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Abstract

Aligning visual features with language embeddings is a key challenge in vision-
language models (VLMs). The performance of such models hinges on having a
good connector that maps visual features generated by a vision encoder to a shared
embedding space with the LLM while preserving semantic similarity. Existing
connectors, such as multilayer perceptrons (MLPs), lack inductive bias to constrain
visual features within the linguistic structure of the LLM’s embedding space,
making them data-hungry and prone to cross-modal misalignment. In this work,
we propose a novel vision-text alignment method, ALIGNVLM, that maps visual
features to a weighted average of LLM text embeddings. Our approach leverages
the linguistic priors encoded by the LLM to ensure that visual features are mapped
to regions of the space that the LLM can effectively interpret. ALIGNVLM is
particularly effective for document understanding tasks, where visual and textual
modalities are highly correlated. Our extensive experiments show that ALIGNVLM
achieves state-of-the-art performance compared to prior alignment methods, with
larger gains on document understanding tasks and under low-resource setups. We
provide further analysis demonstrating its efficiency and robustness to noise.

1 Introduction

Vision-Language Models (VLMs) have gained significant traction in recent years as a powerful
framework for multimodal document understanding tasks that involve interpreting both the visual
and textual contents of scanned documents [Kim et al., 2022, Lee et al., 2023, Liu et al., 2023a, 2024,
Hu et al., 2024, Wang et al., 2023a, Rodriguez et al., 2024b]. Such tasks are common in real-world
commercial applications, including invoice parsing [Park et al., 2019], form reading [Jaume et al.,
2019], and document question answering [Mathew et al., 2021b]. VLM architectures typically consist
of three components: (i) a vision encoder to process raw images, (ii) a Large Language Model (LLM)
pre-trained on text, and (iii) a connector module that maps the visual features from the vision encoder
into the LLM’s semantic space.

A central challenge in this pipeline is to effectively map the continuous feature embeddings of
the vision encoder into the latent space of the LLM while preserving the semantic properties of
visual concepts. Existing approaches can be broadly categorized into deep fusion and shallow fusion
methods. Deep fusion methods, such as NVLM [Dai et al., 2024], Flamingo [Alayrac et al., 2022],
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CogVLM [Wang et al., 2023b], and LLama 3.2-Vision [Grattafiori et al., 2024], integrate visual and
textual features by introducing additional cross-attention and feed-forward layers at each layer of the
LLM. While effective at enhancing cross-modal interaction, these methods substantially increase the
parameter count of the VLM compared to the base LLM, resulting in high computational overhead
and reduced efficiency.
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Figure 1: Performance of Different VLM Connec-
tors. The proposed ALIGN connector outperforms
other methods across benchmarks using the same
training configuration. Radial distance is proportion
of maximal score, truncated at 0.7 (black dot).

In contrast, shallow fusion methods project vi-
sual features from the vision encoder into the
LLM input embedding space using either mul-
tilayer perceptrons (MLPs) [Liu et al., 2023b,
2024], convolution mappings such as Honey-
Bee [Cha et al., 2024] and H-Reducer [Hu et al.,
2024], or attention-based mechanisms such as
the Perceiver Resampler [Li et al., 2023b, Lau-
rençon et al., 2024, Alayrac et al., 2022]. This
approach is more parameter-efficient and com-
putationally lighter than deep fusion method
However, these connectors lack inductive bias
to ensure that the projected features remain
within the region spanned by the LLM’s pre-
trained text embeddings. Consequently, the
projected visual features may fall outside the
distribution the LLM was trained on, leading
to noisy or misaligned representations. More-
over, these mappings are typically learned from
scratch, making them data-inefficient and less
effective under low-resource conditions.

Recent methods like Ovis [Lu et al., 2024] at-
tempt to alleviate these issues by introducing
separate visual embeddings indexed from the
vision encoder outputs and combined together
to construct the visual inputs to the LLM. However, this approach significantly increases parameter
count due to the massive embedding matrix and requires extensive training to learn a new embedding
space without guaranteeing alignment with the LLM’s input latent space.

To address these limitations, this paper introduces ALIGNVLM, a novel framework that sidesteps
direct projection of visual features into the LLM embedding space. Instead, our proposed connector,
ALIGN, maps visual features into probability distributions over the LLM’s existing pretrained vocabu-
lary embeddings, which are then combined into a weighted representation of the text embeddings. By
constraining each visual feature as a convex combination of the LLM text embeddings, our approach
leverages the linguistic priors already encoded in the LLM’s text space. This ensures that the resulting
visual features lie within the convex hull of the LLM’s embedding space, reducing the risk of noisy or
out-of-distribution inputs and improving alignment between modalities. The connector thus enables
faster convergence and stronger performance, particularly in low-resource scenarios.

Our experimental results show that ALIGN improves performance on various document understanding
tasks, outperforming prior connector methods, with especially large gains in low-data regimes. We
summarize our main contributions as follows:

• We propose a novel connector, ALIGN, to bridge the representation gap between vision and
text modalities.

• We introduce a family of Vision-Language Models, ALIGNVLM, that achieves state-of-the-
art performance on multimodal document understanding tasks by leveraging ALIGN.

• We conduct extensive experiments demonstrating the robustness and effectiveness of ALIGN
across different LLM sizes and training data setups.

We release our code and research artifacts at alignvlm.github.io.
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2 Related Work

2.1 Vision-Language Models

Over the past few years, Vision-Language Models (VLMs) have achieved remarkable progress,
largely due to advances in Large Language Models (LLMs). Initially demonstrating breakthroughs
in text understanding and generation [Brown et al., 2020, Raffel et al., 2023, Achiam et al., 2023,
Grattafiori et al., 2024, Qwen et al., 2025, Team, 2024], LLMs are now increasingly used to effectively
interpret visual inputs [Liu et al., 2023b, Li et al., 2024, Wang et al., 2024, Chen et al., 2024b, Dai
et al., 2024, Drouin et al., 2024, Rodriguez et al., 2022]. This progress has enabled real-world
applications across diverse domains, particularly in multimodal document understanding for tasks like
form reading [Svetlichnaya, 2020], document question answering [Mathew et al., 2021b], and chart
question answering [Masry et al., 2022]. VLMs commonly adopt a three-component architecture: a
pretrained vision encoder [Zhai et al., 2023, Radford et al., 2021], a LLM, and a connector module.
A key challenge for VLMs is effectively aligning visual features with the LLM’s semantic space to
enable accurate and meaningful multimodal interpretation.

