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Abstract

Generalized zero-shot learning (GZSL) aims to develop models that can reliably label classes
not encountered during training, while maintaining a good performance on the seen ones.
This becomes especially challenging in the realm of multi-label chest X-ray image classifica-
tion, due to the presence of numerous unknown disease-types and the limited information
inherent to x-ray images. In this work, we present a knowledge graph-based approach to
GZSL. Our method directly injects the semantic relationships between seen and unseen dis-
ease classes by making use of the Unified Medical Language System (UMLS ). Specifically,
we use the UMLS as a knowledge base and device a principled approach of parsing and pro-
cessing it, conditioned on the task at hand. We show that our method matches the labelling
performance of the state-of-the-art while outperforming it on unseen classes (AUROC 0.68
vs. 0.66). We also demonstrate that embedding the disease-specific knowledge as a graph
provides inherent explainability, which allows us to understand the multi-label relation and
model decision. The code is available at https://github.com/chinmay5/ml-cxr-gzsl-kg

1. Introduction

In recent years, deep learning-based computer-aided diagnostic systems (CAD) have achieved
expert-level performances in some challenging tasks (Rajpurkar et al., 2017; Esteva et al.,
2017; De Fauw et al., 2018). However, existing systems typically rely on large-scale an-
notated datasets, are often single-modal, and are limited to the concepts visible during
training. Such a limitation magnifies in the scenario of novel and rare diseases. This is
especially the case in multi-label x-ray image classification task where multiple diagnoses
(labels) per image exist, and it is infeasible to collect the annotations for every label. Conse-
quently, existing CAD systems are limited by the expressivity of their training annotations
and are invariably unable to predict unseen diseases. On the other hand, Radiologists do
not rely on a single information source and integrate all available information(e.g., medi-
cal literature, prior experience, symptomatic correlations, etc.) to recognize such unseen
diseases.
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Zero-shot learning aims to address the issue of annotation scarcity (Zhang et al., 2017; Yu
et al., 2018; Changpinyo et al., 2017). The models are trained to classify certain diseases
(i.e., seen classes) and during inference, they are expected to classify only unobserved
diseases (unseen classes). Generalized zero-shot learning (GZSL) is a more practical setup.
It enables the model to classify both seen and unseen diseases during inference. In other
words, the models are expected to perform well at classifying new diseases while retaining
their performance on the seen ones. One critical step to achieve GZSL is to incorporate
‘clinical knowledge’ to model the relation between the seen and unseen diseases, using
available natural language models e.g. Word2Vec (Goldberg and Levy, 2014; Zhang et al.,
2019), BERT (Devlin et al., 2018), or the domain-specific BioBERT (Alsentzer et al., 2019).

We suppose that such natural language based methods might not always explicitly en-
code ‘knowledge’ (Schick and Schütze, 2020), more so in a clinical setting. As an alternative,
we propose to exploit a more explicit knowledge representation called the Unified Medical
Language System (UMLS ) (Bodenreider, 2004). UMLS is a relational database of medical
knowledge represented as a knowledge graph, consisting of millions of medical entities (or
nodes, e.g., diseases, anatomical locations, medicines etc.) and the relations between them.
This rich source of curated, medical knowledge can be employed as a critical component
to enhance GZSL. However, UMLS constitutes an ultra large database and lacks efficient
ways of parsing and processing, thus making its ad-hoc usage challenging in practice.

In this work, we attempt to classify multi-label chest x-rays in a GZSL setting by in-
corporating semantic clinical knowledge from the UMLS in the form of a graph on the
multi-disease labels. Thanks to the universality of UMLS, our framework can be readily
extended to any diagnosis task on any medical data. Specifically, our contributions are
four-fold:

1. We propose a principled approach towards parsing the UMLS and using it as a source
of semantic information.

2. We utilize the parsed knowledge from UMLS for multi-label disease classification in
chest x-rays in a GZSL setting, improving upon state-of-the-art methods.

3. We validate our approach to two chest x-ray datasets with non-identical disease labels,
thus confirming the utility of UMLS.

4. Since incorporating semantic knowledge as a graph offers inherent explainability, we
explore to use the GNNExplainer (Ying et al., 2019) to draw medical intuitions.

