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ABSTRACT

Mixture models excel at decomposing complex, multi-modal distributions into
simpler probabilistic components, but provide no insight into the conditions under
which these components arise. We introduce explainable mixture models (EMM),
a framework that pairs each mixture component with a human-interpretable rule
over descriptive features. This enables mixtures that are not only statistically
expressive but also transparently grounded in the underlying data. We formally
examine the conditions under which an EMM exactly captures a target distribu-
tion and propose a scalable, differentiable learning procedure for discovering sets
of rules. Experiments on synthetic and real-world datasets demonstrate that our
method discovers interesting sub-populations in both univariate and multivariate
settings, offering interpretable insights into the structure of complex distributions.

1 INTRODUCTION

Finite mixture models represent complex, multi-modal data as combinations of simpler distributions
(McLachlan et al., 2019). On a widely used dataset of insurance charges (Choi, 2017) for example,
a Gaussian mixture model (GMM) identifies subpopulations with distinct modes as shown in Fig. 1a.
In many applications, however, we also have access to descriptive features, e.g. age or BMI. Clas-
sical mixture models fit the marginal distribution of the target and therefore cannot leverage such
features to explain when different sub-distributions arise.

To overcome this limitation, conditional density estimation (CDE) extends mixtures by modeling the
conditional distribution of outcomes given features. In particular, mixture density networks (Bishop,
1994) and kernel mixture networks (Ambrogioni et al., 2017) parameterize mixture weights and
components as functions of descriptive features. However, these dependencies are typically mod-
eled with neural networks that do not yield human-interpretable explanations. More broadly, CDE
methods tend to prioritize predictive accuracy over interpretability (Sugiyama et al., 2010). While
tree-based approaches (Cousins & Riondato, 2019; Yang & van Leeuwen, 2024) offer insight, we
observe in experiments they can overfit and lack support for overlapping regions.

To this end, we propose Explainable Mixture Models (EMM), a framework that directly pairs each
mixture component with a human-interpretable rule over descriptive features. The EMM framework
defines each mixture component as a data-induced distribution rather than restricting it to a partic-
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(a) The GMM recovers distinct
modes, but no explanations.
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(b) The EMM recovers similar modes to the GMM (left), and also explains
when each mode is observed using simple rules over descriptive features.

Figure 1: Comparison of a Gaussian Mixture Model (GMM) and an Explainable Mixture Model
(EMM) on a dataset of insurance claims (Choi, 2017).
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ular parametric family, e.g., Gaussian, and naturally allows for overlapping components. On the
insurance dataset, a fitted EMM in Fig. 1b recovers similar modes to the GMM, and additionally
provides simple, interval-based rules that explain when each mode is observed. For example, the
subpopulation with the lowest insurance charges corresponds to young, non-smoking individuals
without children, whereas the highest-charge component comprises older, smoking individuals with
high BMI. Our main contributions are as follows:

1. Concept. We propose EMM, which both characterize the subpopulations of the global distribu-
tion, whilst accurately estimating the local conditional density given any feature vector.

2. Theory. We derive exact-recovery conditions for marginal and conditional densities and intro-
duce regularizers to steer learning towards these regimes.

3. Practice. We propose a scalable, differentiable training procedure and show that the EMM accu-
rately models the underlying distribution whilst discovering interesting subpopulations.

2 RELATED WORK

Mixture models are a classical tool for density estimation and clustering. There exist many variants
based on parametric families such as Gaussians (Reynolds, 2015) or t-distributions (Peel & McLach-
lan, 2000) as well as nonparametric approaches (Antoniak, 1974). In general, unconditional mixture
models however are limited to modeling latent component variables (Viroli & McLachlan, 2019).

Feature dependency can be introduced through covariate-dependent mixture weights and/or param-
eters. In Mixture Density Networks (Bishop, 1994) a neural network outputs mixture parameters as
functions of x. Kernel Mixture Networks (Ambrogioni et al., 2017) replace the parametric mixture
components with nonparametric kernels. However, both methods use black-box neural networks for
gating and thus do not provide insight into when each component is active.

Mixture of Experts (MoE) (Jacobs et al., 1991) are a general class of models in which a gating
network determines the weighting of local experts. While MoEs typically rely on black-box neural
networks for gating, recent surveys identify interpretability as a critical open challenge (Mu & Lin,
2025). Some interpretable variants have been proposed (Ismail et al., 2023; Pradier et al., 2021),
however, these approaches focus primarily on classification or deferral to human experts. EMMs
share the high-level conditional mixture structure of MoEs but differ fundamentally by targeting
conditional density estimation through differentiable rule learning. Similarly, Conditional VAEs
(CVAE) (Sohn et al., 2015) can model complex conditional distributions p(y|x), However, they rely
on a latent prior z and deep neural networks, resulting in a black-box model. In contrast, EMMs
explicitly model the conditional density through rule-based components, providing direct insight
into the data’s structure without latent variables.

Subgroup discovery is a closely related approach (Atzmueller, 2015). The goal is to identify a
subpopulation that is statistically interesting with respect to a target variable and describe it through
a human-interpretable rule. Using combinatorial (Lavrač et al., 2004; Atzmueller & Puppe, 2006) or
differentiable optimization (Xu et al., 2024), a rule is learned that maximizes the measured deviation
of the subgroup from the global population (Todorovski et al., 2000).

The main difference to Explainable Mixture Models is that subgroup discovery is inherently local,
focusing on isolating an interesting subset of the data rather than modeling the entire population.
While there exist approaches that learn multiple subgroups (Van Leeuwen & Knobbe, 2012; Proença
et al., 2022), they typically do not attempt to model the full conditional distribution.

Conditional density estimation (CDE) aims to estimate the full conditional distribution of a tar-
get variable y given input features x. Approaches range from kernel and RKHS-based estimators
(Hyndman et al., 1996; Sugiyama et al., 2010) to neural network-based methods (Bishop, 1994;
Ambrogioni et al., 2017) and normalizing flows (Winkler et al., 2019). However, these methods are
unable to explain where and when different modes occur.

Most closely related to Explainable Mixture Models are interpretable CDE methods. Density Esti-
mation Trees (Ram & Gray, 2011) use interpretable tree structures but only target the unconditional
density. CADET uses trees to model conditional densities with exponential family distributions in
the leaves (Cousins & Riondato, 2019), but tends to learn very deep trees that are hard to interpret.
Most similar to our approach is CDTREE (Yang & van Leeuwen, 2024), which learns a minimum
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description length regularized decision tree with a histogram in each leaf. Both approaches however
are primarily aimed at fitting densities, and not for discovering its components.

Summary. Explainable Mixture Models bring together ideas from all three areas: In contrast to
neural gated mixture models, EMM provide interpretable rules for each component; Compared to
subgroup discovery, we model the entire domain; And compared to tree-based CDE, we allow for a
mixture of components rather than a single tree. In the following, we will formally define EMM and
show how to learn them from data.