2.2 Vision-Language Alignment for Multimodal Models

Existing vision-language alignment approaches can be classified into deep fusion and shallow fusion.
Deep fusion methods integrate visual and textual features by modifying the LLM’s architecture,
adding cross-attention and feed-forward layers. For example, Flamingo [Alayrac et al., 2022] employs
the Perceiver Resampler, which uses fixed latent embeddings to attend to vision features and fuses
them into the LLM via gated cross-attention layers. Similarly, NVLM [Dai et al., 2024] adopts
cross-gated attention while replacing the Perceiver Resampler with a simpler MLP. CogVLM [Wang
et al., 2023b] extends this approach by incorporating new feed-forward (FFN) and QKV layers for the
vision modality within every layer of the LLM. While these methods improve cross-modal alignment,
they significantly increase parameter counts and computational overhead, making them less efficient.

On the other hand, shallow fusion methods are more computationally efficient, mapping visual
features into the LLM’s embedding space without altering its architecture. These methods can be
categorized into three main types: (1) MLP-based mapping, such as LLaVA [Liu et al., 2023b] and
PaliGemma [Beyer et al., 2024], which use multilayer perceptrons (MLP) to project visual features but
often produce misaligned or noisy features due to a lack of constraints and inductive bias [Rodriguez
et al., 2024b]; (2) cross-attention mechanisms, BLIP-2 [Li et al., 2023b] uses Q-Former, which
utilizes a fixed set of latent embeddings to cross-attend to visual features, but that may still produce
noisy or OOD visual features; (3) convolution-based mechanisms, such as HoneyBee [Cha et al.,
2024] and H-Reducer [Hu et al., 2024], which leverage convolutional or ResNet [He et al., 2015]
layers to preserve spatial locality while reducing dimensionality; and (4) visual embeddings, such as
those introduced by Ovis [Lu et al., 2024], which use embeddings indexed by the vision encoder’s
outputs to produce the visual inputs. While this regularizes feature mapping, it adds substantial
parameter overhead and creates a new vision embedding space, risking misalignment with the LLM’s
text embedding space. Encoder-free VLMs, like Fuyu-8B 1 and EVE [Diao et al., 2024], eliminate
dedicated vision encoders but show degraded performance [Beyer et al., 2024].

In contrast, ALIGNVLM maps visual features from the vision encoder into probability distributions
over the LLM’s text embeddings, using them to compute a convex combination. By leveraging the
linguistic priors encoded in the LLM’s vocabulary, ALIGNVLM ensures that visual features remain
within the convex hull of the text embedding. This design mitigates noisy or out-of-distribution
projections and achieves stronger multimodal alignment, particularly in tasks that require joint
modalities representation like multimodal document understanding and in low-resource settings.

3 Methodology

3.1 Model Architecture

The overall model architecture, shown in Figure 2, consists of three main components:

1https://www.adept.ai/blog/fuyu-8b
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Figure 2: ALIGNVLM Model Architecture. The vision encoder extracts image features, which are
processed to produce probabilities over the LLM embeddings. A weighted average combines these
probabilities with embeddings to generate vision input vectors. Text inputs are tokenized, and the
corresponding embeddings are selected from the embedding matrix, which is then used as input to
the LLM. We display the vision layers in blue , and the text layers in purple .

(1) Vision Encoder. To handle high-resolution images of different aspect ratios, we divide each input
image into multiple tiles according to one of the predefined aspect ratios (e.g., 1:1, 1:2, . . . , 9:1)
chosen via a coverage ratio [Lu et al., 2024, Chen et al., 2024a]. Due to limited computational
resources, we set the maximum number of tiles to 9. Each tile is further partitioned into 14 × 14
patches, projected into vectors, and processed by a SigLip-400M vision encoder [Zhai et al., 2023] to
extract contextual visual features.

Each tile t ∈ {1, · · · , T} is divided into Nt patches

Pt = {pt,1, · · · ,pt,Nt},
where pt,i is the i-th patch of tile t. The vision encoder maps these patches to a set of visual feature
vectors

Ft = VisionEncoder(Pt), Ft = {ft,1, · · · , ft,Nt
}, ft,i ∈ Rd.

Finally, we concatenate the feature sets across all tiles into a single output

F = concat
(
F1,F2, · · · ,FT

)
.

(2) ALIGN Module. This module aligns the visual features with the LLM. A linear layer W1 ∈
RD×d first projects the visual features F ∈ RT ·Nt×d to the LLM’s token embedding space: one RD

vector per token. A second linear layer W2 ∈ RV×D (initialized from the LLM’s language-model
head) followed by a softmax, produces a probability simplex Pvocab over the LLM’s vocabulary (V
tokens)

Pvocab = softmax(LayerNorm(W2 LayerNorm(W1F))) (1)

We then use the LLM text embeddings Etext ∈ RV×D to compute a weighted sum

F′
align = P⊤

vocabEtext. (2)

Finally, we concatenate F′
align with the tokenized text embeddings to form the LLM input

Hinput = concat
(
F′

align,Etext(x)
)
,

where Etext(x) is obtained by tokenizing the input text x = (x1, · · · , xM ) and selecting the corre-
sponding embeddings from Etext such that

Etext(x) =
[
Etext(x1), · · · ,Etext(xM )

]
. (3)
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(3) Large Language Model. We feed the concatenated vision and text vectors, Hinput, into the
LLM, which then generates output text auto-regressively. To demonstrate the effectiveness of our
alignment technique, we experiment with the Llama 3.1 model family [Grattafiori et al., 2024].
These models offer state-of-the-art performance and permissive licenses, making them suitable for
commercial applications. In particular, we utilize Llama 3.2-1B, Llama 3.2-3B, and Llama 3.1-8B.