2. Related Work

GZSL with knowledge graphs. In the natural image domain, knowledge graphs can
effectively bridge the semantic gap between seen and unseen classes, thus, they are an
essential component in GZSL (Wang et al., 2018; Zhao et al., 2017; Xian et al., 2017; Li
et al., 2020). The graphs are constructed with nodes representing individual classes and
edges indicating a semantic relation between these classes. In the medical domain, Chen et
al. (Chen et al., 2020a) proposed to use label co-occurrences that appeared in the training
set to generate a knowledge graph. However, this approach is not applicable in the GZSL
setting as the unseen co-occurrences are not a part of the graph, and parsing is limited to
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specific applications. Zhou et al. (Zhou et al., 2021) mine the radiology reports to generate
a chest radiology graph. However, the graph uses only the MIMIC-CXR dataset (Johnson
et al., 2019) and is tightly coupled to it. Instead, we construct a semantically rich graph by
parsing the UMLS and extend its applicability to different diagnosis tasks.

Generalized zero-shot learning for multi-label tasks. In the multi-label setting,
the GZSL aims to classify a given image associated with multiple labels, a setup relatively
unexplored in chest radiographs. Paul et al. (Paul et al., 2021) propose a trait-guided
multi-view semantic embedding strategy but assumes the availability of radiology reports
along with the radiographs. Hayat et al. (Hayat et al., 2021) propose to create an end-to-
end network that jointly learns visual representations from radiographs and aligns them to
the semantic features by using BioBERT embeddings (Devlin et al., 2018). The method
aligns the visual features with their semantic label embeddings. In contrast, we show that
the relational clinical information from UMLS can be a better embedding than using only
BioBERT embeddings.

3. Method

3.1. Problem formulation

Consider a multi-label set Y consisting of C classes. Of these C classes, only S classes are
seen and U classes are unseen. Let YS and YU denote the label sets for the seen and unseen
classes, respectively. Note that YS ∩ YU = ∅ i.e. training images contain onyl seen labels.
Thus, YC = YS ∪YU , where YS = {y1, y2, ..., yS} and YU = {yS+1, yS+2, ..., yC}. The label
vector yi ∈ {0, 1}S indicates the presence of every seen class. During training in a GZSL
setting, images containing only the seen labels YS are given. During inference, given an
image xtest, the model is supposed to correctly predict the labels from both seen or unseen
classes, ytest ∈ YC .

3.2. Training procedures for GZSL

The training procedure has three stages, as summarized in Figure 1. First, the image
processing module is trained using the instances of seen classes, to learn the visual classifier
weights. Second, a Graph processing module (GPM ), responsible for processing the UMLS
and generating node features for the disease labels, is aligned to the visual classifier weights.
Finally, the GPM weights replace the visual classifier weights and the image-processing
module is fine-tuned based on the enriched weights using the labeled data from seen classes.

Image processing module. The module is trained on the labeled 2D radiographs from
seen classes. DenseNet121 (Huang et al., 2018) is employed as the backbone and trained
to extract visual features. A fully-connected layer with 1024-dimension is used as a clas-
sification head, as shown in Step 1 in Figure 1. The visual classifier weights, denoted as
Wϕ ∈ R1024×C , are considered to be the image representation of a radiograph. The jth

column of Wϕ, denoted by wj
ϕ is the representation of the jth disease learnt from the im-

ages. Note that, only weights of seen classes are semantically rich while the unseen weights
are random. They act as placeholders that are replaced by GPM weights in Step 3 (Fig-
ure 1). The GZSL task can then be expressed as predicting a new set of weights for each
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Figure 1: The proposed training pipeline. First, the vision backbone is trained with samples of the seen
classes. This generates Visual Classifier Weights Wϕ for each of the target labels. In the second step, the
Graph Processing Module (GPM ) is trained using a normalized L2 regression loss (Eq. ??) between the
Visual Classifier Weights and weights learned by final layer of GPM (referred to as GPM Weights WG)
using only the seen class’ weights. In the final step, the GPM weights WG replace the classification head of
the Image processing module. We fix these GPM weights and fine tune the image processing module .

of the unseen classes to extend the output of the backbone. The image processing mod-
ule is trained using weighted multi-label classification loss Lcls(Eq. 1) (Chen et al., 2020a)
which re-weights the positive and negative samples in the mini-batches to handle potential
data-imbalance issues.

Lcls = −ωp

∑
li=1

log(σ(pi))− ωn

∑
li=0

log(1− σ(pi)) (1)

where pi is the model logit, li is the corresponding label, |P | and |N | are the total number

of positive and negative samples per mini-batch. Thus, ωp = |P |+|N |+1
|P |+1 and ωn = |P |+|N |+1

|N |+1
are the balancing factors to handle data imbalance.

Graph construction. We use the UMLS to obtain semantic clinical information to en-
hance GZSL. However, a naive parsing of the entire UMLS is neither feasible nor beneficial
owing to its large database size and superfluous information. Thus, we parse only the
relevant part for our specific task, resulting in a subgraph of UMLS.

