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Abstract

We study the problem of graph coarsening within the Gromov-Wasserstein geome-
try. Specifically, we propose two algorithms that leverage a novel representation of
the distortion induced by merging pairs of nodes. The first method, termed Greedy
Pair Coarsening (GPC), iteratively merges pairs of nodes that locally minimize
a measure of distortion until the desired size is achieved. The second method,
termed k-means Greedy Pair Coarsening (KGPC), leverages clustering on pairwise
distortion metrics to merge clusters of nodes directly. We provide conditions under
which the algorithms are guaranteed to provide an optimal coarsening and validate
their performances on six large-scale datasets and a downstream clustering task.
Results show that the proposed approaches outperform existing approaches on a
wide range of parameters and scenarios.

1 Introduction

With the advent of Graph Neural Networks (GNNs) [1], there has been an explosion in the develop-
ment of data-driven algorithms for processing structured data including graphs and generalizations
thereof (e.g., simplicial complexes, cell complexes, and hypergraphs) [2–10]. These developments
are part of a broader trend in data science of leveraging topological, geometric, and algebraic struc-
tures to process non-Euclidean data [11–17], and have been applied to solve problems in drug
discovery [18], social network analysis [19], finance [20], and wireless communications [21]. The
performance of these models depends critically on the quantity and quality of the data used to train
them. Consequently, model training can be both time- and resource-intensive, often prohibitively so.

There are three main dimensionality reduction paradigms for graphs [22]: coarsening [23–26],
sparsification [26, 27], and condensation [28], differing in how they consolidate graph structures.
Graph coarsening reduces graph size by partitioning and merging sets of nodes in a way that minimizes
a chosen reconstruction error; graph sparsification reduces the complexity of the graph by removing
a subset of nodes and edges; graph condensation learns small graphs that synthesize aspects of the
original graph, including node features and topology. We focus in this work on graph coarsening.

Graph coarsening has a history dating back to at least the introduction of the Kron reduction along [29]
and has long been applied in scientific computing to solving differential equations [23]. Beyond this,
graph coarsening algorithms have been employed for learning network node embeddings [30], image
segmentation [31], and neighborhood pooling in GNNs [32]. For further elaboration on the history of
graph coarsening, see [22, 23, 33]. Central to the design of all coarsening algorithms, no matter the
application, is the question of what notion of similarity to preserve between the original graph and its
coarsened counterpart. In graph data science, there has been an emphasis on preserving some notion
of spectral similarity [25, 26, 34, 35], usually with respect to graphs’ Laplacian representation. While
many interesting graph properties can be derived that are related to their spectra [36], there are some
properties that cannot be (several graphs may have the same spectrum, i.e., cospectral graphs [37]).
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In recent years, a metric that has garnered much interest in graph data science and, more recently, in
graph coarsening is the Gromov-Wasserstein (GW) distance. The GW distance [38, 39] is appealing
for use in graph mining for several reasons. First, the GW distance can be computed between
unaligned graphs of different sizes, unlike the commonly used Frobenius norm distance [40] and
the Bures-Wasserstein distance [41, 42]. Second, the GW distance produces an alignment (transport
plan) between nodes across graphs, finding utility in applications including graph matching and
partitioning [43]. While solving for such an alignment is generally NP-hard, many algorithms have
been proposed to efficiently approximate the alignment [44, 45]. Third, we can easily compute
geodesics between a pair and barycenters between a group of networks. To this end, GW geodesic
and barycenter-based methods have been used for applications including data augmentation [46],
graph matching [43], graph clustering [47], time-series prediction [48], and molecule prediction [49].
Finally, the Gromov-Wasserstein distance induces an equivalence relationship between networks of
different sizes, which can be used to reduce the size of a graph to its minimal representative without
any loss in information (see Appendix B).

Graph coarsening in the GW setting has been previously considered in [24], where, using the signless
Laplacian representation, it was shown that the GW distance can be bounded by a spectral distance.
In this case, the coarsening problem is approximated using the weighted kernel k-means algorithm.
Moreover, [24] experimentally demonstrates that prioritizing spectrum preservation may not be ideal
for tasks including graph classification, giving merit to the utility of GW distance preservation. We
focus on developing graph coarsening algorithms that minimize GW distance, though we put no
restrictions on the graph representation used. Towards this goal, we propose two algorithms, Greedy
Pair Coarsening (GPC) and k-means Greedy Pair Coarsening (KGPC), which exploit the similarity
of a pair of nodes, as characterized by merging distortion, to coarsen graphs. We summarize our
contributions as follows:

1. We propose an iterative graph coarsening method that, under appropriate assumptions, is guar-
anteed to recover the smallest representation of a measure network within its weak isomorphism
class.

2. We propose a novel network representation, based on the distortion induced by merging node
pairs, for use in a k-means clustering method, providing a more efficient alternative to the iterative
method.

3. We corroborate the utility of our algorithms by comparing the distortion induced by coarsening
against several established algorithms and their performance on downstream tasks like graph
classification.

2 Preliminaries

Graphs: A (weighted) graph G = (V,E,w) is a triplet consisting of a finite set of nodes V =
{v1, · · · , vn}, a set of edges E ⊆ V × V , and a mapping w : E → R of edges to real numbers. A
graph is undirected if w(vi, vj) = w(vj , vi) for all (vi, vj) ∈ E. We can represent a graph by its
adjacency matrix A ∈ Rn×n where aij = w(vi, vj) if (vi, vj) ∈ E; otherwise, aij = 0. Note that
if G is undirected, its adjacency matrix is symmetric. The adjacency matrix is but one choice of
representation for graphs; undirected graphs without self-loops (i.e. (v, v) /∈ E for all v ∈ V ) are
often represented by their Laplacian matrix L = D − A, where D = diag(A1n), and its variants,
including the signless Laplacian L′ = D +A which is used in [23]. We denote the choice of matrix
representation for a graph by S ∈ R|V |×|V | and the weight of the edge from vi to vj by sij .