3.2 Motivation and relation with existing methods

By construction, each RD representation in F′
align is constrained to the convex hull of the points

Etext, thus concentrating the visual features in the part of latent space that the LLM can effectively
interpret. Moreover, we argue that our initialization of W2 to the language model head is an inductive
bias toward recycling some of the semantics of these text tokens into visual tokens. This contrasts
with past methods that have been proposed to adapt the vision encoder outputs F ∈ RT ·Nt×d to an
F′ ∈ RT ·Nt×D to be fed to the LLM. Here, we consider two examples in more detail, highlighting
these contrasts.

(1) MLP Connector Liu et al. [2023b] applies a linear projection with parameters WMLP ∈ RD×d

and bMLP ∈ RD, followed by an activation function σ (e.g., ReLU)

F′
MLP = σ(WMLPF+ bMLP).

These parameters are all learned from scratch, without any bias aligning them to text embeddings.

(2) Visual Embedding Table Lu et al. [2024] introduces an entire new set of visual embeddings
EVET ∈ RK×D which, together with the weights WVET ∈ RK×d, specifies

F′
VET = softmax(WVETF)

⊤EVET.

When D < d, our W2W1 amounts to a low-rank version of WVET. There is thus much more to
learn to obtain F′

VET, and there is again no explicit pressure to align it with the text embeddings.

3.3 Training Datasets & Stages

We train our model in three stages:

Stage 1. This stage focuses on training the ALIGN Module to map visual features to the LLM’s
text embeddings effectively. We use the CC-12M dataset Changpinyo et al. [2021], a large-scale web
dataset commonly used for VLM pretraining Liu et al. [2023b], which contains 12M image-text pairs.
However, due to broken or unavailable links, we retrieved 8.1M pairs. This dataset facilitates the
alignment of visual features with the text embedding space of the LLM. During this stage, we train
the full model, as this approach improves performance and stabilizes the ALIGN Module training.

Stage 2. The goal is to enhance the model’s document understanding capabilities, such as OCR,
document structure comprehension, in-depth reasoning, and instruction-following. We leverage the
BigDocs-7.5M dataset Rodriguez et al. [2024a], a curated collection of license-permissive datasets
for multimodal document understanding. This dataset aligns with the Accountability, Responsibility,
and Transparency (ART) principles Bommasani et al. [2023], Vogus and Llansóe [2021], ensuring
compliance for commercial applications. As in Stage 1, we train the full model during this stage.

Stage 3. To enhance the model’s instruction-tuning capabilities, particularly for downstream tasks
like question answering, we further train it on the DocDownstream Rodriguez et al. [2024a], Hu
et al. [2024] instruction tuning dataset. In this stage, the vision encoder is frozen, focusing training
exclusively on the LLM and ALIGN module.

4 Experimental Setup

Setup. We conduct all experiments using 8 nodes of H100 GPUs, totaling 64 GPUs. For model
training, we leverage the MS-Swift framework [Zhao et al., 2024] for its flexibility. Additionally, we
utilize the DeepSpeed framework [Aminabadi et al., 2022], specifically the ZeRO-3 configuration, to
optimize efficient parallel training across multiple nodes. Detailed hyperparameters are outlined in
Appendix A.1.
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Table 1: Main Results on General Document Benchmarks. We compare ALIGNVLM (ours)
with state-of-the-art (SOTA) open and closed-source instructed models, and with base mod-
els that we trained using the process described in Section 3.3. ALIGNVLM models outper-
form all Base VLM models trained in the same data regime. Our models also perform com-
petitively across document benchmarks even compared with SOTA models, in which the data
regime is more targeted and optimized. Color coding for comparison: closed-source models ,
open-source models below 7B parameters , open-source models between 7-12B parameters .
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Closed-Source VLMs
(Opaque Training Data)

Claude-3.5 Sonnet 88.48 59.05 31.41 24.82 47.13 53.48 51.84 71.42 81.27 56.54
GeminiPro-1.5 91.23 73.94 32.16 24.07 50.29 71.22 34.68 68.16 80.43 58.46
GPT-4o 20240806 92.80 66.37 38.39 29.92 46.63 81.10 85.70 70.46 72.87 64.91

Open-Source Instruct VLMs
(Semi-Opaque Training Data)

Janus-1.3B [Wu et al., 2024a] 30.15 17.09 0.62 15.06 9.30 51.34 57.20 51.97 18.67 27.93
Qwen2-VL-2B [Wang et al., 2024] 89.16 64.11 32.38 25.18 38.20 57.21 73.40 79.90 43.07 55.84
Qwen2.5-VL-3B [Wang et al., 2024] 93.00 75.83 32.84 24.82 53.46 71.16 83.91 79.29 71.66 65.10
InternVL-2.5-2B [Chen et al., 2024b] 87.70 61.85 13.14 16.58 36.33 57.26 74.96 76.85 42.20 51.87
InternVL-3-2B [Zhu et al., 2025] 87.33 66.99 37.90 29.79 39.44 59.91 75.32 78.69 43.46 57.64
DeepSeek-VL2-Tiny-3.4B [Wu et al., 2024b] 88.57 63.88 25.11 19.04 35.07 52.15 80.92 80.48 56.30 55.72
Phi3.5-Vision-4B [Abdin et al., 2024] 86.00 56.20 10.47 7.49 17.18 30.43 82.16 73.12 70.70 48.19
Qwen2-VL-7B [Wang et al., 2024] 93.83 76.12 34.55 23.37 52.52 74.68 83.16 84.48 53.97 64.08
Qwen2.5-VL-7B [Bai et al., 2025] 94.88 82.49 42.21 24.26 61.96 78.56 86.00 85.35 76.10 70.20
LLaVA-NeXT-7B [Xu et al., 2024] 63.51 30.90 1.30 5.35 20.06 52.83 52.12 65.10 32.87 36.00
DocOwl1.5-8B [Hu et al., 2024] 80.73 49.94 68.84 37.99 38.87 79.67 68.56 68.91 52.60 60.68
InternVL-2.5-8B [Chen et al., 2024b] 91.98 75.36 34.55 22.31 50.33 74.75 82.84 79.00 52.10 62.58
InternVL-3-8B [Zhu et al., 2025] 91.99 73.90 51.24 36.41 53.60 72.27 85.60 82.41 53.26 66.74
Fuyu-8B [Bavishi et al., 2023] 48.97 23.09 4.78 6.63 14.55 47.91 44.36 46.02 15.49 22.97
Ovis-1.6-Gemma2-9B [Lu et al., 2024] 88.84 73.97 45.16 23.91 50.72 76.66 81.40 77.73 48.33 62.96
Llama3.2-11B [Grattafiori et al., 2024] 82.71 36.62 1.78 3.47 23.03 58.33 23.80 54.28 22.40 34.04
Pixtral-12B [Agrawal et al., 2024] 87.67 49.45 27.37 24.07 45.18 73.53 71.80 76.09 67.13 58.03