Figure 2 summarizes the three steps to parse this subgraph. First, we extract the
entities (nodes) corresponding to the label set C. Starting from each of these entities, we
extract its 5-hop neighbourhood, resulting in a first noisy UMLS subgraph. Please refer
to the appendix for details about parsing a k-hop neighbourhood. This subgraph is then
trimmed using all-pair-shortest path of the label set. The parsing is restricted to UMLS
entries which are in English. Additionally, we only include relationships that indicate either
a label hierarchy or an anatomical dependence, viz. inverse isa, finding site of,
part of, is associated anatomic site of, and has member. Once the UMLS-subgraph
is ready, all the nodes that now include the nodes corresponding to the label-set and the
nodes that lie on the all-pairs shortest path (referred to as auxiliary nodes) are initialized
with BioBERT embeddings (Alsentzer et al., 2019) creating GUMLS .
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Figure 2: Parse logic of UMLS for a 1-hop neighborhood. The label-set (in green) act as seed points. In the
first step, an element of the label-set is chosen at random, and its directly connected relations are extracted
from the UMLS. This might produce entities not part of the label-set (in red). Next, the same process is
repeated for the remaining entries of the label-set. In the final step, we prune the resulting graph by retaining
the nodes and edges that are part of All Pair Shortest Path with respect to the label-set.

Graph processing module (GPM). The GPM aims to enrich features of GUMLS .
Assume wj

G denotes the representation of the jth node in GUMLS This representation is

enriched using (GATv2 (Brody et al., 2021)) layers in thethe following layout: wj
G →

GATv2 → LeakyRELU → GATv2 → LeakyRELU → GATv2 → ŵj
G ∈ R1024. We

now extract enriched representations corresponding to the C classes in our dataset, resulting
in WG ∈ R1024×C . These disease representations based on the graph are referred to as the
GPM weights. Next, we align the weights of the seen classes between the GPM and the
visual classifier weights, i.e.

Lreg =
∑

j∈seen
||wj

ϕ − ŵj
G||

2 (2)

Now, owing to message passing in the graph convolution layers, the node features of
unseen classes are also enriched. Once trained, the GPM weights are semantically richer
for unseen classes compared to visual classifier weights.

Fine tuning. The final step involves replacing the classification head Wϕ with the GPM
weights WG and fine-tuning the vision backbone using the labeled data from seen classes.
Since Wϕ and WG are not identical for the seen classes, the step is essential to ensure no
performance degradation. Hence, the semantic gap between the seen and unseen classes is
bridged while not compromising on the knowledge about seen classes.

4. Experiment Setup

We evaluate our method on two public chest X-ray datasets: a) The NIH Chest X-ray
dataset (Wang et al., 2017), and b) The Indiana Univ Chest X-ray dataset (Shin et al.,
2016). Radiographs with multi-label annotations are provided for both datasets.

NIH Chest X-ray. 112,120 frontal X-ray images are split into training (70%), validation
(10%) and test sets (20%). Each image is associated with 14 class labels. We use Atelectasis,
Effusion, Infiltration, Mass, Nodule, Pneumothorax, Consolidation, Cardiomegaly, Pleural
Thickening, and Hernia as the seen classes while Edema, Pneumonia, Emphysema, and
Fibrosis are the unseen classes (same as (Hayat et al., 2021)), resulting in 30,758 training
images, 4,474 validation images and 10,510 test images.
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k=2 k=3 AUROC

Method p@k r@k f1@k p@k r@k f1@k S U HM

NIH Chest X-ray

CNN 0.28 0.34 0.30 0.23 0.43 0.29 0.80 0.52 0.63
CXR-ML-GZSL 0.33 0.36 0.32 0.28 0.47 0.34 0.79 0.66 0.72
Ours 0.38 0.33 0.35 0.31 0.43 0.36 0.79 ±0.001 0.68 ± 0.002 0.73 ± 0.001

Indiana University Chest X-ray

CNN 0.23 0.25 0.24 0.27 0.34 0.30 0.69 0.78 0.73
CXR-ML-GZSL 0.33 0.26 0.29 0.27 0.35 0.31 0.683 0.79 0.73
Ours 0.28 0.28 0.28 0.28 0.36 0.32 0.68 ±0.001 0.80 ±0.002 0.74 ±0.001

Table 1: Performance Evaluation on the NIH Chest X-ray and Indiana University Chest X-ray dataset. We
report the results using Precision@k, Recall@k , F1@k for k ∈ {2, 3}. We also report AUROC for seen (S) &
unseen (U) classes and the Harmonic Mean (HM). CXR-ML-GZSL refers to (Hayat et al., 2021) and CNN
is DenseNet121 trained on only the seen classes. We report the mean and standard deviation value across
five runs of the model. Please refer to the appendix for more details.