Basics of Gromov-Wasserstein Pseudo-Metrics: The Gromov-Wasserstein (GW) “distance” [38,39]
is a pseudometric on the space of measure networks [50]. A finite (measure) network (X,WX , µX)
is a triplet consisting of a finite set X of nodes, a weight function WX : X × X → R, and a
fully-supported probability measure µX . Abusing notation, we also denote measure networks by
(S, µ), where S ∈ R|V |×|V | is a matrix for which sij = SX(xi, xj) and µ = µX . We denote the set
of all finite measure networks by N and of N -node measure networks by NN . Hereafter, we use the
terms measure network and network interchangeably.

A (measure) coupling π of two networks X and Y is a probability measure on the product space
X × Y satisfying the marginal constraints µY (y) =

∑
xi
π(xi, y) and µX(x) =

∑
j π(x, yj). We

denote the set of all such couplings by Π(µX , µY ). The distortion of X and Y with respect to the
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measure coupling π ∈ Π(µX , µY ) is defined by

dis2(π) = ⟨L2
2(X,Y )⊗ π, π⟩. (1)

where L2
2(X,Y )⊗ π is the tensor product defined by

[L2
2(X,Y )⊗ π]ik =

∑
jl

|SX(xi, xj)− SY (yk, yl)|2π(xj , yl), (2)

and ⟨·, ·⟩ is the Frobenius inner product [51]. The (L2-) GW distance between networks X and Y is
then the distortion of the infimizing coupling

d2GW (X,Y ) = inf
π∈Π(µX ,µY )

dis2(π), (3)

implying that dGW (X,Y ) ≤ dis(π) for any π ∈ Π(µX , µy). Equipped with the GW distance,
(N , dGW ) is a pseudometric space [50], i.e., it is a metric space up to weak isomorphism (see
Appendix B). We use measure networks to model graphs; the graph (V,E, S) is represented by the
measure network G = (V, S, µ), where µ can be chosen to reflect the relative importance of nodes.
We set µ to the uniform measure over V by default. We denote the vector of weights emanating
to/from a node v ∈ V by S(v) = [S(v, v1), · · · , S(v, vn)] .
Graph Coarsening: Graph coarsening partitions the node set V into a set with M sets, where
|V | = N > M . We denote this mapping by p : V → {1, · · · ,M} and the set of nodes in the j-th
partition set, or supernodes, by Pj = p−1(j). We can encode such a partition by an assignment
matrix Cp ∈ {0, 1}N×M where

Cp(i, j) =

{
1 if vi ∈ Pj

0 otherwise
(4)

We denote the space of all assignment matrices from N -node to M -node networks by CN,M . Given
an assignment matrix Cp ∈ CN,M , we can form the average coarsening matrix Cw defined as

Cw = diag(µ)Cpdiag(1/µ′)

where µ′ = C⊤
p µ ∈ RM and Cw ∈ RN×M . Coarsened graphs are constructed using average

coarsening matrices as follows:

S′ = C⊤
wSCw, and µ′ = C⊤

p µ (5)

The coarsened matrix representation S′ consolidates edge weights by taking a convex combination
of the weights being merged with respect to the relative mass of the nodes being merged – see
Equation 10 for an explicit characterization. Moreover, it was shown in [24, Appendix B.3] that the
transformation of S defined in Eq. (5) is a semi-relaxed Gromov-Wasserstein barycenter [52] (see
Appendix C).

3 Gromov-Wasserstein Graph Coarsening

Given an N -node measure network G = (S, µ), the Gromov-Wasserstein coarsening problem seeks
an assignment matrix C∗

p that solves

C∗
p = argmin

Cp∈CN,M

∥(S − CpC
⊤
wSCwC

⊤
p )⊙ (µµ⊤)1/2∥2F . (6)

Recall that coarsening reduces the size of a network by finding an optimal partition P =
{P1, · · · , PM} merging the nodes in these subsets to produce the coarsened network G′. If Cp

encodes the assignment of nodes to partition sets (supernodes), the matrix π = diag(µ)Cp is a
transport plan from G to G′, for any G′ ∈ NM that is formed by merging nodes in G (i.e. no mass
splitting). Given the assignment Cp, we can construct the measure coupling π = diag(µ)Cp and it
was shown in [23, Appendix B.3] that

G′ = argmin
G′∈NM

⟨L2
2(G,G

′)⊗ diag(µ)Cp, diag(µ)Cp⟩ = (C⊤
wSCw, C

⊤
p µ);

in other words, G′ minimizes dis(π) for a fixed Cp. Therefore, minimizing the distortion over
Cp gives the best coarsening. Moreover, it can be shown that dGW (G′, G

′′
) = 0 when G

′′
=
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(CpC
⊤
wSCwC

⊤
p , µ). Taken together, we get Eq. (6); this formulation is closely related to the Gromov-

Wasserstein sketching problem [53] which, given G ∈ NN , seeks the network G′ ∈ NM closest
to G, or G′ = argminG′∈NM

dGW (G,G′). The connection between coarsening and sketching is
expounded on in Appendix C.

We propose two approaches to tackle the problem (6), both of which are based on the distortion
induced by merging a pair of nodes; we leverage the intuition that nodes within the same partition
should have similar neighborhoods. The first method greedily merges node pairs by choosing the
coarsening from N to N − 1 nodes with minimal discrepancy. The second method derives a graph
representation from the distortion induced by merging node pairs, which partitions nodes using the
k-means algorithm.