Document Understanding Instructed Models
(Instruction Tuned on BigDocs-7.5M + DocDownStream [Rodriguez et al., 2024a, Hu et al., 2024])

Qwen2-VL-2B (base+) [Wang et al., 2024] 57.23 31.88 49.31 34.39 31.61 64.75 68.60 61.01 47.53 49.59
ALIGNVLM-Llama-3.2-1B (ours) 72.42 38.16 60.47 33.71 28.66 71.31 65.44 48.81 50.29 52.14
ALIGNVLM-Llama-3.2-3B (ours) 79.63 44.53 63.49 35.25 38.59 78.51 71.88 57.38 60.10 58.81
DocOwl1.5-8B (base+) [Hu et al., 2024] 78.70 47.62 64.39 36.93 35.69 72.65 65.80 67.30 49.03 57.56
Llama3.2-11B (base+) [Grattafiori et al., 2024] 78.99 44.27 67.05 37.22 40.18 78.04 71.40 68.46 56.73 60.26
ALIGNVLM-Llama-3.1-8B (ours) 81.18 53.75 63.25 35.50 45.31 83.04 75.00 64.60 64.33 62.88

Baselines. Our work focuses on architectural innovations, so we ensure that all baselines are trained
on the same datasets. To enable fair comparisons, we evaluate our models against a set of Base
VLMs fine-tuned on the same instruction-tuning tasks (Stages 2 and 3) as our models, using the
BigDocs-7.5M and BigDocs-DocDownstream datasets. This approach ensures consistent training
data, avoiding biases introduced by the Instruct versions of VLMs, which are often trained on
undisclosed instruction-tuning datasets. Due to the scarcity of recently released publicly available
Base VLMs, we primarily compare our model against the following Base VLMs of varying sizes:
Qwen2-VL-2B [Wang et al., 2024], DocOwl1.5-8B [Hu et al., 2024], and LLama 3.2-11B [Grattafiori
et al., 2024].

For additional context, we also include results from the Instruct versions of recent VLMs of different
sizes: Phi3.5-Vision-4B [Abdin et al., 2024], Qwen2-VL-2B and 7B [Wang et al., 2024], Qwen2.5-
VL-7B [Qwen et al., 2025], LLaVA-NeXT-7B [Liu et al., 2024], InternVL2.5-2B and 8B [Chen
et al., 2024b], InternVL3-2B and 8B [Zhu et al., 2025], Janus-1.3B [Wu et al., 2024a], DeepSeek-
VL2-Tiny [Wu et al., 2024b], Ovis1.6-Gemma-9B [Lu et al., 2024], Llama3.2-11B [Grattafiori et al.,
2024], DocOwl1.5-8B [Hu et al., 2024], and Pixtral-12B [Agrawal et al., 2024].

Evaluation Benchmarks. We evaluate our models on a diverse range of document understanding
benchmarks that assess the model’s capabilities in OCR, chart reasoning, table processing, or form
comprehension. In particular, we employ the VLMEvalKit [Duan et al., 2024] framework and report
the results on the following popular benchmarks: DocVQA [Mathew et al., 2021b], InfoVQA [Mathew
et al., 2021a], DeepForm [Svetlichnaya, 2020], KLC [Stanisławek et al., 2021], WTQ [Pasupat and
Liang, 2015], TabFact [Chen et al., 2020], ChartQA [Masry et al., 2022], TextVQA [Singh et al.,
2019], and TableVQA [Kim et al., 2024].
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Table 2: Impact of Connector Designs on VLM Performance: We present the results of experi-
ments evaluating different connector designs for conditioning LLMs on visual features. Our proposed
ALIGN connector is compared against a basic Multi-Layer Perceptron (MLP), the Perceiver Re-
sampler, and Ovis. The results demonstrate that ALIGN consistently outperforms these alternatives
across all benchmarks.
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Llama-3.2-3B-MLP 71.46 37.56 62.07 33.36 28.94 73.22 66.48 53.56 50.96 53.06
Llama-3.2-3B-Perciever R. 69.08 34.13 57.08 31.75 27.95 71.93 65.16 51.33 47.76 50.68
Llama-3.2-3B-Ovis 74.68 42.11 58.02 33.50 33.13 76.67 67.92 52.60 53.93 54.72
Llama-3.2-3B-ALIGN (ours) 79.63 44.53 63.49 35.25 38.59 78.51 71.88 57.38 60.10 58.81

5 Results

5.1 Main Results

Table 1 presents the performance of ALIGNVLM compared to state-of-the-art (SOTA) open- and
closed-source instructed models, as well as baseline Base VLMs fine-tuned in the same instruction-
tuning setup. The results demonstrate that ALIGNVLM consistently outperforms all Base VLMs
within the same size category and achieves competitive performance against SOTA Instruct VLMs
despite being trained on a more limited data regime. Below, we provide a detailed analysis.

