
within this constrained landscape, spontaneously evolv-
ing towards the lowest energy state, yielding the desired
solution s‘*1. Notably, a physical system governed by its ) o . )
energy function / can spontaneously evolve towards its Figure 2: Prediction via annealing
lowest energy configuration through natural annealing, leveraging the full parallelism of the under-
lying physical dynamics.
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3.1.2 TRAINING THROUGH ITERATIVE NATURAL ANNEALING

Through the above description, we can perform efficient prediction on the dynamical system given
the optimal Hamiltonian parameters J and h. In terms of training, instead of undergoing costly
training processes on digital processors, it is much more preferable that model training is also avail-
able on the dynamical system. To address this, we describe how to obtain the target parameters from
the training data through an iterative natural annealing process, the same process used for inference.

Specifically, we seek to maximize the likelihood of the training set under the model:

argmax [ | ps, 5)
Sk seT

where T is the training set constructed as s = (oq,...,on) = (sf,s""!). This is equivalent to
minimizing the negative log-likelihood loss:

1
argmin L (s; J,h) = — In(Z)—In(e ™)), (6)
g min £ (53 J,h) MSeZT(() (e™))
where M is the number of training samples. Thus, the gradients of £ with respect to .J;; are given
by
0L(s) 0In(Z) n 1 oH
oJi;  0Jy M 0Jij’
seT

(7

where the two terms are essentially expectations of spin multiplications:

oln(Z 1 07 e Moo, do 1
8J(~ ) _ Zod, / fe*”"‘z djo = (0i0) model i Zmﬂj = (00 )data- ®)
R K seT




Under review as a conference paper at ICLR 2025

>
[
]
&
=
20
I
" 1 Annealing
1 Annealing
‘@
2 "
o e - Minimum Gap
H 2 Calc gradient
-

Initial Energy Landscape Well-trained Energy Landscape

OAnneaIing result . Ground truth
—>Parameter update H,., = H; + aAH

Figure 3: Model training through iterative natural annealing

Particularly, <aiaj> data denotes the expectation over the training data, which is tractable, and
(0i0;) 1oqe COTTESponds to the expectation of o;0; given by the current model. Consequently, the
gradient for the coupling parameter J;; is

0L (s)
aJij = <0-io-j>model - <ai0j>data . (9)

In the same way, the gradients of h; are given by

OL(s)  OIn(Z) 1= 0H _ On(Z) | 1 5 )
oh; N oh; MseT oh; N oh; + M;al - _<Oi >m0del+ <Ui >data' (10)

Therefore, to update the parameters, we need to calculate (o;0;) ., and <Ji2>m0 4 They corre-
spond to the expectation of a large number of states under the current model parameters, which
requires computationally expensive sampling over the model distribution. Instead of employing ex-
pensive sampling methods to estimate (-)model, We leverage the intrinsic dynamics of the electronic
system to achieve remarkable efficiency. As described in we can obtain the current model’s
prediction §'*! through clamping s’ to input spins and allowing the dynamical system to perform
natural annealing. By measuring the spin configurations at the end of the annealing process, we
can directly calculate the required model expectations (00 )model and (07)model. In this way, the
training process is transformed into an iterative natural annealing process, as described in Algorithm
[T]and illustrated in Fig. [3] This innovative training process eliminates the need for computationally
expensive sampling techniques or digital offline training. Instead, it harnesses the natural energy
decrease feature to perform efficient computations, enabling ultra-fast model training.

To summarize, the outcome of the natural annealing process depends on the accuracy of the current
Hamiltonian parameters in capturing the dependencies between the inputs and predictions. When

Algorithm 1 Iterative Natural Annealing-based Training

Input: Training set 7 = {s1, S, ...,Sa}, initial J°, kY, learning rate 7, and training epochs Nje.
Output: Trained Hamiltonian parameters J, h.

1: Initialize J < J° h < RO.