Indiana University Chest X-ray. We used a similar setup as the NIH dataset. We split
the frontal X-ray images into training (70%), validation (10%) and test sets (20%). Each im-
age is associated with 17 class labels. We use Cardiomegaly, Scoliosis, Effusion, Thickening,
Pneumothorax,Hernia, Calcinosis, Atelectasis, Cicatrix, Opacity, Lesion,Airspace disease,
and Hypoinflation as the seen classes while Edema, Pneumonia, Emphysema, Fibrosis are
the unseen classes, resulting in 1014, 145, and 408 for training, validation, and test sets
respectively.

Evaluation metrics. We report overall precision, recall, and f1 scores for the top k
predictions (where k ∈ 2, 3) and the average area under the receiving operating characteristic
curve (AUROC) for seen and unseen classes and their harmonic mean.

4.1. Results

Comparison with state-of-the-art. We summarize our results in Table 1. Our model
performs better than the baseline for unseen classes while performing comparably on the
seen classes. Since our proposed solution relies on a universal knowledge graph (UMLS )
and is not tightly coupled with the dataset we operate on, the extension of our method to
different datasets with different numbers of target labels is almost trivial. Verifying this,
we evaluate the baseline and our proposed method on the Indiana University Chest X-ray
dataset. Note that another UMLS sub-graph has to be created as the label set changes. The
remaining modules, however, remain unchanged. Observe the improvement over baseline
performance, showcasing our methodś extensibility with minimal changes.

Ablation Study. To hightlight our contributions and evaluate different components, we
run the ablation experiment on the NIH Chest X-ray dataset. Please refer to Appendix G
for discussions about the CNN baseline method.

BioBERT embeddings vs. knowledge graph. It is known that BioBERT embeddings
are semantically rich in text representation. However, they might not sufficiently capture
clinical relation information in the GZSL setting. We ran an experiment using the BioBERT
embeddings but without the graph structure. The nodes are initialized with BioBERT em-
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beddings and passed through several fully connected layers, processing nodes independently
without any inter-node interaction. The semantic richness ensures decent performance on
the unseen classes (AUROC 0.60), obtaining a HM of 0.68 overall. However, the perfor-
mance is still considerably worse than our proposed graph for unseen classes (0.60 vs.
0.68), indicating that the BioBERT embeddings are insufficient to bridge the semantic
gap.
Learned graph vs. random graph. To analyze the importance of graph structure, we
replace the UMLS graph with different random graphs (Stochastic Block Model, Planted
Partition Model and Erdos Renyi random graph model (Newman et al., 2002)). As can be
seen in Table 2, all random graph models perform worse than the BioBERT embedding
model. We attribute this to an incoherent graph structure in random graphs, leading to a
negative knowledge transfer between the nodes. The decrease in performance is especially
steep in the case of unseen classes. This is expected since the learned graph structure
passes essential semantic knowledge to classify unseen diseases and it indicates that the
graph structure is critical for the overall performance.
The importance of node embeddings. To evaluate the importance of node embeddings,
we initialize the GUMLS nodes using BioWord2Vec embeddings (Zhang et al., 2019), instead
of BioBERT embeddings. On average, the model performs better than the independently
processed BioBERT embeddings. Still, the performance is much worse compared to the
proposed solution (0.68 vs. 0.61 for unseen classes). These experiments corroborate the
importance of graph structure and strong feature representation for the node embeddings.
Hence, the proposed solution uses UMLS graph structure and BioBERT embeddings.
The effect of the depth of GAT layers. The GPM module uses GATv2 convolutions to
process node embeddings. We experimented with a different number of convolution layers,
and results are shown in Figure 3. As we can observe, the AUROC value is maximum
when using three GATv2 layers with an HM of 0.73. From Table 3 in the appendix, we
can see that the maximum distance between any two target nodes is four. Hence, with
3 layers, neighbourhood aggregation covers the entire graph and additional layers lead to
performance degradation due to the over-smoothing effect (Chen et al., 2020b).

Model interpretability. Deep learning models are often accused of being ”black-boxes”
and lacking inherent interpretibility. However, with methods such as Grad-CAM (Selvaraju
et al., 2017) and GNNExplainer (Ying et al., 2019), we can visualize what regions of the
input a model focuses on, to make its decisions. Thus, the decision making process of the
network is made more transparent. We discuss Grad-CAM in this section and refer the
readers to the Appendix F for experiments on GNNExplainer.

Figure 4 shows some of the visualizations obtained using Grad-CAM on samples con-
taining unseen classes in the test set. As we can see, our model focuses on radiograph
regions most likely responsible for the diseases. We have included more visualizations in
Appendix F.