3 EXPLAINABLE MIXTURE MODELS

We consider a dataset of n pairs {(x(l), y(l))}nl=1 consisting of a descriptive feature vector x ∈ Rd

of d real-valued features and a target value y ∈ Y . We assume each sample (x, y) to be a realization
of a pair of random variables (X,Y ) ∼ PX,Y , drawn i.i.d. We write p to denote probability density
functions and P to denote probability distributions.

Our goal is to explain the distribution of the target variable Y as a mixture of simpler components.
In contrast to a classical mixture model, the idea is to use components that are not latent, but in-
stead grounded in a human-interpretable explanation over the descriptive features X . That is, an
explainable mixture model (EMM) not only provides a decomposition of the target into simpler
sub-distributions, but also explains the conditions under which these sub-distributions are observed.

Definition 1 (Marginal-EMM) An explainable mixture model M = {ei}ki=1 of the marginal den-
sity p(y) is defined as a set of k feature-based explanations ei : Rd → {0, 1} with non-zero support,
i.e. E[ei(X)] > 0. For each respective explanation ei, we define the mixture weight wi as

wi =
E[ei(X)]∑k
j=1 E[ej(X)]

, (1)

where it holds that wi ≥ 0 and
∑k

i=1 wi = 1. The induced density pM(y) is a finite mixture of k
components as per

pM(y) =

k∑
i=1

wi pi(y) , pi(y) := pY | (ei(X)=1) (y) . (2)

We introduce the marginal EMM as a weighted sum of simpler component densities pi(y), based on
the standard finite mixture model (McLachlan et al., 2019). However, the differentiating factor of
an EMM lies in the explainability of the individual components pi(y). Instead of restricting them
to a parametric family, e.g. Gaussians, an EMM is based on non-parametric, data-induced densities
pi(y). Each component reflects the conditional distribution of the target Y given that the explanation
ei over the descriptive features X holds. The choice of human-interpretable explanation ei (e.g.,
logical rules) is application dependent and agnostic to the definition.

Proposition 1 Let M = {ei}ki be an EMM with a marginal density as per Def. 1. If the set of
explanations ei form a partition of the feature space Rd, i.e.

∑k
i=1 ei(x) = 1 for all x in the support

of PX , then the induced density pM(y) equals the true marginal density pY (y).

Proposition 1 is a direct consequence of the law of total probability (Appendix A.1). It suggests that
we should generally aim to find a set of explanations ei that form a partition of the feature space
Rd. However, this is not a strict constraint. In practice, allowing an EMM to have overlap can be
beneficial regarding interpretability by providing broader, more general explanations.

Lastly, the result shows that we cannot rely on maximization of the marginal likelihood to learn an
EMM. Setting all components to the same constant function, e.g. ei(x) = 1 for all i, leads to a
perfect fit of the marginal distribution, provided that the component densities pi(y) are sufficiently
flexible. Therefore, we cannot expect to learn a meaningful EMM by maximizing the marginal
likelihood. To address this issue, we next introduce a conditional interpretation of the EMM.
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3.1 CONDITIONAL EMM

The issue of treating an EMM as a purely marginal model is the degeneracy of maximum likeli-
hood solutions. To address this, we leverage the ability of an EMM to explain where distinct sub-
distributions occur and formally introduce the conditional EMM to model the conditional density
pY |X(y | x).

Definition 2 (Conditional-EMM) An explainable mixture model M = {ei}ki=1 of the conditional
density p(y | x) is defined as a set of k explanations ei : Rd → {0, 1} with non-zero support,
i.e. E[ei(X)] > 0, and complete coverage, i.e.

∑k
i=1 ei(x) > 0 for all x in the support of PX . For

each feature vector x, we define the conditional mixture weights wi(x) as

wi(x) =
ei(x)∑k
j=1 ej(x)

. (3)

The induced conditional density pM(y | x) is a finite mixture of k components, where

pM(y | x) =
k∑

i=1

wi(x) pi(y) , pi(y) := pY | (ei(X)=1) (y) . (4)

Similar to the marginal EMM, the conditional EMM is a finite mixture of simpler component den-
sities pi(y). In addition, the mixture weights wi(x) are now dependent on the descriptive features,
similar to a mixtures-of-experts model (Jacobs et al., 1991). The main difference to MoEs is that an
EMM consists of explanation-based components, which are derived from the data, while in a MoE,
any gating mechanism is permissible and with arbitrary parametric experts that need not represent
an underlying demographic group. Through EMM’s unique definition we can also examine what
conditions are needed so that a mixture M faithfully represents the true conditional distribution.

Proposition 2 Let M = {ei}ki be an EMM with a conditional density as per Def. 2. If the set of
explanations ei form a partition of the feature space Rd into homogeneous regions with respect to
the target variable Y , i.e. for every explanation ei and its induced sub-distribution pi(y), it holds
that pY |X(y | x) = pi(y) for all x with ei(x) = 1 and pX(x) > 0, then the induced density
pM(y | x) equals the true conditional density pY |X(y | x).

We provide a proof of Proposition 2 in Appendix A.2. To sufficiently guarantee a set of explanations
induces the true conditional density, the explanations must partition the feature space, such that
within the scope of each explanation ei, the target variable Y is i.i.d.

While this is a stronger requirement than for the marginal EMM, where a partitioning alone is suf-
ficient, it helps to eliminate degenerate solutions. By maximizing the conditional likelihood, the
EMM is encouraged to find a set of explanations that capture where distinct, but locally homoge-
neous sub-distributions occur. Therefore, we propose to fit an EMM M by minimizing the negative
log-likelihood (NLL) given a dataset {(x(l), y(l))}nl=1

NLL(M) = −
n∑

l=1

log

(
k∑

i=1

wi(x
(l)) pi(y

(l))

)
. (5)

In practice, we estimate each pi from the subset {l : ri(x(l)) = 1} with appropriate smoothing
(e.g., KDE bandwidth selection or Dirichlet priors for discrete Y ) and add a small ε > 0 inside the
logarithm for numerical stability. This now provides a principled objective to learn an informative
EMM using likelihood maximization. Once obtained, an EMM M gives insight into the global
distribution PY through its explainable components, and can also be used to make local, conditional
density inferences pM(y | x) for a given descriptive feature vector x.

3.2 OPTIMIZATION OBJECTIVE

Lastly, we discuss how to optimize the NLL objective in Eq. 5 to learn an EMM. In Propositions 1
and 2, we have seen that an appropriate partitioning can achieve a perfect fit of the true density. On
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Figure 2: The building blocks of an EMM: Learnable thresholding conditions are placed on each
feature xj ∈ R (a). They are combined into a conjunctive, differentiable rule (b). Each rule acts as
a gating function for an expert density, with a mixture in the overlap (c).

the other hand, we also want to allow a certain degree of overlap between explanations to improve
interpretability, e.g. by providing broader, more general explanations.