2: for i = 1 to Ny, do

3 foreachs; = (s,s'™")in T do

4: Clamp the first half spins to s’

5: Perform natural annealing to obtain é;“

6: Get (040 )model ad (07 ) mogel based on s¥, é;“
7: Get (0,0 )data and (07 ) gara based on s’ s§-+1

8: Update Jij < Jij —n- <O"i0'j>model — <0i0j>data)
9: Update h; < h; — 7 - (f(al»z)model + <(7i2)data)
10: end for
11: end for

12: return J, h
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the values of some spins are fixed to s, two scenarios can occur: (1) If the parameters properly
describe the dependencies, the annealing process will converge to the desired solution st*!, repre-
senting the ideal case where the model has successfully learned the correct relationships between
the inputs and predictions. (2) If the parameters do not accurately capture these dependencies, the
annealing process will instead yield results that align with the current model’s expectations, denoted
by ~<cr1.v0j ) model a0d <ai2>m0 g+ This outcome indicates thgt the model’s parameters require further
optimization to better represent the underlying dependencies. Regardless of the parameter accuracy,
both scenarios correspond to the equilibrium state of the dynamical system.

3.2 HARDWARE AUGMENTATION

Hardware for Training & Inference Node i

The physical realization of this dynamical sys- s Al A
tem is achieved by mapping the spin values to the |2 HF #/ capacitor I C
voltages applied on nano-scale capacitors C', and |2 0 /gg ValilBle (s 7
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tance of the coupling between spin o; and spin | /== =5 . < _;\ }_ ! ’} * ! ’*
o; is Ji; (yellow blocks). The effective conduc- [ Network Control | Curferit From Other Nodes
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the desired solutions, or the model’s expectations.  Figure 4: Redesigned InstaTrain hardware.
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After the natural annealing process is implemented in this electronic system, we need to further make
the system self-trainable. Compared to the original system, update modules need to be implemented.
In particular, the update modules take the values of spins o; and o; as input, compute V;V;, and
update the voltage V; applied to the capacitor C;. A programmable parameter .J;; is then updated
according to the value of V7. As depicted in Fig. |4} we embed the update modules (shown as purple
blocks) in coupling units (for updating J;;) and nodes (for updating h;). The detailed steps are:

. Initialize J;; through preset, giving V; an initial value.

. Initialize V; and V. For an input node, load the ground truth, otherwise initialize it arbitrarily.

. Start annealing to get the updated V; and V.

1
2
3
4. Obtain (V;V})model using the analog multiplier. The result is captured in capacitors as voltages.
5. Load the ground truths of V; and V.

6. Obtain (V;V})daw as voltage using the analog multiplier.

7

. Based on the voltage difference between (V;V;)model and (V;V;)data, the positive path is enabled
if the former is larger, otherwise enable the negative path.

8. The subtraction of the two voltages contributes to V;, modifying the voltage to update J;.
9. Repeat steps (2)-(8) for the next epoch.

Through these steps, the entire training process is transformed into an iterative natural annealing
process within the dynamical system, enabling ultra-fast training for highly dynamic applications.
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4 EVALUATION

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate InstaTrain on five high-frequency datasets, each providing 100 samples per
second. Carbon-Oxide consists of time series data collected from a gas delivery platform facil-
ity, capturing readings from chemical sensors exposed to varying concentrations of carbon oxide
and ethylene mixtures (Fonollosa et al.l [2015b). Similarly, Methane includes data from chemical
sensors exposed to mixtures of methane and ethylene at varying concentration levels (Fonollosa
et al., 2015b). Stock contains sampled stock data of S&P-500 (Nasdaq)). Ammonia includes time
series recordings from a chemical detection platform, featuring data from 72 metal-oxide sensors
across six different locations, all maintained under consistent wind speed and operating tempera-
tures (Fonollosa et al., 2015a). Toluene comprises time series recordings from 72 sensors at one
location, collected under ten varying conditions (two wind speeds and five operating temperatures)
from a chemical detection platform (Fonollosa et al.| [2015a). The statistics of these dataset are
detailed in Table[din Appendix.