5. Conclusion

We propose a promising solution for parsing, storing and processing the comprehensive
UMLS knowledge graph to improve GZSL. We also show that our method can be easily
extended to multiple datasets with minimal effort. We find that UMLS provides a very
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Figure 3: Plots of AUROC values
vs. the number of GATv2 layers in
the Graph Processing Module (GPM).
The Harmonic Mean (HM) of AU-
ROC for seen & unseen classes tends
to increase first reaching a maximum
value of 0.73 for three GATv2 layers
and then decreases.

AUROC
Method S U HM

CNN 0.80 0.52 0.63
BERT 0.78 0.60 0.68
Random Graph -ER + BERT 0.77 0.58 0.66
Random Graph -SBM + BERT 0.78 0.57 0.66
Random Graph -PAM + BERT 0.77 0.51 0.61
UMLS + Word2Vec 0.78 0.61 0.69
UMLS + BERT 0.79 0.68 0.73

Table 2: Ablation study. TheCNNmodel is trained only based
on the seen classes. BERT model used BioBERT embeddings
for the nodes but assumes no graph structure. Random Graph
+ BERT + * uses a graph created from random graph gener-
ation algorithms and uses BioBERT embeddings for its nodes.
UMLS + Word2Vec uses GUMLS but initializes the node
embeddings using Bio-Word2Vec. UMLS + BERT uses the
GUMLS (UMLS parsing + BioBERT node embeddings).

Figure 4: Saliency map visualization for the unseen classes. Each row contains one of the unseen diseases
and the Grad-CAM output of the three models. We have included the original input image in the first
column for reference.The model focuses on regions that are relevant for diagnosis of the individual diseases.

rich source of semantic information that can be used for GZSL applications. One limitation
of this work is that we have only used the structural information from the UMLS and
considered it as a homogeneous graph. As such, we had to hand-pick relations that we
deemed helpful in our scenarios. In the future, we aim to treat UMLS as a heterogeneous
graph (i.e., treating different relations independently), thereby removing the relationship
selection step.
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Appendix A. Training Details

The training of our model happens in three steps. In the first step, the vision backbone is
trained using Adam optimizer with a learning rate of 1e-3 and weight decay of 1e-5 for a
total of 40 epochs. The learning rate is decreased by a factor of 10 when the validation loss
does not decrease for three epochs. The vision backbone is trained for 40 epochs.

Next we train the GPM. It is composed of three Gatv2 layers. The first GATv2 layer
has in channels = 1024, out channels = 768 and next GATv2 layer uses in channels =
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768, out channels = 768 a final GATv2 uses in channels = 768, out channels = 1024.
The GPM uses leaky relu non-linearity with negative slope = 0.2.

The GPM module is trained to align Wϕ and WG. The objective is to align the weights
of WG ∈ R1024×C with the weights of Wϕ ∈ R1024×C using a normalized L2 regression loss
(Eq. ??). For training, we use Adam optimizer with learning rate of 1e-3 and weight decay
of 5e-4 and run for 1000 iterations.

The Fine-tuning step for the NIH Chest X-ray dataset uses an Adam optimizer with a
learning rate of 1e-4 and weight decay of 1e-3, run for a total of 40 epochs. The learning
rate is reduced by 10 when the validation loss does not decrease for 3 epochs. In the case
of the Indiana University Chest X-ray dataset, the setup is similar, but it uses a weight
decay of 1e-5 and is run for 50 epochs. The experiments are conducted using the PyTorch
Geometric libray (Fey and Lenssen, 2019) on a NVIDIA GeForce RTX 3090 machine.

Data pre-processing. The Indiana University Chest X-ray dataset was preprocessed by
clipping top and bottom 0.5% DICOM pixel values, scaling pixel values linearly to fit in a
range of 0-255 and resizing images to 2048 on the shorter side. For both (NIH-Chest X-ray
and Indiana University Chest X-ray) datasets, we used only the frontal images.

Training procedure. We ran 5 instances of the model in the same setup. We compute
the mean and standard deviation of the results and report it along with the numbers in
Table 1.

Random Graph Generation. The graph generated using Erdos-Renyi model uses an
edge probability of 0.2. The Stochastic Block model uses block-size of 1

num classes and an
edge probability of 0.2. For the Planted Partition Model we use the Barabasi- Albert-Graph
generation (Barabási and Albert, 1999). In all the cases, the number of nodes is the same
as GUMLS .

