
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EXPLAINABLE MIXTURE MODELS
THROUGH DIFFERENTIABLE RULE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Mixture models excel at decomposing complex, multi-modal distributions into
simpler probabilistic components, but provide no insight into the conditions under
which these components arise. We introduce explainable mixture models (EMM),
a framework that pairs each mixture component with a human-interpretable rule
over descriptive features. This enables mixtures that are not only statistically
expressive but also transparently grounded in the underlying data. We formally
examine the conditions under which an EMM exactly captures a target distribu-
tion and propose a scalable, differentiable learning procedure for discovering sets
of rules. Experiments on synthetic and real-world datasets demonstrate that our
method discovers interesting sub-populations in both univariate and multivariate
settings, offering interpretable insights into the structure of complex distributions.

1 INTRODUCTION

Finite mixture models represent complex, multi-modal data as combinations of simpler distributions
(McLachlan et al., 2019). On a widely used dataset of insurance charges (Choi, 2017) for example,
a Gaussian mixture model (GMM) identifies subpopulations with distinct modes as shown in Fig. 1a.
In many applications, however, we also have access to descriptive features, e.g. age or BMI. Clas-
sical mixture models fit the marginal distribution of the target and therefore cannot leverage such
features to explain when different sub-distributions arise.

To overcome this limitation, conditional density estimation (CDE) extends mixtures by modeling the
conditional distribution of outcomes given features. In particular, mixture density networks (Bishop,
1994) and kernel mixture networks (Ambrogioni et al., 2017) parameterize mixture weights and
components as functions of descriptive features. However, these dependencies are typically mod-
eled with neural networks that do not yield human-interpretable explanations. More broadly, CDE
methods tend to prioritize predictive accuracy over interpretability (Sugiyama et al., 2010). While
tree-based approaches (Cousins & Riondato, 2019; Yang & van Leeuwen, 2024) offer insight, we
observe in experiments they can overfit and lack support for overlapping regions.

To this end, we propose Explainable Mixture Models (EMM), a framework that directly pairs each
mixture component with a human-interpretable rule over descriptive features. The EMM framework
defines each mixture component as a data-induced distribution rather than restricting it to a partic-

0 20000 40000 60000
Insurance Charges

0.0

2.5

5.0

7.5

D
en

sit
y

×10−5

(a) The GMM recovers distinct
modes, but no explanations.

0 20000 40000 60000
Insurance Charges

0

5

D
en

sit
y

×10−5
1

Age Sex BMI Children Smoker Region

2
3
4
5
6
7
8

25 50 0 1 25 50 0 5 0 1 0 1 2 3

(b) The EMM recovers similar modes to the GMM (left), and also explains
when each mode is observed using simple rules over descriptive features.

Figure 1: Comparison of a Gaussian Mixture Model (GMM) and an Explainable Mixture Model
(EMM) on a dataset of insurance claims (Choi, 2017).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ular parametric family, e.g., Gaussian, and naturally allows for overlapping components. On the
insurance dataset, a fitted EMM in Fig. 1b recovers similar modes to the GMM, and additionally
provides simple, interval-based rules that explain when each mode is observed. For example, the
subpopulation with the lowest insurance charges corresponds to young, non-smoking individuals
without children, whereas the highest-charge component comprises older, smoking individuals with
high BMI. Our main contributions are as follows:

1. Concept. We propose EMM, which both characterize the subpopulations of the global distribu-
tion, whilst accurately estimating the local conditional density given any feature vector.

2. Theory. We derive exact-recovery conditions for marginal and conditional densities and intro-
duce regularizers to steer learning towards these regimes.

3. Practice. We propose a scalable, differentiable training procedure and show that the EMM accu-
rately models the underlying distribution whilst discovering interesting subpopulations.

2 RELATED WORK

Mixture models are a classical tool for density estimation and clustering. There exist many variants
based on parametric families such as Gaussians (Reynolds, 2015) or t-distributions (Peel & McLach-
lan, 2000) as well as nonparametric approaches (Antoniak, 1974). In general, unconditional mixture
models however are limited to modeling latent component variables (Viroli & McLachlan, 2019).

Feature dependency can be introduced through covariate-dependent mixture weights and/or param-
eters. In Mixture Density Networks (Bishop, 1994) a neural network outputs mixture parameters as
functions of x. Kernel Mixture Networks (Ambrogioni et al., 2017) replace the parametric mixture
components with nonparametric kernels. However, both methods use black-box neural networks for
gating and thus do not provide insight into when each component is active.

Mixture of Experts (MoE) (Jacobs et al., 1991) are a general class of models in which a gating
network determines the weighting of local experts. While MoEs typically rely on black-box neural
networks for gating, recent surveys identify interpretability as a critical open challenge (Mu & Lin,
2025). Some interpretable variants have been proposed (Ismail et al., 2023; Pradier et al., 2021),
however, these approaches focus primarily on classification or deferral to human experts. EMMs
share the high-level conditional mixture structure of MoEs but differ fundamentally by targeting
conditional density estimation through differentiable rule learning. Similarly, Conditional VAEs
(CVAE) (Sohn et al., 2015) can model complex conditional distributions p(y|x), However, they rely
on a latent prior z and deep neural networks, resulting in a black-box model. In contrast, EMMs
explicitly model the conditional density through rule-based components, providing direct insight
into the data’s structure without latent variables.

Subgroup discovery is a closely related approach (Atzmueller, 2015). The goal is to identify a
subpopulation that is statistically interesting with respect to a target variable and describe it through
a human-interpretable rule. Using combinatorial (Lavrač et al., 2004; Atzmueller & Puppe, 2006) or
differentiable optimization (Xu et al., 2024), a rule is learned that maximizes the measured deviation
of the subgroup from the global population (Todorovski et al., 2000).

The main difference to Explainable Mixture Models is that subgroup discovery is inherently local,
focusing on isolating an interesting subset of the data rather than modeling the entire population.
While there exist approaches that learn multiple subgroups (Van Leeuwen & Knobbe, 2012; Proença
et al., 2022), they typically do not attempt to model the full conditional distribution.

Conditional density estimation (CDE) aims to estimate the full conditional distribution of a tar-
get variable y given input features x. Approaches range from kernel and RKHS-based estimators
(Hyndman et al., 1996; Sugiyama et al., 2010) to neural network-based methods (Bishop, 1994;
Ambrogioni et al., 2017) and normalizing flows (Winkler et al., 2019). However, these methods are
unable to explain where and when different modes occur.

Most closely related to Explainable Mixture Models are interpretable CDE methods. Density Esti-
mation Trees (Ram & Gray, 2011) use interpretable tree structures but only target the unconditional
density. CADET uses trees to model conditional densities with exponential family distributions in
the leaves (Cousins & Riondato, 2019), but tends to learn very deep trees that are hard to interpret.
Most similar to our approach is CDTREE (Yang & van Leeuwen, 2024), which learns a minimum

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

description length regularized decision tree with a histogram in each leaf. Both approaches however
are primarily aimed at fitting densities, and not for discovering its components.

Summary. Explainable Mixture Models bring together ideas from all three areas: In contrast to
neural gated mixture models, EMM provide interpretable rules for each component; Compared to
subgroup discovery, we model the entire domain; And compared to tree-based CDE, we allow for a
mixture of components rather than a single tree. In the following, we will formally define EMM and
show how to learn them from data.

3 EXPLAINABLE MIXTURE MODELS

We consider a dataset of n pairs {(x(l), y(l))}nl=1 consisting of a descriptive feature vector x ∈ Rd

of d real-valued features and a target value y ∈ Y . We assume each sample (x, y) to be a realization
of a pair of random variables (X,Y) ∼ PX,Y , drawn i.i.d. We write p to denote probability density
functions and P to denote probability distributions.

Our goal is to explain the distribution of the target variable Y as a mixture of simpler components.
In contrast to a classical mixture model, the idea is to use components that are not latent, but in-
stead grounded in a human-interpretable explanation over the descriptive features X . That is, an
explainable mixture model (EMM) not only provides a decomposition of the target into simpler
sub-distributions, but also explains the conditions under which these sub-distributions are observed.

