EXPLAINABLE MIXTURE MODELS THROUGH DIFFERENTIABLE RULE LEARNING

Anonymous authors

 Paper under double-blind review

ABSTRACT

Mixture models excel at decomposing complex, multi-modal distributions into simpler probabilistic components, but provide no insight into the conditions under which these components arise. We introduce explainable mixture models (EMM), a framework that pairs each mixture component with a human-interpretable rule over descriptive features. This enables mixtures that are not only statistically expressive but also transparently grounded in the underlying data. We formally examine the conditions under which an EMM exactly captures a target distribution and propose a scalable, differentiable learning procedure for discovering sets of rules. Experiments on synthetic and real-world datasets demonstrate that our method discovers interesting sub-populations in both univariate and multivariate settings, offering interpretable insights into the structure of complex distributions.

1 Introduction

Finite mixture models represent complex, multi-modal data as combinations of simpler distributions (McLachlan et al., 2019). On a widely used dataset of insurance charges (Choi, 2017) for example, a Gaussian mixture model (GMM) identifies subpopulations with distinct modes as shown in Fig. 1a. In many applications, however, we also have access to descriptive features, e.g. age or BMI. Classical mixture models fit the marginal distribution of the target and therefore cannot leverage such features to explain when different sub-distributions arise.

To overcome this limitation, conditional density estimation (CDE) extends mixtures by modeling the conditional distribution of outcomes given features. In particular, mixture density networks (Bishop, 1994) and kernel mixture networks (Ambrogioni et al., 2017) parameterize mixture weights and components as functions of descriptive features. However, these dependencies are typically modeled with neural networks that do not yield human-interpretable explanations. More broadly, CDE methods tend to prioritize predictive accuracy over interpretability (Sugiyama et al., 2010), resulting primarily in black-box models. Tree-based approaches can provide insight into data structure (Cousins & Riondato, 2019; Yang & van Leeuwen, 2024), but they are prone to overfitting and generally do not allow overlapping regions/components.

To this end, we propose Explainable Mixture Models (EMM), a framework that directly pairs each mixture component with a human-interpretable rule over descriptive features. The EMM framework

(a) The GMM recovers distinct modes, but no explanations.

(b) The EMM recovers similar modes to the GMM (left), and also explains when each mode is observed using simple rules over descriptive features.

Figure 1: Comparison of a Gaussian Mixture Model (GMM) and an Explainable Mixture Model (EMM) on a dataset of insurance claims (Choi, 2017).

defines each mixture component as a data-induced distribution rather than restricting it to a particular parametric family, e.g., Gaussian, and naturally allows for overlapping components. On the insurance dataset, a fitted EMM in Fig. 1b recovers similar modes to the GMM, and additionally provides simple, interval-based rules that explain when each mode is observed. For example, the subpopulation with the lowest insurance charges corresponds to young, non-smoking individuals without children, whereas the highest-charge component comprises older, smoking individuals with high BMI. Our main contributions are as follows:

- 1. **Concept.** We propose EMM, which both characterize the subpopulations of the global distribution, whilst accurately estimating the local conditional density given any feature vector.
- Theory. We derive exact-recovery conditions for marginal and conditional densities and introduce regularizers to steer learning towards these regimes.
- 3. **Practice.** We propose a scalable, differentiable training procedure and show that the EMM accurately models the underlying distribution whilst discovering interesting subpopulations.

2 RELATED WORK

Mixture models are a classical tool for density estimation and clustering. There exist many variants based on parametric families such as Gaussians (Reynolds, 2015) or t-distributions (Peel & McLachlan, 2000) as well as nonparametric approaches (Antoniak, 1974). In general, unconditional mixture models however are limited to modeling latent component variables (Viroli & McLachlan, 2019).

Feature dependency can be introduced through covariate-dependent mixture weights and/or parameters. In Mixture Density Networks (Bishop, 1994) a neural network outputs mixture parameters as functions of x. Kernel Mixture Networks (Ambrogioni et al., 2017) replace the parametric mixture components with nonparametric kernels. However, both methods use black-box neural networks for gating and thus do not provide insight into *when* each component is active.

Subgroup discovery is a closely related approach (Atzmueller, 2015). The goal is to identify a subpopulation that is statistically interesting with respect to a target variable and describe it through a human-interpretable rule. Using combinatorial (Lavrač et al., 2004; Atzmueller & Puppe, 2006) or differentiable optimization (Xu et al., 2024), a rule is learned that maximizes the measured deviation of the subgroup from the global population (Todorovski et al., 2000).

The main difference to Explainable Mixture Models is that subgroup discovery is inherently local, focusing on isolating an interesting subset of the data rather than modeling the entire population. While there exist approaches that learn multiple subgroups (Van Leeuwen & Knobbe, 2012; Proença et al., 2022), they typically do not attempt to model the full conditional distribution.

Conditional density estimation (CDE) aims to estimate the full conditional distribution of a target variable y given input features x. Approaches range from kernel and RKHS-based estimators (Hyndman et al., 1996; Sugiyama et al., 2010) to neural network-based methods (Bishop, 1994; Ambrogioni et al., 2017) and normalizing flows (Winkler et al., 2019). However, these methods are unable to explain where and when different modes occur.

Most closely related to Explainable Mixture Models are interpretable CDE methods. Density Estimation Trees (Ram & Gray, 2011) use interpretable tree structures but only target the unconditional density. CADET uses trees to model conditional densities with exponential family distributions in the leaves (Cousins & Riondato, 2019), but tends to learn very deep trees that are hard to interpret. Most similar to our approach is CDTREE (Yang & van Leeuwen, 2024), which learns a minimum description length regularized decision tree with a histogram in each leaf. Both approaches however are primarily aimed at fitting densities, and not for discovering its components.

Summary. Explainable Mixture Models bring together ideas from all three areas: In contrast to neural gated mixture models, EMM provide interpretable rules for each component; Compared to subgroup discovery, we model the entire domain; And compared to tree-based CDE, we allow for a mixture of components rather than a single tree. In the following, we will formally define EMM and show how to learn them from data.

3 EXPLAINABLE MIXTURE MODELS

We consider a dataset of n pairs $\{(\mathbf{x}^{(l)}, y^{(l)})\}_{l=1}^n$ consisting of a **descriptive feature vector** $\mathbf{x} \in \mathbb{R}^d$ of d real-valued features and a **target value** $y \in \mathcal{Y}$. We assume each sample (\mathbf{x}, y) to be a realization of a pair of random variables $(X, Y) \sim P_{X,Y}$, drawn i.i.d. We write p to denote probability density functions and P to denote probability distributions.

Our goal is to explain the distribution of the target variable Y as a mixture of simpler components. In contrast to a classical mixture model, the idea is to use components that are not latent, but instead grounded in a human-interpretable explanation over the descriptive features X. That is, an explainable mixture model (EMM) not only provides a decomposition of the target into simpler sub-distributions, but also explains the conditions under which these sub-distributions are observed.

Definition 1 (Marginal-EMM) An explainable mixture model $\mathcal{M} = \{e_i\}_{i=1}^k$ of the marginal density p(y) is defined as a set of k feature-based explanations $e_i : \mathbb{R}^d \to \{0,1\}$ with non-zero support, i.e. $\mathbb{E}[e_i(X)] > 0$. For each respective explanation e_i , we define the mixture weight w_i as

$$w_i = \frac{\mathbb{E}[e_i(X)]}{\sum_{j=1}^k \mathbb{E}[e_j(X)]},$$
(1)

where it holds that $w_i \ge 0$ and $\sum_{i=1}^k w_i = 1$. The induced density $p_{\mathcal{M}}(y)$ is a finite mixture of k components as per

$$p_{\mathcal{M}}(y) = \sum_{i=1}^{k} w_i \, p_i(y) \;, \qquad p_i(y) \coloneqq p_{Y \mid (e_i(X)=1)}(y) \;.$$
 (2)

The definition of a marginal EMM as a weighted sum of simpler component densities $p_i(y)$ is based on the standard finite mixture model (McLachlan et al., 2019). The differentiating factor of an EMM lies in the explainability of the individual components $p_i(y)$. Instead of restricting them to a parametric family, e.g. Gaussians, an EMM is based on non-parametric, *data-induced* densities $p_i(y)$. Each component reflects the conditional distribution of the target Y given that the explanation e_i over the descriptive features X holds. What constitutes a valid explanation e_i is application dependent and hence agnostic to the definition of an EMM.