Model behaviour on Indiana University Chest X-ray dataset. We observe a high
AUROC of the unseen classes for the CNN baseline. Our motivation for using this dataset
was to show the easy extensibility of our proposed method. However, due to the strict rule
of selecting only “Seen” classes during training and removing all the instances containing
any of the “Unseen“ classes, coupled with the small dataset size, we ended up with a very
skewed dataset. The final test set consisted of only 74 samples with unseen classes. Partly
because of the small size of the test set, our method only slightly outperform the CNN
baseline on the unseen classes (0.80 vs. 0.79). In summary, the dataset is not expressive
enough to warrant large statistical performance differences; thereby, we use the NIH Chest
X-ray dataset to conclude the model behavior in our ablation study.

Appendix B. Graph Exploration

Here we summarize some of the most essential properties of our parsed graph structure.

B.1. K-hop neighbourhood generation

Our parsing method can be extended to parse the k-hop neighbourhood of the graph. Figure
5 shows an example of parsing the 2-hop neighbourhood. We start with elements from the
label set (Pneumonia and Cardiomegaly shown in the figure). We keep track of the entities
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directly connected to these nodes forming our 1-hop neighbourhood. In the next step, we
find the directly connected neighbours of the nodes obtained at end of step-1 excluding the
relations already parsed. This is our 2-hop neighbourhood. We can repeat the process k
times to get the k-hop neighbourhood. Finally, we would compute the all pair shortest path
between the label-set elements and remove the nodes that are not part of the shortest paths.

Figure 5: The k-hop parsing process for the UMLS. We start with the relations directly connected
to elements of the label-set. These relations form the 1-hop neighbourhood. In the next step, the
same process is repeated on the nodes generated in step-1. This creates the 2-hop neighbourhood.
We can repeat the step to get k-hop neighbourhood. The final pruning will ensure only nodes in the
all-pair-shortest-path are retained.

B.2. Graph Visualization

We visualize the parsed graph using a spring layout in Figure 6. The label-set nodes are
annotated with green color. The auxiliary nodes are shown in red.

B.3. Shortest Distance between the nodes

Table 3 summarizes the pair-wise distance between all the target labels for the NIH Chest
X-ray dataset. As we can see, there are no self-loops in the graph and the maximum
distance between two target labels is 4. Hence, the GPM should produce the best result
for 3 conv layers. We observe the same in Figure 3.

B.4. Graph Properties

Table 4 summarizes a few of the important properties of the parsed graph. The graph does
not have any isolated nodes and does not contain self-loops. The graph is parsed to
be directed and has ∞ diameter. An ∞ diameter indicates that not all nodes can be
reached from each other. We also plot the node degree distribution for the graph in Figure
B.4. The plot shows our graph contains certain highly connected hub nodes, and the degree
distribution almost follows a linear plot on the log-log scale.
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Figure 6: A visualization of the parsed graph. We have used the spring layout to plot the graph.
The nodes colored in green are the target labels for the NIH Chest X-ray dataset, while those colored
in red are the extra labels obtained by parsing the UMLS.

Figure 7: Plot of log of node degree vs.
the number of nodes in the parsed graph.
Similar to graphs prevalent in nature,
there are few nodes in the graph that have
a high node degree (hub nodes). At the
same time, the connectivity gradually de-
creases, reaching a minimum of 0, indi-
cating that the node is connected to only
one other node (please remember this is
a graph on the log-log scale. The red-
dashed line represents a perfect linear re-
lation on the log-log scale).

Appendix C. Class-wise AUROC comparison

Table 5 shows the per-class AUROC value for the test-set. As we can see, our method tends
to perform better for the unseen classes and is quite close to the baseline for the samples
from seen classes.
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Node Node

A C PED PI LM N Pn LC Pt PEdm PEpy PF T D

A 0 2 2 2 2 2 2 2 2 2 2 2 2 2
C 2 0 3 4 3 4 2 3 2 2 2 2 3 3
PED 2 3 0 2 2 2 2 2 2 2 2 2 2 2
PI 2 4 2 0 2 2 2 2 3 2 2 2 2 4
LM 2 3 3 2 0 1 2 2 2 2 2 2 3 2
N 2 4 2 2 1 0 2 2 3 2 2 2 2 3
Pn 2 2 2 2 2 2 0 1 2 2 2 2 2 3
LC 2 3 2 2 2 2 1 0 3 2 2 2 2 4
Pt 2 2 2 3 2 3 2 3 0 2 2 2 2 2
PEdm 2 2 2 2 2 2 2 2 2 0 2 2 2 3
PEpy 2 2 2 2 2 2 2 2 2 2 0 2 2 3
PF 2 2 2 2 2 2 2 2 2 2 2 0 2 2
T 2 3 2 2 3 2 2 2 2 2 2 2 0 2
D 2 3 2 4 2 3 3 4 2 3 3 2 2 0

Table 3: All pair shortest path between the target label nodes for NIH Chest X-ray dataset. A
represents Atelectasis, C represents Cardiomegaly, PED represents Pleural Effusion Disorder, PI
represents Pulmonary Infiltrate, LM represents Lung Mass, N represents Nodule of lung, Pn rep-
resents Pneumonia, LC represents Lung Consolidation, Pt represents Pneumothorax, PEdm rep-
resents Pulmonary Edema, PEpy represents Pulmonary Emphysema, PF represents Pulmonary
Fibrosis, T represents Thickening of pleura, D represents Diaphragmatic Hernia. As we can see, the
maximum distance between the target label nodes is 4 and thus, using 4 convolution layers would
lead to an oversmoothing effect for the label-set nodes.