Definition 1 (Marginal-EMM) An explainable mixture model M = {ei}ki=1 of the marginal den-
sity p(y) is defined as a set of k feature-based explanations ei : Rd → {0, 1} with non-zero support,
i.e. E[ei(X)] > 0. For each respective explanation ei, we define the mixture weight wi as

wi =
E[ei(X)]∑k
j=1 E[ej(X)]

, (1)

where it holds that wi ≥ 0 and
∑k

i=1 wi = 1. The induced density pM(y) is a finite mixture of k
components as per

pM(y) =

k∑
i=1

wi pi(y) , pi(y) := pY | (ei(X)=1) (y) . (2)

We introduce the marginal EMM as a weighted sum of simpler component densities pi(y), based on
the standard finite mixture model (McLachlan et al., 2019). However, the differentiating factor of
an EMM lies in the explainability of the individual components pi(y). Instead of restricting them
to a parametric family, e.g. Gaussians, an EMM is based on non-parametric, data-induced densities
pi(y). Each component reflects the conditional distribution of the target Y given that the explanation
ei over the descriptive features X holds. The choice of human-interpretable explanation ei (e.g.,
logical rules) is application dependent and agnostic to the definition.

Proposition 1 Let M = {ei}ki be an EMM with a marginal density as per Def. 1. If the set of
explanations ei form a partition of the feature space Rd, i.e.

∑k
i=1 ei(x) = 1 for all x in the support

of PX , then the induced density pM(y) equals the true marginal density pY (y).

Proposition 1 is a direct consequence of the law of total probability (Appendix A.1). It suggests that
we should generally aim to find a set of explanations ei that form a partition of the feature space
Rd. However, this is not a strict constraint. In practice, allowing an EMM to have overlap can be
beneficial regarding interpretability by providing broader, more general explanations.

Lastly, the result shows that we cannot rely on maximization of the marginal likelihood to learn an
EMM. Setting all components to the same constant function, e.g. ei(x) = 1 for all i, leads to a
perfect fit of the marginal distribution, provided that the component densities pi(y) are sufficiently
flexible. Therefore, we cannot expect to learn a meaningful EMM by maximizing the marginal
likelihood. To address this issue, we next introduce a conditional interpretation of the EMM.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 CONDITIONAL EMM

The issue of treating an EMM as a purely marginal model is the degeneracy of maximum likeli-
hood solutions. To address this, we leverage the ability of an EMM to explain where distinct sub-
distributions occur and formally introduce the conditional EMM to model the conditional density
pY |X(y | x).

Definition 2 (Conditional-EMM) An explainable mixture model M = {ei}ki=1 of the conditional
density p(y | x) is defined as a set of k explanations ei : Rd → {0, 1} with non-zero support,
i.e. E[ei(X)] > 0, and complete coverage, i.e.

∑k
i=1 ei(x) > 0 for all x in the support of PX . For

each feature vector x, we define the conditional mixture weights wi(x) as

wi(x) =
ei(x)∑k
j=1 ej(x)

. (3)

The induced conditional density pM(y | x) is a finite mixture of k components, where

pM(y | x) =
k∑

i=1

wi(x) pi(y) , pi(y) := pY | (ei(X)=1) (y) . (4)

Similar to the marginal EMM, the conditional EMM is a finite mixture of simpler component den-
sities pi(y). In addition, the mixture weights wi(x) are now dependent on the descriptive features,
similar to a mixtures-of-experts model (Jacobs et al., 1991). The main difference to MoEs is that an
EMM consists of explanation-based components, which are derived from the data, while in a MoE,
any gating mechanism is permissible and with arbitrary parametric experts that need not represent
an underlying demographic group. Through EMM’s unique definition we can also examine what
conditions are needed so that a mixture M faithfully represents the true conditional distribution.

Proposition 2 Let M = {ei}ki be an EMM with a conditional density as per Def. 2. If the set of
explanations ei form a partition of the feature space Rd into homogeneous regions with respect to
the target variable Y , i.e. for every explanation ei and its induced sub-distribution pi(y), it holds
that pY |X(y | x) = pi(y) for all x with ei(x) = 1 and pX(x) > 0, then the induced density
pM(y | x) equals the true conditional density pY |X(y | x).

We provide a proof of Proposition 2 in Appendix A.2. To sufficiently guarantee a set of explanations
induces the true conditional density, the explanations must partition the feature space, such that
within the scope of each explanation ei, the target variable Y is i.i.d.

While this is a stronger requirement than for the marginal EMM, where a partitioning alone is suf-
ficient, it helps to eliminate degenerate solutions. By maximizing the conditional likelihood, the
EMM is encouraged to find a set of explanations that capture where distinct, but locally homoge-
neous sub-distributions occur. Therefore, we propose to fit an EMM M by minimizing the negative
log-likelihood (NLL) given a dataset {(x(l), y(l))}nl=1

NLL(M) = −
n∑

l=1

log

(
k∑

i=1

wi(x
(l)) pi(y

(l))

)
. (5)

In practice, we estimate each pi from the subset {l : ri(x(l)) = 1} with appropriate smoothing
(e.g., KDE bandwidth selection or Dirichlet priors for discrete Y) and add a small ε > 0 inside the
logarithm for numerical stability. This now provides a principled objective to learn an informative
EMM using likelihood maximization. Once obtained, an EMM M gives insight into the global
distribution PY through its explainable components, and can also be used to make local, conditional
density inferences pM(y | x) for a given descriptive feature vector x.

3.2 OPTIMIZATION OBJECTIVE

Lastly, we discuss how to optimize the NLL objective in Eq. 5 to learn an EMM. In Propositions 1
and 2, we have seen that an appropriate partitioning can achieve a perfect fit of the true density. On

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

−1.0 −0.5 0.0 0.5 1.0
x

−0.5

0.0

0.5

1.0

1.5

π̂
(x

)

τ = 0.1 τ = 0.01

(a) Condition

−1.0 −0.5 0.0 0.5 1.0
x1

−1.0

−0.5

0.0

0.5

1.0

x
2

0.0

0.2

0.4

0.6

0.8

1.0

ê(
x

)

(b) Conjunction

−2

−1

0

1

2

y

p̂1(y) p̂2(y)pM(y | x = 0.3)
ŵ(x) = [0.48, 0.52]

−1.0 −0.5 0.0 0.5 1.0 1.5
x

0

1
ŵ1(x) ŵ2(x)

(c) Explainable Mixture Model

Figure 2: The building blocks of an EMM: Learnable thresholding conditions are placed on each
feature xj ∈ R (a). They are combined into a conjunctive, differentiable rule (b). Each rule acts as
a gating function for an expert density, with a mixture in the overlap (c).

the other hand, we also want to allow a certain degree of overlap between explanations to improve
interpretability, e.g. by providing broader, more general explanations.

To balance these two objectives, we propose to learn an EMM by minimizing a regularized NLL
objective. We introduce an overlap penalty R(M) that penalizes explanations ei that frequently
hold together. It is defined as

R(M) =
1

n

n∑
l=1

(
1−

k∑
i=1

wi(x
(l))2

)
. (6)

For a particular sample x(l), the term in parentheses is minimized when exactly one explanation ei
holds, i.e. wi(x

(l)) = 1 for some i and wj(x
(l)) = 0 for all j ̸= i. To penalize overlap, we square

the weights wi because the sum
∑k

i=1 wi(x
(l)) = 1 is constant by definition. Squaring ensures

the penalty gets smaller as the distribution of weights becomes more sparse, and minimized when
converging to a single active component. The overall optimization objective with a hyperparameter
λ that controls the strength of the overlap penalty is given by

min
M

NLL(M) + λR(M) . (7)

4 METHOD

In this section, we describe a concrete instantiation of EMM for tabular data, which uses conjunctive
rules as class of explanations, e.g. “18 < Age < 65 AND BMI > 25”. This format of explanations,
also used in decision trees and subgroup discovery, is human-interpretable and natively supports
continuous and discrete features. In particular no pre-discretization is necessary, the thresholds
αj , βj are learned directly via gradient descent (see Eq. 9) for both continuous and discrete features.
In particular, we consider rules e : Rd → {0, 1} that map input features x ∈ Rd to binary activations
as per

e(x; θ) =

d∧
j=1

π(xj ;αj , βj) . (8)

4.1 A DIFFERENTIABLE RULE-BASED MIXTURE

We now show how to learn a rule-based mixture using gradient-based optimization. To avoid com-
binatorial search over an exponential search space (Lavrač et al., 2004; Atzmueller & Puppe, 2006),
we employ a differentiable formulation that allows us to learn a mixture of multiple rules jointly
using gradient-based optimization Xu et al. (2024).

We briefly summarize the key components of the differentiable rule learner’s architecture. Firstly,
the conditions π(xj ;αj , βj) = 1[αj < xj < βj] placed on individual features xj ∈ R, j ∈
{1, . . . , d}, are approximated as

π̂τ (xj ;αj , βj) = σ

(
xj − αj

τ

)
σ

(
βj − xj

τ

)
, (9)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where σ is the sigmoid function and τ > 0 is a temperature parameter that controls its steepness.
During training, we anneal the temperature gradually to zero, transitioning from soft constraints
π̂ : R → [0, 1] to hard constraints, i.e. limτ→0 π̂τ (xj ;αj , βj) = π(xj ;αj , βj) for all xj ̸= αj , βj .
We show an example in Fig. 2a, where the condition becomes steeper as τ → 0.