Proposition 1 Let $\mathcal{M} = \{e_i\}_i^k$ be an EMM with a marginal density as per Def. 1. If the set of explanations e_i form a partition of the feature space \mathbb{R}^d , i.e. $\sum_{i=1}^k e_i(\mathbf{x}) = 1$ for all \mathbf{x} in the support of P_X , then the induced density $p_{\mathcal{M}}(y)$ equals the true marginal density $p_Y(y)$.

Proposition 1 is a direct consequence of the law of total probability (Appendix A.1). It suggests that we should generally aim to find a set of explanations e_i that form a partition of the feature space \mathbb{R}^d . However, this is not a strict constraint. In practice, allowing an EMM to have overlap can be beneficial regarding interpretability by providing broader, more general explanations.

Lastly, the result shows that we cannot rely on maximization of the marginal likelihood to learn an EMM. Setting all components to the same constant function, e.g. $e_i(\mathbf{x}) = 1$ for all i, leads to a perfect fit of the marginal distribution, provided that the component densities $p_i(y)$ are sufficiently flexible. Therefore, we cannot expect to learn a meaningful EMM by maximizing the marginal likelihood. To address this issue, we next introduce a conditional interpretation of the EMM.

3.1 CONDITIONAL EMM

The issue of treating an EMM as a purely marginal model is the degeneracy of maximum likelihood solutions. Instead, we leverage the ability of an EMM to explain *where* distinct sub-distributions occur, and expand it to also model the conditional density $p_{Y|X}(y \mid \mathbf{x})$.

Definition 2 (Conditional-EMM) An explainable mixture model $\mathcal{M} = \{e_i\}_{i=1}^k$ of the conditional density $p(y \mid \mathbf{x})$ is defined as a set of k explanations $e_i : \mathbb{R}^d \to \{0,1\}$ with non-zero support, i.e. $\mathbb{E}[e_i(X)] > 0$, and complete coverage, i.e. $\sum_{i=1}^k e_i(\mathbf{x}) > 0$ for all \mathbf{x} in the support of P_X . For

each feature vector \mathbf{x} , we define the conditional mixture weights $w_i(\mathbf{x})$ as

$$w_i(\mathbf{x}) = \frac{e_i(\mathbf{x})}{\sum_{j=1}^k e_j(\mathbf{x})} . \tag{3}$$

The induced conditional density $p_{\mathcal{M}}(y \mid \mathbf{x})$ is a finite mixture of k components, where

$$p_{\mathcal{M}}(y \mid \mathbf{x}) = \sum_{i=1}^{k} w_i(\mathbf{x}) p_i(y) , \qquad p_i(y) \coloneqq p_{Y \mid (e_i(X)=1)}(y) . \tag{4}$$

Similar to the marginal EMM, the conditional EMM is a finite mixture of simpler component densities $p_i(y)$. In addition, the mixture weights $w_i(\mathbf{x})$ are now dependent on the descriptive features. For each \mathbf{x} , the mixture weights are equally distributed among the explanations that hold, i.e. $e_i(\mathbf{x}) = 1$.

Proposition 2 Let $\mathcal{M} = \{e_i\}_i^k$ be an EMM with a conditional density as per Def. 2. If the set of explanations e_i form a partition of the feature space \mathbb{R}^d into homogeneous regions with respect to the target variable Y, i.e. for every explanation e_i and its induced sub-distribution $p_i(y)$, it holds that $p_{Y|X}(y \mid \mathbf{x}) = p_i(y)$ for all \mathbf{x} with $e_i(\mathbf{x}) = 1$ and $p_X(\mathbf{x}) > 0$, then the induced density $p_{\mathcal{M}}(y \mid \mathbf{x})$ equals the true conditional density $p_{Y|X}(y \mid \mathbf{x})$.

We provide a proof of Proposition 2 in Appendix A.2. To sufficiently guarantee a set of explanations induces the true conditional density, the explanations must partition the feature space, such that within the scope of each explanation e_i , the target variable Y is i.i.d.

While this is a stronger requirement than for the marginal EMM, where a partitioning alone is sufficient, it helps to eliminate degenerate solutions. By maximizing the conditional likelihood, the EMM is encouraged to find a set of explanations that capture *where* distinct, locally contained sub-distributions occur. Therefore, we propose to fit an EMM \mathcal{M} by minimizing the negative log-likelihood (NLL) given a dataset $\{(\mathbf{x}^{(l)}, y^{(l)})\}_{l=1}^n$

$$NLL(\mathcal{M}) = -\sum_{l=1}^{n} \log \left(\sum_{i=1}^{k} w_i(\mathbf{x}^{(l)}) p_i(y^{(l)}) \right) . \tag{5}$$

In practice, we estimate each p_i from the subset $\{l: r_i(x^{(l)}) = 1\}$ with appropriate smoothing (e.g., KDE bandwidth selection or Dirichlet priors for discrete Y) and add a small $\varepsilon > 0$ inside the logarithm for numerical stability. This now provides a principled objective to learn an informative EMM using likelihood maximization. Once obtained, an EMM \mathcal{M} gives insight into the global distribution P_Y through its explainable components, and can also be used to make local, conditional density inferences $p_{\mathcal{M}}(y \mid \mathbf{x})$ for a given descriptive feature vector \mathbf{x} .

3.2 OPTIMIZATION OBJECTIVE

Lastly, we discuss how to optimize the NLL objective in Eq. 5 to learn an EMM. In Propositions 1 and 2, we have seen that an appropriate partitioning can achieve a perfect fit of the true density. On the other hand, we also want to allow a certain degree of overlap between explanations to improve interpretability, e.g. by providing broader, more general explanations.

To balance these two objectives, we propose to learn an EMM by minimizing a regularized NLL objective. We introduce an **overlap penalty** $\mathcal{R}(\mathcal{M})$ that penalizes explanations e_i that frequently hold together. It is defined as

$$\mathcal{R}(\mathcal{M}) = \frac{1}{n} \sum_{l=1}^{n} \left(1 - \sum_{i=1}^{k} w_i(\mathbf{x}^{(l)})^2 \right) . \tag{6}$$

For a particular sample $\mathbf{x}^{(l)}$, the term in parentheses is minimized when exactly one explanation e_i holds, i.e. $w_i(\mathbf{x}^{(l)}) = 1$ for some i and $w_j(\mathbf{x}^{(l)}) = 0$ for all $j \neq i$. The overall optimization objective with a hyperparameter λ that controls the strength of the overlap penalty is given by

$$\min_{\mathcal{M}} NLL(\mathcal{M}) + \lambda \mathcal{R}(\mathcal{M}) . \tag{7}$$

Figure 2: The building blocks of an EMM: Learnable thresholding conditions are placed on each feature $x_j \in \mathbb{R}$ (a). They are combined into a conjunctive, differentiable rule (b). Each rule acts as a gating function for an expert density, with a mixture in the overlap (c).