ALIGNVLM vs. Base VLMs. Our ALIGNVLM models, based on Llama 3.2-1B and Llama 3.2-
3B, significantly outperform the corresponding Base VLM, Qwen2-VL-2B, by up to 9.22%. Notably,
ALIGNVLM-Llama-3.2-3B surpasses DocOwl1.5-8B, which has 4B more parameters, demonstrating
the effectiveness of ALIGN in enhancing multimodal capabilities compared to traditional shallow
fusion methods (e.g., MLPs). Furthermore, our 8B model achieves a 2.62% improvement over
Llama3.2-11B despite sharing the same Base LLM, Llama3.1-8B. Since all models in this comparison
were trained on the same instruction-tuning setup, this experiment provides a controlled evaluation,
isolating the impact of architectural differences rather than dataset biases. Consequently, these
results suggest that ALIGNVLM outperforms VLMs with shallow fusion techniques and surpasses
parameter-heavy deep fusion VLMs, such as Llama3.2-11B, while maintaining a more efficient
architecture.

ALIGNVLM vs. Instruct VLMs. Even as open-source Instruct models are trained on significantly
larger, often undisclosed instruction-tuning datasets, ALIGNVLM achieves competitive performance.
For example, ALIGNVLM-Llama-3.2-3B (58.81%) outperforms other strong instruction-tuned VLMs
in its size class, such as Qwen2-VL-2B and InternVL-3-2B, by considerable margins (2.97% and
1.17%, respectively). While it falls slightly behind Qwen2.5-VL-3B, a direct comparison is not
entirely fair, as the latter was trained on a proprietary instruction-tuning dataset.

Additionally, our 8B model outperforms significantly larger models such as Llama 3.2-11B and
PixTral-12B by substantial margins. It also surpasses InternVL-2.5-8B and performs competitively
with Qwen2.5-VL-7B, though a direct comparison may not be entirely fair since Qwen2.5-VL-7B was
trained on an undisclosed instruction-tuning dataset. Finally, ALIGNVLM also exhibits comparable
performance to closed-source models like GeminiPro-1.5 and GPT4o.

Overall, these results validate the effectiveness of ALIGN and establish ALIGNVLM as a state-of-the-
art model for multimodal document understanding.

5.2 Impact of Connector Designs on VLM Performance

5.2.1 High-Resource Training Regime

To assess the effectiveness of our ALIGN module, we compare it against three different and widely
used shallow fusion VLM connectors: MLP, Perceiver Resampler, and Ovis. These experiments
were carefully conducted under precisely identical training conditions (datasets, hyperparameters,
training stages) as outlined in Appendix A.1, ensuring a fair and rigorous comparison. The results
in Table 2 show that ALIGN consistently outperforms all alternatives, demonstrating its superiority

7



Table 3: Connector Performance under a Low-Resource Training Regime: We evaluate the
effectiveness of more shallow-fusion connectors when trained on limited data. The ALIGN connector
achieves the highest performance, with notably larger gains on document understanding tasks,
demonstrating its data efficiency and strong inductive bias.

Model Document Understanding Tasks General Vision Tasks
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VQA
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QA

Avg
.

M
M
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See
dB
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M
M

Vet

POPE
GQA

Avg
.

Llama-3.2-3B-MLP 42.11 19.93 48.44 51.97 40.61 33.33 58.54 31.14 87.35 57.62 53.59
Llama-3.2-3B-Perceiver 32.18 18.10 40.00 44.31 33.64 35.22 63.70 26.19 84.92 55.86 53.17
Llama-3.2-3B-Ovis 57.73 26.39 54.52 55.60 48.56 31.89 60.97 30.41 88.26 56.23 53.55
Llama-3.2-3B-Hreducer 34.59 17.57 45.64 47.13 36.23 35.00 61.82 28.39 87.48 58.24 54.18
Llama-3.2-3B-HoneyBee 55.86 19.36 55.32 58.13 47.16 32.11 61.18 34.31 89.28 54.79 54.33

Llama-3.2-3B-ALIGN (ours) 71.43 30.50 69.72 65.63 59.32 35.33 63.27 35.32 88.85 61.67 56.88

both in aligning visual and textual modalities in multimodal document understanding. MLP and
Perceiver Resampler achieve the lowest performance, 53.06% and 50.68%, respectively, due to their
direct feature projection, which lacks an explicit mechanism to align visual features with the LLM’s
text space, leading to misalignment. Ovis introduces a separate visual embedding table, but this
additional complexity does not significantly improve alignment, yielding only 54.72% accuracy.
In contrast, ALIGN ensures that visual features remain within the convex hull of the LLM’s text
latent space, leveraging the linguistic priors of the LLM to enhance alignment and mitigate noisy
embeddings. This design leads to the highest performance (58.81%), establishing ALIGN as the
most effective connector for integrating vision and language in multimodal document understanding.
We provide some example outputs of the Llama-3.2-3B models with different connector designs in
Appendix A.4. Furthermore, we include an analysis of the runtime efficiency and memory usage of
different connectors in Appendix A.2.

5.2.2 Low-Resource Training Regime

The previous section focused on large-scale training setups involving millions of data samples
(BigDocs-7.5M), which require significant compute resources and limit the number of baselines
that we were able to compare against. Here, we examine whether ALIGN remains effective in a
low-resource setting.

We conduct additional experiments using SigLIP-400M as the vision encoder and Llama-3.2-3B
as the language model, fine-tuned on the LLaVA-NeXT dataset Liu et al. [2024], which contains
779K samples. We follow the official LLaVA-NeXT configuration for both training stages. (i)
Pretraining: the model is trained on the LLaVA-558K image–caption dataset Liu et al. [2024],
freezing both the LLM and vision encoder while fine-tuning the connector (learning rate = 1e-3,
batch size = 32, 1 epoch on 8 × H100 GPUs). To handle high-resolution document images, we
adopt the "anyres_max_9" strategy with grid weaving from 1×1 to 6×6, supporting resolutions up to
2304×2304 with 729 tokens per grid; (ii) Instruction tuning: the model is further fine-tuned on the
LLaVA-NeXT-779K instruction dataset with learning rates of 1e-5 for the LLM and connector, 2e-6
for the vision encoder, batch size = 8, for 1 epoch.