To combine multiple conditions into a rule, the weighted harmonic mean is used to approximate the
logical AND operator. It is defined as

ê(x; θ) =

∑d
j=1 aj∑d

j=1 aj · π̂τ (xj ;αj , βj , τ)−1
with aj ≥ 0 , (10)

where we denote the parameters of a rule as θ = {αj , βj , aj}dj=1. This function mimics the be-
havior of a logical conjunction whilst being fully differentiable: If any condition π̂j(xj) is close to
zero, then the reciprocal π̂j(xj)−1 grows, and thus the overall rule activation ê(x) becomes small.
Conversely, the rule activation ê(x) = 1 only if all conditions π̂j(xj) = 1 are high. The learnable,
non-negative weights aj represent the importance of feature j within the rule. By setting aj = 0,
the corresponding condition π̂j has no effect on the rule activation ê(x), allowing the optimizer to
effectively prune unnecessary conditions.

We now construct an EMM by combining multiple differentiable rules with their local densities.
Following Definition 2, we use as conditional gating function

ŵi(x; Θ) =
êi(x; θi) + ϵ∑k

j=1 êj(x; θj) + ϵ
with Θ = (θ1, . . . , θk) , (11)

for a given input x, where we add an ϵ floor to avoid numerical instability. This formulation ensures
that the mixture weights ŵi(x; Θ) are non-negative and sum to one.

Density Estimation. To estimate the target density pi(y) for each component i, we can use any
density estimator p̂i(y;ψi). We now outline a parametric and a non-parametric solution that is then
evaluated in the experiments. As the non-parametric variant, we use a Neural Spline Flow (NSF)
(Durkan et al., 2019). A normalizing flow transforms a simple base distribution into a complex
target distribution through a series of invertible mappings. NSFs are parameterized by a cubic spline
neural network, whose parameters ψi are learned by maximizing the likelihood. NSFs are powerful
density estimators, but are computationally expensive and may overfit on small subgroups.

As a parametric alternative, we use an unconditional Gaussian mixture model (GMM). As we learn
sub-distributions of the marginal distribution, we parameterize each component density pi(y) with
the same set of means and covariances learned on the marginal distribution, but allow for different
mixture weights ψi for each component i. This has the advantage of being much more computation-
ally efficient, and aligns with our goal of describing distinct modes in the data.

We show an example of an EMM in Fig. 2c, which contains two rule-based subpopulations that
overlap in the middle of the feature space x ∈ [0, 0.5]. Using Objective (7), we jointly learn the
parameters of the rules Θ and the local densities Ψ = (ψ1, . . . , ψk) with gradient descent, by com-
bining the differentiable rules and the local densities into the mixture density

pM(y | x; Θ,Ψ) =

k∑
i=1

ŵi(x; Θ) · p̂i(y;ψi) . (12)

4.2 OVERSPECIFICATION AND PRUNING

A key challenge in learning rule sets is navigating the combinatorial search space of all possible
rules. While previous approaches are limited to recursive partitioning or greedy schemes, our dif-
ferentiable approach allows for parallelized optimization of large quantities of rules. That is, we
overspecify the initial number of rules k to ensure sufficient coverage of the feature space.

To ensure that the initial rules effectively cover the feature space, the initialization of each rule is key.
Random initialization of the rule parameters θi often leads to poor coverage (Fig. 3a), while choosing
random samples from the training set as anchors improves coverage but can still leave gaps (Fig. 3b).
We opt for a guided initialization, where we select as anchoring points k-means++ centroids (Arthur

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

x1

x
2

(a) Randomly initialized.

x1

x
2

(b) Randomly anchored.

x1

x
2

(c) k-means++ anchoring.

Figure 3: Initialization: k-means++ anchoring ensures a thorough coverage of the feature space.

5 10 15 20
True Components

0.00

0.25

0.50

0.75

1.00

Te
st

N
M

I

Emm-Gmm
Emm-Nsf
CDTree

Kmn
Cadet

(a) True Components

0 5 10 15 20
Noise Features

0.00

0.25

0.50

0.75

1.00

Te
st

N
M

I

(b) Noise Features

0.0 0.2 0.4 0.6 0.8 1.0
Noise Scale

0.00

0.25

0.50

0.75

1.00

Te
st

N
M

I

(c) Target noise

0.0 0.1 0.2 0.3 0.4 0.5
Overlap

0.00

0.25

0.50

0.75

1.00

Te
st

N
M

I

(d) Overlap

Figure 4: NMI between true and learned components across a variety of settings.

& Vassilvitskii, 2007) (Fig. 3c). This way, we ensure that each initial rule êi is anchored on a distinct
region of the feature space, improving the likelihood of discovering meaningful explanations.

Pruning and Model Selection Our initialization ensures broad coverage of the feature space, but
overspecification inevitably introduces redundant explanations. The primary pruning mechanism is
the optimization itself: a rule êi can be disabled by learning an inverted interval (αij > βij) for any
feature j with non-zero weight aij > 0, forcing êi(x) ≈ 0 everywhere and removing its gradient
signal. This allows the optimizer to discard uncompetitive rules. For efficiency and stability, we
periodically check for such inactive rules during training and disable them completely. If several
neighboring rules converge to nearly identical densities pi(y), they may all survive pruning; we
address this with a post-hoc merging procedure (Appendix B.1).

While initializing with more components can reveal more specialized explanations, the gain in like-
lihood often comes at the cost of interpretability. To avoid dataset-specific tuning of the initial
number of rules k, we use the Bayesian Information Criterion (BIC) to balance expressiveness and
complexity. After training, we compute

BIC(M) = 2 · NLL(M) + |Θ| log(n), (13)

where |Θ| is the number of active parameters in the rule network. This criterion ignores parameters
of the local density estimators p̂i(y;ψi), as our framework models them to be data-induced, instead
focusing model selection on the complexity of the explanations. We train multiple models from a
range of k and select the one with the best BIC score (Appendix B.3).

5 EXPERIMENTS

We empirically validate EMM, using NSF and GMM respectively as density estimators. As base-
lines we include the interpretable CDE methods CDTREE (Yang & van Leeuwen, 2024) and
CADET (Cousins & Riondato, 2019), which partition the feature space via decision trees, and non-
interpretable methods MDN (Bishop, 1994), KMN (Ambrogioni et al., 2017), NF (Rezende & Mo-
hamed, 2015), CVAE (Sohn et al., 2015) and LSCDE (Sugiyama et al., 2010).

5.1 SYNTHETIC DATA

We first test on synthetic data with known ground truth. We generate d independent uniformly
distributed features Xj , partition the space into k disjoint hyperrectangles, and assign each region
a randomized density (Gaussian, Uniform, etc), resulting in a piecewise-constant p(y | x) (see
Appendix C.1). Unless varied as the experiment’s parameter we use d = 5, k = 5 components, 600
samples per component, overlap β = 0.1 and no noise on Y , averaging results over 4 datasets.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

20 40 60 80 100
Number of rules k

0.2

0.4

0.6

0.8

Te
st

N
LL

Method
Emm-Gmm
Emm-Nsf

(a) Test NLL

20 40 60 80 100
Number of rules k

0.00

0.25

0.50

0.75

1.00

Te
st

N
M

I

Method
Emm-Gmm
Emm-Nsf

(b) Test NMI

20 40 60 80 100
Number of rules k

0

5

10

15

Ex
ce

ss
Ru

le
s

Method
Emm-Gmm
Emm-Nsf

(c) Excess rules

Figure 6: Robustness to rule overspecification (large k). While EMM-NSF achieves lower NLL (a),
it retains redundant rules (c). EMM-GMM successfully prunes excess components, maintaining high
NMI (b) and recovering the exact number of ground-truth rules even as k increases.

Accuracy. We first measure the accuracy of EMM in recovering the ground-truth components. We
report the normalized mutual information (NMI), which compares the cluster similarity between
true component labels and those by learned rules (Appendix C.4). Fig. 4a shows that both EMM
instantiations reliably recover ground-truth components, with only slight performance drop for many
components. CADET struggles due to unregularized large trees, while CDTREE regularization aids
it in recovering a good solution. The non-interpretable baseline, KMN, from which we extract
sample-wise labels as that of the component with highest weighted likelihood, performs well on a
large number of components, but poorly on few components.