3.1 Greedy Pair Coarsening (GPC)

The first method we propose to solve Problem (6) is Greedy Pair Coarsening (GPC). First, note that
we can reformulate Problem (6) as

min
C1

p,··· ,C
N−M
p

∥(S −R⊤SR)⊙ (µµ⊤)1/2∥2F , (7)

whereM is the desired coarsening level, andR =
∏N−M

j=1 Cj
p(C

j
w)

⊤, where eachCj
p ∈ CN−j+1,N−j

corresponds to the merging of a pair of nodes. We can approximate a solution to Problem (7) by
solving a sequence of greedy optimization problems to produce (Ci

p)
N−M
i=1 , each of which minimizes

some intermediate cost. This sequence of assignment matrices can then be consolidated to produce
an assignment matrix Cp ∈ CN−M within the feasible set of Problem (6). In particular, given the first
i− 1 assignment matrices (C1

p , · · · , Ci−1
p ), we compute Ci

p by

Ci
p = argmin

Ci
p∈CN−i+1,N−i

∥((S − Ci
p(C

i
w)

⊤(Ri−1)⊤SRi−1Ci
w(C

i
p)

⊤)⊙ (µµ⊤)1/2∥2F , (8)

where Ri =
∏i

j=1 C
j
p(C

j
w)

⊤ ∈ RN×N−i. Since CN−i+1,N−i is a discrete set with
(
N−i+1

2

)
ele-

ments, we can determine the minimizing transport plan for Eq. (8) directly by comparing distortions.
Note that when the distortion induced by a node merging is zero, the coarsened network remains in the
weak isomorphism class of the original network (see Proposition 1). Once the minimal representative
is achieved, we must merge nodes that incur some distortion/error. This process is repeated until a
network of the desired size is recovered. As a first theoretical result, we show that the GPC algorithm
produces the minimal representative of the weak isomorphism class of a measure network.
Proposition 1. Given a measure network G, GPC recovers the smallest network weakly isomorphic
to G. Moreover, when k is the size of the minimal representative, GPC solves Problem (6).

For sufficiently well-behaved graphs, GPC can recover optimal partition sets.
Proposition 2. Let G = (V, S, µ) be a symmetric N -node network whose nodes can be partitioned
into sets P = {P1, · · · , PM} for which there exist ϵ > 0, α > 4 + 4

√
N2/(N − 1), satisfying

∥s(x)−s(y)∥∞ < ϵ for all u1, u2 ∈ Pi and infu∈V |s(u1, u)−s(u2, u)| ≥ αϵ for u1 ∈ Pi, u2 ∈ Pj

for i ̸= j. Then, for G′ = GPC(G,N −M) = (V (N−M), S(N−M), µ(N−M)), we have V (N−M) =
P .

3.2 k-means Greedy Pair Coarsening (KGPC)

While Algorithm 1 is guaranteed to find the minimal representative of a measure network, its time
complexity is O(N4) as we have to compute pairwise distortions for each iteration. To remedy this,
we propose k-means Greedy Pair Coarsening (KGPC), which runs at O(N2 + TNM2) where T
bounds the number of k-means iterations and M is the desired coarsening size. As with GPC, we
characterize node similarity using the distortion induced by merging node pairs. The goal then is to
group nodes with similar induced node pair merging distortion within the same partition. Towards this,
we construct a matrix H ∈ R|V |×|V |

+ where Hij = dis(πij), where πij is the transport plan merging
nodes vi and vj . Equipped with H and assuming µ = 1N/N we can solve for the assignment matrix
C∗

p by

C∗
p = argmin

Cp∈CN,M

∥H − CpC
⊤
wHCwC

⊤
p ∥2F . (9)
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We have observed this derived representation to be especially useful for finding node partitions
using the k-means algorithm. Moreover, while there are currently no theoretical guarantees that this
method minimizes (6) in the general case, the algorithm’s performance seems to indicate that the
cost function, Eq. (9), can be upper-bounded by the first ordered differences comprising H .

Algorithm 1 Greedy Pair Coarsening (GPC)

1: function GPC((S, µ),M )
2: (N, t)← (|V|, 0)
3: (St, µt)← (S, µ)
4: while t < N −M do
5: Dij ← dis2(πij)
6: Cp← argminvi,vj Dij

7: Cw ← diag(µ)Cpdiag(1/(Cpµ))
8: St, µt← (C⊤

wStCw, C
⊤
p µ)

9: t← t+ 1
10: end while
11: return (St, µt)
12: end function

Algorithm 2 k-means Greedy Pair Coarsening
(KGPC)

1: function KGPC((S, µ),M )
2: Hij ← dis(πij)
3: Cp ← k-means(H , M )
4: Cw ← diag(µ)Cpdiag(1/(Cpµ))
5: (S′, µ′)← (C⊤

wSCw, C
⊤
p µ)

6: return G = (S′, µ′)
7: end function

4 Numerical Analysis

In this section, we detail the experiments conducted to validate the utility of GPC and KGPC –
all experimental code can be found here: https://github.com/ctaveras1999/graph-coarsening. We
contextualize the performance of our methods against the Multi-level Graph Coarsening (MGC) and
Spectral Graph Coarsening (SGC) algorithms proposed in [25] and the Kernel Graph Coarsening
(KGC) algorithm proposed in [24]. Note that [24] is, to our knowledge, the only other coarsening
method that explicitly minimizes a Gromov-Wasserstein distance, though their method requires the
use of the unsigned Laplacian representation. Our method is flexible to graph representation, but we
choose the adjacency matrix. Changing the graph representation will affect the values of induced
distortion; representation can therefore be seen as a hyperparameter for our coarsening method.

We perform two experiments: 1) we compare the reconstruction error of the different methods
to quantify coarsening quality, and 2) we leverage the GW dictionary learning method proposed
in [47] for graph classification. Throughout these experiments, we use several well-established graph
datasets, namely the IMDB-Binary [54], Mutag [55], Proteins [56], Enzymes [56, 57], MSRC [58],
and Tumblr [59] datasets.

Quantifying Reconstruction Error: The goal of this experiment is to determine which of the
aforementioned methods best preserves the structure of the adjacency matrix as measured by the
coarsening-induced distortion. For each graph in a given dataset, we coarsen at various levels (15%
and 85% of all nodes in 5% increments), then compute the distortion between the graphs and their
coarsenings. At each coarsening level, we compute the distortion induced by coarsening and average
over all such distortions. This average distortion is then treated as a measure of coarsening quality as
a function of coarsening level. The results of this experiment for the MSRC dataset are summarized
in Figure 1. In it, we can see that for MSRC and Enzymes, our algorithms achieve the lowest, or
near-lowest, distortion across coarsening levels. As the coarsening level increases, the difference
between the methods becomes less pronounced, leading to little meaningful difference between the
methods. This suggests that the graphs cannot be well-approximated by graphs with 80%+ of nodes
coarsened.