To balance these two objectives, we propose to learn an EMM by minimizing a regularized NLL
objective. We introduce an overlap penalty R(M) that penalizes explanations ei that frequently
hold together. It is defined as

R(M) =
1

n

n∑
l=1

(
1−

k∑
i=1

wi(x
(l))2

)
. (6)

For a particular sample x(l), the term in parentheses is minimized when exactly one explanation ei
holds, i.e. wi(x

(l)) = 1 for some i and wj(x
(l)) = 0 for all j ̸= i. To penalize overlap, we square

the weights wi because the sum
∑k

i=1 wi(x
(l)) = 1 is constant by definition. Squaring ensures

the penalty gets smaller as the distribution of weights becomes more sparse, and minimized when
converging to a single active component. The overall optimization objective with a hyperparameter
λ that controls the strength of the overlap penalty is given by

min
M

NLL(M) + λR(M) . (7)

4 METHOD

In this section, we describe a concrete instantiation of EMM for tabular data, which uses conjunctive
rules as class of explanations, e.g. “18 < Age < 65 AND BMI > 25”. This format of explanations,
also used in decision trees and subgroup discovery, is human-interpretable and natively supports
continuous and discrete features. In particular no pre-discretization is necessary, the thresholds
αj , βj are learned directly via gradient descent (see Eq. 9) for both continuous and discrete features.
In particular, we consider rules e : Rd → {0, 1} that map input features x ∈ Rd to binary activations
as per

e(x; θ) =

d∧
j=1

π(xj ;αj , βj) . (8)

4.1 A DIFFERENTIABLE RULE-BASED MIXTURE

We now show how to learn a rule-based mixture using gradient-based optimization. To avoid com-
binatorial search over an exponential search space (Lavrač et al., 2004; Atzmueller & Puppe, 2006),
we employ a differentiable formulation that allows us to learn a mixture of multiple rules jointly
using gradient-based optimization Xu et al. (2024).

We briefly summarize the key components of the differentiable rule learner’s architecture. Firstly,
the conditions π(xj ;αj , βj) = 1[αj < xj < βj ] placed on individual features xj ∈ R, j ∈
{1, . . . , d}, are approximated as

π̂τ (xj ;αj , βj) = σ

(
xj − αj

τ

)
σ

(
βj − xj

τ

)
, (9)
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where σ is the sigmoid function and τ > 0 is a temperature parameter that controls its steepness.
During training, we anneal the temperature gradually to zero, transitioning from soft constraints
π̂ : R → [0, 1] to hard constraints, i.e. limτ→0 π̂τ (xj ;αj , βj) = π(xj ;αj , βj) for all xj ̸= αj , βj .
We show an example in Fig. 2a, where the condition becomes steeper as τ → 0.

To combine multiple conditions into a rule, the weighted harmonic mean is used to approximate the
logical AND operator. It is defined as

ê(x; θ) =

∑d
j=1 aj∑d

j=1 aj · π̂τ (xj ;αj , βj , τ)−1
with aj ≥ 0 , (10)

where we denote the parameters of a rule as θ = {αj , βj , aj}dj=1. This function mimics the be-
havior of a logical conjunction whilst being fully differentiable: If any condition π̂j(xj) is close to
zero, then the reciprocal π̂j(xj)−1 grows, and thus the overall rule activation ê(x) becomes small.
Conversely, the rule activation ê(x) = 1 only if all conditions π̂j(xj) = 1 are high. The learnable,
non-negative weights aj represent the importance of feature j within the rule. By setting aj = 0,
the corresponding condition π̂j has no effect on the rule activation ê(x), allowing the optimizer to
effectively prune unnecessary conditions.

We now construct an EMM by combining multiple differentiable rules with their local densities.
Following Definition 2, we use as conditional gating function

ŵi(x; Θ) =
êi(x; θi) + ϵ∑k

j=1 êj(x; θj) + ϵ
with Θ = (θ1, . . . , θk) , (11)

for a given input x, where we add an ϵ floor to avoid numerical instability. This formulation ensures
that the mixture weights ŵi(x; Θ) are non-negative and sum to one.

Density Estimation. To estimate the target density pi(y) for each component i, we can use any
density estimator p̂i(y;ψi). We now outline a parametric and a non-parametric solution that is then
evaluated in the experiments. As the non-parametric variant, we use a Neural Spline Flow (NSF)
(Durkan et al., 2019). A normalizing flow transforms a simple base distribution into a complex
target distribution through a series of invertible mappings. NSFs are parameterized by a cubic spline
neural network, whose parameters ψi are learned by maximizing the likelihood. NSFs are powerful
density estimators, but are computationally expensive and may overfit on small subgroups.

As a parametric alternative, we use an unconditional Gaussian mixture model (GMM). As we learn
sub-distributions of the marginal distribution, we parameterize each component density pi(y) with
the same set of means and covariances learned on the marginal distribution, but allow for different
mixture weights ψi for each component i. This has the advantage of being much more computation-
ally efficient, and aligns with our goal of describing distinct modes in the data.

We show an example of an EMM in Fig. 2c, which contains two rule-based subpopulations that
overlap in the middle of the feature space x ∈ [0, 0.5]. Using Objective (7), we jointly learn the
parameters of the rules Θ and the local densities Ψ = (ψ1, . . . , ψk) with gradient descent, by com-
bining the differentiable rules and the local densities into the mixture density

pM(y | x; Θ,Ψ) =

k∑
i=1

ŵi(x; Θ) · p̂i(y;ψi) . (12)

4.2 OVERSPECIFICATION AND PRUNING

A key challenge in learning rule sets is navigating the combinatorial search space of all possible
rules. While previous approaches are limited to recursive partitioning or greedy schemes, our dif-
ferentiable approach allows for parallelized optimization of large quantities of rules. That is, we
overspecify the initial number of rules k to ensure sufficient coverage of the feature space.

To ensure that the initial rules effectively cover the feature space, the initialization of each rule is key.
Random initialization of the rule parameters θi often leads to poor coverage (Fig. 3a), while choosing
random samples from the training set as anchors improves coverage but can still leave gaps (Fig. 3b).
We opt for a guided initialization, where we select as anchoring points k-means++ centroids (Arthur
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Figure 3: Initialization: k-means++ anchoring ensures a thorough coverage of the feature space.
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Figure 4: NMI between true and learned components across a variety of settings.

& Vassilvitskii, 2007) (Fig. 3c). This way, we ensure that each initial rule êi is anchored on a distinct
region of the feature space, improving the likelihood of discovering meaningful explanations.

Pruning and Model Selection Our initialization ensures broad coverage of the feature space, but
overspecification inevitably introduces redundant explanations. The primary pruning mechanism is
the optimization itself: a rule êi can be disabled by learning an inverted interval (αij > βij) for any
feature j with non-zero weight aij > 0, forcing êi(x) ≈ 0 everywhere and removing its gradient
signal. This allows the optimizer to discard uncompetitive rules. For efficiency and stability, we
periodically check for such inactive rules during training and disable them completely. If several
neighboring rules converge to nearly identical densities pi(y), they may all survive pruning; we
address this with a post-hoc merging procedure (Appendix B.1).