4 METHOD

In this section, we describe a concrete instantiation of EMM for tabular data, which uses conjunctive rules as class of explanations, e.g. "18 < Age < 65 AND BMI > 25". This format of explanations is human-interpretable and used both in decision trees and subgroup discovery. In particular, we consider rules $e: \mathbb{R}^d \to \{0,1\}$ that map input features $\mathbf{x} \in \mathbb{R}^d$ to binary activations as per

$$e(\mathbf{x};\theta) = \bigwedge_{j=1}^{d} \pi(x_j; \alpha_j, \beta_j) . \tag{8}$$

4.1 A DIFFERENTIABLE RULE-BASED MIXTURE

We now show how to learn a rule-based mixture using gradient-based optimization. To avoid combinatorial search over an exponential search space (Lavrač et al., 2004; Atzmueller & Puppe, 2006), we employ a differentiable formulation that allows us to learn a mixture of multiple rules jointly using gradient-based optimization Xu et al. (2024).

We briefly summarize the key components of the differentiable rule learner's architecture. Firstly, the conditions $\pi(x_j; \alpha_j, \beta_j) = \mathbb{1}[\alpha_j < x_j < \beta_j]$ placed on individual features $x_j \in \mathbb{R}, j \in \{1, \ldots, d\}$, are approximated as

$$\hat{\pi}_{\tau}(x_j; \alpha_j, \beta_j) = \sigma\left(\frac{x_j - \alpha_j}{\tau}\right) \sigma\left(\frac{\beta_j - x_j}{\tau}\right) , \qquad (9)$$

where σ is the sigmoid function and $\tau>0$ is a temperature parameter that controls its steepness. During training, we anneal the temperature gradually to zero, transitioning from soft constraints $\hat{\pi}: \mathbb{R} \to [0,1]$ to hard constraints, i.e. $\lim_{\tau\to 0} \hat{\pi}_{\tau}(x_j;\alpha_j,\beta_j) = \pi(x_j;\alpha_j,\beta_j)$ for all $x_j \neq \alpha_j,\beta_j$. We show an example in Fig. 2a, where the condition becomes steeper as $\tau\to 0$.

To combine multiple conditions into a rule, the weighted harmonic mean is used to approximate the logical AND operator. It is defined as

$$\hat{e}(\mathbf{x};\theta) = \frac{\sum_{j=1}^{d} a_j}{\sum_{j=1}^{d} a_j \cdot \hat{\pi}_{\tau}(x_j; \alpha_j, \beta_j, \tau)^{-1}} \quad \text{with} \quad a_j \ge 0 ,$$
 (10)

where we denote the parameters of a rule as $\theta = \{\alpha_j, \beta_j, a_j\}_{j=1}^d$. This function mimics the behavior of a logical conjunction whilst being fully differentiable: If any condition $\hat{\pi}_j(x_j)$ is close to zero, then the reciprocal $\hat{\pi}_j(x_j)^{-1}$ grows, and thus the overall rule activation $\hat{e}(\mathbf{x})$ becomes small. Conversely, the rule activation $\hat{e}(\mathbf{x}) = 1$ only if all conditions $\hat{\pi}_j(x_j) = 1$ are high. The learnable, non-negative weights a_j represent the importance of feature j within the rule. By setting $a_j = 0$, the corresponding condition $\hat{\pi}_j$ has no effect on the rule activation $\hat{e}(\mathbf{x})$, allowing the optimizer to effectively prune unnecessary conditions.

(a) Randomly initialized.

277

278 279

281

282

283

284 285

286

287 288

289

290

291

292

293

295

296

297

298

299

300

301

302

303

304

305

306 307 308

309

310

311

312

313 314

315

316

317

318

319 320

321

322

323

We now construct an EMM by combining multiple differentiable rules with their local densities. Following Definition 2, we use as conditional gating function

Figure 3: Initialization: k-means++ anchoring ensures a thorough coverage of the feature space.

$$\hat{w}_i(\mathbf{x};\Theta) = \frac{\hat{e}_i(\mathbf{x};\theta_i) + \epsilon}{\sum_{j=1}^k \hat{e}_j(\mathbf{x};\theta_j) + \epsilon} \quad \text{with} \quad \Theta = (\theta_1, \dots, \theta_k) ,$$
 (11)

(c) k-means++ anchoring.

for a given input x, where we add an ϵ floor to avoid numerical instability. This formulation ensures that the mixture weights $\hat{w}_i(\mathbf{x}; \Theta)$ are non-negative and sum to one.

Density Estimation. To estimate the target density $p_i(y)$ for each component i, we can use any density estimator $\hat{p}_i(y; \psi_i)$. We now outline a parametric and a non-parametric solution that is then evaluated in the experiments. As the non-parametric variant, we use a Neural Spline Flow (NSF) (Durkan et al., 2019). A normalizing flow transforms a simple base distribution into a complex target distribution through a series of invertible mappings. NSFs are parameterized by a cubic spline neural network, whose parameters ψ_i are learned by maximizing the likelihood. NSFs are powerful density estimators, but are computationally expensive and may overfit on small subgroups.

As a parametric alternative, we use an unconditional Gaussian mixture model (GMM). As we learn sub-distributions of the marginal distribution, we parameterize each component density $p_i(y)$ with the same set of means and covariances learned on the marginal distribution, but allow for different mixture weights ψ_i for each component i. This has the advantage of being much more computationally efficient, and aligns with our goal of describing distinct modes in the data.

We show an example of an EMM in Fig. 2c, which contains two rule-based subpopulations that overlap in the middle of the feature space $x \in [0, 0.5]$. Using Objective (7), we jointly learn the parameters of the rules Θ and the local densities $\Psi = (\psi_1, \dots, \psi_k)$ with gradient descent, by combining the differentiable rules and the local densities into the mixture density

$$p_{\mathcal{M}}(y \mid \mathbf{x}; \Theta, \Psi) = \sum_{i=1}^{k} \hat{w}_i(\mathbf{x}; \Theta) \cdot \hat{p}_i(y; \psi_i) .$$
 (12)

OVERSPECIFICATION AND PRUNING

A key challenge in learning rule sets is navigating the combinatorial search space of all possible rules. While previous approaches are limited to recursive partitioning or greedy schemes, our differentiable approach allows for parallelized optimization of large quantities of rules. That is, we overspecify the initial number of rules k to ensure sufficient coverage of the feature space.

To ensure that the initial rules effectively cover the feature space, the initialization of each rule is key. Random initialization of the rule parameters θ_i often leads to poor coverage (Fig. 3a), while choosing random samples from the training set as anchors improves coverage but can still leave gaps (Fig. 3b). We opt for a guided initialization, where we select as anchoring points k-means++ centroids (Arthur & Vassilvitskii, 2007) (Fig. 3c). This way, we ensure that each initial rule \hat{e}_i is anchored on a distinct region of the feature space, improving the likelihood of discovering meaningful explanations.

Pruning and Model Selection Our initialization ensures broad coverage of the feature space, but overspecification inevitably introduces redundant explanations. The primary pruning mechanism is the optimization itself: a rule \hat{e}_i can be disabled by learning an inverted interval $(\alpha_{ij} > \beta_{ij})$ for any feature j with non-zero weight $a_{ij} > 0$, forcing $\hat{e}_i(\mathbf{x}) \approx 0$ everywhere and removing its gradient signal. This allows the optimizer to discard uncompetitive rules. For efficiency and stability, we

Figure 4: NMI between true and learned components across a variety of settings.

periodically check for such inactive rules during training and disable them completely. If several neighboring rules converge to nearly identical densities $p_i(y)$, they may all survive pruning; we address this with a post-hoc merging procedure (Appendix B.1).