Property Value

Has Isolated Node? No
Has Self-loops? No
Is Directed? Yes
Diameter ∞

Table 4: Properties of the parsed graph. The graph is directed, has no self-loops, does not contain
isolated nodes and has ∞ diameter.
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CNN 0.77 0.91 0.83 0.71 0.80 0.77 0.84 0.72 0.74 0.96 0.51 0.51 0.45 0.60
CXR-ML-ZSL 0.76 0.90 0.83 0.70 0.80 0.75 0.83 0.69 0.72 0.90 0.62 0.67 0.74 0.60
Ours 0.79 0.90 0.83 0.71 0.82 0.79 0.85 0.73 0.67 0.81 0.66 0.70 0.80 0.58

Table 5: The Class-wise AUROC comparison across all disease classes in the test set. As we can
see, our method tends to obtain the best results for the unseen classes (marked in bold) while being
comparable to the seen classes.
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Disease Nearest Neighbour (BioBERT) Nearest Neighbour (GPM)

Atelectasis Lung Problem Pneumonia
Cardiomegaly Chest problem Diaphragmatic Hernia
Pleural effusion Pleural Diseases Thickening of pleura
Pulmonary Infiltrate Lower respiratory tract structure Pneumonia
Lung mass Lung diseases Abnormal pleura morphology
Nodule of lung Lesion of lung Thickening of pleura
Pneumonia Lung Problem Pulmonary Edema
Pneumothorax Pulmonary Emphysema Pulmonary Emphysema
Lung consolidation Lung diseases Interstitial lung disease (SMQ)
Pulmonary Edema Lung Problem Pneumonia
Pulmonary Emphysema Pulmonary Fibrosis Diaphragmatic Hernia
Pulmonary Fibrosis Pulmonary Emphysema Diaphragmatic Hernia
Thickening of pleura Disorder of pleura and pleural cavity Pulmonary Edema
Diaphragmatic Hernia Respiratory Diaphragm Pulmonary Emphysema

Table 6: Comparing the 1-nearest neighbours in the embedding space for BioBERT vs. GPM feature
space embeddings. While BioBERT ’s embedding space is valid but generic, the GPM feature space
is aligned to learn the relationship between different diseases based on the UMLS structure.

Appendix D. Feature Space Lookup

Nearest Neighbour lookup in the feature space is an efficient way to decipher the predictions
made by a Deep Learning model. In Table 6 we explore the feature space of original
BioBERT embeddings and the embeddings produced by GPM. We use an L2 distance-
based 1-Nearest Neighbour (NN ) lookup. The BioBERT feature space has a lot of semantic
information, but it does inherently know the relationship between different diseases. For
instance, in its embedding space, NN of Pleural Effusion is Pleural disease. Although this
is valid but the information does not include relations between these diseases. The GPM,
on the other hand, brings Thickening of Pleura closer to Pleural Effusion in the embedding
space, thereby explicitly learning a relationship between the two. This demonstrates that
a feature space with rich semantic features and efficacious encoding between diseases is
learned by our model.

Appendix E. Discussions On Potential Improvements

Heterogeneous Graph The current work treats the generated graph as a homogeneous
one. Specifically, the different ”kinds” of nodes are not distinguished. We plan to treat the
graph as a heterogeneous one in our future work. For instance, the graph node pneumonia,
the nodes lung, chest, breathing problem and azithromycin are directly connected. We expect
this would bring increment performance gain and better model expressivity. By realizing
that azithromycin is a medicine for the disease while lung is an organ and breathing problem
a symptom, the model can more smoothly draw correlations to other diseases that are
treated using the same medicine. The model can recognize if the neighbouring nodes are
diseases or medicines and thus, treat the nodes differently by learning different weights and
transformations for different kinds of nodes and edges.
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Pruning Techniques We provide a principled approach to prune the knowledge graph
to ensure the model has a good inductive bias. We used the All-Source-Shortest Path
algorithm for the pruning. There are alternative, equally valid, approaches of pruning such
as Longest Path, Minimum Spanning Tree algorithm etc (Graham and Hell, 1985). We plan
to explore other pruning approaches and evaluate if these alternative approaches lead to
performance gain.