Graph Classification via Clustering: For this experiment, we leverage the Graph Dictionary
Learning method (FGWF) proposed in [47] for unsupervised graph classification. Given a set of
graphs, G = [Gi]

N
i=1, the objective of this method is to learn a set of atoms [Bj ]

M
j=1 and weights

[λi]
N
i=1 such that barycenters formed by the dictionary atoms can well approximate graphs in the

dataset. We initialize the dictionary with 15 graphs randomly sampled from the dataset and randomly
initialize the weights λi associated with each graph in the dictionary. Model parameters are updated
using the Adam optimizer. Individual FGWF models were trained for 15 epochs with a learning rate
of 0.01. After training, we classify graphs by clustering their associated weight values using k-means.
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Figure 1: For each method and graph in a dataset, we coarsen between 15% to 85% of nodes, and, for
each coarsening level, average the distortion over all graphs. GPC and KGPC achieve the overall
lowest or near-lowest distortion on MSRC, Enzymes, and PTC-MR. MGC performs best on MUTAG.

The goal of this experiment is to determine how faithfully the different coarsening methods represent
the original data. Towards this, we coarsen all data to 40% of their original size, and for each
combination of coarsening method and dataset, we train separate FGWF models and compute the
Rand Index of the respective classification results. Table 4 reports the average and standard deviation
of the Rand Index for each combination of dataset and algorithm, and indicates that GPC and KGPC
are, overall, the most compatible with the FGWF model [47] for graph classification. The Rand index
for our algorithms was on par with or better than the ones produced by the original graph. This may
indicate that the coarsening step helps remove extraneous structure in the graph that does not aid in
classification.

Methods\Datasets IMDB-B MUTAG Proteins MSRC-9 ENZYMES PTC-MR
MGC [25] 50.7 ± 0.2 50.1 ± 1.4 54.3 ± 3.4 78.0 ± 0.3 72.5 ± 0.2 50.7 ± 0.2
SGC [25] 50.5 ± 0.2 50.3 ± 0.6 52.8 ± 3.6 77.9 ± 0.3 72.4 ± 0.1 50.5 ± 0.2
KGC [24] 50.0 ± 0.0 51.1 ± 1.4 58.1 ± 2.0 77.9 ± 0.2 72.4 ± 0.2 50.0 ± 0.0
GPC (Ours) 51.3 ± 0.3 51.0 ± 1.6 55.7 ± 2.3 77.9 ± 0.4 72.3 ± 0.1 51.3 ± 0.2
KGPC (Ours) 50.8 ± 0.3 53.6 ± 2.5 56.7 ± 2.1 78.0 ± 0.4 72.3 ± 0.1 50.8 ± 0.3
Original 51.1 ± 0.8 50.6 ± 0.6 54.9 ± 2.3 77.9 ± 0.2 72.3 ± 0.1 51.1 ± 0.8

Table 1: Rand Index for coarsened graphs with 60% of nodes coarsened. For each combination of
dataset and method, we coarsen the data, which we then use to train four FGWF models [47] for
graph classification. We use the Rand Index to measure the quality of the classification results and
find that for most datasets, either GPC or KGPC performs best.

5 Discussion

In this work, we proposed the GPC and KGPC algorithms for graph coarsening with respect to
the Gromov-Wasserstein distance. We conducted two experiments, where the results show that our
methods produce coarsening with less distortion and better discriminability for classification tasks.
These results suggest that our methods produce coarsenings that better leverage the structure provided
by the GW geometry than others and are more compatible with GW-based methods.

Future research should explore establishing an upper bound on the coarsening objective in terms of
the distortion of first-order coarsening to supplement the development of the KGPC algorithm and
exploring trade-offs between graph representations on the proposed algorithms. Other directions that
this work opens up include incorporating graph features into the coarsening, similar to [60] for the
Fused Gromov-Wasserstein distance [61], and providing guarantees for the output of GNNs that use
the Gromov-Wasserstein distance, similar to the message passage guarantees derived in [62].
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A Proofs Omitted from the Main Text

A.1 Proof of Proposition 1

If there exists a pair of nodes for which the induced distortion is equal to zero, then G′, the graph
resulting from merging said nodes, is weakly isomorphic to G. This follows from the fact that the
distortion is an upper-bound for the GW distance (GW evaluates distortion of infimizing coupling),
and the GW distance is unique up to weak isomorphism [50]. We repeat this process until there are
no node pairs with zero distortion, in which case we have reached a minimal representative. Since
the distortion between the original network and a minimal representative is zero, and the distortion is
an upper-bound on the GW distance, it follows that the minimal representative solves Problem (6).
Note that minimal representatives may not be unique, but all minimal representatives are strongly
isomorphic (i.e. unique up to node re-labeling) [63].

A.2 Proof of Proposition 2

Let V (t) = {v(t)1 , · · · , v(t)N−t} denote the partition, or supernode set, constructed after t iterations of

GPC. The i-th supernode v(t)i ∈ V (t) contains a set of nodes and we denote its size by N (t)
i = |v(t)i |.

We call a pair of supernodes v(t)i , v
(t)
j ∈ V (t) consistent if v(t)i ∪ v

(t)
j ⊆ P for some P ∈ P . We

proceed by induction towards showing that GPC only merges consistent pairs of supernodes for
1 ≤ t < N −M . This will then imply that after N −M iterations we achieve V (N−M) = P .

Before the first iteration, the partition V (0) consists of singleton supernodes v(0)i = {vi}. The first
iteration of GPC thus merges the pair of nodes vi, vj , inducing the least distortion. By hypothesis and
Lemma 1, the distortion induced by the merging of nodes in the same partition set is upper-bounded
by ϵ, and lower-bounded by αϵ for nodes in different partition sets. Therefore, GPC must merge
consistent nodes at the first iteration.