Robustness. Figures 4b and 4c show robustness to noise in the features and target, respectively.
EMM is largely unaffected by feature noise and only slightly degrades under high target noise.
CDTREE performs similarly but is less accurate at high target noise, while CADET and KMN are
consistently weaker in both settings. In addition, we measure the effect of increasing overlap be-
tween the component densities in Fig. 4d. EMM remains stable under moderate overlap but degrades
when overlap is large. KMN shows a similar trend, whereas CDTREE declines more gracefully and
surpasses EMM at high overlap. CDTREE’s advantage is its tendency to create many small leaves,
which approximate overlapping densities well but are not penalized by the NMI metric.

5 10 15 20
True Components

0

10

20

Ex
ce

ss
Ru

le
s

Emm-Gmm
Emm-Nsf

CDTree

Figure 5: Excess rules
vs. true components.

Model Complexity. Next, we assess model complexity by compar-
ing the number of learned components to the ground truth. In Figure
5 we plot the number of excess components, i.e., the difference be-
tween learned and true components. Fig. 5 shows that after pruning,
both EMM variants recover component counts close to the ground
truth, with GMM slightly underfitting and NSF slightly overfitting.
In contrast, the gap between CDTREE and the true number of com-
ponents widens as complexity increases, reflecting the limitations of
greedy top-down splitting, while CADET’s number of excessive rules
consistently exceeds the limits of the plot. On the other hand, EMM
precisely identifies the correct number of components no matter if we
have 5, 10, or 20 true components.

Rule Scaling. We further investigate robustness to overspecification by increasing the initialized
rules k on synthetic datasets with 5 and 10 true components, and show the results in Figure 6. On
these datasets we see in Figure 6a that once k is sufficiently large to capture the true structure, NLL
plateaus. In Figure 6b and Figure 6c we see that EMM-GMM is very stable in this setting even when
k is much larger than the true components, as no excess rules are discovered and NMI remains high.
EMM-NSF achieves better NLL because it is more flexible, but this flexibility makes it more prone to
retain excess rules when k is large. This indicates that the inductive bias of a restricted model class
(EMM-GMM) allows for more effective pruning of excess rules through our likelihood objective.

Sensitivity to λ. Finally, we analyze the effect of the overlap penalty weight λ (Eq. 7) on model
complexity using the real datasets (Section 5.2). Figure 7a shows the change in test NLL (NLLλ −
NLLλ=0) and Figure 7b shows the ratio of active rules relative to the unregularized baseline (λ = 0)
As shown in Fig. 7, increasing λ effectively regularizes EMM-GMM, using up to 16% fewer rules
at λ = 0.3 than the baseline. The likelihood cost is negligible, indicating the components were
redundant. This confirms that the penalty successfully steers the optimization towards a concise

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Dataset CDTREE CADET EMM-NSF EMM-NSF BIC EMM-GMM EMM-GMM BIC CVAE KMN LSCDE MDN NF

SkillCraft −4.03 2.23 −3.58 −3.36 −4.11 −4.19 1.61 −0.94 1.57 2.73 1.47
Thermography 0.56 1.50 1.21 1.26 1.00 0.63 0.61 1.63 0.90 0.57 1.33
abalone −2.20 4.32 −1.06 −0.97 −2.73 −2.72 1.92 1.89 2.13 1.88 1.79
air quality 0.53 1.40 0.27 0.27 −0.19 −0.19 0.15 0.25 0.91 0.18 0.15
bike 8.66 9.30 8.81 8.90 8.96 8.94 8.62 9.49 8.67 8.39 9.74
boston 2.93 5.51 2.98 2.99 2.60 2.58 3.20 3.17 3.07 2.67 7.32
concrete 3.58 3.54 3.64 3.61 3.50 3.73 3.11 3.33 3.61 2.96 3.45
energy 2.91 3.02 2.85 2.84 3.02 3.02 2.84 2.84 3.37 2.79 2.72
insurance 9.11 20.66 8.83 8.95 9.06 9.06 8.03 8.72 9.93 8.03 7.44
life 2.48 4.24 2.40 2.35 2.28 2.42 2.27 2.18 2.65 1.91 3.74
obesity −3.45 - −3.66 −3.43 −4.86 −4.53 −0.18 −1.78 1.12 2.76 −0.39
synchronous −2.33 −2.90 −2.23 −2.16 −2.03 −1.88 −4.80 −2.41 −1.25 −3.08 −4.11
toxicity 1.54 1.71 1.57 1.62 1.44 1.44 1.34 1.90 1.37 1.44 1.55
wages 11.20 11.90 10.88 11.13 10.89 10.80 11.33 11.68 11.45 11.59 11.53
wine −4.61 - −4.15 −2.61 −4.91 −4.89 1.15 −1.37 1.20 3.29 −0.38

Rank (Interp.) 3.27 5.40 3.27 3.87 2.33 2.67 - - - - -
Rank (Overall) 5.20 9.73 5.60 6.07 4.20 4.47 4.80 6.60 8.07 4.73 6.33

Table 1: NLL of interpretable and black-box models on real-world datasets. Bold values indicate
the best NLL among interpretable models, underlined values indicate the best overall NLL.

partitioning for EMM-GMM. For EMM-NSF the benefit is less clear. The number of rules only
decreases significantly at λ = 1 and incurs a larger likelihood cost. Consequently, we recommend
the use of the overlap penalty primarily for the EMM-GMM variant.

5.2 REAL-WORLD DATASETS

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.0

0.2

0.4

N
LL

λ
−

N
LL

λ
=

0

Method
Emm-Gmm
Emm-Nsf

(a) Test NLL delta

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.8

0.9

1.0

1.1

#
Ru

le
s λ
/

#
Ru

le
s λ

=
0 Method

Emm-Gmm
Emm-Nsf

(b) Rule ratio

Figure 7: Sensitivity to λ

We next evaluate EMM on real-world datasets
from the UCI Machine Learning Repository
(Dua & Graff, 2017). Since ground-truth com-
ponents are unavailable, performance is mea-
sured by negative log-likelihood (NLL) on a
held-out test set. We report results using the full
k = 100 starting components, as well as with
BIC regularization for automatic model selec-
tion (Section 4.2).

We report the NLL in Table 1. EMM-GMM
ranks highest across both interpretable and non-
interpretable baselines, while the BIC-regularized variant achieves the second best rank but with
substantially fewer and simpler rules (see Table 2). Among tree-based methods, CDTREE outper-
forms CADET and falls between our GMM and NSF instantiations. Non-interpretable methods vary
in performance, with MDN and CVAE the strongest, but still trailing EMM-GMM.

Overall, EMM achieves state-of-the-art accuracy with full interpretability. The EMM-GMM consis-
tently outperforms EMM-NSF, suggesting that the simpler parametric estimator is better suited for
this setting. BIC regularization typically incurs a small loss in accuracy but yields models with
fewer, shorter rules, offering a practical trade-off between accuracy and interpretability.

Case Study. We conclude with a case study on gold nanoclusters, whose electronic and catalytic
properties are relevant to photovoltaics and medicine (Goldsmith et al., 2017). We fit an EMM to
understand which molecular configurations lead to desirable properties. First, we target the HOMO-
LUMO energy gap, a key indicator of photovoltaics performance, and visualize the learned densities
and explanations in Fig. 8. Our method recovers the known relationship that clusters with an odd
number of atoms exhibit smaller gaps than those with an even number of atoms, while also uncover-
ing finer distinctions based on planarity, cluster size, and bonding structure. Compared to CDTREE,
which requires 64 components for a weaker fit, EMM achieves a lower NLL (−1.706 vs. −1.683),
with far fewer explanations (19.7 vs. 58.7) and orders-of-magnitude lower runtime (29s vs. 1782s).

Multi-Target Learning. A distinctive feature of EMM is its capacity to explain multivariate tar-
gets. EMM identifies visible clusters in the joint distribution of relative gyration Rg0 and van der
Waals energy ∆EvdW in Fig. 9, revealing a clear separation in gyration Rg0 between planar (2D,
Planarity = 0) and non-planar (3D, Planarity = 1) clusters. This matches the physical intuition that
planar clusters are less compact and therefore have a larger radius of gyration. Our results further

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0
HOMO-LUMO

0

1

2

3

4

5
D

en
sit

y

1
N ∆E T 1# 2# 3# 4# 5# 6# Planarity Neven

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

5 10 0.0 2.5 2505007500.0
0

0.2
5 0 10.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0 1 0 1

Figure 8: Densities and explanations for 18 mixture components learned by EMM. Continuous in-
tervals are represented as bars relative to the feature domain, discrete values as boxes. Blue bars
indicate active rule constraints (aj > 0), gray ones indicate inactive features(aj ≤ 0). Intervals rep-
resent the empirical range of samples assigned to each component (see Appendix B.2), which means
all intervals (blue and gray) accurately describe the sub-population, regardless of rule membership.