Baselines. We consider three types of baselines for comparison.

* Static Models: SOTA Graph Neural Networks (GNNs), SOTA Transformer-based time series
prediction models, NPGL (Wu et al., [2024), and InstaTrain. All models are trained on the
first 25% of each dataset and tested on the remaining 75% of each dataset. The GNNs include:
GraphWaveNet (Wu et al.,2019), MTGNN (Wu et al.,[2020), and MegaCRN (Jiang et al.,[2023)).
The Transformer-based models include: Autoformer (Wu et al.l 2021), DLinear (Zeng et al.,
2023), iTransformer (Liu et al.,[2023a).

e Low-Frequency Dynamic Models: Building upon the pre-trained static models above, the
GNNs, Transformer-based models, NPGL, and InstaTrain are updated as new data becomes
available, but with a lower update frequency. In particular, the models are updated once after
observing 1,000 snapshots, equivalent to 10 seconds in the real world. After each update, the
model is tested on the next 1,000 snapshots.

* High-Frequency Dynamic Models: Similar to low-frequency setup but with more frequent up-
dates. The GNNs, Transformer-based models, NPGL, and InstaTrain are updated more fre-
quently—once every 100 snapshots. After each update, the model is tested on the next 100
snapshots. Additionally, we include SOTA online learning models: FSNet (Pham et al., 2022),
online-adapted PatchTST (Nie et al., 2022)) proposed in (Wen et al., 2024)), and OneNet (Wen
et al., [2024). These online learning models are implemented based on their default setup for a
fair comparison (updated every snapshot).

To more effectively showcase the impact of high-frequency online learning, both low-frequency and
high-frequency models are updated using data from the most recent 100 snapshots in the past.

Platforms. We evaluate the accuracy and inference latency of SOTA GNNs, Transformer-based
models, and online learning models using an NVIDIA A100-40GB GPU. Training latency for
NPGL, GNNs, Transformer-based models, and online learning models is also measured on the same
GPU. The accuracy and inference latency of NPGL, along with the accuracy, training latency, and
inference latency of InstaTrain, are assessed using a CUDA-based Finite Element Analysis (FEA)
software simulator implemented based on BRIM (Afoakwa et al.,|2021). Furthermore, the Cadence
Mixed-Signal Design Environment is employed to evaluate the power consumption and area require-
ments of InstaTrain.

4.2 MAIN RESULTS

Accuracy Evaluations. In Table[I] the accuracy results are shown across five datasets with Mean
Absolute Error (MAE) as the metric. The results for the dynamic models are averaged across all
snapshots in test data. Here, we present the best-performing GNN and Transformer-based model
(Best Trans), a complete version of this table is provided in Table [A.T]in Appendix. The results
demonstrate that InstaTrain outperforms the GNNs and Transformer-based moedls (Trans) in all
three cases (static, low-frequency, and high-frequency) across all datasets, with comparable accuracy
versus NPGL. The comparison of different update scenarios indicates that high-frequency updates
are necessary to achieve better performance. However, due to the sluggish training speed of NPGL,
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Table 1: Accuracy comparison across datasets. LF / HF: Low / High Frequency. Online learning
methods only have HE. Gray-shaded results indicate “Not Achievable” results due to slow training.