Suppose now that GPC has run for 1 ≤ t < N−M−1 iterations during which only consistent supern-
odes were merged, to produce the supernode set V (t) = {v(t)1 , · · · , v(t)N−t}. Let v(t)i , v

(t)
j , v

(t)
k ∈ V (t)

be such that v(t)i and v(t)j are consistent, and v(t)i and v(t)k are not. We want to show that the distortion
induced by merging the former pair is strictly less than that of the latter. Lemma 2 allows us to
compute upper and lower bounds on Dij = dis(πij) and Dik = dis(πik), respectively, where πrs is
the transport map merging supernodes v(t)r and v(t)s . By Lemma 3, we have that maxDij < minDik,
as long as α > (4 + 4N/

√
N − 1). Therefore, at iteration t, GPC will merge the pair of consistent

nodes with the least distortion.

After N − M iterations, no pair of supernodes in V (N−M) is consistent. This implies that the
supernodes in V (N−M) correspond exactly with the sets in the partition P , thus V (N−M) = P , as
desired.
Lemma 1. Let G = (V,w, µ) be a symmetric measure network and π12 the transport map induced
by merging nodes v1, v2 ∈ V . Then, dis2(π12) = µ1µ2(A1 + 2A2)/(µ1 + µ2)

4 where ∆klmn =
(skl − smn) and

A1 = µ3
1µ2(4∆

2
1112 +∆2

2211) + µ1µ
3
2(∆

2
1122 + 4∆2

2212) + 2(∆2
1211µ

4
1 +∆2

1222µ
4
2)

+ 4µ2
1µ

2
2[(|∆1112| − |∆2212|)2 + 2|∆1112||∆2212|+∆1112∆2212]

A2 = (µ1 + µ2)
3

N∑
n=3

µn∆
2
1n2n.

Proof. We can represent the assignment matrix merging nodes v1 and v2 by

C12
p =

[
12×1 02×(N−2)

0(N−2)×1 IN−2

]
,

where 1n1×n2 (resp. 1n1×n2) is the ones (resp. zeros) matrix n1 rows and n2 columns and In is the
identity matrix with n rows and columns. Then, letting π = π12 and Cp = C12

p , we get

π = diag(µ)Cp, Cw = πdiag (1/Cpµ) , and S′ = (V ′, C⊤
wSCw, Cpµ).
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Carrying out the multiplications, we get

w′ =


∑2

i,j=1 θiθjsij
∑2

i=1 θisi3 · · · ∑2
i=1 θisiN∑2

j=1 θis3j s33 · · · s3N
...

...
. . .

...∑2
j=1 θjsNj sN3 · · · sNN

 (10)

where θ1 = µ1/(µ1 + µ2) and θ2 = µ2/(µ1 + µ2). We now start computing dis2(π) of the coupling.

Let dijkl = |sij − s′kl|2πikπjl. Then,

dis2(π) =
N∑

i,j=1

N−1∑
k,l=1

dijkl

=

N∑
i,j=1

dij11 + N−1∑
k=2

dijk1 +

N−1∑
l=2

dij1l +

N−1∑
k,l=2

dijkl


Let

D1 =

N∑
i,j=1

dij11 D2 =

N∑
i,j=1

N−1∑
k=2

dijk1 D3 =

N∑
i,j=1

N−1∑
l=2

dij1l D4 =

N∑
i,j=1

N−1∑
k,l=2

dijkl

and ∆ijkl = (sij − skl). We proceed with a term-by-term expansion

D1 = d1111 + d1211 + d2111 + d2211

= |s11 − s′11|2π11π11 + |s12 − s′11|2π11π21 + |s21 − s′11|2π21π11 + |s22 − s′11|2π21π21
= |s11 − s′11|2µ2

1 + |s12 − s′11|2µ1µ2 + |s21 − s′11|2µ2µ1 + |s22 − s′11|2µ2
2

Let D11 = |s11 − s′11|2µ2
1, D12 = |s12 − s′11|2µ1µ2, D13 = |s21 − s′11|2µ2µ1, and D14 =

|s22 − s′11|2µ2
2; note that by the symmetry of w we have D12 = D13. Then,

D11 = µ2
1|s11 − s′11|2

= µ2
1

∣∣∣∣∣∣
2∑

i,j=1

(s11 − sij)θiθj

∣∣∣∣∣∣
2

= µ2
1|2∆1112θ1θ2 +∆1122θ

2
2|2

= µ2
1θ

2
2(4∆

2
1112θ

2
1 +∆2

1122θ
2
2 + 4∆1112∆1122θ1θ2)

=
µ2
1µ

2
2

(µ1 + µ2)4
(
4∆2

1112µ
2
1 +∆2

1122µ
2
2 + 4∆1112∆1122µ1µ2

)
.

Similar computations yield

D12 = D13 =
µ1µ2

(µ1 + µ2)4
(∆2

1211µ
4
1 +∆2

1222µ
4
2 + 2∆1211∆1222µ

2
1µ

2
2)

D14 =
µ2
2µ

2
1

(µ1 + µ2)4
(∆2

1122µ
2
1 + 4∆1222µ

2
2 + 4∆1122∆1222µ1µ2)

Combining these terms, we get

D1
(µ1 + µ2)

4

µ1µ2
= µ3

1µ2(4∆
2
1112 +∆2

1122) + µ1µ
3
2(∆

2
1112 +∆2

1222) + 2(∆2
1211µ

4
1 +∆2

1222µ
4
2)

+ 4µ2
1µ

2
2(∆1112∆1122 +∆1211∆1222 +∆1122∆1222)

= µ3
1µ2(4∆

2
1112 +∆2

1122) + µ1µ
3
2(∆

2
1112 +∆2

1222) + 2(∆2
1211µ

4
1 +∆2

1222µ
4
2)

+ 4µ2
1µ

2
2[(|∆1112| − |∆1222|)2 + 2|∆1112||∆1222|+∆1112∆1222]
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We proceed with D2, noting that D3 = D2 by the symmetry of w,

D2 =

N∑
i,j=1

N−1∑
k=2

dijk1 =

N∑
i,j=1

N−1∑
k=2

|sij − s′k1|2πikπj1

=

N∑
i=3

µi

∣∣∣∣∣si1 −
2∑

l=1

θlsil

∣∣∣∣∣
2

µ1 +

∣∣∣∣∣si2 −
2∑

l=1

θlsl2

∣∣∣∣∣
2

µ2


=

N∑
i=3

µi

(
|θ2(si1 − si2)|2µ1 + |θ1(si2 − si1)|2µ2

)
=

N∑
i=3

µi

(
|si1 − si2|2µ1θ

2
2 + |si2 − si1|2θ21µ2

)
=

1

(µ1 + µ2)2

N∑
i=3

µi

(
|si1 − si2|2µ1µ

2
2 + |si2 − si1|2µ2

1µ2

)
=

µ1µ2

(µ1 + µ2)2

N∑
i=3

µi

(
|si1 − si2|2µ2 + |si2 − si1|2µ1

)
=

µ1µ2

(µ1 + µ2)2

N∑
i=3

µi|si1 − si2|2(µ1 + µ2)

=
µ1µ2

µ1 + µ2

N∑
i=3

µi|si1 − si2|2

=
µ1µ2

µ1 + µ2

N∑
i=3

µi|∆i1i2|2.