While initializing with more components can reveal more specialized explanations, the gain in like-
lihood often comes at the cost of interpretability. To avoid dataset-specific tuning of the initial
number of rules k, we use the Bayesian Information Criterion (BIC) to balance expressiveness and
complexity. After training, we compute

BIC(M) = 2 · NLL(M) + |Θ| log(n), (13)

where |Θ| is the number of active parameters in the rule network. This criterion ignores parameters
of the local density estimators p̂i(y;ψi), as our framework models them to be data-induced, instead
focusing model selection on the complexity of the explanations. We train multiple models from a
range of k and select the one with the best BIC score (Appendix B.3).

5 EXPERIMENTS

We empirically validate EMM, using NSF and GMM respectively as density estimators. As base-
lines we include the interpretable CDE methods CDTREE (Yang & van Leeuwen, 2024) and
CADET (Cousins & Riondato, 2019), which partition the feature space via decision trees, and non-
interpretable methods MDN (Bishop, 1994), KMN (Ambrogioni et al., 2017), NF (Rezende & Mo-
hamed, 2015), CVAE (Sohn et al., 2015) and LSCDE (Sugiyama et al., 2010).

5.1 SYNTHETIC DATA

We first test on synthetic data with known ground truth. We generate d independent uniformly
distributed features Xj , partition the space into k disjoint hyperrectangles, and assign each region
a randomized density (Gaussian, Uniform, etc), resulting in a piecewise-constant p(y | x) (see
Appendix C.1). Unless varied as the experiment’s parameter we use d = 5, k = 5 components, 600
samples per component, overlap β = 0.1 and no noise on Y , averaging results over 4 datasets.
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Figure 6: Robustness to rule overspecification (large k). While EMM-NSF achieves lower NLL (a),
it retains redundant rules (c). EMM-GMM successfully prunes excess components, maintaining high
NMI (b) and recovering the exact number of ground-truth rules even as k increases.

Accuracy. We first measure the accuracy of EMM in recovering the ground-truth components. We
report the normalized mutual information (NMI), which compares the cluster similarity between
true component labels and those by learned rules (Appendix C.4). Fig. 4a shows that both EMM
instantiations reliably recover ground-truth components, with only slight performance drop for many
components. CADET struggles due to unregularized large trees, while CDTREE regularization aids
it in recovering a good solution. The non-interpretable baseline, KMN, from which we extract
sample-wise labels as that of the component with highest weighted likelihood, performs well on a
large number of components, but poorly on few components.

Robustness. Figures 4b and 4c show robustness to noise in the features and target, respectively.
EMM is largely unaffected by feature noise and only slightly degrades under high target noise.
CDTREE performs similarly but is less accurate at high target noise, while CADET and KMN are
consistently weaker in both settings. In addition, we measure the effect of increasing overlap be-
tween the component densities in Fig. 4d. EMM remains stable under moderate overlap but degrades
when overlap is large. KMN shows a similar trend, whereas CDTREE declines more gracefully and
surpasses EMM at high overlap. CDTREE’s advantage is its tendency to create many small leaves,
which approximate overlapping densities well but are not penalized by the NMI metric.
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CDTree

Figure 5: Excess rules
vs. true components.

Model Complexity. Next, we assess model complexity by compar-
ing the number of learned components to the ground truth. In Figure
5 we plot the number of excess components, i.e., the difference be-
tween learned and true components. Fig. 5 shows that after pruning,
both EMM variants recover component counts close to the ground
truth, with GMM slightly underfitting and NSF slightly overfitting.
In contrast, the gap between CDTREE and the true number of com-
ponents widens as complexity increases, reflecting the limitations of
greedy top-down splitting, while CADET’s number of excessive rules
consistently exceeds the limits of the plot. On the other hand, EMM
precisely identifies the correct number of components no matter if we
have 5, 10, or 20 true components.

Rule Scaling. We further investigate robustness to overspecification by increasing the initialized
rules k on synthetic datasets with 5 and 10 true components, and show the results in Figure 6. On
these datasets we see in Figure 6a that once k is sufficiently large to capture the true structure, NLL
plateaus. In Figure 6b and Figure 6c we see that EMM-GMM is very stable in this setting even when
k is much larger than the true components, as no excess rules are discovered and NMI remains high.
EMM-NSF achieves better NLL because it is more flexible, but this flexibility makes it more prone to
retain excess rules when k is large. This indicates that the inductive bias of a restricted model class
(EMM-GMM) allows for more effective pruning of excess rules through our likelihood objective.

Sensitivity to λ. Finally, we analyze the effect of the overlap penalty weight λ (Eq. 7) on model
complexity using the real datasets (Section 5.2). Figure 7a shows the change in test NLL (NLLλ −
NLLλ=0) and Figure 7b shows the ratio of active rules relative to the unregularized baseline (λ = 0)
As shown in Fig. 7, increasing λ effectively regularizes EMM-GMM, using up to 16% fewer rules
at λ = 0.3 than the baseline. The likelihood cost is negligible, indicating the components were
redundant. This confirms that the penalty successfully steers the optimization towards a concise
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Dataset CDTREE CADET EMM-NSF EMM-NSF BIC EMM-GMM EMM-GMM BIC CVAE KMN LSCDE MDN NF

SkillCraft −4.03 2.23 −3.58 −3.36 −4.11 −4.19 1.61 −0.94 1.57 2.73 1.47
Thermography 0.56 1.50 1.21 1.26 1.00 0.63 0.61 1.63 0.90 0.57 1.33
abalone −2.20 4.32 −1.06 −0.97 −2.73 −2.72 1.92 1.89 2.13 1.88 1.79
air quality 0.53 1.40 0.27 0.27 −0.19 −0.19 0.15 0.25 0.91 0.18 0.15
bike 8.66 9.30 8.81 8.90 8.96 8.94 8.62 9.49 8.67 8.39 9.74
boston 2.93 5.51 2.98 2.99 2.60 2.58 3.20 3.17 3.07 2.67 7.32
concrete 3.58 3.54 3.64 3.61 3.50 3.73 3.11 3.33 3.61 2.96 3.45
energy 2.91 3.02 2.85 2.84 3.02 3.02 2.84 2.84 3.37 2.79 2.72
insurance 9.11 20.66 8.83 8.95 9.06 9.06 8.03 8.72 9.93 8.03 7.44
life 2.48 4.24 2.40 2.35 2.28 2.42 2.27 2.18 2.65 1.91 3.74
obesity −3.45 - −3.66 −3.43 −4.86 −4.53 −0.18 −1.78 1.12 2.76 −0.39
synchronous −2.33 −2.90 −2.23 −2.16 −2.03 −1.88 −4.80 −2.41 −1.25 −3.08 −4.11
toxicity 1.54 1.71 1.57 1.62 1.44 1.44 1.34 1.90 1.37 1.44 1.55
wages 11.20 11.90 10.88 11.13 10.89 10.80 11.33 11.68 11.45 11.59 11.53
wine −4.61 - −4.15 −2.61 −4.91 −4.89 1.15 −1.37 1.20 3.29 −0.38

Rank (Interp.) 3.27 5.40 3.27 3.87 2.33 2.67 - - - - -
Rank (Overall) 5.20 9.73 5.60 6.07 4.20 4.47 4.80 6.60 8.07 4.73 6.33

Table 1: NLL of interpretable and black-box models on real-world datasets. Bold values indicate
the best NLL among interpretable models, underlined values indicate the best overall NLL.

partitioning for EMM-GMM. For EMM-NSF the benefit is less clear. The number of rules only
decreases significantly at λ = 1 and incurs a larger likelihood cost. Consequently, we recommend
the use of the overlap penalty primarily for the EMM-GMM variant.