While initializing with more components can reveal more specialized explanations, the gain in likelihood often comes at the cost of interpretability. To avoid dataset-specific tuning of the initial number of rules k, we use the Bayesian Information Criterion (BIC) to balance expressiveness and complexity. After training, we compute

$$BIC(\mathcal{M}) = 2 \cdot NLL(\mathcal{M}) + |\Theta| \log(n), \tag{13}$$

where $|\Theta|$ is the number of active parameters in the rule network. This criterion ignores parameters of the local density estimators $\hat{p}_i(y;\psi_i)$, as our framework models them to be data-induced, instead focusing model selection on the complexity of the explanations. We train multiple models from a range of k and select the one with the best BIC score (Appendix B.3).

5 EXPERIMENTS

We empirically validate EMM, using NSF and GMM respectively as density estimators. As baselines we include the interpretable CDE methods CDTREE (Yang & van Leeuwen, 2024) and CADET (Cousins & Riondato, 2019), which partition the feature space via decision trees, and non-interpretable methods MDN (Bishop, 1994), KMN (Ambrogioni et al., 2017), NF (Rezende & Mohamed, 2015), and LSCDE (Sugiyama et al., 2010).

5.1 SYNTHETIC DATA

We first test on synthetic data with known ground truth. We generate d independent uniformly distributed features X_j , partition the space into k disjoint hyperrectangles, and assign each region a randomized density (Gaussian, Uniform, etc.), resulting in a piecewise-constant $p(y \mid \mathbf{x})$ (see Appendix C.1). Unless varied as the experiment's parameter we use d=5, k=5 components, 600 samples per component, overlap $\beta=0.1$ and no noise on Y, averaging results over 4 datasets.

Accuracy. We first measure the accuracy of EMM in recovering the ground-truth components. We report the normalized mutual information (NMI), which compares the cluster similarity between true component labels and those by learned rules (Appendix C.4). Fig. 4a shows that both EMM instantiations reliably recover ground-truth components, with only slight performance drop for many components. CADET struggles due to unregularized large trees, while CDTREE regularization aids it in recovering a good solution. The non-interpretable baseline, KMN, from which we extract sample-wise labels as that of the component with highest weighted likelihood, performs well on a large number of components, but poorly on few components.

Robustness. Figures 4b and 4c show robustness to noise in the features/ in the target. EMM is largely unaffected by feature noise and only slightly degrades under high target noise. CDTREE performs similarly but is less accurate at high target noise, while CADET and KMN are consistently weaker in both settings. In addition, we measure the effect of increasing overlap between the component densities in Fig. 4d. EMM remains stable under moderate overlap but degrades when overlap is large. KMN shows a similar trend, whereas CDTREE declines more gracefully and surpasses EMM at high overlap. CDTREE's advantage is its tendency to create many small leaves, which approximate overlapping densities well but are not penalized by the NMI metric.

Dataset	CDTREE	CADET	EMM-NSF	EMM-NSF BIC	Емм-Смм	Емм-Смм Віс	Mdn	NF	Kmn	LsCde
SkillCraft	-4.03	2.23	-3.58	-3.36	-4.11	-4.19	2.73	1.47	-0.94	1.57
Thermography	0.56	1.50	1.21	1.26	1.00	0.63	0.57	1.33	1.63	0.90
abalone	-2.20	4.32	-1.06	-0.97	-2.73	-2.72	1.88	1.79	1.89	2.13
air quality	0.53	1.40	0.27	0.27	-0.19	-0.19	0.18	0.15	0.25	0.91
bike	8.66	9.30	8.81	8.90	8.96	8.94	8.39	9.74	9.49	8.67
boston	2.93	5.51	2.98	2.99	2.60	2.58	2.67	7.32	3.17	3.07
concrete	3.58	3.54	3.64	3.61	3.50	3.73	2.96	3.45	3.33	3.61
energy	2.91	3.02	2.85	2.84	3.02	3.02	2.79	2.72	2.84	3.37
insurance	9.11	20.66	8.83	8.95	9.06	9.06	8.03	7.44	8.72	9.93
life	2.48	4.24	2.40	2.35	2.28	2.42	1.91	3.74	2.18	2.65
obesity	-3.45	-	-3.66	-3.43	-4.86	-4.53	2.76	-0.39	-1.78	1.12
synchronous	-2.33	-2.90	-2.23	-2.16	-2.03	-1.88	-3.08	-4.11	-2.41	-1.25
toxicity	1.54	1.71	1.57	1.62	1.44	1.44	1.44	1.55	1.90	1.37
wages	11.20	11.90	10.88	11.13	10.89	10.80	11.59	11.53	11.68	11.45
wine	-4.61	-	-4.15	-2.61	-4.91	-4.89	3.29	-0.38	-1.37	1.20
Rank (Interp.)	3.27	5.40	3.27	3.87	2.33	2.67	-	-	-	-
Rank (Overall)	4.67	8.73	5.00	5.53	3.67	3.93	4.27	5.73	6.07	7.20

Table 1: NLL of interpretable and black-box models on real-world datasets. Bold values indicate the best NLL among interpretable models, underlined values indicate the best overall NLL.

Figure 5: Excess rules vs. true components.

Model Complexity. Finally, we assess model complexity by comparing the number of learned components to the ground truth. In Figure 5 we plot the number of excess components, i.e., the difference between learned and true components. Fig. 5 shows that after pruning, both EMM variants recover component counts close to the ground truth, with GMM slightly underfitting and NSF slightly overfitting. In contrast, the gap between CDTREE and the true number of components widens as complexity increases, reflecting the limitations of greedy top-down splitting, while CADET's number of excessive rules consistently exceeds the limits of the plot. On the other hand, EMM precisely identifies the correct number of components no matter if we

have 5, 10, or 20 true components.

5.2 REAL-WORLD DATASETS

We next evaluate EMM on real-world datasets from the UCI Machine Learning Repository (Dua & Graff, 2017). Since ground-truth components are unavailable, performance is measured by negative log-likelihood (NLL) on a held-out test set. We report results using the full k=100 starting components, as well as with BIC regularization for automatic model selection (Section 4.2).

We report the NLL in Table 1. EMM-GMM ranks highest across both interpretable and non-interpretable baselines, while the BIC-regularized variant achieves the second best rank but with substantially fewer and simpler rules (see Table 2). Among tree-based methods, CDTREE outperforms CADET and falls between our GMM and NSF instantiations. Non-interpretable methods vary in performance, with MDN the strongest but still trailing EMM-GMM.

Overall, EMM achieves state-of-the-art accuracy with full interpretability. The EMM-GMM consistently outperforms EMM-NSF, suggesting that the simpler parametric estimator is better suited for this setting. BIC regularization typically incurs a small loss in accuracy but yields models with fewer, shorter rules, offering a practical trade-off between accuracy and interpretability.

Case Study. We conclude with a case study on gold nanoclusters, whose electronic and catalytic properties are relevant to photovoltaics and medicine (Goldsmith et al., 2017). We fit an EMM to understand which molecular configurations lead to desirable properties. First, we target the HOMO-LUMO energy gap, a key indicator of photovoltaics performance, and visualize the learned densities and explanations in Fig. 6. Our method recovers the known relationship that clusters with an odd number of atoms exhibit smaller gaps than those with an even number of atoms, while also uncovering finer distinctions based on planarity, cluster size, and bonding structure. Compared to CDTREE, which requires 64 components for a weaker fit, EMM achieves a lower NLL (-1.706 vs. -1.683), with far fewer explanations (19.7 vs. 58.7) and orders-of-magnitude lower runtime (29 s vs. 1782 s).

Multi-Target Learning. A distinctive feature of EMM is its capacity to explain multivariate targets. EMM identifies visible clusters in the joint distribution of relative gyration R_{a0} and van der

Figure 6: Densities and explanations for 18 mixture components learned by EMM.

Figure 7: EMM over joint distribution of radius of gyration R_{q0} and van der Waals energy ΔE_{vdW} .