Finally, we compute D4,

D4 =

N∑
i,j=1

N−1∑
k,l=2

dijkl

=

N∑
i,j=3

N−1∑
k,l=2

|sij − s′kl|2πikπjl

=

N∑
i,j=3

|sij − sij |µiµj = 0

Combining these terms, we get

(µ1 + µ2)
4

µ1µ2
D = 2(µ1 + µ2)

3
N∑
i=3

µi|∆i1i2|2

+ µ3
1µ2(4∆

2
1112 +∆2

1122) + µ1µ
3
2(∆

2
1112 +∆2

1222) + 2(∆2
1211µ

4
1 +∆2

1222µ
4
2)

+ 4µ2
1µ

2
2[(|∆1112| − |∆1222|)2 + 2|∆1112||∆1222|+∆1112∆1222]

Lemma 2. Let G = (V,w, µ) satisfy the hypotheses in Proposition 1, with partition P =
{P1, · · · , PM}, ϵ > 0, and α > 4. Let G′ be the coarsening of G induced by Cp, and
ϕ : V → V ′ the mapping corresponding to Cp. Suppose there exist nodes v′i, v

′
j , v

′
k ∈ V ′ satisfying

∥w(u1)−w(u2)∥∞ < ϵ for all u1, u2 ∈ ϕ−1(v′i)∪ϕ−1(v′j) and infz∈V |w(u1, z)−w(u3, z)| > αϵ

for u1 ∈ ϕ−1(v′i) and u3 ∈ ϕ−1(v′k). Then,

dis2(πij) <
32ϵ2µ′

1µ
′
2

µ′
1 + µ′

2

and dis2(πik) ≥ ϵ2(α− 4)2µ′
1µ

′
3

2(µ′
1 + µ′

3)
.
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Proof. Without loss of generality, we let v′i = v′1 and v′j = v′2. To prove this lemma, we must
compute upper and lower bounds on several terms of the form |∆′

ijkl) where ∆′
ijkl = s′ij − s′kl. Note

that by the symmetry of w′ we have |∆′
ijkl| = |∆′

jikl| = |∆′
ijlk| = |∆′

jilk|.
We first compute upper bounds on weight differences ofG andG′, which we use in later computations.
Without loss of generality we order the nodes in V such that ϕ−1(v′l) =

[
vN̂l−1+1, · · · , vN̂l−1+Nl

]
,

where N0 = 0, Nl =
∣∣ϕ−1(v′l)

∣∣, and N̂l =
∑l

r=0Nr. Moreover, given a supernode v′l, we define

[θm]Nl
m=1 where θm = µ

(
vN̂l+m

)
/µ(v′l). Finally, we abuse notation below, using m ∈ ϕ−1(v′l) in

place of vm ∈ ϕ−1(v′l).

|s′11 − s11| =

∣∣∣∣∣∣
∑

l,m∈ϕ−1(v′
1)

θlθm(slm − s11)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

l,m∈ϕ−1(v′
1)

θlθm|slm − s11|

∣∣∣∣∣∣
< 2ϵ

∣∣∣∣∣∣
∑

l,m∈ϕ−1(v′
1)

θlθm

∣∣∣∣∣∣ = 2ϵ

|s′12 − s11| =

∣∣∣∣∣∣
∑

l∈ϕ−1(v′
1)

∑
m∈ϕ−1(v′

2)

θlθm(skl − s11)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

l∈ϕ−1(v′
1)

∑
m∈ϕ−1(v′

2)

θlθm|slm − s11|

∣∣∣∣∣∣
< 2ϵ

∣∣∣∣∣∣
∑

l∈ϕ−1(v′
1)

∑
m∈ϕ−1(v′

2)

θlθm

∣∣∣∣∣∣ = 2ϵ

|s′22 − s11| = |s′22 − s1,N1+1 + s1,N1+1 − s11|
≤ |s′22 − s1,N1+1|+ |s1,N1+1 − s11|
< 2ϵ+ 2ϵ = 4ϵ

|s′1n − s′2n| = |s′1n − s1,N̂n−1+1 + s1,N̂n−1+1 − s′2n|
≤ |s′1n − s1,N̂n−1+1|+ |sN̂n−1+1,N̂n−1+1 − s′2n|
≤ 2ϵ+ 2ϵ

< 4ϵ

We can now produce bounds for the relevant terms in the distortion

|∆′
1112| = |s′11 − s′12|

= |s′11 − s11 + s11 − s′12|
≤ |s′11 − s11|+ |s′12 − s11|
< 2ϵ+ 2ϵ = 4ϵ

|∆′
1222| = |s′12 − s′22|

= |s′12 − sN̂1+1,N̂1+1 + sN̂1+1,N̂1+1 − s′22|
≤ |s′12 − sN̂1+1,N̂1+1|+ |s′22 − sN̂1+1,N̂1+1|
< 2ϵ+ 2ϵ = 4ϵ
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|∆′
1122| = |s′11 − s′22|

≤ |s′11 − s′12|+ |s′12 − s′22|
= |∆′

1112|+ |∆′
1222|

< 4ϵ+ 4ϵ = 8ϵ

|∆′
1n2n| = |s′1n − s′2n|

< 4ϵ

||∆′
1112| − |∆′

1222|| ≤ |∆′
1112 −∆′

1222|
= |s′11 − s′12 + s′12 − s′22|
= |∆′

1122|
< 8ϵ

2|∆′
1112||∆′

1222|+∆′
1112∆1222 ≤ 3|∆′

1112||∆′
1222|

< 48ϵ2

In summary

|∆′
1112|, |∆′

1222|, |∆′
2212|, |∆′

1n2n| < 4ϵ

|∆′
1122|, |∆′

2211|, ||∆′
1112| − |∆′

2212|| < 8ϵ

2|∆′
1112||∆′

2212|+∆′
1112∆

′
2212 < 48ϵ2

We now proceed with computing lower bounds. Without loss of generality, we now let v′i = v′1,
v′l = v′2.