5.2 REAL-WORLD DATASETS
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Figure 7: Sensitivity to λ

We next evaluate EMM on real-world datasets
from the UCI Machine Learning Repository
(Dua & Graff, 2017). Since ground-truth com-
ponents are unavailable, performance is mea-
sured by negative log-likelihood (NLL) on a
held-out test set. We report results using the full
k = 100 starting components, as well as with
BIC regularization for automatic model selec-
tion (Section 4.2).

We report the NLL in Table 1. EMM-GMM
ranks highest across both interpretable and non-
interpretable baselines, while the BIC-regularized variant achieves the second best rank but with
substantially fewer and simpler rules (see Table 2). Among tree-based methods, CDTREE outper-
forms CADET and falls between our GMM and NSF instantiations. Non-interpretable methods vary
in performance, with MDN and CVAE the strongest, but still trailing EMM-GMM.

Overall, EMM achieves state-of-the-art accuracy with full interpretability. The EMM-GMM consis-
tently outperforms EMM-NSF, suggesting that the simpler parametric estimator is better suited for
this setting. BIC regularization typically incurs a small loss in accuracy but yields models with
fewer, shorter rules, offering a practical trade-off between accuracy and interpretability.

Case Study. We conclude with a case study on gold nanoclusters, whose electronic and catalytic
properties are relevant to photovoltaics and medicine (Goldsmith et al., 2017). We fit an EMM to
understand which molecular configurations lead to desirable properties. First, we target the HOMO-
LUMO energy gap, a key indicator of photovoltaics performance, and visualize the learned densities
and explanations in Fig. 8. Our method recovers the known relationship that clusters with an odd
number of atoms exhibit smaller gaps than those with an even number of atoms, while also uncover-
ing finer distinctions based on planarity, cluster size, and bonding structure. Compared to CDTREE,
which requires 64 components for a weaker fit, EMM achieves a lower NLL (−1.706 vs. −1.683),
with far fewer explanations (19.7 vs. 58.7) and orders-of-magnitude lower runtime (29s vs. 1782s).

Multi-Target Learning. A distinctive feature of EMM is its capacity to explain multivariate tar-
gets. EMM identifies visible clusters in the joint distribution of relative gyration Rg0 and van der
Waals energy ∆EvdW in Fig. 9, revealing a clear separation in gyration Rg0 between planar (2D,
Planarity = 0) and non-planar (3D, Planarity = 1) clusters. This matches the physical intuition that
planar clusters are less compact and therefore have a larger radius of gyration. Our results further
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Figure 8: Densities and explanations for 18 mixture components learned by EMM. Continuous in-
tervals are represented as bars relative to the feature domain, discrete values as boxes. Blue bars
indicate active rule constraints (aj > 0), gray ones indicate inactive features(aj ≤ 0). Intervals rep-
resent the empirical range of samples assigned to each component (see Appendix B.2), which means
all intervals (blue and gray) accurately describe the sub-population, regardless of rule membership.
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Figure 9: EMM over joint distribution of radius of gyration Rg0 and van der Waals energy ∆EvdW .

corroborate previous studies showing that non-planar clusters have higher intermolecular van der
Waals interactions than planar ones (Goldsmith et al., 2017). For example, explanations 4 and 15
correspond to clusters of the same size but different planarity, yielding distinct ∆EvdW values. Our
results on real-world datasets, including a study on Abalone (Appendix C.8), highlight the ability of
EMM to explain meaningful interactions behind interesting subpopulations.

6 CONCLUSION

We introduced Explainable Mixture Models, a framework that pairs each mixture component with
a human-interpretable rule. We established conditions for the exact recovery of the underlying data
distribution, and proposed a scalable, differentiable learning algorithm with automatic model se-
lection. Experiments show that EMM reliably recovers ground-truth components, while achieving
state-of-the-art performance in CDE on real-world datasets. Case studies on materials science fur-
ther illustrate the utility of EMM in exploratory data analysis. Overall, EMM accurately models
complex distributions whilst providing meaningful, interpretable explanations.

Limitations. A primary limitation of our approach is the need for a fixed number of mixture
components k at the start of training. We mitigate this through our initialization strategy and the BIC-
based model selection, but in practice k must be tuned for optimal results. Furthermore, we consider
a limited class of explanations in the form of conjunctive rules over intervals. Future work will
explore more expressive rule classes, such as disjunctive normal form rules, and extend explanations
to different modalities such as images or text. Lastly, EMM is dependent on the performance of the
underlying density estimator, which may need to be adapted to the specific data domain.
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ETHICS STATEMENT

Our work aims to increase the transparency and interpretability of complex data distributions. The
rules generated by our model are based on statistical correlations in the data and cannot be used to
make definitive statements about causality or generalizability. The results must thus be used with
caution, especially when sensitive data is involved.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility we provide all code necessary to replicate the experiments. In addition
to the method itself, this includes code to generate the synthetic data for our experiments, as well as
code to reproduce the evaluation results on synthetic data, real data, and case studies.
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Aya Abdelsalam Ismail, Sercan Ö. Arik, Jinsung Yoon, Ankur Taly, Soheil Feizi, and Tomas Pfister.
Interpretable mixture of experts, 2023. URL https://arxiv.org/abs/2206.02107.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87, 1991.

11

https://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml
https://arxiv.org/abs/2206.02107


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026
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APPENDIX

A PROOFS

We provide the proofs for the propositions stated in the main text.

A.1 PROOF OF RECOVERY OF MARGINAL DISTRIBUTION

Proposition 1 Let M = {ei}ki be an EMM with a marginal density as per Def. 1. If the set of
explanations ei form a partition of the feature space Rd, i.e.

∑k
i=1 ei(x) = 1 for all x in the support

of PX , then the induced density pM(y) equals the true marginal density pY (y).

Proof: By Definition 1, the induced marginal density of an EMM is

pM(y) =

k∑
i=1

wi pi(y) with wi =
E[ei(X)]∑k
j=1 E[ej(X)]

, pi(y) = pY | (ei(X)=1)(y).

If the explanations {ei}ki=1 form a partition of the support of PX , then
∑k

i=1 ei(x) = 1 for all x in
the support of PX , and hence

k∑
i=1

E[ei(X)] =

∫
X

k∑
i=1

ei(x) pX(x) dx =

∫
X
pX(x) dx = 1.

Therefore wi = E[ei(X)]/1 = E[ei(X)], and substituting this yields

pM(y) =

k∑
i=1

E[ei(X)] pY | (ei(X)=1)(y) .