Dataset Carbon-Oxide Methane Stock Ammonia Toluene
Best GNN 14.40 19.31 2.85 13.43 13.26
Static Best Trans 14.02 19.29 2.27 12.41 11.95
NPGL 13.90 19.22 2.01 12.15 11.43
InstaTrain 13.88 19.25 2.02 12.08 11.37
Best GNN 10.28 11.57 1.70 4.72 5.19
LF Update Best Trans 8.53 9.72 1.22 3.94 4.85
NPGL 8.25 9.26 1.18 3.81 4.68
InstaTrain 8.28 9.22 1.20 3.72 4.67
Best GNN 7.16 7.36 0.80 1.62 2.11
Best Trans 7.12 7.25 0.73 1.45 1.94
FSNet 7.11 7.14 0.79 1.48 2.07
HF Update  PatchTST 7.05 7.09 0.80 1.46 2.02
OneNet 6.93 7.11 0.77 1.42 1.93
NPGL 6.81 7.08 0.68 1.39 1.90
InstaTrain 6.79 7.05 0.68 1.36 1.86

GNNgs, Trans, and even SOTA online-training methods, their high-frequency update results are not
achievable, shown as the gray-shaded results in the table. This is because their training latency per
snapshot exceeds 0.01 seconds (as shown in Fig.[3), resulting in a cumulative training time of over 1
second for 100 snapshots. Consequently, they cannot keep up with the high-frequency update sched-
ule, making real-time adaption "Not Achievable” for them in this scenario. However, for the sake
of comparison, we still calculate the accuracy of these baseline models under the high-frequency
setup, assuming they could meet the update schedule. The limitation of baselines makes InstaTrain
the ideal choice for achieving high accuracy, especially in the cases where data distributions change
rapidly. On average, the high-frequency update result of InstaTrain achieves 75.11% MAE reduc-
tion compared to static models, and 50.53% versus low-frequency update models. Despite that the
baselines are not qualified to perform high-frequency updates, InstaTrain still achieves 8.42% MAE
reduction compared to them.

Latency Evaluations. The average training latency per snapshot and inference latency per snap-
shot are illustrated in Fig. [5] and Fig. [6] respectively, measured in seconds. As depicted in Fig. [3]
InstaTrain achieves microsecond-level (10~% seconds) update time per snapshot, significantly out-
performing other approaches that require tens of milliseconds. The orange dashed line marks the
training latency requirement of 0.1 seconds per snapshot, which is necessary for low-frequency
model updates. All models fall below this threshold, enabling them to realize the accuracy improve-
ments associated with transitioning from static to low-frequency online learning. In contrast, the
red dashed line indicates the training latency requirement for high-frequency model updates (0.01
seconds per snapshot). Under this criterion, only InstaTrain meets the requirement, while the other
models fail to achieve the necessary latency for further accuracy enhancements in high-frequency
online learning. In addition, the inference latency in Fig. [6] shows that InstaTrain also benefits from
the exceptional speed brought by the dynamical system, resulting in a similar latency with respect
to NPGL on the prediction tasks. On average, InstaTrain achieves a ~4,000x speedup in online
learning compared to all baseline models across all tasks, while achieving a ~3,000x speedup in
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Figure 5: Average training latency per snapshot.
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Table 2: Hardware comparison with related work.

Design | Power [ Area [ Real-Value | Ultra-Fast Training
BRIM (Afoakwa et al.[[2021) [ 250 mW [ 5 mm? No No
NPGL (Wu et al.|[2024) 260 mW | 5.1 mm? Yes No
InstaTrain 950 mW | 9.7 mm? Yes Yes

inference compared to the baselines other than NPGL. These results underscore the superior com-
putational capabilities of the dynamical system employed by InstaTrain.

Hardware Characteristics. The hardware characteristics of InstaTrain are compared to related
work in Table [2] Despite higher power and area resources utilized, the power is still within the
scale of 1 Watt, with comparable area with respect to prior work. More importantly, the proposed
hardware supports ultra-fast online training that is performed on the same hardware as inference,
resulting significantly lower overhead and orders of magnitude training speedup compared to NPGL
upgraded from BRIM. Furthermore, the speedup and the low power nature of InstaTrain collectively
contribute to a significantly lower energy cost, leading to ~ 10° x reduction in energy consumption
compared to the SOTA GNNs and online learning approaches on high-end GPUs.