Waals energy ΔE_{vdW} in Fig. 7, revealing a clear separation in gyration R_{g0} between planar (2D, Planarity = 0) and non-planar (3D, Planarity = 1) clusters. This matches the physical intuition that planar clusters are less compact and therefore have a larger radius of gyration. Our results further corroborate previous studies showing that non-planar clusters have higher intermolecular van der Waals interactions than planar ones (Goldsmith et al., 2017). For example, explanations 4 and 15 correspond to clusters of the same size but different planarity, yielding distinct ΔE_{vdW} values. Our results on real-world datasets, including a study on Abalone (Appendix C.7), highlight the ability of EMM to explain meaningful interactions behind interesting subpopulations.

6 Conclusion

We introduced Explainable Mixture Models, a framework that pairs each mixture component with a human-interpretable rule. We established conditions for the exact recovery of the underlying data distribution, and proposed a scalable, differentiable learning algorithm with automatic model selection. Experiments show that EMM reliably recovers ground-truth components, while achieving state-of-the-art performance in CDE on real-world datasets. Case studies on materials science further illustrate the utility of EMM in exploratory data analysis. Overall, EMM accurately models complex distributions whilst providing meaningful, interpretable explanations.

Limitations. A primary limitation of our approach is the need for a fixed number of mixture components k at the start of training. We mitigate this through our initialization strategy and the BIC-based model selection, but in practice k must be tuned for optimal results. Furthermore, we consider a limited class of explanations in the form of conjunctive rules over intervals. Future work will explore more expressive rule classes, such as disjunctive normal form rules, and extend explanations to different modalities such as images or text. Lastly, EMM is dependent on the performance of the underlying density estimator, which may need to be adapted to the specific data domain.

ETHICS STATEMENT

Our work aims to increase the transparency and interpretability of complex data distributions. The rules generated by our model are based on statistical correlations in the data and cannot be used to make definitive statements about causality or generalizability. The results must thus be used with caution, especially when sensitive data is involved.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility we provide all code necessary to replicate the experiments. In addition to the method itself, this includes code to generate the synthetic data for our experiments, as well as code to reproduce the evaluation results on synthetic data, real data, and case studies.

REFERENCES

- Luca Ambrogioni, Umut Güçlü, Marcel A. J. van Gerven, and Eric Maris. The kernel mixture network: A nonparametric method for conditional density estimation of continuous random variables. arXiv:1705.07111, 2017.
- Charles E. Antoniak. Mixtures of dirichlet processes with applications to bayesian nonparametric problems. *The Annals of Statistics*, 2(6):1152–1174, 1974.
- David Arthur and Sergei Vassilvitskii. k-means++ the advantages of careful seeding. In *Proceedings* of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1027–1035, 2007.
- Martin Atzmueller. Subgroup discovery. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 5(1):35–49, 2015.
- Martin Atzmueller and Frank Puppe. Sd-map—a fast algorithm for exhaustive subgroup discovery. In *European Conference on Principles of Data Mining and Knowledge Discovery*, pp. 6–17. Springer, 2006.
- Christopher M. Bishop. Mixture density networks. Technical Report NCRG/94/004, Neural Computing Research Group, Aston University, 1994.
- Mi Choi. Medical cost personal dataset ("insurance"). Kaggle, 2017. Dataset with age, sex, bmi, children, smoker, region, charges.
- Cyrus Cousins and Matteo Riondato. Cadet: Interpretable parametric conditional density estimation with decision trees and forests. *Machine Learning*, 108(9–10):1613–1634, 2019. doi: 10.1007/s10994-019-05814-2.
- Dheeru Dua and Casey Graff. Uci machine learning repository, 2017. URL https://archive.ics.uci.edu/ml.
- Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. *Advances in neural information processing systems*, 32, 2019.
- Bryan R Goldsmith, Mario Boley, Jilles Vreeken, Matthias Scheffler, and Luca M Ghiringhelli. Uncovering structure-property relationships of materials by subgroup discovery. *New Journal of Physics*, 19(1):013031, January 2017. ISSN 1367-2630. doi: 10.1088/1367-2630/aa57c2.
- Rob J. Hyndman, David M. Bashtannyk, and Gary K. Grunwald. Estimating and visualizing conditional densities. *Journal of Computational and Graphical Statistics*, 5(4):315–336, 1996.
- Nada Lavrač, Branko Kavšek, Peter Flach, and Ljupčo Todorovski. Subgroup discovery with cn2-sd. *Journal of Machine Learning Research*, 5(Feb):153–188, 2004.
- Geoffrey J McLachlan, Sharon X Lee, and Suren I Rathnayake. Finite mixture models. *Annual review of statistics and its application*, 6(1):355–378, 2019.

- David Peel and Geoffrey J McLachlan. Robust mixture modelling using the t distribution. *Statistics and computing*, 10(4):339–348, 2000.
- Hugo M Proença, Peter Grünwald, Thomas Bäck, and Matthijs van Leeuwen. Robust subgroup discovery: Discovering subgroup lists using mdl. *Data Mining and Knowledge Discovery*, 36(5): 1885–1970, 2022.
 - Parikshit Ram and Alexander G Gray. Density estimation trees. In *Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining*, pp. 627–635, 2011.
 - Douglas Reynolds. Gaussian mixture models. In *Encyclopedia of biometrics*, pp. 827–832. Springer, 2015.
 - Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In *International conference on machine learning*, pp. 1530–1538. PMLR, 2015.
 - Jonas Rothfuss, Fabio Ferreira, Simon Walther, and Maxim Ulrich. Conditional Density Estimation with Neural Networks: Best Practices and Benchmarks. URL http://arxiv.org/abs/1903.00954.
 - Masashi Sugiyama, Ichiro Takeuchi, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, and Daisuke Okanohara. Least-squares conditional density estimation. *IEICE Transactions on Information and Systems*, 93(3):583–594, 2010.
 - Ljupčo Todorovski, Peter Flach, and Nada Lavrač. Predictive performance of weighted relative accuracy. In *European conference on principles of data mining and knowledge discovery*, pp. 255–264. Springer, 2000.
 - Matthijs Van Leeuwen and Arno Knobbe. Diverse subgroup set discovery. *Data Mining and Knowledge Discovery*, 25(2):208–242, 2012.
 - Cinzia Viroli and Geoffrey J McLachlan. Deep gaussian mixture models. *Statistics and Computing*, 29(1):43–51, 2019.
 - Christina Winkler, Daniel E. Worrall, Emiel Hoogeboom, and Max Welling. Learning likelihoods with conditional normalizing flows. *CoRR*, abs/1912.00042, 2019. URL http://arxiv.org/abs/1912.00042.
 - Sascha Xu, Nils Philipp Walter, Janis Kalofolias, and Jilles Vreeken. Learning exceptional subgroups by end-to-end maximizing kl-divergence. In *Proceedings of the 41st International Conference on Machine Learning*, pp. 55267–55285, 2024.
 - Lincen Yang and Matthijs van Leeuwen. Conditional density estimation with histogram trees. *Advances in Neural Information Processing Systems*, 37:117315–117339, 2024.

APPENDIX

597 A PROOFS

We provide the proofs for the propositions stated in the main text.

A.1 Proof of Recovery of Marginal Distribution

Proposition 1 Let $\mathcal{M} = \{e_i\}_i^k$ be an EMM with a marginal density as per Def. 1. If the set of explanations e_i form a partition of the feature space \mathbb{R}^d , i.e. $\sum_{i=1}^k e_i(\mathbf{x}) = 1$ for all \mathbf{x} in the support of P_X , then the induced density $p_{\mathcal{M}}(y)$ equals the true marginal density $p_Y(y)$.