By Bayes rule we rewrite

pM(y) =

k∑
i=1

E[ei(X)]
pY, ei(X)=1(y)

P(ei(X) = 1)
(14)

As E[ei(X)] = P(ei(X) = 1), we can cancel terms to obtain

pM(y) =

k∑
i=1

pY, ei(X)=1(y) .

Finally, since the events {ei(X) = 1}ki=1 form a measurable partition of the support of X , the law
of total probability implies

k∑
i=1

pY, ei(X)=1(y) = pY (y).

Thus pM(y) = pY (y), proving the claim. □

A.2 PROOF OF RECOVERY OF CONDITIONAL DISTRIBUTION

Proposition 2 Let M = {ei}ki be an EMM with a conditional density as per Def. 2. If the set of
explanations ei form a partition of the feature space Rd into homogeneous regions with respect to
the target variable Y , i.e. for every explanation ei and its induced sub-distribution pi(y), it holds
that pY |X(y | x) = pi(y) for all x with ei(x) = 1 and pX(x) > 0, then the induced density
pM(y | x) equals the true conditional density pY |X(y | x).
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Proof: By Definition 2,

pM(y | x) =
k∑

i=1

wi(x) pi(y), wi(x) =
ei(x)∑k
j=1 ej(x)

, pi(y) = pY | (ei(X)=1)(y).

If {ei}ki=1 forms a partition of the feature space, then for every x in the support of PX there exists a
unique index i⋆ = i⋆(x) such that ei⋆(x) = 1 and ej(x) = 0 for all j ̸= i⋆. Consequently,

k∑
j=1

ej(x) = 1 ⇒ wi⋆(x) = 1 and wj(x) = 0 for j ̸= i⋆,

and thus
pM(y | x) = pi⋆(y).

By the homogeneity assumption of the proposition, for all x with ei⋆(x) = 1 we have

pY |X(y | x) = pi⋆(y).

Combining the two displays yields pM(y | x) = pY |X(y | x) for all such x in the support of PX .
Hence the induced conditional density equals the true conditional density. □

B LEARNING AND OPTIMIZATION DETAILS

This appendix provides supplementary details on the training, optimization, and rule extraction pro-
cedures for EMM.

B.1 ONLINE PRUNING AND POST-HOC MERGING

Online Pruning. During training, some rules may fail to specialize on any subset of the data. The
optimizer can effectively disable such rules by learning an inverted interval (αij > βij) for one
or more of its predicates, which drives its activation êi(x) towards zero. We periodically identify
rules whose average mixture weight Ex[wi(x)] over the dataset falls below a small threshold (e.g.,
10−3). These components are considered inactive and are permanently removed from the computa-
tion for the remainder of training by fixing ê(x) = 0 and skipping density computation. This saves
computational resources and improves stability by fully removing the gradient.

Post-Hoc Merging. The maximum likelihood objective is invariant to splitting a homogeneous
data region into multiple sub-regions modeled by functionally identical experts. This can result in a
fragmented solution. To improve interpretability, we merge such components after training. For all
adjacent explanations j, k we compute the pairwise similarity of the densities p̂i(y) and p̂j(y) using
Jensen-Shannon divergence. We consider explanations adjacent if their data-based intervals (see
Appendix B.2) touch (± some tolerance) on one feature and are similar on all others with non-zero
weight a. If the divergence between a pair of densities is below a predefined threshold, we merge
their corresponding rules by taking the union of their data-based intervals and retain only one of the
redundant experts.

B.2 TEMPERATURE ANNEALING AND RULE EXTRACTION

To produce a final, human-readable set of rules, the soft, differentiable model must be converted into
a discrete, logical representation.

Temperature Annealing. The temperature parameter τ in the soft predicate (Eq. 9) controls the
trade-off between smooth gradients for effective optimization and sharp boundaries for interpretabil-
ity. We begin training with a higher temperature to allow for a broader exploration of the solution
space. As training progresses, we gradually anneal τ towards a small positive value. This process
encourages the model to converge towards a solution with crisp, well-defined decision boundaries
that closely approximate hard logical rules.
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Data-Based Rule Extraction. Simply reporting the learned interval parameters [αij , βij ] can be
misleading, as optimization may push boundaries towards infinity in uncontested regions of the
feature space. We therefore derive a more faithful representation of the learned partition from the
empirical properties of the data governed by each rule.

For each explanation ei, we first identify its corresponding data partition, Di. This partition consists
of all samples assigned to component i based on the maximum responsibility criterion, as defined
for label extraction in Section C.4. That is,

Di = {(x, y) | i = argmax
j

wj(x)} . (15)

The final, human-readable rule for component i is then defined by the empirical range of the data
in Di for each feature j: [minx∈Di

xj ,maxx∈Di
xj ]. This data-derived bounding box is a valid

representation because our predicate design ensures that if explanation i has maximum responsibility
for the empirical minimum and maximum values in Di, it also does so for all values in between. We
report these ranges for all features, visually distinguishing those the model deemed unimportant (i.e.,
aij ≤ 0) to communicate both the model’s concise logic and the data’s full distributional properties.

We use this this rule extraction to create the rule visualizations (see for example Fig 8). The bars
indicate the range, categorical features show segments. The segments can be partially colored if
multiple values are present in an explanation. Features that are active (a > 0) are blue, others are
grey. The empirical intervals are computed for all features, active or not.

B.3 MODEL SELECTION

Since the true number of components k is unknown, we treat it as a hyperparameter. We train a
set of models with a range of values for k (e.g., k ∈ {10, 100}) and select the best one using the
Bayesian Information Criterion (BIC). The BIC score is calculated after the online pruning and
post-hoc merging steps have been applied. The penalty term in the BIC score considers only the
number of active parameters in the gating network (the rule bounds αij , βij and weights aij). This
choice reflects our goal of finding the most parsimonious partitioning of the feature space, rather
than penalizing the complexity of the expert density estimators, which could otherwise dominate
the score. This automatic balancing of model complexity and fit provides an alternative to manually
chosing k.

C EXPERIMENTS

All experiments are performed on an Intel i5-12400 and Nvidia RTX 3070. GPU acceleration was
used for methods that support it, which is true of EMM.

C.1 SYNTHETIC DATA GENERATION DETAILS

We generate synthetic data from a process that mirrors our model’s core assumption that the data
arise from a mixture of components, where each component corresponds to a distinct subregion of
the feature space with an associated conditional density. We define a collection of disjoint, axis-
aligned hyperrectangular regions {Hj}kj=1 that partition the feature-space Rd. For each region Hj ,
we define an unconditional target density pj(y) on Y . The resulting ground-truth conditional density
is piecewise-constant over Rd, taking the value pj(y) for any feature vector x ∈ Hj .

Recursive Binary Partitioning. The regions are constructed by recursively splitting an initial
hyperrectangle in a manner analogous to a decision tree. This procedure ensures that the resulting
set of regions forms a true partition and avoids creating excessively thin regions. We also generate
empty leaves that will not get any samples to make the data more realistic.