This lightweight setup allows direct comparison across more connector architectures including
MLP Liu et al. [2023a], Perceiver Resampler, Ovis Lu et al. [2024], H-Reducer (1×4) Hu et al.
[2024], and HoneyBee (C-Abstractor) Cha et al. [2024], all trained under identical conditions for
fairness. Since the LLaVA-Next dataset is general-purpose and not exclusively document-focused
like BigDocs-7.5M [Rodriguez et al., 2024a], it allows us to evaluate whether the ALIGN connector
generalizes beyond document understanding to broader visual reasoning. Accordingly, we assess all
models on a comprehensive suite of benchmarks spanning both document understanding and general
vision–language tasks. The document understanding benchmarks include DocVQA Mathew et al.
[2021b], InfoVQA Mathew et al. [2021a], ChartQA Masry et al. [2022], and TextVQA Singh et al.
[2019]. For general vision–language evaluation, we report results on MMMU-dev Yue et al. [2024],
SeedBench Li et al. [2023a], and MMVet Yu et al. [2024], Pope [Li et al., 2023c], and GQA [Hudson
and Manning, 2019].

As summarized in Table 3, ALIGN consistently outperforms other connectors under this low-data
regime, with stronger gains on document understanding tasks. The wider performance margin
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Table 4: Performance comparison when evaluating ALIGN with the full text embedding vocabulary
(128K) versus the reduced subset of 3.4K high-probability embeddings. The results show negligible
performance degradation, indicating that ALIGN relies primarily on a small subset of embeddings.
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Llama-3.2-3B-ALIGN (Full Embeddings) 79.63 44.53 63.49 35.25 38.59 78.51 71.88 57.38 60.10 58.81
Llama-3.2-3B-ALIGN (3.4K Embeddings) 79.40 44.13 63.64 35.02 38.26 78.83 71.72 57.48 59.80 58.69

between ALIGN and others connectors under limited data (Table 3) compared to the high-resource
setting (Table 2) underscores the benefit of its inductive bias. By grounding visual features within
the LLM’s text embedding space, ALIGN learns more efficiently from fewer samples, unlike direct-
projection connectors that rely heavily on large datasets. This makes ALIGN especially valuable for
resource-constrained environments such as academic labs or small-scale industrial research setups,
where both data and compute are limited.

5.3 Probability Distribution over Text Tokens Analysis

To better understand the behavior of ALIGN, we examine the probability distribution, Pvocab in Eq
(1), over the LLM’s text vocabulary generated from visual features. Specifically, we process 100
document images through the vision encoder and ALIGN, then average the resulting probability
distributions across all image patches. The final distribution is shown in Figure 3. As illustrated,
the distribution is dense (rather than sparse), with the highest probability assigned to a single token
being 0.0118. This can be explained by the vision feature space being continuous and of much higher
cardinality than the discrete text space. Indeed, while the LLM has 128K distinct vocabulary tokens,
an image patch (e.g., 14×14 pixels) contains continuous, high-dimensional information that cannot
be effectively mapped to a single or a few discrete tokens.

We conducted a deeper analysis of the token probability distributions produced by the ALIGN
connector. Our observations show that ALIGN consistently assigns high probabilities to approximately
3.4K tokens from the entire vocabulary, while the remaining tokens receive negligible probabilities
(below 10−6). To better understand this behavior, we applied Principal Component Analysis (PCA)
to reduce the dimensionality of the embeddings and visualized them in a two-dimensional space, as
shown in Figure 4. The visualization reveals that these 3.4K tokens densely and comprehensively
span the latent space of the LLM’s text embeddings. To validate this finding, we conducted additional
evaluation experiments in which we retained only these 3.4K high-probability embeddings in the
ALIGN connector, entirely removing the rest during evaluation. As shown in Table 4, the performance
difference compared to using the full embedding set (128K) was negligible. This confirms that
ALIGN effectively leverages and combines a compact subset of embeddings to map visual features
into semantically meaningful regions within the LLM’s latent text space. Moreover, this suggests
that ALIGN can be further optimized through targeted embedding pruning to improve computational
efficiency without sacrificing performance.

5.4 Robustness to Noise Analysis

To evaluate the robustness of our ALIGN connector to noisy visual features, we conduct an experiment
where random Gaussian noise is added to the visual features produced by the vision encoder before
passing them into the connector. Specifically, given the visual features F ∈ RN×d output by the
vision encoder (where N is the number of feature vectors and d is their dimensionality), we perturbed
them as

F̃ = F+N, N ∼ N (0, σ = 3).

Table 5: Robustness to Noise. Comparison of Avg. Scores with and without Gaussian noise (σ = 3),
including performance drop (∆).

Model Without Noise With Noise Drop (∆)
Llama-3.2-3B-MLP 53.06 27.52 ↓ 25.54

Llama-3.2-3B-ALIGN (ours) 58.81 57.14 ↓ 1.67
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Figure 3: Probability distribution over LLM
tokens, highlighting dense probabilities for
whitespace tokens.

Figure 4: PCA of ALIGN Embeddings: The
principal components of the most influential em-
beddings in the Align Connector span most of
the feature space represented by all embeddings.

As shown in Table 5, our ALIGN connector demonstrates high robustness to noise, with only a 1.67%
average drop in performance. In contrast, the widely adopted MLP connector suffers a significant
performance degradation of 25.54%, highlighting its vulnerability to noisy inputs. Furthermore, we
measured the average cosine distance between the original and noise-perturbed visual embeddings
using both the ALIGN and MLP connectors. ALIGN showed significantly lower distances (0.0036)
than MLP (0.3938), further validating its robustness to noise. These empirical results support our
hypothesis that leveraging the knowledge encoded in the LLM’s text embeddings and constraining
the visual features within the convex hull of the text latent space act as a regularization mechanism,
reducing the model’s sensitivity to noisy visual features.