αϵ ≤ |s11 − s1,N1+1|
= |s11 − s′11 + s′11 − s′12 + s′12 − s1,N1+1|
≤ |s11 − s′11|+ |s′11 − s′12|+ |s′12 − s1,N1+1|
< 2ϵ+ |s′11 − s′12|+ 2ϵ

=⇒ |∆′
1112| ≥ (α− 4)ϵ

αϵ < |s1,N̂n+1 − sN1+1,N̂n+1|
= |s1,N̂n+1 − s′1n + s′1n − s′2n + s′2n − sN1+1,N̂n+1|
≤ |s1,N̂n+1 − s′1n|+ |s′1n − s′2n|+ |s′2n − sN1+1,N̂n+1|
< 2ϵ+ |s′1n − s′2n|+ 2ϵ

=⇒ |∆′
1n2n| > (α− 4)ϵ

2|∆′
1112||∆′

2212|+∆′
1112∆

′
2212 ≥ |∆′

1112||∆′
2212|

> [(α− 4)ϵ][(α− 4)ϵ]

> (α− 4)2ϵ2

|∆′
1122| ≥ 0.

Plugging in these bounds to the result from Lemma 1 we get

D12 <
ϵ2µ′

1µ
′
2

(µ′
1 + µ′

2)
4

[(
2(µ′

1 + µ′
2)

3
N∑
i=3

µ′
i(4ϵ)

2

)
+ µ′

1
3
µ′

2[4(4ϵ)
2 + (8ϵ)2)] + µ′

1µ
′3
2[(8ϵ)

2 + 4(4ϵ)2]
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+ 2((4ϵ)2µ′4
1 + (4ϵ)2µ′4

2) + 4µ′2
1µ

′2
2[(8ϵ)

2 + 48ϵ2]

]

=
ϵ2µ′

1µ
′
2

(µ′
1 + µ′

2)
4

[
32(µ′

1 + µ′
2)

3(1− µ′
1 − µ′

2) + 64(µ′3
1µ

′
2 + µ′

1µ
′2
3) + 32(µ′4

1 + µ′4
2) + 112µ′2

1µ
′2
2

]
≤ ϵ2µ′

1µ
′
2

(µ′
1 + µ′

2)
4
[32(µ′

1 + µ′
2)

3 − 32(µ′
1 + µ′

2)
4 + 32(µ′

1 + µ′
2)

4]

=
32ϵ2µ′

1µ
′
2

(µ′
1 + µ′

2)

D13 >
ϵ2µ′

1µ
′
3

(µ′
1 + µ′

3)
4

2(µ′
1 + µ′

3)
3
∑
i ̸=1,3

µ′
n(α− 4)2

+ 4(α− 4)2(µ′3
1µ

′
3 + µ′

1µ
′3
3)

+8(α− 4)2(µ′4
1 + µ′4

3) + 4(α− 4)2µ′2
1µ

′2
3]

]

=
ϵ2(α− 4)2µ′

1µ
′
3

(µ′
1 + µ′

3)
4

[
2(µ′

1 + µ′
3)

3(1− µ′
1 − µ′

3) + 4(µ′3
1µ

′
3 + µ′

1µ
′3
3) + 8(µ′4

1 + µ′4
3) + 4µ′2

1µ
′2
3

]
>
ϵ2(α− 4)2µ′

1µ
′
3

(µ′
1 + µ′

3)
4

[
1

2
(µ′

1 + µ′
3)

3(1− µ′
1 − µ′

3) +
1

2
(µ′

1 + µ′
3)

4

]
=
ϵ2(α− 4)2µ′

1µ
′
3

(µ′
1 + µ′

3)
4

[
1

2
(µ′

1 + µ′
3)

3 − 1

2
(µ′

1 + µ′
3)

4 +
1

2
(µ′

1 + µ′
3)

4

]
=
ϵ2(α− 4)2µ′

1µ
′
3

2(µ′
1 + µ′

3)
,

thus concluding the proof.

Lemma 3. Let G = (V,w, µ) be a measure network and G′ = (V ′, w′, µ′) be a coarsening of G
satisfying the hypotheses of Lemma 2 with ϵ > 0 and α > 4 + 4N/

√
N − 1. Then, dis(πij) <

dis(πik).

Proof. Let

G12 =
32ϵ2µ1µ2

(µ1 + µ2)
and G13 =

1
2ϵ

2(α− 4)2µ1µ3

(µ1 + µ3)
.

Then, dis2(π13) > dis2(π12) if G13 > G12, or, equivalently,

(α− 4)2 >
32ϵ2µ1µ2

(µ1 + µ2)
× (µ1 + µ3)

1
2ϵ

2µ1µ3

= 64
µ2

µ3

µ1 + µ3

µ1 + µ2
.

We want to find a lower bound that is valid for any choice of µ1, µ2, µ3, where 1
N ≤ µ1, µ2, µ3 ≤

1 − 2
N and µ1 + µ2 + µ3 ≤ 1. This bound is largest when µ1 + µ2 + µ3 = 1, thus, we let

µ2 = 1− µ1 − µ3. We thus want to solve

max
µ1,µ3

G(µ1, µ3) := 64
1− µ1 − µ3

µ3

µ1 + µ3

1− µ3
= 64

(µ1 + µ3)− (µ1 + µ3)
2

µ3(1− µ3)
.