1. Initialization. Start with the full domain as the root of a tree.

2. Recursive Splitting. Iteratively select a leaf node and split it along a randomly chosen fea-
ture dimension. A split is permitted only if the node’s width along that dimension exceeds
a minimum threshold. The tree grows until a target number of leaves is reached.
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3. Component Selection. From the set of leaf nodes, we select exactly k to serve as the active
components, defining the regions {Hj}kj=1.

We show a full partitioning in Fig. 10a and one that contains 50% empty leaves in Fig. 10b.

Conditional Density Assignment and Sampling. Once the feature space is partitioned, we as-
sign target densities and generate samples. For each active region Hj , we draw an unconditional
density pj(y) from a randomized family of standard distributions (Gaussian, Exponential, Gamma,
Uniform) to induce diverse shapes. We show an example of such densities in Fig. 10c. To generate
the dataset, we specify a fixed number of samples nj for each region. For each of the nj samples in
region Hj , we first sample the feature vector x uniformly from within the hyperrectangle defining
Hj , and then sample the target value y from its corresponding density, y ∼ pj(y). The resulting
ground-truth conditional density is

p(y | x) =

k∑
j=1

I{x ∈ Hj} pj(y) .

Task difficulty can be tuned by controlling the overlap between the densities {pj(y)} via a parameter
β ∈ [0, 0.5]. A small β yields well-separated densities, while β = 0.5 implies that all densities share
the same median.
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Figure 10: Illustration of the steps involved in the synthetic data generation.

C.2 BASELINE DETAILS

For all baseline methods, we utilized the authors’ publicly available implementations and followed
their recommended parameter settings unless otherwise specified.

CDTREE. A state-of-the-art interpretable model that greedily builds a decision tree with non-
parametric histogram densities in the leaves, regularized by the Minimum Description Length
(MDL) principle. We use the authors’ original R implementation with default parameters.

CADET. An intrinsically interpretable CDE method that fits a decision tree with parametric dis-
tributions in the leaves. We use the authors’ implementation with BIC regularization. The method
requires specifying the parametric family for leaf distributions. We use Gaussians, as other fami-
lies led to numerical failures on our test data. We further add very small Gaussian noise (standard
deviation 0.001) to the target feature as duplicate values cause the method to fail.

Mixture Density Networks (MDN). A neural network-based approach where the network outputs
the parameters (mixture weights, means, variances) of a Gaussian mixture model for the target
variable, conditioned on the input features.

Kernel Mixture Networks (KMN). Similar to MDN, but models p(y | x) as a mixture of fixed
kernel functions whose mixture weights are determined by a neural network conditioned on x.
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Least-Squares CDE (LSCDE). A non-parametric method that directly models the conditional
density without assuming a specific functional form, using a kernel-based approach.

Normalizing Flows (NF). This method combines a conventional neural network with a multi-
stage Normalizing Flow, where the neural network outputs the flow parameters.

For MDN, KMN, NF, and LSCDE, we use the implementations from the Python CDE package by
Rothfuss et al.. We apply noise regularization of 0.01 to both features and targets, and otherwise use
default parameters. On synthetic data we 3-fold cross validation to select the number of kernels of
KMN to improve label quality.

Conditional Variational Autoencoder (CVAE). We implement a CVAE (Sohn et al., 2015) with
a learned conditional prior, where the encoder q(z | x, y), decoder p(y | x, z), and prior p(z | x) are
parameterized by multi-layer perceptrons with ReLU activations. We employ a latent dimension of
16, with hidden layer sizes of (128, 64, 32) for the encoder, (32, 64, 128) for the decoder, and (64, 32)
for the prior. The decoder models the conditional likelihood as a Gaussian distribution. We optimize
the Evidence Lower Bound (ELBO) with a KLD weight of 0.5 using Adam and apply early stopping
based on validation set performance. Both features and targets are standardized during training. We
estimate the test NLL by approximating the marginal likelihood p(y | x) via Monte Carlo sampling
with 2000 latent samples.

C.3 IMPLEMENTATION AND PARAMETERS

We implement EMM in Python using standard machine learning libraries.

For the experiments we additionally apply a standard entropy loss regularizer to the feature impor-
tance weights. This mainly serves to make rules more concise for interpretability by encouraging
the optimizer to actually reduce a for redundant features. Let ai = (ai1, . . . , aid) be the vector of
non-negative feature importance weights for rule êi. Negative weights are set to 0 for this calcula-
tion. Rules with no support are ignored. First, these weights are normalized to form a probability
distribution

ãij =
aij∑d
l=1 ail

. (16)

The entropy regularization term is then the average Shannon entropy over all k rules

Ra(M) = −1

k

k∑
i=1

d∑
j=1

ãij log(ãij) (17)

Adding this to the objective we get

min
M

NLL(M) + λR(M) + λaRa(M) , (18)

where λa is a hyperparameter.

For all experiments we use λ = 0.1. We use λa = 0.05 for synthetic experiments, and λa = 0.1 for
the real data experiments. All synthetic experiments are ran with BIC selection of k ∈ {10, 100},
except the scaling experiment with d = 20 (Fig. 4a), where we use k ∈ {10, 200}. We always
use a starting temperature of τ = 0.2 and smoothly anneal it to τ = 0.005 during the middle 80%
of training epochs. The first and last 10% are reserved to encourage initial competition and final
settling of the borders. For online pruning we use a threshold of Ex[wi(x)] ≤ 0.005.

C.4 METRICS

Component Label Extraction. On synthetic data, we can compare the predicted component la-
bels to the ground truth. For EMM, we assign each sample (xn, yn) to the component with the
highest responsibility, which corresponds to the most active explanation for that sample’s features:

ẑn = argmax
j∈{1,...,k}

wj(xn) . (19)
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For Kernel Mixture Networks (KMN), which models the conditional density as p(y | x) =∑M
j=1 wj(x)K(y;µj , σj), we cannot obtain feature-based rules. Instead, we assign a label based

on the most probable kernel component for the full data point:

ẑn = argmax
j∈{1,...,M}

wj(xn)K(yn;µj , σj) . (20)