6 Conclusion

We introduce ALIGN, a novel connector designed to align vision and language latent spaces in
vision-language models (VLMs), specifically enhancing multimodal document understanding. By
improving cross-modal alignment and minimizing noisy embeddings, our models, ALIGNVLM,
which leverage ALIGN, achieve state-of-the-art performance across diverse document understanding
tasks. This includes outperforming base VLMs trained on the same datasets and achieving competitive
performance with open-source instruct models trained on undisclosed data. Extensive experiments
and ablations validate the robustness and effectiveness of ALIGN compared to existing connector
designs, establishing it as a significant contribution to vision-language modeling. Future work will
explore training on more diverse instruction-tuning datasets to generalize to broader domains.
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in Section 3 (Methodology) and supported by results in Section 5.
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results can be expected to generalize to other settings.
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
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• The authors should reflect on the factors that influence the performance of the approach. For
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Answer: [NA]

Justification: The paper does not discuss theoretical results. The main contributions and claims are
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?
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Justification: All the details necessary to reproduce our results are provided in the Methodology
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available upon acceptance.
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• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.
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example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We will provide full access to our code upon the acceptance of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).
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• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: All the details necessary to reproduce our results are provided in the Methodology
(Section 3), Experimental Setup (Section 4), and Appendix A.1. Additionally, our code will be made
available upon acceptance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported due to the expensive computational requirements to produce
them.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report
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not verified.
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8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Information regrading the computing resources are provided in the Experimental Setup
(Section 4).
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the
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9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]

Justification: The work in this paper has no societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: Our work does not pose any high-level risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We cite the corresponding papers of the models and datasets that we use in our experi-
ments. In addition, our work adhere to their terms of use and licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: Our codes and assets will be released upon paper acceptance.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: The work in this paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?
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A Appendix

A.1 Experimental Setup

We provide detailed hyperparameters of our experiments in Table 6.

Table 6: Detailed hyperparameters for each training stage across different LLM backbones.
LLM Backbone Llama 3.2-1B Llama 3.2-3B Llama 3.1-8B

Stage-1 Stage-2 Stage-3 Stage-1 Stage-2 Stage-3 Stage-1 Stage-2 Stage-3
Trainable Parameters Full Model Full Model LLM & Connector Full Model Full Model LLM & Connector Full Model Full Model LLM & Connector
Batch Size 512 512 512 512 256 256 512 256 256
Text Max Length 1024 2048 2048 1024 2048 2048 1024 2048 2048
Epochs 1 1 5 1 1 5 1 1 5
Learning Rate 1× 10−5 5× 10−5 5× 10−5 1× 10−5 5× 10−5 5× 10−5 1× 10−5 1× 10−5 1× 10−5

A.2 Runtime Comparison Between Connectors

One caveat in the ALIGN connector is that it includes an additional LM head layer, which slightly increases
the total number of parameters. However, this addition has a negligible impact on runtime efficiency due to
its simple structure. It only introduces a few matrix multiplication operations (as shown in Equations 1 and 2)
instead of stacking many complex layers that require sequential processing, as in deep fusion methods.

To empirically validate this claim, we benchmarked the runtime and memory usage of models equipped with
different connector types (MLP, Align, Ovis, and Perceiver), following the same experimental setup as in
Table 2. As shown in Table 7, the results demonstrate that although the ALIGN connector delivers notably
superior performance (see Table 2), the variations in inference speed and GPU memory usage among the
connectors remain minimal.

Table 7: Runtime and memory comparison between different connector designs. The results show
that ALIGN introduces negligible computational overhead compared to other connectors.

Model Samples Avg Time (s) Tokens/sec GPU Memory (GB)
Llama-3.2-3B-MLP 2500 0.161 118.3 10.9
Llama-3.2-3B-Perceiver 2500 0.140 135.1 10.9
Llama-3.2-3B-Ovis 2500 0.155 122.5 10.8
Llama-3.2-3B-ALIGN 2500 0.165 115.4 10.9

Overall, the empirical evidence confirms that the ALIGN connector achieves an effective balance between
computational efficiency and performance. It introduces only a negligible increase in runtime and memory usage
while providing substantial gains in overall accuracy.

A.3 Pixel-Level Tasks Analysis

To rigorously evaluate the ability of vision-language models to integrate fine-grained visual and textual pixel-
level cues, we test our model on the VCR benchmark [Zhang et al., 2024], which requires the model to recover
partially occluded texts with pixel-level hints from the revealed parts of the text. This task challenges VLM’s
alignment of text and image in extreme situations. Current state-of-the-art models like GPT-4V OpenAI et al.
[2023], Claude 3.5 Sonnet Anthropic [2024], and Llama-3.2 Dubey et al. [2024] significantly underperform
humans on hard VCR task due to their inability to process subtle pixel-level cues in occluded text regions. These
models frequently discard critical visual tokens during image tokenization on semantic priors, overlooking the
interplay between partial character strokes and contextual visual scenes. To evaluate performance on VCR,
we modify our Stage 3 SFT dataset composition by replacing the exclusive use of DocDownstream with a 5:1
blended ratio of DocDownstream and VCR training data. This adjustment enables direct evaluation of our
architecture ALIGN’s ability to leverage pixel-level character cues.

From the experimental outcomes, it is evident that ALIGNVLM consistently outperforms the MLP Connector
Model across both easy and hard settings of the pixel-level VCR task (see Figure 5), with improvements ranging
from 10.18% on the hard setting to 14.41% on the easy setting.

We provide a case study on VCR in Figure 6, featuring four representative examples. In Figure 6a, it is evident
that the MLP connector model fails to capture semantic consistency as effectively as ALIGNVLM. The phrase
“The commune first census in written history in” (where the words in italics are generated by the model while the
rest are in the image) is not as semantically coherent as the phrase generated by ALIGN “The commune first
appears in written history in”.
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Figure 5: Comparison of Llama-3.2-3b-ALIGN and Llama-3.2-3B-MLP on the Easy and Hard VCR
tasks.