Ablation Study. Update frequency is a critical hyperparameter that balances model accuracy and
computational efficiency. To investigate its impact, we vary the model update interval from every
50 snapshots to every 1000 snapshots across all datasets. The results, presented in Table 3] demon-
strate that generally, higher-frequency online learning achieves better accuracy, as evidenced by
lower MAE values. This insight further underscores the significance of InstaTrain, which enables
extremely high-frequency online updates.

5 RELATED WORK

Dynamical System Models. Dynamical systems have gained attention in the machine learning
community due to their unique properties and potential for solving complex problems. Drawing
inspiration from statistical mechanics in physics, the evolution of a system is based on its energy
function. The majority of studies showcasing the potential have been confined to relatively straight-
forward applications, primarily within the binary domain. For instance, the binary Ising model
has been employed to formulate optimization problems [2014), which can be efficiently
solved on specialized hardware platforms designed for the model, namely, Ising machines
et all, [2022) (Codognet et al [2022). Additionally, several real-world problems, such as satisfia-
bility (SAT) problems(Sharma et al., [2023al) 2023b), traffic congestion prediction
2023), uplink MIMO detection and collaborative filtering

Table 3: Accuracy ablation study on update interval.

Update Interval | Carbon-Oxide | Methane | Stock | Ammonia | Toluene

1000 8.28 9.22 1.20 3.72 4.67
500 7.26 8.46 0.84 241 3.57
100 6.79 7.05 0.68 1.36 1.86
50 6.73 7.02 0.67 1.33 1.85
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2023b)), have also been formulated and addressed using the binary Ising model. While they have
offered valuable insights into practical problem-solving, their methods come with binary limitations
that impede further progress in real-valued applications in the real world.

Although (Wu et al., 2024) extends the original binary Ising model to a real-valued model for real-
valued applications, the practical impact of their contributions is limited. Firstly, their acceleration
is restricted to inference alone, leaving the primary bottleneck of training unaddressed. Secondly,
the benefits of accelerated inference are diminished if the model is static and cannot be promptly
updated, especially in highly dynamic applications where patterns evolve rapidly. To summarize,
the slow training process hinders online learning and real-time model updates, which are crucial
for adapting to fast-changing dynamics, thus limiting the real-world applicability of the proposed
real-valued model in many scenarios demanding real-time adaptability and responsiveness.

Dynamical System Embodiments. Solving complex combinatorial optimization problems is com-
putationally demanding for conventional von Neumann architectures, as both the required time and
hardware resources grow exponentially with the size of the problem. To solve such computation-
ally demanding problems, drawing computing power from nature has become a research direction
that attracts attention. Among the various nature-based computing approaches, Ising machines have
garnered significant attention due to their ability to efficiently solve optimization problems by lever-
aging the principles of the Ising model from statistical physics. The Ising model describes the
behavior of atoms in natural magnets or spin glasses, which can adopt one of two spin states, up or
down, to achieve the lowest energy configuration. This model is applicable to various combinatorial
optimization problems (Bian et al.||2010), where finding the ground energy state of the Ising model
equates to solving these problems.

In addition to (Afoakwa et al.,|2021)), various implementations have been proposed and developed,
each with its unique characteristics and trade-offs. (1) Quantum-based Ising machines, such as the
D-Wave system (Harris et al.,[2010), leverage quantum effects, including quantum tunneling, using
superconducting qubits. While they offer high computational speed, they require cryogenic environ-
ments to enable superconductivity, resulting in high energy consumption and limited practicality.
(2) Optical Ising machines (Inagaki et al.l 2016} [Yamamoto et al., 2017; McMahon et al.l 2016)
employ optical parametric oscillators to simulate spins and achieve optical coupling. Although they
provide significant parallelism, their scalability and stability are limited by their large size and sen-
sitivity to temperature fluctuations. (3) Digital annealers (Yamaoka et al., 2015) are accelerators that
perform simulated annealing on digital devices to emulate the continuous annealing process. While
they achieve speeds significantly faster than general-purpose processors, their efficiency gains do
not yet match those of analog Ising machines due to the substantial difference in hardware operating
speed. Among these diverse technologies, the BRIM stands out as particularly promising, offer-
ing high-quality solutions rapidly and efficiently. Its operational efficiency, coupled with realistic
power consumption and minimal chip area, positions BRIM as a leading candidate in the field of
nature-based computing.