0.8 1.0 1.2
Rg0

0.0

0.1

0.2

0.3

0.4

0.5

∆
E
v
d
W

1

N ∆E T 1# 2# 3# 4# 5# 6# Planarity Neven

2
3
4
5
6
7
8
9
10
11
13
14
15

5 10 0.0 2.5 250 500 7500.0
0

0.2
5 0 10.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0 1 0 1

Figure 9: EMM over joint distribution of radius of gyration Rg0 and van der Waals energy ∆EvdW .

corroborate previous studies showing that non-planar clusters have higher intermolecular van der
Waals interactions than planar ones (Goldsmith et al., 2017). For example, explanations 4 and 15
correspond to clusters of the same size but different planarity, yielding distinct ∆EvdW values. Our
results on real-world datasets, including a study on Abalone (Appendix C.8), highlight the ability of
EMM to explain meaningful interactions behind interesting subpopulations.

6 CONCLUSION

We introduced Explainable Mixture Models, a framework that pairs each mixture component with
a human-interpretable rule. We established conditions for the exact recovery of the underlying data
distribution, and proposed a scalable, differentiable learning algorithm with automatic model se-
lection. Experiments show that EMM reliably recovers ground-truth components, while achieving
state-of-the-art performance in CDE on real-world datasets. Case studies on materials science fur-
ther illustrate the utility of EMM in exploratory data analysis. Overall, EMM accurately models
complex distributions whilst providing meaningful, interpretable explanations.

Limitations. A primary limitation of our approach is the need for a fixed number of mixture
components k at the start of training. We mitigate this through our initialization strategy and the BIC-
based model selection, but in practice k must be tuned for optimal results. Furthermore, we consider
a limited class of explanations in the form of conjunctive rules over intervals. Future work will
explore more expressive rule classes, such as disjunctive normal form rules, and extend explanations
to different modalities such as images or text. Lastly, EMM is dependent on the performance of the
underlying density estimator, which may need to be adapted to the specific data domain.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work aims to increase the transparency and interpretability of complex data distributions. The
rules generated by our model are based on statistical correlations in the data and cannot be used to
make definitive statements about causality or generalizability. The results must thus be used with
caution, especially when sensitive data is involved.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility we provide all code necessary to replicate the experiments. In addition
to the method itself, this includes code to generate the synthetic data for our experiments, as well as
code to reproduce the evaluation results on synthetic data, real data, and case studies.

REFERENCES

Luca Ambrogioni, Umut Güçlü, Marcel A. J. van Gerven, and Eric Maris. The kernel mixture
network: A nonparametric method for conditional density estimation of continuous random vari-
ables. arXiv:1705.07111, 2017.

Charles E. Antoniak. Mixtures of dirichlet processes with applications to bayesian nonparametric
problems. The Annals of Statistics, 2(6):1152–1174, 1974.

David Arthur and Sergei Vassilvitskii. k-means++ the advantages of careful seeding. In Proceedings
of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1027–1035, 2007.

Martin Atzmueller. Subgroup discovery. Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, 5(1):35–49, 2015.

Martin Atzmueller and Frank Puppe. Sd-map–a fast algorithm for exhaustive subgroup discov-
ery. In European Conference on Principles of Data Mining and Knowledge Discovery, pp. 6–17.
Springer, 2006.

Christopher M. Bishop. Mixture density networks. Technical Report NCRG/94/004, Neural Com-
puting Research Group, Aston University, 1994.

Mi Choi. Medical cost personal dataset (“insurance”). Kaggle, 2017. Dataset with age, sex, bmi,
children, smoker, region, charges.

Cyrus Cousins and Matteo Riondato. Cadet: Interpretable parametric conditional density estimation
with decision trees and forests. Machine Learning, 108(9–10):1613–1634, 2019. doi: 10.1007/
s10994-019-05814-2.

Dheeru Dua and Casey Graff. Uci machine learning repository, 2017. URL https://archive.
ics.uci.edu/ml.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. Ad-
vances in neural information processing systems, 32, 2019.

Bryan R Goldsmith, Mario Boley, Jilles Vreeken, Matthias Scheffler, and Luca M Ghiringhelli.
Uncovering structure-property relationships of materials by subgroup discovery. New Journal of
Physics, 19(1):013031, January 2017. ISSN 1367-2630. doi: 10.1088/1367-2630/aa57c2.

Rob J. Hyndman, David M. Bashtannyk, and Gary K. Grunwald. Estimating and visualizing condi-
tional densities. Journal of Computational and Graphical Statistics, 5(4):315–336, 1996.

Aya Abdelsalam Ismail, Sercan Ö. Arik, Jinsung Yoon, Ankur Taly, Soheil Feizi, and Tomas Pfister.
Interpretable mixture of experts, 2023. URL https://arxiv.org/abs/2206.02107.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87, 1991.

11

https://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml
https://arxiv.org/abs/2206.02107

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Nada Lavrač, Branko Kavšek, Peter Flach, and Ljupčo Todorovski. Subgroup discovery with cn2-sd.
Journal of Machine Learning Research, 5(Feb):153–188, 2004.

Geoffrey J McLachlan, Sharon X Lee, and Suren I Rathnayake. Finite mixture models. Annual
review of statistics and its application, 6(1):355–378, 2019.

Siyuan Mu and Sen Lin. A comprehensive survey of mixture-of-experts: Algorithms, theory, and
applications, 2025. URL https://arxiv.org/abs/2503.07137.

David Peel and Geoffrey J McLachlan. Robust mixture modelling using the t distribution. Statistics
and computing, 10(4):339–348, 2000.

Melanie F. Pradier, Javier Zazo, Sonali Parbhoo, Roy H. Perlis, Maurizio Zazzi, and Finale Doshi-
Velez. Preferential mixture-of-experts: Interpretable models that rely on human expertise as much
as possible, 2021. URL https://arxiv.org/abs/2101.05360.

Hugo M Proença, Peter Grünwald, Thomas Bäck, and Matthijs van Leeuwen. Robust subgroup
discovery: Discovering subgroup lists using mdl. Data Mining and Knowledge Discovery, 36(5):
1885–1970, 2022.

Parikshit Ram and Alexander G Gray. Density estimation trees. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining, pp. 627–635, 2011.

Douglas Reynolds. Gaussian mixture models. In Encyclopedia of biometrics, pp. 827–832. Springer,
2015.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Interna-
tional conference on machine learning, pp. 1530–1538. PMLR, 2015.

Jonas Rothfuss, Fabio Ferreira, Simon Walther, and Maxim Ulrich. Conditional Density Estimation
with Neural Networks: Best Practices and Benchmarks. URL http://arxiv.org/abs/
1903.00954.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation us-
ing deep conditional generative models. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 28. Cur-
ran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/
paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf.

Masashi Sugiyama, Ichiro Takeuchi, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, and
Daisuke Okanohara. Least-squares conditional density estimation. IEICE Transactions on In-
formation and Systems, 93(3):583–594, 2010.

Ljupčo Todorovski, Peter Flach, and Nada Lavrač. Predictive performance of weighted relative
accuracy. In European conference on principles of data mining and knowledge discovery, pp.
255–264. Springer, 2000.

Matthijs Van Leeuwen and Arno Knobbe. Diverse subgroup set discovery. Data Mining and Knowl-
edge Discovery, 25(2):208–242, 2012.

Cinzia Viroli and Geoffrey J McLachlan. Deep gaussian mixture models. Statistics and Computing,
29(1):43–51, 2019.

Christina Winkler, Daniel E. Worrall, Emiel Hoogeboom, and Max Welling. Learning likelihoods
with conditional normalizing flows. CoRR, abs/1912.00042, 2019. URL http://arxiv.
org/abs/1912.00042.

Sascha Xu, Nils Philipp Walter, Janis Kalofolias, and Jilles Vreeken. Learning exceptional sub-
groups by end-to-end maximizing kl-divergence. In Proceedings of the 41st International Con-
ference on Machine Learning, pp. 55267–55285, 2024.

Lincen Yang and Matthijs van Leeuwen. Conditional density estimation with histogram trees. Ad-
vances in Neural Information Processing Systems, 37:117315–117339, 2024.