Proof: By Definition 1, the induced marginal density of an EMM is

$$p_{\mathcal{M}}(y) = \sum_{i=1}^k w_i \, p_i(y) \quad \text{with} \quad w_i = \frac{\mathbb{E}[e_i(X)]}{\sum_{i=1}^k \mathbb{E}[e_j(X)]}, \quad p_i(y) = p_{Y \mid (e_i(X)=1)}(y).$$

If the explanations $\{e_i\}_{i=1}^k$ form a partition of the support of P_X , then $\sum_{i=1}^k e_i(x) = 1$ for all x in the support of P_X , and hence

$$\sum_{i=1}^{k} \mathbb{E}[e_i(X)] = \int_{\mathcal{X}} \sum_{i=1}^{k} e_i(x) \, p_X(x) \, dx = \int_{\mathcal{X}} p_X(x) \, dx = 1.$$

Therefore $w_i = \mathbb{E}[e_i(X)]/1 = \mathbb{E}[e_i(X)]$, and substituting this yields

$$p_{\mathcal{M}}(y) = \sum_{i=1}^{k} \mathbb{E}[e_i(X)] p_{Y \mid (e_i(X)=1)}(y) .$$

By Bayes rule we rewrite

$$p_{\mathcal{M}}(y) = \sum_{i=1}^{k} \mathbb{E}[e_i(X)] \frac{p_{Y, e_i(X)=1}(y)}{\mathbb{P}(e_i(X)=1)}$$
(14)

As $\mathbb{E}[e_i(X)] = \mathbb{P}(e_i(X) = 1)$, we can cancel terms to obtain

$$p_{\mathcal{M}}(y) = \sum_{i=1}^{k} p_{Y, e_i(X)=1}(y)$$
.

Finally, since the events $\{e_i(X)=1\}_{i=1}^k$ form a measurable partition of the support of X, the law of total probability implies

$$\sum_{i=1}^{k} p_{Y, e_i(X)=1}(y) = p_Y(y).$$

Thus $p_{\mathcal{M}}(y) = p_Y(y)$, proving the claim.

A.2 Proof of Recovery of Conditional Distribution

Proposition 2 Let $\mathcal{M} = \{e_i\}_i^k$ be an EMM with a conditional density as per Def. 2. If the set of explanations e_i form a partition of the feature space \mathbb{R}^d into homogeneous regions with respect to the target variable Y, i.e. for every explanation e_i and its induced sub-distribution $p_i(y)$, it holds that $p_{Y|X}(y \mid \mathbf{x}) = p_i(y)$ for all \mathbf{x} with $e_i(\mathbf{x}) = 1$ and $p_X(\mathbf{x}) > 0$, then the induced density $p_{\mathcal{M}}(y \mid \mathbf{x})$ equals the true conditional density $p_{Y|X}(y \mid \mathbf{x})$.

Proof: By Definition 2,

$$p_{\mathcal{M}}(y \mid x) = \sum_{i=1}^{k} w_i(x) p_i(y), \quad w_i(x) = \frac{e_i(x)}{\sum_{j=1}^{k} e_j(x)}, \quad p_i(y) = p_{Y \mid (e_i(X)=1)}(y).$$

If $\{e_i\}_{i=1}^k$ forms a partition of the feature space, then for every x in the support of P_X there exists a unique index $i^* = i^*(x)$ such that $e_{i^*}(x) = 1$ and $e_j(x) = 0$ for all $j \neq i^*$. Consequently,

$$\sum_{j=1}^{k} e_j(x) = 1 \quad \Rightarrow \quad w_{i^*}(x) = 1 \quad \text{and} \quad w_j(x) = 0 \text{ for } j \neq i^*,$$

and thus

$$p_{\mathcal{M}}(y \mid x) = p_{i^{\star}}(y).$$

By the homogeneity assumption of the proposition, for all x with $e_{i^*}(x) = 1$ we have

$$p_{Y|X}(y \mid x) = p_{i^*}(y).$$

Combining the two displays yields $p_{\mathcal{M}}(y \mid x) = p_{Y|X}(y \mid x)$ for all such x in the support of P_X . Hence the induced conditional density equals the true conditional density.

B LEARNING AND OPTIMIZATION DETAILS

This appendix provides supplementary details on the training, optimization, and rule extraction procedures for EMM.

B.1 ONLINE PRUNING AND POST-HOC MERGING

Online Pruning. During training, some rules may fail to specialize on any subset of the data. The optimizer can effectively disable such rules by learning an inverted interval $(\alpha_{ij} > \beta_{ij})$ for one or more of its predicates, which drives its activation $\hat{e}_i(\mathbf{x})$ towards zero. We periodically identify rules whose average mixture weight $\mathbb{E}_{\mathbf{x}}[w_i(\mathbf{x})]$ over the dataset falls below a small threshold (e.g., 10^{-3}). These components are considered inactive and are permanently removed from the computation for the remainder of training by fixing $\hat{e}(\mathbf{x}) = 0$ and skipping density computation. This saves computational resources and improves stability by fully removing the gradient.

Post-Hoc Merging. The maximum likelihood objective is invariant to splitting a homogeneous data region into multiple sub-regions modeled by functionally identical experts. This can result in a fragmented solution. To improve interpretability, we merge such components after training. For all adjacent explanations j,k we compute the pairwise similarity of the densities $\hat{p}_i(y)$ and $\hat{p}_j(y)$ using Jensen-Shannon divergence. We consider explanations adjacent if their data-based intervals (see Appendix B.2) touch (\pm some tolerance) on one feature and are similar on all others with non-zero weight a. If the divergence between a pair of densities is below a predefined threshold, we merge their corresponding rules by taking the union of their data-based intervals and retain only one of the redundant experts.

B.2 TEMPERATURE ANNEALING AND RULE EXTRACTION

To produce a final, human-readable set of rules, the soft, differentiable model must be converted into a discrete, logical representation.

Temperature Annealing. The temperature parameter τ in the soft predicate (Eq. 9) controls the trade-off between smooth gradients for effective optimization and sharp boundaries for interpretability. We begin training with a higher temperature to allow for a broader exploration of the solution space. As training progresses, we gradually anneal τ towards a small positive value. This process encourages the model to converge towards a solution with crisp, well-defined decision boundaries that closely approximate hard logical rules.

Data-Based Rule Extraction. Simply reporting the learned interval parameters $[\alpha_{ij}, \beta_{ij}]$ can be misleading, as optimization may push boundaries towards infinity in uncontested regions of the feature space. We therefore derive a more faithful representation of the learned partition from the empirical properties of the data governed by each rule.

For each explanation e_i , we first identify its corresponding data partition, \mathcal{D}_i . This partition consists of all samples assigned to component i based on the maximum responsibility criterion, as defined for label extraction in Section C.4. That is,

$$\mathcal{D}_i = \{ (\mathbf{x}, y) \mid i = \arg\max_j w_j(\mathbf{x}) \}.$$
 (15)

The final, human-readable rule for component i is then defined by the empirical range of the data in \mathcal{D}_i for each feature j: $[\min_{\mathbf{x} \in \mathcal{D}_i} x_j, \max_{\mathbf{x} \in \mathcal{D}_i} x_j]$. This data-derived bounding box is a valid representation because our predicate design ensures that if explanation i has maximum responsibility for the empirical minimum and maximum values in \mathcal{D}_i , it also does so for all values in between. We report these ranges for all features, visually distinguishing those the model deemed unimportant (i.e., $a_{ij} \leq 0$) to communicate both the model's concise logic and the data's full distributional properties.

We use this rule extraction to create the rule visualizations (see for example Fig 6). The bars indicate the range, categorical features show segments. The segments can be partially colored if multiple values are present in an explanation. Features that are active (a>0) are blue, others are grey. The empirical intervals are computed for all features, active or not.