6 CONCLUSION

This paper presents InstaTrain, a novel approach to ultra-rapid model learning for prediction tasks.
By transforming the training process into an iterative natural annealing process within a dynamical
system, our method enables the model to self-evolve and autonomously adapt to the ever-changing
correlations between inputs and predictions, addressing the pressing need for agility and responsive-
ness in highly dynamic applications. The developed parameter update modules augment the original
dynamical system used only for inference, extending its capabilities to encompass both rapid train-
ing and inference, thereby harnessing the full potential of this innovative computing substrate. This
pioneering approach transcends the limitations of conventional methods and paves the way for a
new era of ultra-rapid, energy-efficient, and adaptive predictive modeling, empowering applications
in domains characterized by high data volatility and stringent latency requirements. Further explo-
rations could focus on incorporating hardware-accommodating advanced online learning strategies
into the proposed method, which might yield better solutions. To highlight, InstaTrain achieves, on
average, ~4,000x training speedup supporting microsecond-level model update, 10° x energy cost
reduction in training, as well as a remarkable lower MAE over SOTA methods without / with online
learning features.
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REPRODUCIBILITY

The CUDA-based FEA simulator, adapted from (Afoakwa et al. 2021), is a SOTA circuit-level
simulation, accurately simulating voltage and current evolution with 100-picosecond time steps.
To ensure the reproducibility of this work, this simulator will be open-sourced, facilitating easy
verification and future research in the field.
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A APPENDIX
This appendix provides additional experimental results and discussions related to our work.

A.1 DATASET STATISTICS AND EXPERIMENTAL RESULTS

Table[d]summarizes the statistics of the datasets used in our experiments. The datasets exhibit a wide
range of dimensionalities, spanning from low-dimensional (16) to high-dimensional (720). Each
dataset comprises a substantial number of samples, which facilitates a robust evaluation of changes
in data distributions. This diversity in dimensionality and sample size ensures that our evaluation
effectively addresses varying scales of data complexity and distributional shifts.

Table 4: Dataset statistics.

Dataset Carbon-Oxide Methane Stock Ammonia Toluene
Number of Samples 60000 60000 40060 12755 12854
Number of Nodes 16 16 116 432 720

Additionally, the complete version of Table([T]is provided below for reference.

Table 5: Accuracy comparison across datasets. LF / HF: Low / High Frequency. Online learning
methods only have HF. Gray-shaded results indicate “Not Achievable” results due to slow training.

Dataset Carbon-Oxide Methane Stock Ammonia Toluene
GWN 14.40 19.34 3.34 19.35 13.26
MTGNN 24.47 19.31 2.85 13.43 18.74
MegaCRN 25.94 23.65 3.45 18.12 20.15
Static Infqrmer 14.16 19.37 2.76 13.59 13.07
DLinear 14.08 19.32 2.31 12.74 12.82
iTransformer 14.02 19.29 2.27 12.41 11.95
NPGL 13.90 19.22 2.01 12.15 11.43
InstaTrain 13.88 19.25 2.02 12.08 11.37
GWN 10.28 11.84 1.85 4.72 5.82
MTGNN 12.51 11.57 1.70 4.95 5.19
MegaCRN 12.34 13.49 1.87 5.41 5.93
LF Update Infgrmer 9.21 10.41 1.64 4.39 5.25
DLinear 8.82 10.25 1.39 4.16 4.96
iTransformer 8.53 9.72 1.22 3.94 4.85
NPGL 8.25 9.26 1.18 3.81 4.68
InstaTrain 8.28 9.22 1.20 3.72 4.67
GWN 7.35 7.40 0.82 1.64 2.26
MTGNN 7.41 7.36 0.80 1.71 2.11
MegaCRN 7.16 7.45 0.86 1.62 2.18
Informer 7.24 7.37 0.85 1.53 2.09
DLinear 7.12 7.25 0.81 1.50 2.15
HF Update iTransformer 7.16 7.28 0.73 1.45 1.94
FSNet 7.11 7.14 0.79 1.48 2.07
PatchTST 7.05 7.09 0.80 1.46 2.02
OneNet 6.93 7.11 0.77 1.42 1.93
NPGL 6.81 7.08 0.68 1.39 1.90
InstaTrain 6.79 7.05 0.68 1.36 1.86