12

https://arxiv.org/abs/2503.07137
https://arxiv.org/abs/2101.05360
http://arxiv.org/abs/1903.00954
http://arxiv.org/abs/1903.00954
https://proceedings.neurips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
http://arxiv.org/abs/1912.00042
http://arxiv.org/abs/1912.00042

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A PROOFS

We provide the proofs for the propositions stated in the main text.

A.1 PROOF OF RECOVERY OF MARGINAL DISTRIBUTION

Proposition 1 Let M = {ei}ki be an EMM with a marginal density as per Def. 1. If the set of
explanations ei form a partition of the feature space Rd, i.e.

∑k
i=1 ei(x) = 1 for all x in the support

of PX , then the induced density pM(y) equals the true marginal density pY (y).

Proof: By Definition 1, the induced marginal density of an EMM is

pM(y) =

k∑
i=1

wi pi(y) with wi =
E[ei(X)]∑k
j=1 E[ej(X)]

, pi(y) = pY | (ei(X)=1)(y).

If the explanations {ei}ki=1 form a partition of the support of PX , then
∑k

i=1 ei(x) = 1 for all x in
the support of PX , and hence

k∑
i=1

E[ei(X)] =

∫
X

k∑
i=1

ei(x) pX(x) dx =

∫
X
pX(x) dx = 1.

Therefore wi = E[ei(X)]/1 = E[ei(X)], and substituting this yields

pM(y) =

k∑
i=1

E[ei(X)] pY | (ei(X)=1)(y) .

By Bayes rule we rewrite

pM(y) =

k∑
i=1

E[ei(X)]
pY, ei(X)=1(y)

P(ei(X) = 1)
(14)

As E[ei(X)] = P(ei(X) = 1), we can cancel terms to obtain

pM(y) =

k∑
i=1

pY, ei(X)=1(y) .

Finally, since the events {ei(X) = 1}ki=1 form a measurable partition of the support of X , the law
of total probability implies

k∑
i=1

pY, ei(X)=1(y) = pY (y).

Thus pM(y) = pY (y), proving the claim. □

A.2 PROOF OF RECOVERY OF CONDITIONAL DISTRIBUTION

Proposition 2 Let M = {ei}ki be an EMM with a conditional density as per Def. 2. If the set of
explanations ei form a partition of the feature space Rd into homogeneous regions with respect to
the target variable Y , i.e. for every explanation ei and its induced sub-distribution pi(y), it holds
that pY |X(y | x) = pi(y) for all x with ei(x) = 1 and pX(x) > 0, then the induced density
pM(y | x) equals the true conditional density pY |X(y | x).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Proof: By Definition 2,

pM(y | x) =
k∑

i=1

wi(x) pi(y), wi(x) =
ei(x)∑k
j=1 ej(x)

, pi(y) = pY | (ei(X)=1)(y).

If {ei}ki=1 forms a partition of the feature space, then for every x in the support of PX there exists a
unique index i⋆ = i⋆(x) such that ei⋆(x) = 1 and ej(x) = 0 for all j ̸= i⋆. Consequently,

k∑
j=1

ej(x) = 1 ⇒ wi⋆(x) = 1 and wj(x) = 0 for j ̸= i⋆,

and thus
pM(y | x) = pi⋆(y).

By the homogeneity assumption of the proposition, for all x with ei⋆(x) = 1 we have

pY |X(y | x) = pi⋆(y).

Combining the two displays yields pM(y | x) = pY |X(y | x) for all such x in the support of PX .
Hence the induced conditional density equals the true conditional density. □

B LEARNING AND OPTIMIZATION DETAILS

This appendix provides supplementary details on the training, optimization, and rule extraction pro-
cedures for EMM.

B.1 ONLINE PRUNING AND POST-HOC MERGING

Online Pruning. During training, some rules may fail to specialize on any subset of the data. The
optimizer can effectively disable such rules by learning an inverted interval (αij > βij) for one
or more of its predicates, which drives its activation êi(x) towards zero. We periodically identify
rules whose average mixture weight Ex[wi(x)] over the dataset falls below a small threshold (e.g.,
10−3). These components are considered inactive and are permanently removed from the computa-
tion for the remainder of training by fixing ê(x) = 0 and skipping density computation. This saves
computational resources and improves stability by fully removing the gradient.

Post-Hoc Merging. The maximum likelihood objective is invariant to splitting a homogeneous
data region into multiple sub-regions modeled by functionally identical experts. This can result in a
fragmented solution. To improve interpretability, we merge such components after training. For all
adjacent explanations j, k we compute the pairwise similarity of the densities p̂i(y) and p̂j(y) using
Jensen-Shannon divergence. We consider explanations adjacent if their data-based intervals (see
Appendix B.2) touch (± some tolerance) on one feature and are similar on all others with non-zero
weight a. If the divergence between a pair of densities is below a predefined threshold, we merge
their corresponding rules by taking the union of their data-based intervals and retain only one of the
redundant experts.

B.2 TEMPERATURE ANNEALING AND RULE EXTRACTION

To produce a final, human-readable set of rules, the soft, differentiable model must be converted into
a discrete, logical representation.

Temperature Annealing. The temperature parameter τ in the soft predicate (Eq. 9) controls the
trade-off between smooth gradients for effective optimization and sharp boundaries for interpretabil-
ity. We begin training with a higher temperature to allow for a broader exploration of the solution
space. As training progresses, we gradually anneal τ towards a small positive value. This process
encourages the model to converge towards a solution with crisp, well-defined decision boundaries
that closely approximate hard logical rules.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Data-Based Rule Extraction. Simply reporting the learned interval parameters [αij , βij] can be
misleading, as optimization may push boundaries towards infinity in uncontested regions of the
feature space. We therefore derive a more faithful representation of the learned partition from the
empirical properties of the data governed by each rule.

For each explanation ei, we first identify its corresponding data partition, Di. This partition consists
of all samples assigned to component i based on the maximum responsibility criterion, as defined
for label extraction in Section C.4. That is,

Di = {(x, y) | i = argmax
j

wj(x)} . (15)

The final, human-readable rule for component i is then defined by the empirical range of the data
in Di for each feature j: [minx∈Di

xj ,maxx∈Di
xj]. This data-derived bounding box is a valid

representation because our predicate design ensures that if explanation i has maximum responsibility
for the empirical minimum and maximum values in Di, it also does so for all values in between. We
report these ranges for all features, visually distinguishing those the model deemed unimportant (i.e.,
aij ≤ 0) to communicate both the model’s concise logic and the data’s full distributional properties.

We use this this rule extraction to create the rule visualizations (see for example Fig 8). The bars
indicate the range, categorical features show segments. The segments can be partially colored if
multiple values are present in an explanation. Features that are active (a > 0) are blue, others are
grey. The empirical intervals are computed for all features, active or not.

B.3 MODEL SELECTION

Since the true number of components k is unknown, we treat it as a hyperparameter. We train a
set of models with a range of values for k (e.g., k ∈ {10, 100}) and select the best one using the
Bayesian Information Criterion (BIC). The BIC score is calculated after the online pruning and
post-hoc merging steps have been applied. The penalty term in the BIC score considers only the
number of active parameters in the gating network (the rule bounds αij , βij and weights aij). This
choice reflects our goal of finding the most parsimonious partitioning of the feature space, rather
than penalizing the complexity of the expert density estimators, which could otherwise dominate
the score. This automatic balancing of model complexity and fit provides an alternative to manually
chosing k.

C EXPERIMENTS

All experiments are performed on an Intel i5-12400 and Nvidia RTX 3070. GPU acceleration was
used for methods that support it, which is true of EMM.

C.1 SYNTHETIC DATA GENERATION DETAILS

We generate synthetic data from a process that mirrors our model’s core assumption that the data
arise from a mixture of components, where each component corresponds to a distinct subregion of
the feature space with an associated conditional density. We define a collection of disjoint, axis-
aligned hyperrectangular regions {Hj}kj=1 that partition the feature-space Rd. For each region Hj ,
we define an unconditional target density pj(y) on Y . The resulting ground-truth conditional density
is piecewise-constant over Rd, taking the value pj(y) for any feature vector x ∈ Hj .

Recursive Binary Partitioning. The regions are constructed by recursively splitting an initial
hyperrectangle in a manner analogous to a decision tree. This procedure ensures that the resulting
set of regions forms a true partition and avoids creating excessively thin regions. We also generate
empty leaves that will not get any samples to make the data more realistic.

1. Initialization. Start with the full domain as the root of a tree.

2. Recursive Splitting. Iteratively select a leaf node and split it along a randomly chosen fea-
ture dimension. A split is permitted only if the node’s width along that dimension exceeds
a minimum threshold. The tree grows until a target number of leaves is reached.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

3. Component Selection. From the set of leaf nodes, we select exactly k to serve as the active
components, defining the regions {Hj}kj=1.