Beyond the issue of semantic fluency, in Figure 6b we also observe that ALIGNVLM successfully identifies the
uncovered portion of the letter “g” in “accounting” and uses it as a pixel-level hint to infer the correct word. In
contrast, the MLP model fails to effectively attend to this crucial detail.

Figures 6c and 6d show examples where ALIGNVLM fails on the VCR task. These carefully picked instances
show that our method mistakes names of landmarks with common words when the two are very similar. As
seen in the examples, ALIGNVLM mistakes “Llanengan" for “Llanongan" and “Gorden" for “Garden”. In
both instances, the pairs differ by one character, indicating perhaps that ALIGNVLM tends to align vision
representations to more common tokens in the vocabulary. One approach that would potentially mitigate such
errors would be to train ALIGNVLM with more contextually-relevant data.

A.4 Case Studies

In this section, we provide case studies for the experiments in Section 5.1. Specifically, we provide examples
of our Llama-3.2-3B-ALIGN, and its counterpart model with alternative connectors Llama-3.2-3B-MLP and
Llama-3.2-3B-Ovis on three different datasets: KLC [Stanisławek et al., 2021], DocVQA [Mathew et al., 2021b],
and TextVQA [Singh et al., 2019]. The examples are shown in Figure 7, 8, and 9.
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GT: (appears in writ-
ten history in)

MLP: (census in written
history in) ✗

ALIGN (appears in writ-
ten history in) ✓

(a) Positive Example 1

GT: (the system used
for assigning)

MLP: (the system used
for accounting) ✗

ALIGN (the system used
for assigning) ✓

(b) Positive Example 2

GT: (mines situated
near Llanengan
on)

MLP: (mines situated
near Llanengan
on) ✓

ALIGN (mines situated
near Llanongan
on) ✗

(c) Negative Example
1

GT: (Gorden
County is
home to)

MLP: (Gorden
County is
home to) ✓

ALIGN (Garden
County is
home to) ✗

(d) Negative Example
2

Figure 6: Case Study for Pixel-Level Tasks. We provide examples of our proposed ALIGN connector
compared with a the Multi-Layer Perceptron (MLP) connector. The ALIGN connector tends to better
map visual elements to common words. GT is the ground truth.
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Question: What is the value for the
charity name?

GT: (Ardingly College Ltd.)
MLP: (Ardington College Ltd.) ✗
Ovis: (Ardington College Ltd.) ✗
ALIGN: (Ardingly College Ltd.) ✓

(a) Positive Example #1

Question: What is the value for the
address postcode?

GT: (SW2 2QP)
MLP: (SW22 0PQ) ✗
Ovis: (SW2 2OP) ✗
ALIGN: (SW2 2QP) ✓

(b) Positive Example #2

Question: What is the value for the
charity name?

GT: (Human Appeal)
MLP: (Humanitarian Agenda)

✗
Ovis: (Human Appeal) ✓
ALIGN: (Human Rightsappeal) ✗

(c) Negative Example #1

Question: What is the value for the
post town address?

GT: (Bishop’s Stortford)
MLP: (Stortford) ✗
Ovis: (Bishop’s Stortford) ✓
ALIGN: (Stortford) ✗

(d) Negative Example #2

Figure 7: Case Study for Connector Comparison on the KLC dataset [Stanisławek et al., 2021].
We show four qualitative examples (including two correct and two incorrect examples) comparing
Llama-3.2-3B-ALIGN to the same architecture with different connectors, Llama-3.2-3B-MLP and
Llama-3.2-3B-Ovis. “GT” denotes the ground truth.
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Question: What does the afternoon
session begin on June 29?

GT: (1:00)
MLP: (2:45) ✗
Ovis: (3:30) ✗
ALIGN: (1:00) ✓

(a) Positive Example #1

Question: What levels does the second ta-
ble indicate?

GT: (hematocrit data - Mas-
sachusetts)

MLP: (SATISFACTORY) ✗
Ovis: (Females) ✗
ALIGN: (hematocrit data - Mas-

sachusetts) ✓

(b) Positive Example #2

Question: What type of policy is de-
scribed in this document?

GT: (Policy on Document Con-
trol)

MLP: (Policy on Document Con-
trol) ✓

Ovis: (General Provisions) ✗
ALIGN: (Document Control) ✗

(c) Negative Example #1

Question: What was the diet fed to the
#1 group?

GT: (basal diet)
MLP: (basel diet) ✓
Ovis: (Whole blood) ✗
ALIGN: (control diet) ✗

(d) Negative Example #2

Figure 8: Case Study for Connector Comparison on the DocVQA dataset [Mathew et al., 2021b].
We show four qualitative examples (including two correct and two incorrect examples) comparing
Llama-3.2-3B-ALIGN to the same architecture with different connectors, Llama-3.2-3B-MLP and
Llama-3.2-3B-Ovis. “GT” denotes the ground truth.
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Question: What greeting is written on the
letter?

GT: (good bye)
MLP: (good) ✗
Ovis: (good buy) ✗
ALIGN: (good bye) ✓

(a) Positive Example #1

Question: What indoor temperature is
shown?

GT: (68.4)
MLP: (68 F) ✗
Ovis: (40.0) ✗
ALIGN: (68.4) ✓

(b) Positive Example #2

Question: What type of club is advertised?
GT: (health club)
MLP: (topnote health club) ✗
Ovis: (health club) ✓
ALIGN: (professional passionate per-

sonal) ✗

(c) Negative Example #1

Question: What credit card is this?
GT: (hadiah plus)
MLP: (hadiah plus) ✓
Ovis: (american big loyalty program)

✗
ALIGN: (hadia plus) ✗

(d) Negative Example #2

Figure 9: Case Study for Connector Comparison on the TextVQA dataset [Singh et al., 2019].
We show four qualitative examples (including two correct and two incorrect examples) comparing
Llama-3.2-3B-ALIGN to the same architecture with different connectors, Llama-3.2-3B-MLP and
Llama-3.2-3B-Ovis. “GT” denotes the ground truth.
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