Open World Hypothesis States that a knowledge graph is never ”complete”. The same
holds for UMLS as well. We have a two-fold approach towards this incompleteness: (1) we
plan to research into ‘what’ relationships to parse so that the missing relationships can be
learnt using the transitive property of a knowledge graph. e.g: a relation ’(A,is son of,B)’
can be learnt from ’(A,is brother of,C)’ and ’(C,is daughter of,B)’, provided we have enough
triples of each kind. (2) UMLS is continuously being updated. Since our approach is not
limited to any particular relase of the UMLS, it can seamlessly adapted to the updated
versions.

Calibration In our current work we have used the GNNExplainer (Ying et al., 2019)
framework to provide model interpretability. The GNNExplainer generates a small sub-
graph centred around each of the target nodes and gives us an idea about the importance
of these connected nodes for the inference. Using confidence calibration (Wang et al.,
2021) to build trust into model predictions is another line of work that can provide model
interpretability.

Appendix F. Model interpretability

GNNExplainer Since a graph provides inherent explainability, we determine what nodes
and edges in the graph are considered relevant for predictions using theGNNExplainer (Ying
et al., 2019) framework. The GNNExplainer would produce a subgraph GS by pruning some
of the nodes of the original graph. XF

S are the node features of the resulting subgraph. We
compute the mean square error between the original GPM node features xjd and the re-
sulting subgraph node features x̃S

jd (referred to as the feature regression loss). We define
H(Y |G = GS , X = XF

S ) as the entropy of the subgraph. It encodes how much information
is ”lost” by removing the nodes (& their associated features) from the original graph. We
aim to find such nodes that can be removed with minimal change in the expressivity of the
model. Conversely, these nodes play a minimal role in the model decision and hence, for
understanding the model behavior, we should not focus on them (Ying et al., 2019). Remov-
ing such nodes would lead to minimal changes to the entropy & the feature regression loss.
Thus, to select only the consequential nodes in the graph, we optimize

Lexp = λ · 1

D

∑
j

∑
D

(xjd − x̃S
jd)2 +H(Y |G = GS , X = XF

S ) (3)

We empirically set λ to 103 to ensure that all loss terms are approximately of the same
scale. Figure 8 visualizes some nodes in the UMLS graph. We observe that seen-class node
connectivity is aggressively pruned. In contrast, unseen-class nodes and their connectivity
are mostly conserved, thereby expressing a reliance on the graph structure for learning
features of the unseen classes.
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Figure 8: Visualization of two example subgraphs. Nodes colored in blue and green are the target seen and
unseen labels for the NIH Chest X-ray dataset, while the nodes in red represent the extra labels obtained by
parsing the UMLS. The seen class nodes are more aggressively pruned compared to the unseen class nodes
showing a reliance on graph structure for semantic information.

Grad-CAM We include more Grad-CAM visualization from our model. We plot scenar-
ios where our method performs well 9 and where our model struggles 10

Figure 9: Saliency map visualization for the unseen classes. Each row contains one of the unseen diseases
and the Grad-CAM output of the three models. These are the samples where our model performs decently.
We have included the original input image in the first column for reference.The model focuses on regions
that are relevant for diagnosis of the individual diseases.

Appendix G. Further Experiments

Parsing the PadChest graph In our experiments, we used NIH Chest X-ray and In-
diana University Chest X-ray datasets. They contain 14 and 17 target labels respectively.

18



Figure 10: Saliency map visualization for the unseen classes. These are the samples where our model
performs poorly. Each row contains one of the unseen diseases and the Grad-CAM output of the three
models. We have included the original input image in the first column for reference.The model focuses on
regions that are relevant for diagnosis of the individual diseases.

As such, we can handle the scenario with 14 or 17 diseases easily using hand-crafted fea-
tures. However, if we have more labels, like a typical clinical setting, it would be tedious
to handcraft the graphs. To test the extensibility of our method to such scenarios, we ran
experiments to parse the UMLS based on the PadChest(Bustos et al., 2020) labels. The
dataset contains 89 labels of interest. The final graph generated by our method, after prun-
ing based on the All-Source-Shortest Path contains 755 nodes and 2000 edges. We plan to
include experiments on PadChest as part of our future work.

The effectiveness of semantic knowledge. We train the DenseNet-121 backbone for
only the seen classes and evaluate it for both seen and unseen classes to check if the task is
trivial enough to be solved without any domain-specific semantic knowledge. As expected,
the model performs well for the seen classes with an AUROC of 0.80 while struggles with
the novel unseen classes with an AUROC of 0.52) (see Table 2), suggesting that semantic
knowledge is essential.
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