We show a full partitioning in Fig. 10a and one that contains 50% empty leaves in Fig. 10b.

Conditional Density Assignment and Sampling. Once the feature space is partitioned, we as-
sign target densities and generate samples. For each active region Hj , we draw an unconditional
density pj(y) from a randomized family of standard distributions (Gaussian, Exponential, Gamma,
Uniform) to induce diverse shapes. We show an example of such densities in Fig. 10c. To generate
the dataset, we specify a fixed number of samples nj for each region. For each of the nj samples in
region Hj , we first sample the feature vector x uniformly from within the hyperrectangle defining
Hj , and then sample the target value y from its corresponding density, y ∼ pj(y). The resulting
ground-truth conditional density is

p(y | x) =

k∑
j=1

I{x ∈ Hj} pj(y) .

Task difficulty can be tuned by controlling the overlap between the densities {pj(y)} via a parameter
β ∈ [0, 0.5]. A small β yields well-separated densities, while β = 0.5 implies that all densities share
the same median.

0.00 0.25 0.50 0.75 1.00
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

H1 H2

H3

H4

(a) Exact partitioning into 4 ac-
tive regions.

0.00 0.25 0.50 0.75 1.00
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

H1

H2

H3H4

(b) Partitioning with 4 active
and 4 inactive regions.

−5.0 −2.5 0.0 2.5 5.0 7.5
y

0.0

0.2

0.4

0.6
p1(y)

p2(y)

p3(y)

p4(y)

(c) The constant densities pj(y) asso-
ciated with each region Hj

Figure 10: Illustration of the steps involved in the synthetic data generation.

C.2 BASELINE DETAILS

For all baseline methods, we utilized the authors’ publicly available implementations and followed
their recommended parameter settings unless otherwise specified.

CDTREE. A state-of-the-art interpretable model that greedily builds a decision tree with non-
parametric histogram densities in the leaves, regularized by the Minimum Description Length
(MDL) principle. We use the authors’ original R implementation with default parameters.

CADET. An intrinsically interpretable CDE method that fits a decision tree with parametric dis-
tributions in the leaves. We use the authors’ implementation with BIC regularization. The method
requires specifying the parametric family for leaf distributions. We use Gaussians, as other fami-
lies led to numerical failures on our test data. We further add very small Gaussian noise (standard
deviation 0.001) to the target feature as duplicate values cause the method to fail.

Mixture Density Networks (MDN). A neural network-based approach where the network outputs
the parameters (mixture weights, means, variances) of a Gaussian mixture model for the target
variable, conditioned on the input features.

Kernel Mixture Networks (KMN). Similar to MDN, but models p(y | x) as a mixture of fixed
kernel functions whose mixture weights are determined by a neural network conditioned on x.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Least-Squares CDE (LSCDE). A non-parametric method that directly models the conditional
density without assuming a specific functional form, using a kernel-based approach.

Normalizing Flows (NF). This method combines a conventional neural network with a multi-
stage Normalizing Flow, where the neural network outputs the flow parameters.

For MDN, KMN, NF, and LSCDE, we use the implementations from the Python CDE package by
Rothfuss et al.. We apply noise regularization of 0.01 to both features and targets, and otherwise use
default parameters. On synthetic data we 3-fold cross validation to select the number of kernels of
KMN to improve label quality.

Conditional Variational Autoencoder (CVAE). We implement a CVAE (Sohn et al., 2015) with
a learned conditional prior, where the encoder q(z | x, y), decoder p(y | x, z), and prior p(z | x) are
parameterized by multi-layer perceptrons with ReLU activations. We employ a latent dimension of
16, with hidden layer sizes of (128, 64, 32) for the encoder, (32, 64, 128) for the decoder, and (64, 32)
for the prior. The decoder models the conditional likelihood as a Gaussian distribution. We optimize
the Evidence Lower Bound (ELBO) with a KLD weight of 0.5 using Adam and apply early stopping
based on validation set performance. Both features and targets are standardized during training. We
estimate the test NLL by approximating the marginal likelihood p(y | x) via Monte Carlo sampling
with 2000 latent samples.

C.3 IMPLEMENTATION AND PARAMETERS

We implement EMM in Python using standard machine learning libraries.

For the experiments we additionally apply a standard entropy loss regularizer to the feature impor-
tance weights. This mainly serves to make rules more concise for interpretability by encouraging
the optimizer to actually reduce a for redundant features. Let ai = (ai1, . . . , aid) be the vector of
non-negative feature importance weights for rule êi. Negative weights are set to 0 for this calcula-
tion. Rules with no support are ignored. First, these weights are normalized to form a probability
distribution

ãij =
aij∑d
l=1 ail

. (16)

The entropy regularization term is then the average Shannon entropy over all k rules

Ra(M) = −1

k

k∑
i=1

d∑
j=1

ãij log(ãij) (17)

Adding this to the objective we get

min
M

NLL(M) + λR(M) + λaRa(M) , (18)

where λa is a hyperparameter.

For all experiments we use λ = 0.1. We use λa = 0.05 for synthetic experiments, and λa = 0.1 for
the real data experiments. All synthetic experiments are ran with BIC selection of k ∈ {10, 100},
except the scaling experiment with d = 20 (Fig. 4a), where we use k ∈ {10, 200}. We always
use a starting temperature of τ = 0.2 and smoothly anneal it to τ = 0.005 during the middle 80%
of training epochs. The first and last 10% are reserved to encourage initial competition and final
settling of the borders. For online pruning we use a threshold of Ex[wi(x)] ≤ 0.005.

C.4 METRICS

Component Label Extraction. On synthetic data, we can compare the predicted component la-
bels to the ground truth. For EMM, we assign each sample (xn, yn) to the component with the
highest responsibility, which corresponds to the most active explanation for that sample’s features:

ẑn = argmax
j∈{1,...,k}

wj(xn) . (19)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

For Kernel Mixture Networks (KMN), which models the conditional density as p(y | x) =∑M
j=1 wj(x)K(y;µj , σj), we cannot obtain feature-based rules. Instead, we assign a label based

on the most probable kernel component for the full data point:

ẑn = argmax
j∈{1,...,M}

wj(xn)K(yn;µj , σj) . (20)

C.5 ADDITIONAL RESULTS

Dataset Rule Complexity # Rules

CDTREE CADET EMM-NSF EMM-NSF BIC EMM-GMM EMM-GMM BIC CDTREE CADET EMM-NSF EMM-NSF BIC EMM-GMM EMM-GMM BIC

SkillCraft 0.00 6.66 10.17 9.83 7.07 6.67 1.00 166.00 6.00 6.00 15.00 6.00
Thermography 1.00 4.68 10.94 11.23 6.44 3.33 7.00 62.00 17.00 13.00 16.00 6.00
abalone 0.00 4.43 4.80 3.91 2.33 2.71 1.00 261.00 10.00 11.00 9.00 7.00
air quality 2.90 5.85 6.70 6.00 3.85 3.85 31.00 478.00 23.00 14.00 13.00 13.00
bike 2.83 4.02 8.53 8.31 5.19 3.73 6.00 45.00 17.00 16.00 31.00 11.00
boston 2.00 3.65 7.60 7.47 4.35 4.60 6.00 23.00 15.00 15.00 23.00 10.00
concrete 3.32 4.29 4.94 4.75 4.34 4.30 19.00 63.00 16.00 16.00 32.00 10.00
energy 2.56 3.77 2.67 2.67 1.88 1.88 34.00 598.00 33.00 21.00 8.00 8.00
insurance 2.69 4.38 4.19 2.91 2.91 2.91 13.00 85.00 16.00 11.00 11.00 11.00
life 2.90 4.60 9.73 10.00 7.33 7.12 20.00 102.00 11.00 12.00 18.00 8.00
obesity 0.00 4.23 9.00 7.86 5.17 3.86 1.00 127.00 7.00 7.00 23.00 7.00
synchronous 1.29 2.11 2.47 2.67 2.57 2.11 17.00 36.00 17.00 12.00 14.00 9.00
toxicity 1.67 3.43 4.27 4.29 3.84 3.43 6.00 53.00 15.00 14.00 25.00 7.00
wages 1.00 4.07 5.67 4.50 3.68 3.20 2.00 88.00 9.00 8.00 28.00 10.00
wine 0.00 6.55 5.00 5.00 4.67 3.75 1.00 300.00 5.00 3.00 9.00 4.00

Rank (Interp.) 1.13 3.53 5.33 4.87 3.27 2.33 2.47 5.93 3.47 2.60 3.80 1.73
Rank (Overall) 1.13 3.53 5.33 4.87 3.27 2.33 2.47 5.93 3.47 2.60 3.80 1.73

Table 2: Rule and model complexity of interpretable models on real-world datasets.