C.5 ADDITIONAL RESULTS

Dataset Rule Complexity # Rules

CDTREE CADET EMM-NSF EMM-NSF BIC EMM-GMM EMM-GMM BIC CDTREE CADET EMM-NSF EMM-NSF BIC EMM-GMM EMM-GMM BIC

SkillCraft 0.00 6.66 10.17 9.83 7.07 6.67 1.00 166.00 6.00 6.00 15.00 6.00
Thermography 1.00 4.68 10.94 11.23 6.44 3.33 7.00 62.00 17.00 13.00 16.00 6.00
abalone 0.00 4.43 4.80 3.91 2.33 2.71 1.00 261.00 10.00 11.00 9.00 7.00
air quality 2.90 5.85 6.70 6.00 3.85 3.85 31.00 478.00 23.00 14.00 13.00 13.00
bike 2.83 4.02 8.53 8.31 5.19 3.73 6.00 45.00 17.00 16.00 31.00 11.00
boston 2.00 3.65 7.60 7.47 4.35 4.60 6.00 23.00 15.00 15.00 23.00 10.00
concrete 3.32 4.29 4.94 4.75 4.34 4.30 19.00 63.00 16.00 16.00 32.00 10.00
energy 2.56 3.77 2.67 2.67 1.88 1.88 34.00 598.00 33.00 21.00 8.00 8.00
insurance 2.69 4.38 4.19 2.91 2.91 2.91 13.00 85.00 16.00 11.00 11.00 11.00
life 2.90 4.60 9.73 10.00 7.33 7.12 20.00 102.00 11.00 12.00 18.00 8.00
obesity 0.00 4.23 9.00 7.86 5.17 3.86 1.00 127.00 7.00 7.00 23.00 7.00
synchronous 1.29 2.11 2.47 2.67 2.57 2.11 17.00 36.00 17.00 12.00 14.00 9.00
toxicity 1.67 3.43 4.27 4.29 3.84 3.43 6.00 53.00 15.00 14.00 25.00 7.00
wages 1.00 4.07 5.67 4.50 3.68 3.20 2.00 88.00 9.00 8.00 28.00 10.00
wine 0.00 6.55 5.00 5.00 4.67 3.75 1.00 300.00 5.00 3.00 9.00 4.00

Rank (Interp.) 1.13 3.53 5.33 4.87 3.27 2.33 2.47 5.93 3.47 2.60 3.80 1.73
Rank (Overall) 1.13 3.53 5.33 4.87 3.27 2.33 2.47 5.93 3.47 2.60 3.80 1.73

Table 2: Rule and model complexity of interpretable models on real-world datasets.

C.5.1 MODEL FIT ON SYNTHETIC DATA

Pseudo R2 (R2
oracle). We report a normalized log-likelihood score to ensure comparability across

different experimental settings. This metric measures the fraction of improvement a model achieves
over an unconditional baseline, relative to the improvement achieved by the ground-truth data-
generating model (oracle).
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Figure 11: Likelihood fit (R2
oracle) on synthetic data for varying (a) number of true components, (b)

number of noise features, (c) target noise level, and (d) overlap between components.

C.6 DESTRUCTIVE NOISE

We perform an additional robustness experiment with destructive noise, showing the results in Fig-
ure 12. We replace the Y value for an increasing fraction of samples with noise ϵ sampled from a
Normal distribution ϵ ∼ N (µ, 1) where µ = E(Y ). This tests robustness when noise introduces
significant outliers relative to the true conditional distributions. In Figure 12b we see that the condi-
tional structure is recovered accurately even when 30% of Y values are destroyed. Figure 12a shows
the NLL. Due to the increased presence of outliers that are modeled by the same number of density
estimators, the likelihood degrades when maintaining the true conditional structure.

C.7 RUNTIME

Finally we evaluate the scalability as data dimensionality increases. For show the results for in-
creasing d in Fig. 13a and for increasing number of samples in Fig. 13b. We observe that neural
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Dataset CDTREE CADET EMM-NSF EMM-NSF BIC EMM-GMM EMM-GMM BIC CVAE KMN LSCDE MDN NF

SkillCraft 3056.1 0.2 305.9 255.4 29.5 39.7 3.5 36.4 5.0 6.5 8.4
Thermography 217.4 0.1 678.3 517.5 32.2 46.0 6.2 32.8 2.3 5.3 5.5
abalone 9625.1 0.2 398.5 335.3 22.3 35.1 5.4 35.0 3.4 6.7 9.0
air quality 1385.8 0.5 502.5 352.1 29.2 43.9 17.6 39.6 5.7 9.0 11.7
bike 36.7 0.0 690.8 521.6 49.5 66.8 1.3 32.1 2.2 5.2 5.2
boston 59.9 0.0 610.6 485.0 43.9 54.6 0.7 31.4 1.1 4.5 5.2
concrete 95.2 0.0 772.3 524.5 51.3 59.6 3.3 32.3 2.0 5.0 5.5
energy 201.0 0.5 601.1 469.2 24.8 32.4 9.0 41.4 7.9 9.4 11.8
insurance 36.4 0.1 637.5 408.2 25.1 33.8 4.1 32.9 1.8 5.4 5.5
life 403.4 0.1 611.4 456.6 38.2 44.4 4.1 33.9 1.9 5.7 6.0
obesity 631.8 0.1 317.1 268.2 38.6 43.7 3.5 34.7 2.8 5.8 6.3
synchronous 45.8 0.0 608.4 456.6 27.3 35.6 5.2 31.9 1.4 4.4 5.2
toxicity 29.8 0.0 641.6 487.6 41.0 47.8 2.7 32.3 2.2 4.8 5.3
wages 62.8 0.1 588.8 419.0 42.1 50.8 2.5 33.5 2.4 5.4 5.6
wine 2168.6 0.3 315.4 236.3 22.3 28.0 6.7 36.1 5.3 6.9 9.9

Rank (Interp.) 4.4 1.0 5.7 4.7 2.1 3.1 - - - - -
Rank (Overall) 9.3 1.0 10.7 9.7 6.6 8.0 3.1 6.7 2.2 3.8 4.9

Table 3: Runtime in seconds.
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Figure 12: NLL and NMI for increasing fraction of Y samples replaced with destructive noise.

methods like EMM and KMN are consistently fast even on large datasets. Our NSF instantiation
takes longer to run due to increased parameter count, but exhibits stable scaling. The runtime of
CDTree increases very quickly even for moderate dimensions due to its iterative nature. CADET is
comparatively very fast because of its small search space.

C.8 ABALONE CASE STUDY

We apply EMM to the popular abalone dataset which contains various size and weight measurments
of abalones, a kind of sea snail. Typically this dataset is used for regression or classification using
Age as the target variable. We apply EMM using 28 Gaussian density components as there are
28 unique values in Age. In Fig. 14 we show that EMM can recover reasonable explanations and
distributions. The explanations show that larger and heavier abalones have a higher mean Age.
But because we estimate the entire conditional distribution we can further see exactly how Age is
distributed for these subgroups. For example explanations consisting mostly (1) or entirely (2) of
infants are distributed in relatively low and narrow age range. Explanation 6 contains the largest
and heaviest ones, which are distributed at the upper end with a wider distribution. We interpret this
explanation to describe abalones that have reached their maximum size but continue to age. CDTree
does not find any conditional structure in the data, returning a tree consisting only of the root node.

C.9 GOLD HOMO-LUMO CDTREE

We provide a visualization of the CDTree density estimates on the Gold nano clusters dataset with
target variable HOMO-LUMO in Figure 15.

D LLM USAGE

LLM usage did not play a significant role in research ideation or writing of the paper itself. However
LLMs and AI assistants were used during the implementation of the method.
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Figure 13: Runtime of all methods on synthetic data with increasing number of features (left) and
samples (right).
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Figure 14: EMM results on Abalone. Probability masses are weighted by explanation size.

0.0 0.5 1.0 1.5 2.0
HOMO-LUMO

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

sit
y

Leaves
Population
Leaf 1
Leaf 2
Leaf 3
Leaf 4
...
Leaf 64
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