We first maximize for µ1:

∂

∂µ1
G(µ1, µ3) = 64

1− 2(µ1 + µ3)

µ3(1− µ3)
= 0

=⇒ µ∗
1 = 1/2− µ3.

Note that µ∗
1 is guaranteed to be a maximizer as G(µ1, µ3) is a negative quadratic in µ1. After

plugging in µ∗
1 = 1/2− µ3 we optimize for µ3:

∂

∂µ3
G(µ∗

1, µ3) =
∂

∂µ3

(
64

(1/2)− (1/2)2

µ3(1− µ3)

)
=

∂

∂µ3

(
64

1/4

µ3(1− µ3)

)
(11)
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= −16 1− 2µ3

µ2
3(1− µ3)2

= 0 (12)

=⇒ µ′
3 = 1/2 (13)

It can be shown that µ′
3 is a minimizer, not a maximizer. Therefore, the maximizer µ∗

3 must occur
at the boundary of its domain. By inspection, we get that µ∗

3 = 1/N . Taken together, we have
µ∗
1 = 1/2− 1/N, µ∗

2 = 1/2, µ∗
3 = 1/N , and

G(µ∗
1, µ

∗
2, µ

∗
3) = 64

µ∗
2

µ∗
3

µ∗
1 + µ∗

3

µ∗
1 + µ∗

2

= 64
1/2

1/N

1/2

1− 1/N
= 16

N2

N − 1
.

Therefore, dis2(π13) > dis2(π12) if α > 4 + 4N/
√
N − 1. Since f(x) = x2 is a strictly monotonic

bijection on [0,∞), it follows that dis(π12) < dis(π13).

B Weak Isomorphism and Coarsening

As previously mentioned, the space of (compact) measure networks equipped with the Gromov-
Wasserstein distance is a pseudometric space. A pseudometric space consists of a set X and a
pseudo-metric d̂, differing from a metric in that we can have d̂(x, y) = 0 for x ̸= y. Moreover, the
Gromov-Wasserstein distance is unique up to weak-isomorphism [50], that is d̂(x, y) = 0 if and only
if x and y are weakly isomorphic. There are two notions of weak-isomorphism discussed in [50], the
latter of which is only necessary for infinite measure networks and is therefore beyond the scope of
this work.

A pair of measure networks X = (X,SX , µX) and Y = (Y, SY , µY ) is called weakly isomorphic
if there exists a third measure network Z = (Z, SZ , µZ) and injective maps ϕ : Z → X and
ψ : Z → Y such that the following conditions hold:

1. ϕ∗(µZ) = µX and ψ∗(µZ) = µY

2. supz1,z2∈Z |ϕ∗SX(z1, z2)− ψ∗SY (z1, z2)| = 0

where ϕ∗ = µZ ◦ϕ−1 and ϕ∗wX(z1, z2) = wZ(ϕ(z1), ϕ(z2)); ψ∗ and ψ∗ are defined mutatis mutan-
dis. The concept of a terminal network is discussed in [50, 63] and is the most concise representation
of a measure network in the GW geometry. Any measure network in a weak isomorphism class can
be represented using its minimal representative via blow-ups [64]. We can determine if a measure
network is the minimal representative by checking if there exists a pair of nodes with identical
neighborhoods, or equivalently, a pair of nodes that, once merged, induce zero GW distortion (as in
Prop. 1.)

Figure 2: We show here two weak isomorphism classes of graphs. The leftmost networks in each
class have uniform mass on nodes and the weights of all edges in each class are equal. The rightmost
graphs are minimal representatives or terminal networks in their respective class. Visually, the
minimal representatives of the graphs G1 and G2 appear quite similar, but comparing their leftmost
representation reveals how different the graphs are. ClassesG1 andG2 are both examples of complete
bi-partite graphs; these classes of graphs benefit most from coarsening to the minimal representative,
as a complete k-partite network can be reduced to a k-node minimal representative.
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C Gromov-Wasserstein Coarsening and Sketching

The purpose of this section is to clarify the connection between the graph coarsening problem in
the GW setting and the GW measure network sketching problem. The GW sketching problem
has been previously considered in [53] in the case of metric measure spaces (a subset of measure
networks [50]), where notions of duality were established between sketching and clustering with
respect to the GW distance (albeit for the GW distance proposed by [38] which is not computationally
feasible). The sketching problem in GW space of an N -point network G to a M -point network G′

can be formulated as

argmin
G′∈NM

d2GW (G,G′) = argmin
G′∈NM

min
π∈Π(µ,µ′)

dis22(π) (14)

We can upper-bound (14) by restricting the feasibility set of the GW distance to those transport plans
induced by coarsening matrices, i.e. π = diag(µ)Cp,

argmin
G′∈NM

d2GW (G,G′) ≤ argmin
G′∈NM

min
Cp∈CN,M

dis22(diag(µ)Cp). (15)

As is pointed out in [24], given Cp the G′ that minimizes the upper bound in Eq. (15) is the
semi-relaxed GW barycenter [52]

min
G′∈NM

d2GW (G,G′) ≤ min
G′∈NM

min
Cp∈CN,M

dis2(diag(µ)Cp) (16)

= min
G′∈NM

min
Cp∈CN,M

⟨L2
2(G,G

′)⊗ diag(µ)Cp, diag(µ)Cp⟩ (17)

= min
Cp∈CN,M

min
G′∈NM

⟨L2
2(G,G

′)⊗ diag(µ)Cp, diag(µ)Cp⟩ (18)

= min
Cp∈CN,M

⟨L2
2(G,C

⊤
wGCw)⊗ diag(µ)Cp, diag(µ)Cp⟩ (19)

where Eq. (19) follows from the fact that G′ = C⊤
wGCw is the closed-form solution of the inner

minimization problem in Eq. (18), as shown in [24, Appendix B], [51, Equation 14]. Taken together,
we have

argmin
G′∈NM

d2GW (G,G′) ≤ argmin
Cp∈CN,M

∥(G− CpC
⊤
wGCwC

⊤
p )⊙ (µµ⊤)1/2∥2F . (20)

Notice that the restriction to transport maps of the form π = diag(µ)Cp is equivalent to requiring
that there exists a Gromov-Monge map between G and G′.
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