C.5.1 MODEL FIT ON SYNTHETIC DATA

Pseudo R2 (R2
oracle). We report a normalized log-likelihood score to ensure comparability across

different experimental settings. This metric measures the fraction of improvement a model achieves
over an unconditional baseline, relative to the improvement achieved by the ground-truth data-
generating model (oracle).

5 10 15 20
True Components

0.0

0.2

0.4

0.6

0.8

1.0

R
2 or

ac
le

Method
Emm-Gmm
Emm-Nsf
CDTree
Kmn

(a) True Components

0 5 10 15 20
Noise Features

0.0

0.2

0.4

0.6

0.8

1.0

R
2 or

ac
le

(b) Noise Features

0.0 0.05 0.1 0.2 0.5 1.0
Noise Scale

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Te
st

N
LL

(c) Target noise

0.0 0.1 0.2 0.3 0.4 0.5
Overlap

0.0

0.2

0.4

0.6

0.8

1.0

R
2 or

ac
le

(d) Overlap

Figure 11: Likelihood fit (R2
oracle) on synthetic data for varying (a) number of true components, (b)

number of noise features, (c) target noise level, and (d) overlap between components.

C.6 DESTRUCTIVE NOISE

We perform an additional robustness experiment with destructive noise, showing the results in Fig-
ure 12. We replace the Y value for an increasing fraction of samples with noise ϵ sampled from a
Normal distribution ϵ ∼ N (µ, 1) where µ = E(Y). This tests robustness when noise introduces
significant outliers relative to the true conditional distributions. In Figure 12b we see that the condi-
tional structure is recovered accurately even when 30% of Y values are destroyed. Figure 12a shows
the NLL. Due to the increased presence of outliers that are modeled by the same number of density
estimators, the likelihood degrades when maintaining the true conditional structure.

C.7 RUNTIME

Finally we evaluate the scalability as data dimensionality increases. For show the results for in-
creasing d in Fig. 13a and for increasing number of samples in Fig. 13b. We observe that neural

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Dataset CDTREE CADET EMM-NSF EMM-NSF BIC EMM-GMM EMM-GMM BIC CVAE KMN LSCDE MDN NF

SkillCraft 3056.1 0.2 305.9 255.4 29.5 39.7 3.5 36.4 5.0 6.5 8.4
Thermography 217.4 0.1 678.3 517.5 32.2 46.0 6.2 32.8 2.3 5.3 5.5
abalone 9625.1 0.2 398.5 335.3 22.3 35.1 5.4 35.0 3.4 6.7 9.0
air quality 1385.8 0.5 502.5 352.1 29.2 43.9 17.6 39.6 5.7 9.0 11.7
bike 36.7 0.0 690.8 521.6 49.5 66.8 1.3 32.1 2.2 5.2 5.2
boston 59.9 0.0 610.6 485.0 43.9 54.6 0.7 31.4 1.1 4.5 5.2
concrete 95.2 0.0 772.3 524.5 51.3 59.6 3.3 32.3 2.0 5.0 5.5
energy 201.0 0.5 601.1 469.2 24.8 32.4 9.0 41.4 7.9 9.4 11.8
insurance 36.4 0.1 637.5 408.2 25.1 33.8 4.1 32.9 1.8 5.4 5.5
life 403.4 0.1 611.4 456.6 38.2 44.4 4.1 33.9 1.9 5.7 6.0
obesity 631.8 0.1 317.1 268.2 38.6 43.7 3.5 34.7 2.8 5.8 6.3
synchronous 45.8 0.0 608.4 456.6 27.3 35.6 5.2 31.9 1.4 4.4 5.2
toxicity 29.8 0.0 641.6 487.6 41.0 47.8 2.7 32.3 2.2 4.8 5.3
wages 62.8 0.1 588.8 419.0 42.1 50.8 2.5 33.5 2.4 5.4 5.6
wine 2168.6 0.3 315.4 236.3 22.3 28.0 6.7 36.1 5.3 6.9 9.9

Rank (Interp.) 4.4 1.0 5.7 4.7 2.1 3.1 - - - - -
Rank (Overall) 9.3 1.0 10.7 9.7 6.6 8.0 3.1 6.7 2.2 3.8 4.9

Table 3: Runtime in seconds.

0.0 0.1 0.2 0.3
Destructive noise fraction

0.5

1.0

1.5

Te
st

N
LL Method

Emm-Gmm
Emm-Nsf
KMN
MDN

(a) Test NLL

0.0 0.1 0.2 0.3
Destructive noise fraction

0.00

0.25

0.50

0.75

1.00

Te
st

N
M

I

Method
Emm-Gmm
Emm-Nsf
KMN

(b) Test NMI

Figure 12: NLL and NMI for increasing fraction of Y samples replaced with destructive noise.

methods like EMM and KMN are consistently fast even on large datasets. Our NSF instantiation
takes longer to run due to increased parameter count, but exhibits stable scaling. The runtime of
CDTree increases very quickly even for moderate dimensions due to its iterative nature. CADET is
comparatively very fast because of its small search space.

C.8 ABALONE CASE STUDY

We apply EMM to the popular abalone dataset which contains various size and weight measurments
of abalones, a kind of sea snail. Typically this dataset is used for regression or classification using
Age as the target variable. We apply EMM using 28 Gaussian density components as there are
28 unique values in Age. In Fig. 14 we show that EMM can recover reasonable explanations and
distributions. The explanations show that larger and heavier abalones have a higher mean Age.
But because we estimate the entire conditional distribution we can further see exactly how Age is
distributed for these subgroups. For example explanations consisting mostly (1) or entirely (2) of
infants are distributed in relatively low and narrow age range. Explanation 6 contains the largest
and heaviest ones, which are distributed at the upper end with a wider distribution. We interpret this
explanation to describe abalones that have reached their maximum size but continue to age. CDTree
does not find any conditional structure in the data, returning a tree consisting only of the root node.

C.9 GOLD HOMO-LUMO CDTREE

We provide a visualization of the CDTree density estimates on the Gold nano clusters dataset with
target variable HOMO-LUMO in Figure 15.

D LLM USAGE

LLM usage did not play a significant role in research ideation or writing of the paper itself. However
LLMs and AI assistants were used during the implementation of the method.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Features

0

2000

4000

6000

8000

Ru
nt

im
e

(s)

Emm-Gmm
Emm-Nsf
CDTree
Kmn
Cadet

(a) Runtime vs Features

0 10000 20000 30000 40000 50000
Samples

0

1000

2000

3000

Ru
nt

im
e

(s)

(b) Runtime vs Samples

Figure 13: Runtime of all methods on synthetic data with increasing number of features (left) and
samples (right).

0 10 20 30
Age

0.00

0.05

0.10

0.15

Pr
ob

ab
ili

ty
M

as
s

1

Length Diameter Height
Whole
weight

Shucked
weight

Viscera
weight

Shell
weight Female Infant Male

2

3

4

5

6

0.2
5
0.5

0
0.7

5
0.2

5
0.5

0
0.0

0
0.2

50.0 2.5 0 1 0.0 0.5 0 1 0 1 0 1 0 1

Figure 14: EMM results on Abalone. Probability masses are weighted by explanation size.

0.0 0.5 1.0 1.5 2.0
HOMO-LUMO

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

sit
y

Leaves
Population
Leaf 1
Leaf 2
Leaf 3
Leaf 4
...
Leaf 64

Figure 15: CDTree result on Gold dataset with HOMO-LUMO target. Densities are scaled by
weight (relative number of samples per leaf). Legend abbreviated, colors repeat.

20

	Introduction
	Related Work
	Explainable Mixture Models
	Conditional Emm
	Optimization Objective

	Method
	A Differentiable Rule-based Mixture
	Overspecification and Pruning

	Experiments
	Synthetic Data
	Real-World Datasets

	Conclusion
	Proofs
	Proof of Recovery of Marginal Distribution
	Proof of Recovery of Conditional Distribution

	Learning and Optimization Details
	Online Pruning and Post-Hoc Merging
	Temperature Annealing and Rule Extraction
	Model Selection

	Experiments
	Synthetic Data Generation Details
	Baseline Details
	Implementation and Parameters
	Metrics
	Additional Results
	Model fit on synthetic data

	Destructive Noise
	Runtime
	Abalone Case Study
	Gold HOMO-LUMO CDTree

	LLM Usage