A.2 ENERGY EVOLUTION OF THE DYNAMICAL SYSTEM

We present a visualization of the system’s energy with respect to annealing time for a sample from
the Carbon-Oxide dataset during inference in Fig. []} The energy curve clearly demonstrates a
convergence pattern, with the system’s energy rapidly decreasing and stabilizing over time as it
approaches equilibrium. Furthermore, we introduce perturbations at an annealing time of 0.6e — 7s
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by adding Gaussian noise to the nodes at levels of 10% (blue curve), 20% (green curve), and 30%
(red curve). These perturbations further confirm that the system can achieve equilibrium, as it returns
to a stable state even when subjected to varying degrees of disturbance.
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Figure 7: System energy with respect to annealing time.

A.3 RESULTS ON OTHER TIME SERIES DATASETS

To provide a more comprehensive evaluation, we include several widely used time series datasets:
ETTml, Electricity, Traffic, and Weather (Wu et al.| 2021). We compare the proposed InstaTrain
with several SOTA models, including MegaCRN (Jiang et all,[2023) (a SOTA GNN), iTransformer

(Liu et al.l[2023a) (a SOTA Transformer-based model), NPGL (Wu et al., 2024)), three SOTA online

learning baselines (FSNet (Pham et al., [2022), the online learning version of PatchTST (Wen et alJ
[2024), OneNet (Wen et al.l 2024)). Given that the highest frequency of these datasets is 10 minutes

per sample, all baselines meet the high-frequency update schedule. Therefore, we evaluate these
models in two scenarios: the static scenario and the high-frequency (HF) update scenario. The
results are shown in the table below.

Table 6: Accuracy comparison (in MAE) across datasets. HF: High Frequency. Online learning
methods only have HF.

Model ETTml Electricity Traffic Weather
MegaCRN 0.416 0.420 0.397 0.301
iTransformer  0.372 0.379 0.329 0.246

Static NPGL 0.367 0375 0323  0.235
InstaTrain 0.369 0.375 0.320 0.231
MegaCRN 0.257 0.309 0.285 0.224
iTransformer 0.213 0.290 0.268 0.221
FSNet 0.191 0.472 0.253 0.216
HF Update  PatchTST 0.186 0.224 0.241 0.200
OneNet 0.187 0.254 0.243 0.201
NPGL 0.174 0.216 0.235 0.194
InstaTrain 0.172 0.214 0.231 0.196

In the static scenario, iTransformer, NPGL, and InstaTrain show competitive performance. Specif-
ically, InstaTrain outperforms NPGL on the Traffic and Weather datasets while maintaining com-
parable performance on ETTm1 and Electricity datasets. In the high-frequency update scenario, all
models show improved performance compared to the static scenario. InstaTrain achieves the lowest
MAE across all datasets, outperforming baselines. Notably, FSNet exhibits a higher MAE on the
Electricity dataset in the HF scenario, probably due to its lack of robustness with this dataset. The
consistent superior performance of InstaTrain in the HF scenario underscores its effectiveness in
leveraging high-frequency updates to enhance performance.
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