B.3 Model Selection

Since the true number of components k is unknown, we treat it as a hyperparameter. We train a set of models with a range of values for k (e.g., $k \in \{10, 100\}$) and select the best one using the Bayesian Information Criterion (BIC). The BIC score is calculated after the online pruning and post-hoc merging steps have been applied. The penalty term in the BIC score considers only the number of active parameters in the gating network (the rule bounds α_{ij}, β_{ij} and weights a_{ij}). This choice reflects our goal of finding the most parsimonious partitioning of the feature space, rather than penalizing the complexity of the expert density estimators, which could otherwise dominate the score. This automatic balancing of model complexity and fit provides an alternative to manually chosing k.

C EXPERIMENTS

All experiments are performed on an Intel i5-12400 and Nvidia RTX 3070. GPU acceleration was used for methods that support it, which is true of EMM.

C.1 SYNTHETIC DATA GENERATION DETAILS

We generate synthetic data from a process that mirrors our model's core assumption that the data arise from a mixture of components, where each component corresponds to a distinct subregion of the feature space with an associated conditional density. We define a collection of disjoint, axisaligned hyperrectangular regions $\{H_j\}_{j=1}^k$ that partition the feature-space \mathbb{R}^d . For each region H_j , we define an unconditional target density $p_j(y)$ on \mathcal{Y} . The resulting ground-truth conditional density is piecewise-constant over \mathbb{R}^d , taking the value $p_j(y)$ for any feature vector $\mathbf{x} \in H_j$.

Recursive Binary Partitioning. The regions are constructed by recursively splitting an initial hyperrectangle in a manner analogous to a decision tree. This procedure ensures that the resulting set of regions forms a true partition and avoids creating excessively thin regions. We also generate empty leaves that will not get any samples to make the data more realistic.

- 1. **Initialization.** Start with the full domain as the root of a tree.
- 2. **Recursive Splitting.** Iteratively select a leaf node and split it along a randomly chosen feature dimension. A split is permitted only if the node's width along that dimension exceeds a minimum threshold. The tree grows until a target number of leaves is reached.

3. Component Selection. From the set of leaf nodes, we select exactly k to serve as the active components, defining the regions $\{H_j\}_{j=1}^k$.

We show a full partitioning in Fig. 8a and one that contains 50% empty leaves in Fig. 8b.

Conditional Density Assignment and Sampling. Once the feature space is partitioned, we assign target densities and generate samples. For each active region H_j , we draw an unconditional density $p_j(y)$ from a randomized family of standard distributions (Gaussian, Exponential, Gamma, Uniform) to induce diverse shapes. We show an example of such densities in Fig. 8c. To generate the dataset, we specify a fixed number of samples n_j for each region. For each of the n_j samples in region H_j , we first sample the feature vector \mathbf{x} uniformly from within the hyperrectangle defining H_j , and then sample the target value y from its corresponding density, $y \sim p_j(y)$. The resulting ground-truth conditional density is

$$p(y \mid \mathbf{x}) = \sum_{j=1}^{k} I\{\mathbf{x} \in H_j\} p_j(y) .$$

Task difficulty can be tuned by controlling the overlap between the densities $\{p_j(y)\}$ via a parameter $\beta \in [0,0.5]$. A small β yields well-separated densities, while $\beta = 0.5$ implies that all densities share the same median.

- (a) Exact partitioning into 4 active regions.
- (b) Partitioning with 4 active and 4 inactive regions.
- (c) The constant densities $p_j(y)$ associated with each region H_j

Figure 8: Illustration of the steps involved in the synthetic data generation.

C.2 BASELINE DETAILS

For all baseline methods, we utilized the authors' publicly available implementations and followed their recommended parameter settings unless otherwise specified.

CDTREE. A state-of-the-art interpretable model that greedily builds a decision tree with non-parametric histogram densities in the leaves, regularized by the Minimum Description Length (MDL) principle. We use the authors' original R implementation with default parameters.

CADET. An intrinsically interpretable CDE method that fits a decision tree with parametric distributions in the leaves. We use the authors' implementation with BIC regularization. The method requires specifying the parametric family for leaf distributions. We use Gaussians, as other families led to numerical failures on our test data. We further add very small Gaussian noise (standard deviation 0.001) to the target feature as duplicate values cause the method to fail.

Mixture Density Networks (MDN). A neural network-based approach where the network outputs the parameters (mixture weights, means, variances) of a Gaussian mixture model for the target variable, conditioned on the input features.

Kernel Mixture Networks (KMN). Similar to MDN, but models $p(y \mid \mathbf{x})$ as a mixture of fixed kernel functions whose mixture weights are determined by a neural network conditioned on \mathbf{x} .

Least-Squares CDE (LSCDE). A non-parametric method that directly models the conditional density without assuming a specific functional form, using a kernel-based approach.

Normalizing Flows (NF). This method combines a conventional neural network with a multistage Normalizing Flow, where the neural network outputs the flow parameters.

For MDN, KMN, NF, and LSCDE, we use the implementations from the Python CDE package by Rothfuss et al.. We apply noise regularization of 0.01 to both features and targets, and otherwise use default parameters. On synthetic data we 3-fold cross validation to select the number of kernels of KMN to improve label quality.

C.3 IMPLEMENTATION AND PARAMETERS

We implement EMM in Python using standard machine learning libraries.

For the experiments we additionally apply a standard entropy loss regularizer to the feature importance weights. This mainly serves to make rules more concise for interpretability by encouraging the optimizer to actually reduce a for redundant features. Let $\mathbf{a}_i = (a_{i1}, \dots, a_{id})$ be the vector of non-negative feature importance weights for rule \hat{e}_i . Negative weights are set to 0 for this calculation. Rules with no support are ignored. First, these weights are normalized to form a probability distribution

$$\tilde{a}_{ij} = \frac{a_{ij}}{\sum_{l=1}^{d} a_{il}} \ . \tag{16}$$

The entropy regularization term is then the average Shannon entropy over all k rules

$$\mathcal{R}_a(\mathcal{M}) = -\frac{1}{k} \sum_{i=1}^k \sum_{j=1}^d \tilde{a}_{ij} \log(\tilde{a}_{ij})$$
(17)

Adding this to the objective we get

$$\min_{\mathcal{M}} \text{NLL}(\mathcal{M}) + \lambda \mathcal{R}(\mathcal{M}) + \lambda_a \mathcal{R}_a(\mathcal{M}) , \qquad (18)$$

where λ_a is a hyperparameter.

For all experiments we use $\lambda=0.1$. We use $\lambda_a=0.05$ for synthetic experiments, and $\lambda_a=0.1$ for the real data experiments. All synthetic experiments are ran with BIC selection of $k\in\{10,100\}$, except the scaling experiment with d=20 (Fig. 4a), where we use $k\in\{10,200\}$. We always use a starting temperature of $\tau=0.2$ and smoothly anneal it to $\tau=0.005$ during the middle 80% of training epochs. The first and last 10% are reserved to encourage initial competition and final settling of the borders. For online pruning we use a threshold of $\mathbb{E}_{\mathbf{x}}[w_i(\mathbf{x})] \leq 0.005$.

C.4 METRICS

Component Label Extraction. On synthetic data, we can compare the predicted component labels to the ground truth. For EMM, we assign each sample (\mathbf{x}_n, y_n) to the component with the highest responsibility, which corresponds to the most active explanation for that sample's features:

$$\hat{z}_n = \underset{j \in \{1, \dots, k\}}{\arg \max} w_j(\mathbf{x}_n) . \tag{19}$$

For Kernel Mixture Networks (KMN), which models the conditional density as $p(y \mid \mathbf{x}) = \sum_{j=1}^{M} w_j(\mathbf{x}) \mathcal{K}(y; \mu_j, \sigma_j)$, we cannot obtain feature-based rules. Instead, we assign a label based on the most probable kernel component for the full data point:

$$\hat{z}_n = \underset{j \in \{1, \dots, M\}}{\operatorname{arg max}} \ w_j(\mathbf{x}_n) \mathcal{K}(y_n; \mu_j, \sigma_j) \ . \tag{20}$$

C.5 ADDITIONAL RESULTS

C.5.1 MODEL FIT ON SYNTHETIC DATA

Pseudo R^2 (R^2_{oracle}). We report a normalized log-likelihood score to ensure comparability across different experimental settings. This metric measures the fraction of improvement a model achieves

Dataset	Rule Complexity						# Rules							
	CDTREE	CADET	Emm-Nsf	EMM-NSF BIC	Емм-Смм	Емм-Смм Віс	CDTREE	CADET	EMM-NSF	EMM-NSF BIC	Емм-Смм	Емм-Смм Віс		
SkillCraft	0.00	6.66	10.17	9.83	7.07	6.67	1.00	166.00	6.00	6.00	15.00	6.00		
Thermography	1.00	4.68	10.94	11.23	6.44	3.33	7.00	62.00	17.00	13.00	16.00	6.00		
abalone	0.00	4.43	4.80	3.91	2.33	2.71	1.00	261.00	10.00	11.00	9.00	7.00		
air quality	2.90	5.85	6.70	6.00	3.85	3.85	31.00	478.00	23.00	14.00	13.00	13.00		
bike	2.83	4.02	8.53	8.31	5.19	3.73	6.00	45.00	17.00	16.00	31.00	11.00		
boston	2.00	3.65	7.60	7.47	4.35	4.60	6.00	23.00	15.00	15.00	23.00	10.00		
concrete	3.32	4.29	4.94	4.75	4.34	4.30	19.00	63.00	16.00	16.00	32.00	10.00		
energy	2.56	3.77	2.67	2.67	1.88	1.88	34.00	598.00	33.00	21.00	8.00	8.00		
insurance	2.69	4.38	4.19	2.91	2.91	2.91	13.00	85.00	16.00	11.00	11.00	11.00		
life	2.90	4.60	9.73	10.00	7.33	7.12	20.00	102.00	11.00	12.00	18.00	8.00		
obesity	0.00	4.23	9.00	7.86	5.17	3.86	1.00	127.00	7.00	7.00	23.00	7.00		
synchronous	1.29	2.11	2.47	2.67	2.57	2.11	17.00	36.00	17.00	12.00	14.00	9.00		
toxicity	1.67	3.43	4.27	4.29	3.84	3.43	6.00	53.00	15.00	14.00	25.00	7.00		
wages	1.00	4.07	5.67	4.50	3.68	3.20	2.00	88.00	9.00	8.00	28.00	10.00		
wine	0.00	6.55	5.00	5.00	4.67	3.75	1.00	300.00	5.00	3.00	9.00	4.00		
Rank (Interp.)	1.13	3.53	5.33	4.87	3.27	2.33	2.47	5.93	3.47	2.60	3.80	1.73		
Rank (Overall)	1.13	3.53	5.33	4.87	3.27	2.33	2.47	5.93	3.47	2.60	3.80	1.73		

Table 2: Rule and model complexity of interpretable models on real-world datasets.

Dataset	CDTREE	CADET	EMM-NSF	EMM-NSF BIC	Емм-Смм	Емм-Смм Віс	MDN	NF	Kmn	LsCde	
SkillCraft	3056.1	0.2	305.9	255.4	29.5	39.7	6.5	8.4	36.4	5.0	
Thermography	217.4	$\overline{0.1}$	678.3	517.5	32.2	46.0	5.3	5.5	32.8	2.3	
abalone	9625.1	0.2	398.5	335.3	22.3	35.1	6.7	9.0	35.0	3.4	
air quality	1385.8	$\overline{0.5}$	502.5	352.1	29.2	43.9	9.0	11.7	39.6	5.7	
bike	36.7	$\overline{0.0}$	690.8	521.6	49.5	66.8	5.2	5.2	32.1	2.2	
boston	59.9	$\overline{0.0}$	610.6	485.0	43.9	54.6	4.5	5.2	31.4	1.1	
concrete	95.2	0.0	772.3	524.5	51.3	59.6	5.0	5.5	32.3	2.0	
energy	201.0	$\overline{0.5}$	601.1	469.2	24.8	32.4	9.4	11.8	41.4	7.9	
insurance	36.4	$\overline{0.1}$	637.5	408.2	25.1	33.8	5.4	5.5	32.9	1.8	
life	403.4	$\overline{0.1}$	611.4	456.6	38.2	44.4	5.7	6.0	33.9	1.9	
obesity	631.8	$\overline{0.1}$	317.1	268.2	38.6	43.7	5.8	6.3	34.7	2.8	
synchronous	45.8	$\overline{0.0}$	608.4	456.6	27.3	35.6	4.4	5.2	31.9	1.4	
toxicity	29.8	0.0	641.6	487.6	41.0	47.8	4.8	5.3	32.3	2.2	
wages	62.8	0.1	588.8	419.0	42.1	50.8	5.4	5.6	33.5	2.4	
wine	2168.6	$\overline{0.3}$	315.4	236.3	22.3	28.0	6.9	9.9	36.1	5.3	
Rank (Interp.)	4.4	1.0	5.7	4.7	2.1	3.1	-	-	-	-	
Rank (Overall)	8.3	1.0	9.7	8.7	5.6	7.0	3.0	4.0	5.7	2.0	

Table 3: Runtime in seconds.

over an unconditional baseline, relative to the improvement achieved by the ground-truth data-generating model (oracle).

Figure 9: Likelihood fit (R_{oracle}^2) on synthetic data for varying (a) number of true components, (b) number of noise features, (c) target noise level, and (d) overlap between components.

C.6 RUNTIME

Finally we evaluate the scalability as data dimensionality increases. For show the results for increasing d in Fig. 10a and for increasing number of samples in Fig. 10b. We observe that neural methods like EMM and KMN are consistently fast even on large datasets. Our NSF instantiation takes longer to run due to increased parameter count, but exhibits stable scaling. The runtime of CDTree increases very quickly even for moderate dimensions due to its iterative nature. CADET is comparatively very fast because of its small search space.

Figure 10: Runtime of all methods on synthetic data with increasing number of features (left) and samples (right).

C.7 ABALONE CASE STUDY

We apply EMM to the popular abalone dataset which contains various size and weight measurments of abalones, a kind of sea snail. Typically this dataset is used for regression or classification using Age as the target variable. We apply EMM using 28 Gaussian density components as there are 28 unique values in Age. In Fig. 11 we show that EMM can recover reasonable explanations and and distributions. The explanations show that larger and heavier abalones have a higher mean Age. But because we estimate the entire conditional distribution we can further see exactly how Age is distributed for these subgroups. For example explanations consisting mostly (1) or entirely (2) of infants are distributed in relatively low and narrow age range. Explanation 6 contains the largest and heaviest ones, which are distributed at the upper end with a wider distribution. We interpret this explanation to describe abalones that have reached their maximum size but continue to age. CDTree does not find any conditional structure in the data, returning a tree consisting only of the root node.

Figure 11: EMM results on Abalone. Probability masses are weighted by explanation size.

C.8 GOLD HOMO-LUMO CDTREE

We provide a visualization of the CDTree density estimates on the Gold nano clusters dataset with target variable HOMO-LUMO in Figure 12.

D LLM USAGE

LLM usage did not play a significant role in research ideation or writing of the paper itself. However LLMs and AI assistants were used during the implementation of the method.

Figure 12: CDTree result on Gold dataset with HOMO-LUMO target. Densities are scaled by weight (relative number of samples per leaf). Legend abbreviated, colors repeat.